Using the HDSP-2000
 Alphanumeric Display Family

Application Note 1016

Introduction

First introduced in 1975, the HDSP2000 alphanumeric display has been designed into a variety of applications. The HDSP-2000 display was originally designed for commercial, industrial, instrumentation, and business equipment applications. However, the introduction of high efficiency red, yellow, and high performance green devices as well as several display sizes has opened up a multitude of new applicationsforthe HDSP-2000 alphanumeric display family. The high efficiency red, yellow, and high performance green devices use gallium phosphide (GaP) LEDs. The GaP displays are readable in direct sunlight with proper contrast enhancement techniques. For thisreason, the HDSP-2000family displays have been designed into a variety of avionic and process control applications. The HDSP-2000 family displays are available in three character sizes of $3.8 \mathrm{~mm}\left(0.15^{\prime \prime}\right)$, 4.9 mm ($0.19^{\prime \prime}$), and $6.9 \mathrm{~mm}\left(0.27^{\prime \prime}\right)$ to allow the designerto optimizedisplaycompactness versus long distance readability. Versions of the HDSP-2000 family alphanumeric dis-
plays are available with a true hermetic package and an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ to allow designers to utilize the proven reliability of LED displaytechnology in military and aerospace applications.

This note is intended to serve as a design and application guide for users of the HDSP-2000 family of alphanumericdisplaydevices. Theinformation presented will cover: the theory of the device design and operation; considerations for specific circuitdesigns;thermalmanagement, power de-rating and heat sinking; intensity modulation techniques.

The HDSP-2000 family has been designed to provide a high resolution information display subsystem. Each character of the 4 character package consists of a 5×7 array of LEDs which can display a full range of alphabetic and numeric characters plus punctuation, mathematical and other special symbols. The HDSP-2000family is available in four colors: red, high efficiency red, yellow, and high performance green.

The characterheight, character spacing, color and part number of each member of the HDSP-2000 family of displaysisshowninTable1.Theoverall package size is designed to allow end stacking of multiple clusters to form character strings of any desired length.

Electrical Description

The on-board electronics of the HDSP-2000 display family eliminates some of the classical difficulties associated with the use of alphanumeric displays. Traditionally,singledigitLED dot matrix displays have been organized in an $x-y$ addressable array requiring 12 interconnect pins per digit plus extensive row and column drive support electronics. All members of the HDSP-2000 display family provideon-board storage ofdecoded row data plus constant current sinking row drivers for each of the 28 rows in the 4 character display. This approach allows the user to address each display package through just 11 active interconnections vs. the 176 interconnectionsand 36 components required to effect a similar function using conventional LED matrices.

Table 1. The HDSP-2000 Alphanumeric Display Family

Device	Color	Character Height	Character Spacing	Operating Temperature
HDSP-2000	Red	3.8 mm (0.15in.)	4.5 mm (0.17in.)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2001	Yellow	3.8 mm (0.15in.)	4.5 mm (0.17in.)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2002	HighEfficiencyRed	3.8 mm (0.15in.)	4.5 mm (0.17in.)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2003	High Performance Green	3.8mm(0.15in.)	4.5 mm (0.17in.)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2300	Red	4.9 mm (0.192 in.)	5.0 mm (0.197)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2301	Yellow	4.9 mm (0.192 in.)	5.0 mm (0.197)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2302	HighEfficiency Red	4.9 mm (0.192in.)	5.0 mm (0.197)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2303	High Performance Green	4.9 mm (0.192 in.)	5.0 mm (0.197)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2490	Red	6.9 mm (0.27in.)	8.9 mm (0.35in.)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2491	Yellow	6.9 mm (0.27in.)	8.9 mm (0.35in.)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2492	HighEfficiency Red	6.9 mm (0.27in.)	8.9 mm (0.35in.)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2493	High Performance Green	6.9 mm (0.27in.)	8.9 mm (0.35in.)	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2010	Red	3.8 mm (0.15in.)	4.5 mm (0.17 in.)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2310	Red	4.9 mm (0.192in.)	5.0mm (0.197in.)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2311	Yellow	4.9 mm (0.192 in.)	5.0 mm (0.197 in.)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2312	HighEfficiencyRed	4.9 mm (0.192 in.)	5.0mm (0.197in.)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2450	Red	6.9 mm (0.27in.)	8.9 mm (0.35in.)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2451	Yellow	6.9 mm (0.27in.)	8.9 mm (0.35in.)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HDSP-2452	HighEfficiency Red	6.9 mm (0.27in.)	8.9mm(0.35in.)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Figure 1. Block diagram.

Figure 1 is a block diagram of the internal circuitry of the HDSP-2000 display.ThedeviceconsistsoffourLED matrices and two 14-bit serial-in-parallel-out shift registers. The LED matrixforeachcharacterisa5x7diode array organized with the anodes of each column tied in common and the cathodesofeach row tied in common. The 7 row cathode commons of each character aretied to the constant current sinking outputs of 7 successive stages of the shift register. The like columns of the 4 characters are tied together and brought to a single addresspin(i.e.,column1ofall4characters is tied to pin 1, etc.). In this way, any diodein the four 5×7 matricesmay be addressed by shifting data to the appropriate shift register location and applying a voltage to the appropriate column.

The serial-in-parallel-out (SIPO) shift registerhasaconstantcurrentsinking output associated with each shift registerstage.Thisconstantcurrentoutput drives each LED at a nominal peak currentof12to14mApeak. Theoutput stage is a current mirror design with a nominal current gain of 10 . A logical 1 loaded into each shift register bit will turn "ON" the corresponding current source provided that a logical 1 is applied to the Blanking Input, V_{B}. If $V_{\text {col }}$ isapplied to the appropriateColumn Input, the corresponding LED diode will be turned "ON". Since the row drivers have a constant current output, the LED current will remain constant as long as the Column Input voltageexceeds 2.4 V forred and 2.75 V forhighefficiencyred, yellow,andhigh performancegreendevices.

Data is loaded serially into the shift registeronthehightolow transition of theClockInput.

During the time that data is being loaded into the display, the column current must be disabled to minimize
the generation of "current spikes"between $V_{c c}$, the columns, and ground. Theresultingpowersupplynoisecould induce noise on the Clock and Data Inputs. The column current can be disabled either by switching off the columndriversorbyapplyingalogical OtotheBlankingInput.

The Data Output terminal is a TTL buffer interface to the 28th bit of the shiftregister(i.e.,the7throwofcharacter4ineach package)TheDataOutput isarranged to directlyinterconnectto theDatalnputon asucceeding 4digit HDSP-2000displaypackage.TheData, Clockand V_{B} inputsare all buffered to allow direct interface to any TTLlogic family.

Theory of Operation

Dot matrixalphanumeric display systems generally have a logical organization which prescribes that any character be generated as a combination of several subsets of data. In a 5×7 matrix, this could be either 5 subsets of 7 bits each or 7 subsets of 5 bits each. This technique is utilized to reduce from 35 to 5 or 7 the number of outputs required from the character generator. In order to display a complete character, these subsets of data are then presented sequentially to the appropriate locations of the display matrix. If this process is repeated at a rate which insures that each of the appropriate matrixlocations isreenergized aminimum of 100 times per second, the eye will perceive a continuous image of the entire character. The apparent intensity of each of the display elements will be equal to the intensity of that element during the "ON" period multiplied by the ratio of "ON" time to refresh period. This ratio is referred to as the display duty factor, and the technique is referred to as "strobing".

In the case of HDSP2000, each character is made up of 5 subsets of 7 bits . For a four character display, 28 bits representing the first subset of each of the fourcharacters are loaded serially into the on-board SIPO shift register and the first column is then energized for a period of time, T. This process isthen repeated for columns 2 through 5. If the time required to load the 28 bits into the SIPO shift register is t, then the duty factor is:

$$
\begin{equation*}
\text { D.F. }=\frac{\mathrm{T}}{5(\mathrm{t}+\mathrm{T})} \text {; } \tag{1}
\end{equation*}
$$

the term $5(t+T)$ is then the refresh period. For satisfactory display, the refresh period should be:

$$
\begin{equation*}
1 /[5(t+T)] \geq 100 \mathrm{~Hz} \tag{2}
\end{equation*}
$$

or conversely

$$
\begin{equation*}
5(t+T) \leq 10 \mathrm{msec}, \tag{3}
\end{equation*}
$$

which gives

$$
\begin{equation*}
(t+T) \leq 2 \mathrm{msec} . \tag{4}
\end{equation*}
$$

The time averaged luminous intensity of the display can be varied continuously over a range greater than 1000 to 1 by turning off or blanking the display before loading new data into the SIPO shift register. If the time that the display is blanked is T_{B}, then the duty factor of the display becomes:

$$
\begin{equation*}
\text { D.F. }=\frac{\mathrm{T}}{5\left(\mathrm{t}+\mathrm{T}+\mathrm{T}_{\mathrm{B}}\right)} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\mathrm{t}+\mathrm{T}+\mathrm{T}_{\mathrm{B}}\right) \leq 2 \mathrm{msec} . \tag{5a}
\end{equation*}
$$

Drive Circuit Concepts

A practical display system utilizing the HDSP-2000 family of displays requires interfacing with a character generator, refresh memory and some timing circuitry. A block diagram of such a display system is depicted in Figure2.Thiscircuit providesforASCII data storage and decoding and properly refreshes the display at a 100 Hz refresh rate. In this figure, the display length is shown as N characters with theleftmostdisplay characterlabeled ascharacter 1 and therightmostcharacter of the display labeled as character N . The refreshing of the display is accomplished by a series of counters.

The \div N counter sequentially accesses N coded information symbols from the N x 7 RAM. Note that for the normal configuration of the HDSP-2000 displays, character 1 is the leftmost character, character 4 isthe rightmost character and shift register cascades
from left to right. Thus, the symbol corresponding to character N is decoded first, then the symbol corresponding to character ($\mathrm{N}-1$), and the symbol corresponding to character 1 is decoded last.

Each coded information symbol is read from the $\mathrm{N} \times 7 \mathrm{RAM}$ and decoded by a 5×7 decoder. The decoder can be selected to decode ASCII, EBDIC, or any customized character font In this example, the ASCII decoder is organized as 128×7 words of 5 bits each. The ASCII symbol and row select information is applied to the decoder and the decoder outputs information for all 5 columns for the selected row and symbol.

The $\div 7$ counter sequentially accesses all seven rows of each ASCII symbol. Note that row 7 must be decoded first, then row 6, and row 1 is decoded last. The $\div \mathrm{M}$ counter is used to periodically load new serial data into the HDSP-2000 display. During one count, the display clock is enabled
and 7 N bits of serial data are loaded into the display. During the remaining (M1) counts, thisdata isdisplayed. Thus the duty factor for the circuit in Figure 2 is

$$
\begin{equation*}
\text { D.F. }=\frac{(M-1)}{5 M}=.20\left(1-M^{-1}\right) \tag{6}
\end{equation*}
$$

The $\div 5$ counter sequentially refreshes all 5 columns of the display. The outputs of the $\div 5$ counter are connected to a data multiplexer which selects one of the 5 outputs from the ASCII decoder and loads it into the Data Input oftheHDSP-2000 displaystring. The $\div 5$ counter also enables one of the 5 column driver transistors. Note that the display is blanked via the V_{B} input and also that the column driver transistors are turned off during the time that new data is being loaded into the HDSP-2000 display string. This will eliminate any high current transients between the column inputs and ground during the data shifting operation.

Figure 2. CKT block diagram.

Since data is loaded for all of the like columns in the display string and these columns are then enabled simultaneously, only five column switch transistors are required regardless of the number of characters in the string. The column switch transistors should be selected to handle 105 to 130 mA per character in the display string. The collector emitter saturation voltage characteristics and column voltage supply should be chosen to provide $2.4 \mathrm{~V} \leq$ $\mathrm{V}_{\mathrm{COL}} \leq \mathrm{V}_{\mathrm{CC}}$ for the standard red displays and $2.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{COL}} \leq \mathrm{V}_{\mathrm{CC}}$ for the high efficiency red, yellow, and high performance green displays. To save on power supply costs and improve efficiency, this supply may be a fullwave rectified unregulated DC voltage as long as the PEAK value does not exceed the value of V_{CC} and the minimum value does not drop below 2.4 V or 2.75 V depending on display color.

Figures 13 and 16 show practical implementations of the block diagram shown in Figure 2. In those circuits, the display is mounted upside down, so that pin 1 is in the upper right hand corner. With this technique, data is loaded into display character N and data shifts from right to left as new data is loaded. The first bit loaded into the display would be row 1 , character 1 , then row 2 , etc., and the last bit loaded would be row 7 of character N . This allows the $\div 7, \div \mathrm{N}$ and $\div \mathrm{M}$ counters to be implemented as up counters instead of down counters. Since the display is upside down, column 5 of the display appears to be column 1 and column 4 of the display appears
to be column 2. Thus, column 1 data for the display must be loaded into the display and column 5 must subsequently be enabled. This is accomplished by reversing the outputs of the 5×7 decoder. The D_{0}, D_{1}, D_{2}, D_{3}, and D_{4} outputs of the MCM6674 decoder output column 5, column 4 , column 3 , column 2 , and column 1 information.

Interfacing the HDSP-2000 Display to Microprocessors

Because of the complexity of dealing with alphanumeric information, a microprocessor based system is typically used in conjunction with the HDSP-2000 family displays. Depending upon overall systems configuration, microprocessor time available to dedicate to display support, and the type of information to be displayed, one may choose several different partitioning schemes to drive such a display.

Figure 3 shows four different techniques to interface the HDSP-200 family displays to microprocessor systems:

1. The REFRESH CONTROLLER interrupts the microprocessor at a 500 Hz rate to request refresh data for the display.
2. The DECODED DATA CONTROLLER accepts 5×7 matrix data from the microprocessor and then automatically refreshes the display with the same information until new data is supplied by the microprocessor.
3. The CODED DATA CONTROLLER accepts ASCII data and interfaces like a RAM to the microprocessor.
4. The DISPLAY PROCESSOR CONTROLLER (HDSP-247X series) employs a dedicated single chip microprocessor as a data display/ control/keyboard interface which has many of the features of a complete terminal.

The interface techniques depicted are specifically for the 8080A or 6800 microprocessor families. Extension of these techniques to other processors should be a relatively simple software chore with little or no hardware changes required.

The choice of a particular interface is an important consideration because it affects the design of the entire microprocessor system. The REFRESH CONTROLLER provides the lowest cost interface because it uses the microprocessor to provide ASCII decoding and display strobing. Because the ASCII decoder is located within the microprocessor system, the designer has total control over the display font within the program. This feature is particularly important when the system will be used to display different languages and special graphic symbols. However, the REFRESH CONTROLLER requires a significant amount of microprocessor time. Furthermore, while the interrupt allows the refresh program to operate asynchronously from the main program, this technique limits some of the software techniques that can be used in the main program.

The DECODED DATA CONTROLLER requires microprocessor interaction only when the display message is changed. Like the REFRESH CONTROLLER, the ASCII decoder is located within the microprocessor program. However, the time required to decode the ASCll string and store the resulting 5×7 display data into the interface requires several milliseconds of microprocessor time.

The CODED DATA CONTROLLER also requires interaction from the micro-
processor system only when the display message is changed. Because the ASCll decoder is located within the display interface, the microprocessor requires much less time to load a new message into the display.

The DISPLAY PROCESSOR CONTROLLER, the HDSP-247X series, is the most powerful interface. The software within the DISPLAY PROCESSOR CONTROLLER further reduces the host microprocessor interaction by providing more powerful left and right data
entry modes compared to the RAM entry mode of the DECODED DATA and CODED DATA CONTROLLERS. The DISPLAY PROCESSOR CONTROLLER can also provide features such as a Blinking Cursor, Editing Commands, and a Data Out function. One version of the DISPLAY PROCESSOR CONTROLLER allows the user to provide a custom ASCII decoder for applications needing a special character font.

Figure 3. Four different techniques to interface the HDSP-2000 Alphanumeric Display to a Microprocessor System.

Figure 4. 6800 or 8080A Microprocessor interface to the HDSP-2000 REFRESH CONIROLER.

Refresh Controller

The REFRESH CONTROLLER circuit depicted in Figure 4 operates by interrupting the microprocessor every two milliseconds to request a new block of display data and column select data. Display data is loaded from the data bus into the serial input of the HDSP-2000 via a 74165 parallel in, serial out shift register. The 74LS293 counter and associated gates insure that only seven clock pulses are delivered to the shift register and the HDSP-2000 for each word loaded. Column Select data is loaded into a 74174 latch which, in turn, drives the column switch transistors. The circuit timing relative to the microprocessor clock and I / O is depicted in Figure 5.

The 6800 software necessary to support this interface is divided into two
separate subroutines, "RFRSH" and "LOAD" (Figure 6). This approach is desirable to minimize microprocessor involvement during display refresh. The subroutine "RFRSH" loads a new set of decoded display data from the microprocessor scratchpad memory into the interface at each interrupt request. The subroutine "LOAD" is utilized to decode a string of 32 ASCII characters into 5×7 formatted display data and store this data in the scratchpad memory used by "RFRSH".

Figures 7 and 8 depict two different software routines for interfacing the REFRESH CONTROLLER to an 8080A microprocessor. The two subroutines shown in Figure 7 are functional replacements for the 6800 program shown in Figure 6. The programs shown in Figures 6 and 7 require a 5 N
byte scratchpad memory where N is the display length. The routine in Figure 8 eliminates this scratchpad memory by decoding and loading data each time a new interrupt request is received.

Because the microprocessor system is interrupted every 2 ms , proper software design is especially important for the REFRESH CONTROLLER. The use of the scratchpad memory significantly reduces the time required to refresh the display. The fastest program, shown in Figure 6, uses in-line code to access data from the buffer and output it to the display. This program requires $3.7 \%+.50 \mathrm{~N} \%$ of the available microprocessor time for a 1 MHz clock. The program shown in Figure 7 is similar to the one shown in Figure 6, except that it uses a program loop

Figure 5. REFRESH CONTROLLER timing.
instead of the in-line code. This program uses $5.4 \%+.93 \mathrm{~N} \%$ of the microprocessortimefora2MHzclock. These programs utilize a subroutine "LOAD" which is called whenever the display message ischanged. Thissubroutine executes in 10.2 ms and 7.5 ms respectively for Figure 6 and Figure 7. The program in Figure 8 uses $7.6 \%+1.35 \mathrm{~N} \%$ of themicroprocessor time for a 2 MHz clock. A 50% reduction in the previously described microprocessor times can be achieved by using faster versions of the 6800 and 8080 A microprocessors.

The ASCII to 5×7 dot matrix decoder used by the programs in Figures 6, 7, and 8 is located within the microprocessor program. This decoder requires 640 bytes of storage to decode the 128 character ASCII set. The decoder used by these controllers is formatted so that the first 128 bytes contain column 1 information; the next 128 bytes contain column 2 information, etc. Each byte of this decoder is formatted such that D_{6} through D_{0} contain Row 7 through Row 1 display data respectively. The data is coded so that a HIGH bit will turn the corresponding 5×7 display dot ON. This decoder table is shown in Figure 9. The resulting 5×7 dot matrix display font is shown in the HDSP-2471 data sheet.

Decoded Data Controller

The DECODED DATA CONTROLLER circuit schematic for a 32 character display is depicted in Figure 10. The circuit is specifically designed for interface to an 8080A microprocessor. This circuit is designed to accept and store in local memory all of the display data for a 32 character HDSP-2000 display (1120 bits). The
microprocessor loads 160 bytes of display data into the two $1 \mathrm{~K} \times 1$ RAM's via the 74165 parallel in, serial out shift register. Each byte of data represents one column of display data. The counter string automatically generates the proper address location for each serial bit of data after initialization by MEM W, the character address, and the desired column. Once the loading is complete, the counter sequentially loads and displays each column (224 bits) of data at a 90 Hz rate (2 MHz input clock rate). The timing for this circuit is shown in Figure 11. The software required to decode a 32 character ASCII string is shown in Figure 12. This program decodes the 32 ASCII characters into 160 bytes of display data which are then stored in the controller. The program requires about 6.6 ms , for a 2 MHz clock, to decode and load the message into the DECODED DATA CONTROLLER. This program also uses the same decoder table as shown in Figure 9.

Coded Data Controller

The CODED DATA CONTROLLER (Figure 13) is designed to accept ASCII coded data for storage in a local 128×8 RAM. After the microprocessor has loaded the RAM, local scanning circuitry controls the decoding of the ASCII, the display data loading, and the column select function. With minor modification, the circuit can be utilized for up to 128 display characters. The RAM used in this circuit is an MCM6810P with the Address and Data inputs isolated via 74LS367 tri-state buffers. This allows the RAM to be accessed either by the microprocessor or by the local electronics. The protocol is arranged such that the microprocessor always takes precedence over the local
scanning electronics. The "Write" cycle timing for the CODED DATA CONTROLLER is depicted in Figure 14. This circuit, as with the DECODED DATA CONTROLLER, requires no microprocessor time once the local RAM has been loaded with the desired data.

The circuit shown in Figure 13 shows a CODED DATA CONTROLLER designed for a 32 character HDSP-2000 alphanumeric display. The key waveforms shown in Figure 15, labeled (1), (2), and (3), are shown to simplify the analysis of this circuit. Label (1) is the 1 MHz clock. Label (2) is the output of 7404 pin 2 which is the inverted Q_{D} output of the 74197. Label (3) is the output of the 7404 pin 6 which is the ANDed output of $2 Q_{B}, 2 Q_{c}$, and $2 Q_{D}$ of the 74393 . The Motorola 6810 RAM stores 32 bytes of ASCII data which is continuously read, decoded, and displayed. The ASCII data from the RAM is decoded by the Motorola 6674128 character ASCII decoder. The 6674 decoder has five column outputs which are gated to the Data Input of the display via a 74151 multiplexer. Strobing of the display is accomplished via the 74197, 74393 , and 7490 counter string. The 74197 is connected as a divide by 8 counter that sequentially selects the seven rows within the 6674. As shown by waveform (2), the 74197 also enables seven clock cycles to be gated to the clock input of the display. The 74393 is a divide by 256 counter connected so that the five lowest order outputs select each of the 32 ASCII characters within the RAM. The three highest order outputs determine the relationship between load time and column on time. When $2 \mathrm{Q}_{\mathrm{B}}=2 \mathrm{Q}_{\mathrm{C}}=$ $2 Q_{D}=1$ of the74393, waveform
(3) goesto a logical 1. The circuit then scans 32 characters from the RAM and serializes the column data by counting through each of the seven rows of the 6674 and gating the appropriate column of the display. During the seven counts when $2 \mathrm{Q}_{\mathrm{B}}$, $2 Q_{c}$, and 2QD of the 74393 are not equal to a logical 1 , the column data is displayed, as shown in waveform (4). The duty factor of the display shown in Figure 13 is 17.5%.

Changing the display length to 64 characters is a simple modification. This configuration can be easily realized by disconnecting $2 \mathrm{Q}_{\mathrm{B}}$ of the 74393 from the 7410 and connecting it through the remaining tri-state buffer on the 74LS367 and using the 6810 RAM to store 64 ASCII characters. By leaving only $2 \mathrm{Q}_{\mathrm{c}}$ and 2QD attached to the 7410 , the column on time of the display is reduced from 17.5% to 15%.Thisreduction iscaused because the relationship between actual column on time and theoretical column on time is $3 / 4$ as opposed to $7 / 8$ for the 32 characters. Since the display length has been doubled, the drive transistors must be upgraded to handle the higher column currents.

To implement a 128 character display, several modifications are needed. These changes are incorporated into the circuit in Figure 16. First, the input clock frequency has been increased to 2 MHz . This has been done to maintain a refresh rate of approximately 100 Hz foreach digit, thus providing a flicker-free display. Thishigherspeed of operation causes propagation delay problems within the MCM6674 (NMOS) whose maximum access time is 350 ns . For this

Figure 6. $\mathbf{6 8 0 0}$ Microprocessor Program utilizing a 160 Byte RAM Buffer that interfaces to the REFRESH CONTROLLER.

Figure 6. 6800 Microprocessor Program utilizing a 160 Byte RAM Buffer that interfaces to the REFRESH CONTROLLER (cont.).
reason, the MCM6674 must be replaced by a faster Bipolar PROM. If this PROM is programmed with the code listed in Figure 17, it will decode a character font identical to the MCM6674. This same propagation delay problem is present with the MCM 6810 RAM. Following worst case design procedures, the MCM68A10 1.5 MHz RAM should be used. To accommodate the additional address line made necessary by the display length expansion, the two 74LS367 tri-state buffers have been replaced with the 74LS244 octal version. Strobing of the display is accomplished using the 74197, 74393 , and 7490 counter string. The 74197 is connected as a divide by 8 counter that sequentially selects the seven rows within the 82S2708. The 74393 is a divide by 256 counter connected so that the seven lowest outputs select each of the 128 ASCII characters within the RAM. The previously unused input A /output Q_{A} of the 7490 has been used as an additional divide by 2 counter. Thus, when the highest output of the 74393, 2QD, and the Q_{A} output of the 7490 are NANDed through 7437, the basic relationship between load time and column on time is established. However, the external gating that has been added does affect the duty factor slightly. Although these additional gates increase the total package count by one, they perform the necessary function of ensuring that the column drivers are turned off before the clock is gated to the display. This prevents noise from being generated on the clock of the display and eliminates erroneous display data. The resultant duty factor is (23/32) (1/ 5) or 14.4%. Since the HDSP-2000 is rated at $\mathrm{I}_{\mathrm{CoI}(\max)}=410 \mathrm{~mA}$ and

LOC		OBJ ECT CODE		SOURCE STATEMENTS		
0004				RDVR	EQU	0004H
0005				CDVR	EQU	0005H
E500				DECDR	EQU	0E500H
					ORG	OEOOOH
E000	05	E0		POINT	DW	BUFFR
E002	FE			COLMN	DB	OFEH
E003	FF	FF		COUNT	DW	OFFFFH
E005	00			BUFFR	DS	160
					ORG	0E0A5H
E0A5	A7	E0		ASCII	DW	DATA
E0A7	00			DATA	DS	32
					ORG	OE400H
E400	F5			RFRSH	PUSH	PSW
E401	C5				PUSH	B
E402	E5				PUSH	H
E403	2A	00	E0		LHLD	POINT
E406	06	20			MVI	B, 32
E408	3E	FF			MVI	A, OFFH
E40A	D3	05			OUT	CDVR
F40C	7E			LOOP	MOV	A, M
E40D	D3	04			OUT	RDVR
E40F	23				INX	H
E410	05				DCR	B
E411	C2	0 C	E4		JNZ	LOOP
E414	3A	02	E0		LDA	COLMN
E417	D3	05			OUT	CDVR
E419	FE	EF			CPI	OEFH
E41B	CA	28	E4		JZ	FIRST
E41E	22	00	E0		SHLD	POINT
E421	07				RLC	
E422	32	02	E0		STA	COLMN
E425	C3	3A	E4		JMP	END
E428	21	05	E0	FIRST	LXI	H, BUFFR
E42B	22	00	EO		SHLD	POINT
E42E	3E	FE			MVI	A, OFEH
E430	32	02	E0		STA	COLMN
E433	2A	03	E0		LHLD	COUNT
E436	2B				DCX	H
E437	22	03	E0		SHLD	COUNT
E43A	El			END	POP	H
E43B	Cl				POP	B
E43C	F1				POP	PSW
E43D	C9				RET	
E43E	11	24	E0	LOAD	LXI	D, BUFFR+31
E441	OE	20			MVI	C, 32
E443	2A	A5	E0	LOOP1	LHLD	ASCII
E446	7E				MOV	A, M
E447	23				INX	H
E448	22	A5	E0		SHLD	ASCII
E44B	26	E5			MVI	H, DECDR/256
E44D	6F				MOV	L, A
E44E	06	05			MVI	B, 5
E450	7E			LOOP2	MOV	A, M
E451	12				STAX	D
E452	7D				MOV	A, L
E453	C6	80			ADI	80H
E455	6F				MOV	L, A
E456	D2	5A	E4		JNC	LOOP3
E459	24				INR	H
E45A	7B			LOOP3	MOV	A, E
E45B	C6	20			ADI	32
E45D	5 F				MOV	E, A
E45E	05				DCR	B
E45F	C2	50	E4		JNZ	LOOP2
E462	7B				MOV	A, E
E463	C6	5F			ADI	5FH
E465	5F				MOV	E, A
E466	OD				DCR	C
E467	C2	43	E4		JNZ	LOOP1
E46A	C9				RET	

Figure 7. 8080A Microprocessor Program utilizing a 160 Byte RAM Buffer that interfaces to the REFRESH CONTROLLER.

Figure 7. 8080A Microprocessor Program utilizing a 160 Byte RAM Buffer that interfaces to the REFRESH CONTROLLER (cont.).

LOC	OBJ ECTCODE			SOURCE STATEMENTS		
0004				RDVR	EQU	0004H
0005				CDVR	EQU	0005H
E500				DECDR	EQU	0E500H
					ORG	OEOOOH
E000	07	EO		ASCII	DW	DATA
E002	FE			COLMN	DB	OFEH
E003	FF	FF		COUNT	DW	OFFFFH
E005	00	E5		BASE	DW	DECDR
E007	00			DATA	DS	32
				ORG		OE400H
E400	F5			RFRSH	PUSH	PSW
E401	C5				PUSH	B
E402	D5				PUSH	D
E403	E5				PUSH	H
E404	2A	05	E0		LHLD	BASE
E407	EB				XCHG	
E408	2A	00	EO		LHLD	ASCII
E40B	01	1F	00		LXI	B, 31
E40E	09				DAD	B
E40F	43				MOV	B, E
E410	OE	20			MVI	C, 32
E412	3E	FF			MVI	A, OFFH
E414	D3	05			OUT	CDVR
E416	78			LOOP	MOV	A, B
E417	86				ADD	M
E418	5F				MOV	E, A
E419	1A				LDAX	D
E41A	D3	04			OUT	RDVR
E41C	2B				DCX	H
E41D	OD				DCR	C
E41E	C2	16	E4		JNZ	LOOP
E421	EB				XCHG	
E422	3A	02	E0		LDA	COLMN
E425	D3	05			OUT	CDVR
E427	FE	EF			CPI	OEFH
E429	CA	3B	E4		JZ	FIRST
E42C	07				RLC	
E42D	32	02	E0		STA	COLMN
E430	68				MOV	L, B
E431	01	80	00		LXI	B, 0080H
E434	09				DAD	B
E435	22	05	E0		SHLD	BASE
E438	C3	4D	E4		JMP	END
E43B	3E	FE		FIRST	MVI	A, OFEH
E43D	32	02	E0		STA	COLMN
E440	21	00	E5		LXI	H, DECDR
E443	22	05	E0		SHLD	BASE
E446	2A	03	E0		LHLD	COUNT
E449	2B				DCX	H
E44A	22	03	E0		SHLD	COUNT
E44D	E1			END	POP	H
E44E	D1				POP	D
E44F	C1				POP	B
E450	F1				POP	PSW
E451	C9				RET	

Figure 8. 8080A Microprocessor Program that decodes a 32 Character ASCII String prior to loading into the REFRESH CONTROLLER.
there are 32 modules of four digits each, the transistors must source up to 32 times 410 mA or approximately 13 A.Darlington PNP power transistors (2N6285) with the proper resistors have been used to accomplish this task.

Display Processor Controller

The previously mentioned interface techniques provide only for the display of ASCII coded data. Such important features as a blinking cur-
sor, editing routines, and character addressing must be provided by other
subroutines in the microprocessor software. The DISPLAY PROCESSOR CONTROLLER is a system which utilizes a dedicated 8048 single chip microprocessor to provide these important features. This controller, as depicted in Figure 18, is a series of

DECODER ADDRESS FOR FIG. 7,8,12	DECODER ADDRESS FOR FIG. 6	$\begin{aligned} & \text { HDSP-2471 } \\ & \text { ROM } \\ & \text { ADDRESS } \end{aligned}$	HEXIDECIMAL DATA																
E500	0600	080	08	30	45	7D	7D	38	7E	30	60	1 E	3E	62	40	08	38	41	COLUMN_{1}
		090	10	18	5E	78	38	78	38	3 C	38	3 C	38	08	20	12	48	01	
		OAO	00	00	00	14	24	23	36	00	00	00	08	08	00	08	00	20	
		OBO	3 E	00	62	22	18	27	3 C	01	36	06	00	00	00	14	41	06	
		OCO	3E	7E	7F	3E	7F	7F	7F	3E	7F	00	20	7F	7F	7F	7F	3 E	
		ODO	7F	3 E	7F	26	01	3F	07	7F	63	03	61	00	02	41	04	40	
		OEO	00	38	7F	38	38	38	08	08	7F	00	20	00	00	78	7 C	38	
		OFO	7 C	18	00	48	04	3 C	1 C	3C	44	04	44	00	00	00	08	2A	
E580	0680	100	1 C	48	29	09	09	44	01	4A	50	04	49	14	3C	7 C	44	63	COLUMN_{2}
		110	08	24	61	14	44	15	45	43	45	41	42	08	7E	19	7E	12	
		120	00	5F	03	7F	2A	13	49	OB	00	41	2 A	08	58	08	30	10	
		130	51	42	51	41	14	45	4A	71	49	49	36	5B	08	14	22	01	
		140	41	09	49	41	41	49	09	41	08	41	40	08	40	02	04	41	
		150	09	41	09	49	01	40	18	20	14	04	51	00	04	41	02	40	
		160	07	44	48	44	44	54	7E	14	08	44	40	7F	41	04	08	44	
		170	14	24	7 C	54	3E	40	20	40	28	48	64	08	00	41	04	55	
E600	0700		3E	45	11	11	05	44	29	4D	48	04	49	08	20	04	44	55	COLUMN_{3}
		190	78	7E	01	15	45	14	44	42	44	40	40	2A	02	15	49	$7 \mathrm{C}$	
		IAO	00	00	00	14	7F	08	56	07	3E	3 E	1 C	3 E	38	08	30	08	
		IB0	49	7F	49	49	12	45	49	09	49	49	36	3B	14	14	14	51	
		ICO	5D	09	49	41	41	49	09	41	08	7 F	40	14	40	0 C	08	41	
		ID0	09	51	19	49	7F	40	60	18	08	78	49	7F	08	7F	7F	40	
		IEO	OB	44	44	44	44	54	09	54	04	7D	44	10	7F	18	04	44	
		IFO	24	14	08	54	44	40	40	30	10	30	54	36	77	36	08	2A	
E680	0780		7 F	40	29	21	05	38	2E	49	50	38	49	10	20	7 C	3C	49	COLUMN_{4}
		210	08	24	61	14	3 C	15	3D	43	45	41	42	1 C	02	12	41	12	
		220	00	00	03	7F	2A	64	20	00	41	00	2A	08	00	08	00	04	
		230	45	40	49	49	7F	45	49	05	49	29	00	00	22	14	08	09	
		240	55	09	49	41	41	49	09	51	08	41	40	22	40	02	10	41	
		250	09	21	29	49	01	40	18	20	14	04	45	41	10	00	02	40	
		260	00	3C	44	44	48	54	02	54	04	40	3D	28	40	04	04	44	
		270	24	7 C	04	54	20	20	20	40	28	08	4C	41	00	08	10	55	
E700	0800	280	00		45		79		10	30	60	40	3E	60	1 C	02	04		COLUMN_{5}
		290	04	18	5E	78	40	78	40	3C	38	3 C	38	08	02	00	42	01	
		2 AO	00	00	00	14	12	62	50	00	00	00	08	08	00	08	00	02	
		2B0	3E	00	46	36	10	39	30	03	36	1E	00	00	41	14	00	06	
		2C0	1E	7E	36	22	3E	41	01	72	7F	00	3F	41	40	7F	7F	3 E	
		2D0	06	5E	46	32	01	3 F	07	7F	63	03	43	41	20	00	04	40	
		2E0	00	40	38	20	7F	08	00	3C	78	00	00	44	00	78	78	38	
		2F0	18	40	04	20	00	7C	1 C	3C	44	04	44	00	00	00	08	2A	

Figure 9. 128 Character ASCII Decoder Table used by the 6800 Refresh Program in Figure 6. 8080A Refresh Programs in Figures 7, 8, and 12, and the HDSP-2471 DISPLAY PROCESSOR CONTROLLER. Decoded 5x7 Display Font is shown in the HDSP-247X Data Sheet.

Figure 10. 8080A Microprocessor interface to the HDSP-2000 DECODED DATA CONTROLLER.

Figure 11. Data entry timing for DECODED DATA CONTROLLER.
printed circuit board subsystems available from Avago Technologies under the following part numbers:

HDSP-2470 - Controller with 64 character ASCII to 5×7 decoder

HDSP-2471 - Controller with 128 character universal ASCII to 5×7 decoder

HDSP-2472 - Controller with socket for user supplied custom coded ROM/PROM/ EPROM.

All of the controllers have the following features:

- Choice of character string length: 4 to 48 characters in increments of four characters
- Four modes of data entry Left Entry Right Entry
RAM Entry (≤ 32 characters only) Block Entry
- Flashing Cursor - Left Entry Only
- Data Out (≤ 32 characters only)

These controllers have been designed to eliminate the burden of data handling between keyboard, display, and microprocessor. The product data sheet describes the technical function of the controllers in detail.

Interfacing the controller to microprocessor systems depends on the needs of the particular application. Figure 19 depicts a latched interface from a master microprocessor to the HDSP-247X series of controllers. These
interfaces are utilized to avoid having the master processor wait for the controller to accept data.

In sophisticated systems, it may be desirable to have the HDSP-247X controller handle all of the keyboard/ display interface while the microprocessor reads edited messages from the controller DATA OUT port. This function can be achieved through the use of peripheral interface adapters (PIA) available from the microprocessor manufacturers. Figure 20 depicts a 6800 based system in which data may enter the display from either a keyboard or a microprocessor. This interface uses a 6821 PIA configured so that PB_{7} controls whether the microprocessor or keyboard enters data into the controller. The 6800 program is shown in Figure 21. Subroutine "LOAD" uses CA_{1} and CA_{2} to provide a data entry handshake that allows the 6800 to load data into the controller as fast as the controller can accept it. After the prompting message has been loaded, the microprocessor turns the control of data entry over to the keyboard. A signal from the keyboard

Figure 12. 8080A Microprocessor Program that decodes a 32 Character ASCII String prior to I oading into the DECODED DATA CONTROLLER.

Figure 13. 8080A Microprocessor interface to the 32 character HDSP-2000 CODED DATA CONIROLER.

PARAMETER	SYMBOL	MIN.
WRITE CYCLE	tWC	390 ns
WRITE DELAY	taW	65 ns
CHIP ENABLE TO WRITE	t CW	65 ns
DATA SETUP	tDW	220 ns
DATA HOLD	tDH	20 ns
WRITE PULSE	twP	310 ns
WRITE RECOVERY	tWR	10 ns
CHIP ENABLE HOLD	tch	20 ns

Figure 14. Memory Write Timing for the 32 Character HDSP- 2000 CODED DATA CONTROLLER.

Figure 15. Timing information for the 32 character HDSP- 2000 CODED DATA CONTROLLER.
("ER" in the example) sets a flag within the 6821. Depending on how the 6821 is configured, the microprocessor can either test the flag or allow the flag to automatically interrupt the microprocessor. Subroutine "READ" would then be used to read the DATA OUT outputs from the controller into the microprocessor system. The microprocessor uses the CB_{1} input of the 6821 PIA to determine when to read each of the 34 data output words into the system.

A similar PIA interface for the 8080A microprocessor is depicted in Figures 22 and 23.

The HDSP-247X series of controllers are programmed to default to "Left Entry" mode for a 32 character string of displays. If some other entry mode or string length is desired, it is necessary to either load the appropriate control word from the microprocessor or to provide a control word during

POWER ON RESET. The controller will read the DATA IN lines during RESET and interpret the contents as the control word. The circuit depicted in Figure 24 can be utilized to load any desired preprogrammed word into the HDSP247X controller, during power on.

Figure 16. 6800, 8080A, and Z-80 Interface to the 128 character HDSP-2000 CODED DATA CONTROLLER.

Figure 17. 82S2708 PROM listing.

Display Power Dissipation

The HDSP-2000 combines a significant amount of logic and display capability in a very small package. As such, on-board power dissipation is relatively high and thermal design of the display mounting becomes an important consideration. The HDSP-2000 is designed to permit operation over a wide range of temperature and supply voltages. The design of a heat sink to maintain a junction temperature of less than $125^{\circ} \mathrm{C}$ for a multiple package system where every electrical input operates at maximum voltage and current would be difficult at best. However, in virtually all applications, the actual power dissipation is only a small fraction of the maximum power dissipation, since $V_{\text {coL }}$ islessthan 5.25 V , only a fraction of the 35 LEDsareon at any time, and the duty factor is
never 20\%. The calculation of power dissipation is important since the result is largely a function of external circuit parameters. The minimization of power dissipation will reduce the amount of heat sinking required for the displays. Furthermore, by the Arrhenius model, the display reliability is increased by 40% for a $10^{\circ} \mathrm{C}$ reduction in junction temperature. Thus, reduced power dissipation or better heat sinking can also increase the reliability of the display system.

Calculation of power dissipation in the HDSP-2000 display family can be made using the following formulas:

$$
\begin{align*}
& \mathrm{P}_{\mathrm{D}}=\mathrm{P}\left(\mathrm{I}_{\mathrm{CC}}\right)+\mathrm{P}\left(\mathrm{I}_{\mathrm{REF}}\right) \\
& +\mathrm{P}\left(\mathrm{ICOL}^{2}\right) \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{P}\left(I_{C C}\right)=I_{C C 1} V_{C C} \tag{8}
\end{equation*}
$$

when V_{Cc} is applied continuously to the display

$$
\begin{align*}
& \mathrm{P}\left(I_{\mathrm{CC}}\right)=\mathrm{I}_{\mathrm{CC1}} \mathrm{~V}_{\mathrm{CC}}(\mathrm{t}+\mathrm{T}) / \\
& \left(\mathrm{t}+\mathrm{T}+\mathrm{T}_{\mathrm{B}}\right) \tag{9}
\end{align*}
$$

when V_{CC} is turned off during the time T_{B}
where

$$
\begin{gather*}
P\left(I_{\text {REF }}\right)=\left(I_{\text {CC2 }}-I_{\mathrm{CC} 1}\right) \\
\mathrm{V}_{\mathrm{CC}}(\mathrm{n} / 35) \tag{10}
\end{gather*}
$$

when V_{B} is connected to V_{CC} and V_{CC} is applied continuously to display
$\mathrm{P}\left(\mathrm{I}_{\text {REF }}\right)=5\left(I_{C C 2}-I_{C C 1}\right) V_{C C}$ (n/35) D.F.

> when V_{B} is logical 0 during timest and T_{B}
where
$\mathrm{P}(\mathrm{ICOL})=5 \mathrm{ICOL}_{\mathrm{COL}}$
$(\mathrm{n} / 35)$ D.F.
(12)
where

$$
\begin{aligned}
& \mathrm{n}=\text { average number of diodes } \\
& \text { illuminated per character } \\
& \text { D.F. = column on time from } \\
& \text { equation }(1) \text { or }(5) \\
& \mathrm{I}_{\mathrm{CC} 1}=\mathrm{I}_{\mathrm{CC}}\left(\mathrm{~V}_{\mathrm{B}}=0.4 \mathrm{~V}\right) \\
& \mathrm{I}_{\mathrm{CC} 2}=\mathrm{I}_{\mathrm{CC}}\left(\mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}\right)
\end{aligned}
$$

$\mathrm{P}(\mathrm{I} C C)$ is the power which is dissipated in the logic within the shift register. $\mathrm{P}\left(\mathrm{I}_{\mathrm{FC}}\right)$ is constant regardless of n , or D.F. as long as voltage is applied to the VCC pin. However, for low D.F., ICC can be switched off during the time the display is blanked. $\mathrm{P}\left(\mathrm{l}_{\text {REF }}\right)$ is the power dissipated in the logic to drive the current mirror output. Thus, if the output of the shift register and the V_{B} input are both logical $1, \mathrm{P}\left(\mathrm{l}_{\text {REF }}\right)$ will be dissipated. $\mathrm{P}\left(\mathrm{I}_{\mathrm{COL}}\right)$ is the power dissipated within the LEDs and the constant current outputs during the time that $\mathrm{V}_{\text {COL }}$ is applied and the LEDs are on.

As can be seen from formulas (7) through (12) there are several techniques by which total power dissipation can be reduced:

- Reduce n
- Reduce $\mathrm{V}_{\mathrm{COL}}$
- Reduce D. F.
- Reduce VCC
- Turn off $V_{C C}$ when display is blanked

For most applications, $\mathrm{n} \leq 20$ dots. For example, the HDSP-2470 character generator has 3 characters with 20 dots on (\#, @, B), 1 character with 19
dots on (zero), and 6 characters with 18 dots on (A,D,E,M,R,W). With custom PROM programming these 4 symbols (\#, @, B, zero) can be modified to reduce the total number of dots on to 18 or less. The average of all 36 alphabetic and numeric symbols is 14.7 dots on. The calculations assume that every character has the same number of illuminated dots. This assumption can overstate the maximum power dissipation if the application includes a fixed number of spaces in the display.

Above $2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{COL}}$ for standard red devices and $2.75 \mathrm{~V} \mathrm{~V}_{\text {COL }}$ for GaP devices, ICOL is nearly constant. While it is possible to operate the columns of the HDSP-2000 display using fullwave rectified unregulated DC, lower power dissipation can be achieved by using the regulated V_{CC} supply. Then, $\mathrm{V}_{\mathrm{COL}}$ is equal to V_{CC} minus the collector to emitter saturation voltage across the column switching transistors. Since the minimum recommended $\mathrm{V}_{\mathrm{COL}}$ is 2.4 V or 2.75 V , PNP Darlington transistors with a silicon diode in series with the emitter can be used to lower the power dissipation within the display.

The time averaged luminous intensity for the display is equal to the peak luminous intensity on the data sheet times D.F. Thus, reduction in D.F. will also reduce the time averaged luminous intensity as well as power dissipation. For most indoor applications, a D.F. of 10% for standard red and 5% for GaP displays will provide satisfactory luminous intensity. For example, the 40 character HDSP-2470 system has a D.F. of 11.6%. However, a D.F. of 17% or higher is recommended for sunlight viewable applications for the GaP displays.

The HDSP-2000 family of alphanumeric displays are specified for operation with a 5% tolerance 5 volt supply. A tighter tolerance supply will also reduce the power dissipation in the display.

Icc can be switched off during the time the display is blanked. Thus, power would be applied to the display; the shift register would be loaded with information; the columns would be turned on; and then the column current, V_{B}, and V_{CC} would be switched off until the next column refresh cycle. For low D.F., this can significantly reduce the power dissipation within the display. As D.F. increases, the display is blanked for a smaller portion of the refresh cycle and the power reduction is reduced. When the blanking time goes to zero, the power reduction also goes to zero.

For example, the maximum power dissipation for a four character HDSP2000 display ($\mathrm{n}=20, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}$ $=2.4 \mathrm{~V}, \mathrm{D} . \mathrm{F} .=17.5 \%, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$) can be calculated as shown below:

$$
\begin{array}{rl}
\mathrm{P}\left(\mathrm{I}_{\mathrm{CC}}\right)= & (60 \mathrm{~mA})(5.25 \mathrm{~V}) \\
= & 315 \mathrm{~mW} \\
\mathrm{P}\left(\mathrm{I}_{\mathrm{REF}}\right)= & 5(95 \mathrm{~mA}-60 \mathrm{~mA}) \\
& (5.25 \mathrm{~V})(20 / 35) \\
& (0.175) \\
= & 92 \mathrm{~mW} \\
\mathrm{P}\left(\mathrm{I}_{\mathrm{COL}}\right)= & 5(410 \mathrm{~mA})(3.5 \mathrm{~V}) \\
& (20 / 35)(0.175) \\
= & 718 \mathrm{~mW} \\
& \\
\mathrm{PD}_{\mathrm{D}} & \mathrm{P}\left(\mathrm{I}_{\mathrm{CC}}\right)+\mathrm{P}\left(\mathrm{I}_{\text {REF }}\right)+ \\
& \mathrm{P}\left(I_{\mathrm{COL}}\right) \tag{16}\\
= & 1125 \mathrm{~mW}
\end{array}
$$

Figure 19. Latched interface to the HDSP-2470/-2471/-2472 DISPLAY PROCESSOR CONTROLLER.

Figure 20.6800 Microprocessor Interface utilizing a 6820 PIA for an HDSP-2470/-2471/-2472 Alphanumeric Terminal.

Figure 21.6800 Microprocessor Program that interfaces to the circuit shown in Figure 14.

Figure 22. 8080A Microprocessor Interface utilizing an 8255 PIA for an HDSP-2470/-2471/-2472 Alphanumeric Terminal.

Similarly, a typical power dissipation for a four character HDSP-2000 display ($\mathrm{n}=15, \mathrm{~V}_{\mathrm{COL}}=3.0 \mathrm{~V}, \mathrm{D} . \mathrm{F} .=17.5 \%, \mathrm{~V}_{\mathrm{CC}}$ $=5.00 \mathrm{~V}$) can be calculated as:

$$
\begin{align*}
\mathrm{P}\left(\mathrm{l}_{\mathrm{CC}}\right) & =(45 \mathrm{~mA})(5.00 \mathrm{~V}) \\
& =225 \mathrm{~mW} \tag{17}
\end{align*}
$$

$$
\begin{align*}
\mathrm{P}\left(\text { l }_{\text {REF }}\right) \quad= & 5(73 \mathrm{~mA}-45 \mathrm{~mA}) \\
& (5.00 \mathrm{~V})(15 / 35) \\
& (0.175) \\
= & 52 \mathrm{~mW} \tag{18}
\end{align*}
$$

$$
\begin{align*}
\mathrm{P}\left(\mathrm{I}_{\mathrm{COL}}\right) & =5(335 \mathrm{~mA})(3.0 \mathrm{~V}) \\
& =377 \mathrm{~mW}
\end{align*}
$$

$$
\begin{align*}
\mathrm{P}_{\mathrm{D}} \quad & =\mathrm{P}\left(\mathrm{I}_{\mathrm{CC}}\right)+\mathrm{P}(\text { IREF })+ \\
& =654 \mathrm{~mW}
\end{align*}
$$

Some typical power dissipations for other values of $n, V_{C O L}$ D.F., V_{CC}, are shown in Figure 25. Note that at a D.F. of 17.5%, which would be appropriate for a sunlight viewable application, the

Figure 23. 8080A Microprocessor Program that interfaces to the circuit shown in Figure 17.

Figure 24. External circuitry to load a control word into the HDSP-2470/-2471/2472 Alphanumeric System upon request.
maximum power dissipation can be reduced to under 1.0 W , while the typical power dissipation can be reduced to 0.60 W . In most indoor ambients, the D.F. can be reduced to 10% for standard red and 5% for GaP displays. Under these conditions the maximum power dissipation is 0.72 W or 0.52 W and the typical power dissipation is 0.43 W or 0.34 W. Thus, in power sensitive applications, GaP displays can be used to conserve power. Turning off V_{cc} during the time the display is blanked can further reduce the power dissipation. In this manner the maximum
power dissipation can be reduced . 32 W and the typical power dissipation can be reduced to 0.20 W for the GaP displays.

Heat Sinking Considerations

For operation at the maximum temperature of $85^{\circ} \mathrm{C}$, it is important that the following criteria be met:

$$
\text { a. } T_{\text {PIN }} \leq 100^{\circ} \mathrm{C}
$$

where $T_{\text {PIN }}=$ temperature of hottest pin

$$
\text { b. } \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}
$$

The thermal resistance IC junction to case, Θ_{J} c, or IC junction to pin, Θ_{J} PIN, is shown in Table 2. Using these factors, it is possible to determine the required heat sink power dissipation capability and associated power derating through the following equations:

$$
\begin{align*}
& \mathrm{T}^{*}=\Theta^{*} \mathrm{~A} \mathrm{PD}_{\mathrm{D}}+\mathrm{T}_{\mathrm{A}} \tag{2}\\
& \mathrm{~T}_{\mathrm{J}}=\mathrm{T}^{*}+\Theta_{J}^{*} \mathrm{P}_{\mathrm{D}} \tag{22}
\end{align*}
$$

where

$$
\text { * }=\text { Pin or Case }
$$

Table 2. Device Thermal Resistance

Device	Θ JC	Θ J-PIN
HDSP-2000 Series	$20^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$
HDSP-2300 Series	$7.5^{\circ} \mathrm{C} / \mathrm{W}$	$10^{\circ} \mathrm{C} / \mathrm{W}$
HDSP-2490 Series	$7.5^{\circ} \mathrm{C} / \mathrm{W}$	$13^{\circ} \mathrm{C} / \mathrm{W}$

For example, given Θ pin-a of $35^{\circ} \mathrm{C} /$ W an ambient temperature of $60^{\circ} \mathrm{C}$, and the operating conditions shown in equations (13), (14), and (16) the $T_{\text {PIN }}$ and T_{J} for the HDSP-2000 family can be calculated as shown below:

$$
\begin{align*}
\mathrm{TPIN} \quad= & \left(35^{\circ} \mathrm{C} / \mathrm{W}\right)(1.12 \mathrm{~W}) \\
& +60^{\circ} \mathrm{C} \\
= & 99^{\circ} \mathrm{C} \tag{23}
\end{align*}
$$

$$
\begin{align*}
\mathrm{T}_{\mathrm{J}} \quad= & 99^{\circ} \mathrm{C}+\left(25^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& (1.12 \mathrm{~W}) \\
= & 99^{\circ} \mathrm{C}+28^{\circ} \mathrm{C} \\
= & 127^{\circ} \mathrm{C} \tag{24}
\end{align*}
$$

Heat sink design for the HDSP-2000 family of displays can be accomplished in a variety of ways. For single line applications, a maximum metalized printed circuit board such as shown in Figure 26 can be used. For example, the HDSP-2416/-2424/ -2432/-2440 display boards consist of $16,24,32$ or 40 characters of HDSP-2000 displays mounted on a maximum metalized printed circuit board. The HDSP-2432 printed circuit board is $2.3^{\prime \prime} \times 6.4^{\prime \prime}$ and has a OPIN-A of about $45^{\circ} \mathrm{C} / \mathrm{W}$ per package for a $1 / 2$ ounce copper clad printed circuit. These display boards are designed for free air operation of $55^{\circ} \mathrm{C}$ and operation to $70^{\circ} \mathrm{C}$ with forced air cooling of 150 fpm normal to the rear side of the board, for displays operating at a P_{D} of 1.00 watt or less.

Heat Sink Design
 for Operation Above $70^{\circ} \mathrm{C}$

A free air operating temperature of $85^{\circ} \mathrm{C}$ can be achieved by heat sinking the display. Figure 27 depicts a two part heat sink which can be assembled using two different extruded parts. In this design, the vertical fins promote heat transfer due to naturally induced convection. Care should be taken to insure a good thermal path between the two portions of the heat sink. To optimize power handling capability, the heat transfer contact area between the printed circuit board metallization and the heat sink should be maximized. A thermally conductive silicon rubber sheet can be used to insulate the printed circuit board. Heat sink

	Maximum Power Dissipation Operating Conditions (Unless otherwise specified)	Power Dissipation	Maximum Power Dissipation Operating Conditions (Unless otherwise specified)	Power Dissipation
Assumptions Used in	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CO}}=3.5 \mathrm{~V} \\ & \mathrm{n}=20 \\ & \mathrm{D} . \mathrm{F}=.175 \\ & \mathrm{~V}_{\mathrm{B}}=\text { logical } 0 \text { during } \\ & \mathrm{t} \text { (and } \mathrm{T}_{\mathrm{B}} \text {) } \\ & \mathrm{T}_{\mathrm{B}}=0 \end{aligned}$	1.12 W	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CO}}=3.0 \mathrm{~V} \\ & \mathrm{n}=15 \\ & \mathrm{D} . \mathrm{V}_{\mathrm{L}}=.175 \\ & \mathrm{~V}_{\mathrm{B}}=\text { logical } 0 \text { during } \\ & \mathrm{t}\left(\text { and } \mathrm{T}_{\mathrm{B}}\right) \\ & \Pi_{\mathrm{B}}=0 \end{aligned}$. 65 W
1. Reduce n	$\mathrm{n}=18$	1.04 W		
2. Reduce n and $\mathrm{V}_{\mathrm{COL}}$	$\begin{aligned} & \mathrm{n}=18 \\ & \mathrm{~V}_{\mathrm{COL}}=3.0 \mathrm{~V} \end{aligned}$. 95 W		
3. Reduce $V_{\text {COL }}$	$\mathrm{V}_{\text {COL }}=3.0 \mathrm{~V}$	1.02 W	$\mathrm{V}_{\text {COL }}=2.4 \mathrm{~V}$. 58 W
			$\mathrm{V}_{\text {COL }}=2.75$. 62 W
4. Reduce D.F.	D.F. $=.10$. 78 W	D.F. $=.10$. 47 W
	D.F. $=.05$. 55 W	D.F. $=.05$. 35 W
$\begin{aligned} & \text { 5. Reduce } \mathrm{V}_{\mathrm{COL}} \\ & \text { and D.F. } \end{aligned}$	$\begin{aligned} & \hline \mathrm{VCOL}=3.0 \mathrm{~V} \\ & \text { D.F. }=.10 \end{aligned}$. 72 W	$\begin{aligned} & \hline \mathrm{VCOL}=2.4 \mathrm{~V} \\ & \text { D.F. }=.10 \end{aligned}$. 43 W
	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{COL}}=3.0 \mathrm{~V} \\ & \text { D.F. }=.05 \end{aligned}$. 52 W	$\begin{aligned} & \mathrm{V}_{\mathrm{COL}}=2.75 \mathrm{~V} \\ & \mathrm{D} . \mathrm{F} .=.05 \end{aligned}$. 34 W
6. Reduce $\mathrm{V}_{\mathrm{COL}}$ Turn-off V_{CC}. during T_{B}	$\begin{aligned} & \hline \text { D.F. }=.10 \\ & \text { X }=.625 \end{aligned}$. 66 W	$\begin{aligned} & \hline \text { D.F. }=.10 \\ & \text { X }=.625 \end{aligned}$. 39 W
	$\begin{aligned} & \text { D.F. }=.05 \\ & \mathrm{X}=.375 \end{aligned}$. 45 W	$\begin{aligned} & \text { D.F. }=.05 \\ & \text { X }=.375 \end{aligned}$. 21 W
7. Reduce $\mathrm{V}_{\mathrm{COL}}$ Reduce D.F., Turn-off V_{cc} during T_{B}	$\begin{aligned} & \hline \mathrm{VCOL}=3.0 \mathrm{~V} \\ & \mathrm{D} . \mathrm{F} .=.10 \\ & \mathrm{X}=.625 \\ & \hline \end{aligned}$. 60 W	$\begin{aligned} & \hline \mathrm{V}_{\text {COL }}=2.4 \mathrm{~V} \\ & \text { D.F. }=.10 \\ & \mathrm{X}=.625 \\ & \hline \end{aligned}$. 34 W
	$\begin{aligned} & \mathrm{VCOL}^{2}=3.0 \mathrm{~V} \\ & \text { D.F. }=.05 \\ & \mathrm{X}=.375 \end{aligned}$. 32 W	$\begin{aligned} & \mathrm{V}_{\mathrm{COL}}=2.75 \mathrm{~V} \\ & \mathrm{D} . \mathrm{F}=.05 \\ & \mathrm{X}=.375 \end{aligned}$. 20 W

where $x=\binom{t+T}{t+T+T B}$
Figure 25. Maximum and Typical Power Dissipation for the HDSP-2000/1/2/3 and HDSP-2300 Alphanumeric Displays
assemblies similar to the one shown in Figure 27 typically exhibit a thermal resistance, Θ PIN-A, of $14^{\circ} \mathrm{C} / \mathrm{W}$ per package for a 32 character display.

Copper or aluminum bars mounted underneath the displays can also be used to heat sink the display assembly. Heat generated within the displays is conducted through the ceramic substrate into the bar. The ends of the bar are mounted to a heat sink or to a metal front panel. The bar can be insulated from the pins of the display and the printed circuit board with a thermally conductive silicon rubber sheet. Figure 28 shows a metal plate with slots milled in the plate for each row of displays such that each horizontal row of displays straddles a bar.

A thermal resistance model for this heat sinking technique is shown in Figure 29. This model assumes that all heat generated in the display is generated in the center of each display package and that the ends of the bar are connected to an ideal heat sink. Then the temperature rise of the centermost display in the bar can be calculated as shown below:

$$
\begin{align*}
\mathrm{T}_{\mathrm{C}}= & 4(\Theta / 2) \mathrm{P}_{\mathrm{D}}+3 \Theta P_{D} \\
& +2 \Theta P_{D}+\Theta P_{D}+T_{A} \\
= & 8 \Theta P_{D}+T_{A} \tag{25}
\end{align*}
$$

For display strings of an even number of n displays, the case temperature of the centermost displays can be calculated as

$$
\begin{equation*}
T_{C}=(n 2 / 8) \Theta P_{D}+T_{A} \tag{26}
\end{equation*}
$$

Figure 26. Maximum metalized printed circuit for the Avago HDSP-2000.

Figure 27. Two-part heat sink for the HDSP-2000.

Figure 28. Multiline HDSP-2000 heat sink.

Figure 29. Thermal resistance model for multiline HDSP-2000 heat sink.

The effectiveness of this type of heatsink can be determined by calculating the thermal resistance of each section of bar under each display

$$
\begin{equation*}
\Theta=\frac{\mathrm{L}}{\mathrm{Ka}} \tag{27}
\end{equation*}
$$

where
$L=$ length of bar under each display, mm
$\mathrm{K}=$ thermal conductivity of bar, $\mathrm{W} / \mathrm{mm}^{\circ} \mathrm{C}\left(0.3937 \mathrm{~W} / \mathrm{mm}^{\circ} \mathrm{C}\right.$ for copper)
$a=$ cross sectional area of bar, mm2

If the displays are mounted in a strip socket such as the Robinson Nugent SB-25-100-G socket, then the bar cross sectional area could be 6.35
mm ($0.25^{\prime \prime}$) thick times the row-to-row pin spacing of the display minus 2.54 mm (.10"). Thus, Θ can be calculated as shown below:

The T_{C} and T_{l} can be calculated for a 32 character HDSP-2000 display with a copper bar mounted under the row of displays for an ambient temperature of $85^{\circ} \mathrm{C}$ and the operating conditions shown in equations (13), (14), (15), and (16):

$$
\begin{align*}
\mathrm{T}_{\mathrm{C}} & =8\left(1.40^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =98^{\circ} \mathrm{C}
\end{align*}
$$

Adding in the junction-to-case temperature rise as shown in equation (22), the T_{j} can be calculated as:

$$
\begin{align*}
\mathrm{T}_{\mathrm{J}} & =98^{\circ} \mathrm{C}+\left(20^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =98^{\circ} \mathrm{W}+22^{\circ} \mathrm{C} \\
& =120^{\circ} \mathrm{C}
\end{align*}
$$

Intensity Control

An important consideration regarding display intensity is the control of the intensity with respect to the ambient lighting level. In dim ambients, a very

Figure 30. Intensity Modulation Control using a one shot multivibrator.
bright display will produce very rapid viewer fatigue. Conversely, in bright ambient situations, a dim display will be difficult if not impossible to read and will also produce viewer fatigue and high error rates. For this reason, control of display intensity with respect to the environment ambient intensity is an important consideration. The HDSP-2000 family of displays is ideally suited for wide ranges of ambient lighting since the intensity of these displays can be varied over a very wide dynamic range. The propagation delay between the V_{B} input and the time that the LEDs turn on or off is under a microsecond, allowing dynamic variations of over 2000 to 1 in display luminous intensity at a 100 Hz refresh rate.

Figure 30 depicts a scheme which will automatically control display intensity over a range of 10 to 1 as a function of ambient intensity. This circuit utilizes a resettable monostable multivibrator which is triggered by the column enable pulse. The duration of the multivibrator output is controlled by a photoconductor. At the end of a column enable pulse, the multivibrator is reset to insure that column current is off prior to the initiation of a new display shift register loading sequence. The output of this circuit is used to modulate either the V_{B} inputs of the HDSP-2000 displays or the column enable input circuitry. For maximum reduction in display power, both inputs should be modulated.

In the circuit shown in Figure 30, the photocell may be replaced by a 50 $\mathrm{K} \Omega$ potentiometer to allow manual control of display intensity.

Figure 31 shows a manually adjustable dimming circuit that provides a very
wide range of display intensity. With a 100 Hz display refresh rate, a 4000 to 1 dynamic range of display intensity can be achieved. The Intersil ICM7555 timer is used as a retriggerable monostable multivibrator. The output of the timer is used to simultaneously pulse width modulate V_{B}, the display column current, and the display supply current. Initially the 100 pF capacitor is held discharged by the timer. At the negative transition of the trigger input the timer would normally allow the capacitor to charge, however the 2N3906 transistor keeps the capacitor discharged until the trigger input goes high. As soon as the trigger input goes high, the capacitor is charged by a constant current source formed by the RCA CA3084 transistor array. As soon as the voltage across the capacitor reaches $2 / 3 \mathrm{~V}$ CC the output of the timer goes low, and the timer discharges the capacitor. The 2N3906 transistor always discharges the capacitor when the trigger is low, therefore the output of the timer stays high if the voltage across the capacitor never reaches $2 /$ $3 \mathrm{~V}_{\mathrm{cc}}$. For the values shown, t can be varied exponentially from $.5 \mu$ s to about 1900μ s. Since Q1 and Q2 are monolithic transistors, t is relatively independent of temperature.

Figure 31 also shows a circuit to switch Vcc of the displays off during the time that the display is blanked. When the 2N2219A transistor is off, the LM350 provides a regulated 3 A 5 V output. However, when the 2N2219A transistor is turned on, the output of the LM350 regulator is reduced to 1.2 V. This reduces ICC to under 10 mA per display. Capacitive loading of the regulator should be minimized as much as possible to maximize the switching speed.

Figure 31. Wide range intensity modulation control and power switching of display ICC to conserve power.

The Intensity and Color Matching

The luminous intensity and dominant wavelength of LED displays can vary over a wide range. If there is too great a difference between the luminous intensity or dominant wavelength of adjacent characters in the display string, the display will appear objectionable to the viewer. To solve the problem, all HDSP-2000 displays are categorized for luminous intensity. The category of each display package is indicated by a letter preceding the date code on the package. When as-
sembling display strings, all packages in the string should have the same intensity category. This will insure satisfactory intensity matching of the characters. All HDSP-2000 family displays are categorized in overlapping intensity categories. All characters of all packages designated to be within a given letter category will fall within an intensity ratio of less than 2:1. For dot matrix displays, a character-tocharacter intensity ratio of $2: 1$ is not generally discernible to the human eye.

Since the human eye is very sensitive to variations in dominant wavelength in the yellow and green region, all yellow and green HDSP-2000 family displays are also categorized for dominant wavelength. The dominant wavelength bin for each display package is indicated by a number code following the category letter code on the back of the package. The dominant wavelength bins are 3.5 nm wide for yellow and 4.0 nm wide for green. These dominant wavelength variations are generally not discernible by the human eye.

Display Color	Ambient Lighting		
	Dim	Moderate	Bright
HDSP-2XX0 Standard Red	Homalite H100-1650 3M Panel Film R6510 Panelgraphic Dark Red 63 Ruby Red 60 Chequers Red 118 Rohm \& Haas 2423	Homalite H100-1266 Gray H100-1250 Gray H100-1230 Bronze Rohm \& Haas 2074 Gray 2370 Bronze Polaroid HNCP37 3M Light Control Film N00220 Panelgraphic Gray 15 Gray 10 Chequers Gray 105	
HDSP-2XX1 (Yellow)	Homalite H100-1726 H100-1720 3M Panel Film A5910 Panelgraphic Yellow 27 Amber 23 Chequers Amber 107		Polaroid HNCP-10
$\begin{aligned} & \hline \text { HDSP-2XX2 } \\ & \text { (HER) } \end{aligned}$	Homalite H100-1670 3M Panel Film R6310 Panelgraphic Scarlet Red 65 Chequers Red 112		
HDSP-2XX3 (Avago Green)	Homalite H100-1440 H100-1425 Panelgrraphic Green 48 Chequers Green 107		

Contrast Enhancement

Another important consideration for optimum display appearance and readability is the contrast between the display "ON" elements and the background. High contrast can be achieved by placing a filter over the display. The filter, if properly chosen, will transmit the luminance of the light emitting elements while attenuating the luminance of the background.

Filter choice is dependent upon the LED display package, ambient lighting conditions and the desired front panel appearance. For alphanumeric displays in indoor lighting ambients a plastic or glass wavelength filter can be used. In sunlight ambients a neutral density circular polarizer sandwiched between two pieces of optically coated glass is recommended. Figure 32 lists the filter materials recommended for each particular display color. For further information please see Application Note 1015 on Contrast Enhancement for LED Displays.

Figure 32. Contrast enhancement filters.

