
AGILE PARALLEL DEVELOPMENT EBOOK SERIES: Chapter 1

Why Agile Parallel Development
Is Critical to Your Digital
Transformation Strategy

With competitive pressure to rapidly innovate and
iterate applications, organizations like yours are
adopting digital transformation strategies, in which
digital components are added to existing products
and services (e.g., mobile applications, universal
device support, Internet of Things (IoT), etc.).

As companies attempt to build an ecosystem of
value around these “connected” products, digital
transformation is essentially spawning a new
generation of software—and the application
programming interfaces (APIs) they require to
flourish in this collaborative environment.

At the same time, customer expectations for
original, high-quality services are at an all-time
high, forcing IT organizations to rethink how they
develop, test and deploy software in order to
maximize speed, efficiency and reliability—and
ultimately meet market demand.

The Need for Speed, Efficiency and
Quality in the Application Economy

2

By 2016, more than half
of B2B collaboration

will take place through web APIs.1

1 Gartner Hype Cycle for Application Development, 2014, Thomas E. Murphy, et al, July 29, 2014.

In today’s application economy, software is rewriting the rules of business.

Digital Transformation Creates
New Challenges in the SDLC

3

As organizations expand their application delivery goals in support of digital transformation initiatives, IT groups must contend
with new challenges in and around the software delivery lifecycle (SDLC), including:

INCREASED COMPLEXITY
While the face of a modern application may be a simple collection
of buttons and fields, its architecture comprises a complicated tangle of
composite services and integrations—each of which must be accounted
for during development and testing. In addition, most development
involves connecting new user interface (UI) front ends (i.e., systems
of engagement) to legacy systems of record on the back end, which
creates new coding and integration challenges.

RESOURCE CONSTRAINTS
IT teams are being asked to build and deploy more applications faster
than ever before, but there are only so many resources on which to
code and test. When constraints happen, teams move onto other
things rather than just sit and wait for needed resources to become
available—which leads to idle time for the project that pushes out the
overall delivery timeline.

REQUIRED INTEGRATION
Because modern applications must integrate with complementary
and third-party services—in addition to internal systems of record—APIs
must be regularly built and tested, but dev and test teams do not always
have access to these critical resources when they need them. And as
trends like IoT continue to gain steam, IT teams are having to integrate
a whole new set of objects with unique attributes and requirements.

LACK OF AUTOMATION
As applications have become more complex and layered, organizations
often adopt different testing tools that require manual coding or translation
across the different layers and environments. And if they use Agile
methods across distributed teams to expedite dev/test activities, the
application sub-components cannot be tested fully until integration
testing, when all the parts come together for the first time.

Collectively, these challenges prevent IT teams from achieving parallel development and test practices.

Many IT organizations attempt to work around constraints
in development and testing practices by manually coding
custom mocks and stubs. For example, when a developer
needs access to an unavailable system or API, he might
create a bit of code that simulates the behavior of that
constraint and gives him the response he needs to move
onto the next step. The problem with mocks and stubs is
that, while they can address specific constraints in a pinch,
they create larger issues that can jeopardize digital
transformation goals.

For one, developers should be maximizing their time coding
the application itself, rather than wasting it on mocks and
stubs that have their own maintenance, consistency and
data limitations. While teams create these assets for specific

tests, they ultimately have to throw them away, wasting
valuable time and effort.

There’s also a problem of scale. As today’s composite
applications get more intricate and complex on the back end,
they require increasing numbers of custom mocks and stubs to
simulate component parts. On top of that, every new mock or
stub represents an opportunity for human error to enter the
equation, which can slow an application’s movement through
the SDLC and hurt its quality overall.

So rather than solve challenges, mocks and stubs actually
create extra work (and re-work) for developers and testers.
In addition, they take time away from more productive coding
activities and open the door for additional defects and bugs
to make their way into the application.

The Failure of the Mock and
Stub Workaround

4

of line-of-business executives feel pressure to release new applications faster,
citing “customer demand” and “competitive actions” as their top two drivers.2 94%

2 CA and Vanson Bourne, Application Economy Research, 2014.

5

Another way some organizations are tackling the challenges
of digital transformation is with Agile development methodologies.

The original goal of Agile was to break the slow and monolithic development
practices of the past into smaller chunks, so developers, testers and business
development people could work concurrently and speed new features to market.
Despite the best of intentions, however, many IT groups fail to get applications
into production with the speed and quality they would like, and there are some
common reasons why.

In some cases, they follow Agile practices in development, but then save all testing
for the end, which essentially shifts bottlenecks to later in the SDLC and leaves bugs
and glitches in a stage where they are tougher to identify and more expensive to fix.

In others, IT teams are constrained by the limited amount of dev and test resources
available to them. This forces them to stagger their efforts, rather than work in
parallel, which cuts into the speed and efficiency their Agile methods were meant
to enhance—and pushes out the application’s deployment into production.

The Differences Between
“Doing Agile” and “Being Agile”

ASK YOURSELF THIS:
“Are we really delivering
high-quality releases to the
market faster and at lower
cost to the business?”

If the answer is “No,” then
you’re not realizing the true
value of Agile development.

6

The Benefits of Agile Parallel Development

REDUCE COMPLEXITY by simulating
a variety of development and

testing environments, services and
behaviors—whenever and wherever needed

ELIMINATE CONSTRAINTS that prevent
parallel development and testing, so you
can speed time-to-market and raise the

quality of your applications overall

 STREAMLINE INTEGRATION and
collaboration with third parties
by accelerating API prototyping

and management

AUTOMATE TESTING earlier in
the SDLC, reducing the need for

time-consuming manual testing and
improving overall application quality

With Agile Parallel Development, you can:

7

STEP 1:
Remove Constraints

STEP 2:
Shift Testing Left

STEP 3:
Develop in Parallel

Agile Parallel Development in Three Steps

Remove time, data, availability
and cost constraints by simulating
dependent systems and customer
behaviors as virtual services—whenever
and wherever they are needed.

Leverage virtual services and test assets
to automate testing at earlier stages
of the SDLC— where defects can be fixed
more quickly and at lower cost—and
improve the quality and stability of
your production applications.

By simulating needed systems,
services and test assets as needed
and automating testing, you can
dramatically increase developer
productivity and empower teams
to work in parallel.

Source: Lyon, Dan, “Systems Engineering: Required for Cost-Effective
Development of Secure Products,” The SANS Institute, 2012.

Defect Correction Costs
$14,272

$7,136

$4,057
92% Resolved Cost Reduction

Producti
on

Sys
Test

Acce
pt T

est

Integ. Te
st

Unit T
est

Coding

$5,596

$2,517
$977

$16k

$14k

$12k

$10k

$8k

$6k

$4k

$2k

$-

TIME
Week 1 Week 3 Week 5Week 2 Week 4 Week 6 Week 7

DEV 1

DEV 1

DEV 1
DEV 1

DEV 1

DEV 2

DEV 2

DEV 2
DEV 2

DEV 2

DEV 3

DEV 3

DEV 3
DEV 3

DEV 3

App 1
App 2
App 3

App 1
App 2
App 3

Parallel

Sequential

DEV 1 DEV 2 DEV 3

© Copyright CA 2015. All rights reserved. This document is for your informational purposes only and does not form any type of warranty.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

CS200-127705-1

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables them to seize the
opportunities of the application economy. Software is at the heart of every business, in every industry. From planning to
development to management and security, CA is working with companies worldwide to change the way we live, transact,
and communicate – across mobile, private, and public cloud, distributed and mainframe environments. Learn more at ca.com.

In chapter 2 of our ebook series, we’ll take an in-depth look at the various types of constraints
throughout the SDLC, how they impact the business and what development and test teams can
do to eliminate them.

For more information, visit ca.com/agiledevelopment.

What’s Next?

http://ca.com
http://www.ca.com/agiledevelopment

