
WHITE PAPER

Overview
The BLAST-RADIUS cyber attack caused a wave of updates to RADIUS
handling. Most implementations picked an off-the-shelf spec for more secure
RADIUS handling, adding the Message-Authenticator attribute; additional
details are available in the following memos: RFC 3579, section 3.2 and RFC
2869, page 33. This white paper examines the Message-Authenticator
attribute in detail, providing functional examples and illumination.

Baseline: Access-Accept, Access-Reject
In an authentication scenario, a user will need to authenticate to some
application. That application, in turn, may communicate via RADIUS (using
an Access-Request RADIUS message) as a RADIUS client to some RADIUS
server. That RADIUS server will check the credentials supplied and will
typically render a final response: Let the user in (Access-Accept) or don’t
let the user in (Access-Reject). In order to get a picture of the relevance
of Message-Authenticator, we need to see what baseline is—what normal
processing looks like prior to Message-Authenticator.

Authentication Success
The following Wireshark screen captures show a successful authentication.

TABLE OF CONTENTS

Detailing the
Message-Authenticator
Attribute

Overview

Baseline: Access-Accept,
Access-Reject

The Message-Authenticator
Attribute

The Message-Authenticator
Calculation

Message-Authenticator
Example

https://www.rfc-editor.org/rfc/rfc3579#page-16
https://www.rfc-editor.org/rfc/rfc2869#page-33
https://www.rfc-editor.org/rfc/rfc2869#page-33

Detailing the Message-Authenticator Attribute | WHITE PAPER | 2

Authentication Failure
A failed authentication displays as follows.

The following illustration explains how those messages are handled.

Note that the Authenticator attribute (Request Authenticator) shown above
is a 16-octet random value and is not based on other values; additional
information is available in the RADIUS RFC. The Access-Accept and
Access-Reject responses use that Request Authenticator as input when
generating a Response Authenticator, as detailed in the RADIUS RFC as well
as in the following image.

Access Request

Response Authenticator

https://www.rfc-editor.org/rfc/rfc2865#page-14
https://www.rfc-editor.org/rfc/rfc2865#page-15

Detailing the Message-Authenticator Attribute | WHITE PAPER | 3

If a RADIUS server received two RADIUS packets from what appears to be
the same IP address and with the same Request Authenticator value, but
with different AVPs, it should process it normally. This is the entry point for
BLAST-RADIUS that Message-Authenticator closes.

Finally, the RADIUS server sends back the response:

The Message-Authenticator Attribute
When we get to the Message-Authenticator attribute, we see an additional
Attribute Value Pair. The Message-Authenticator attribute itself is similar to
the Response Authenticator:

Response Authenticator Calculation:
MD5 (Code + ID + Length + RequestAuth + Attributes + Secret)

The Response Authenticator calculation is straightforward: concatenate all
these values together and use this as input to the MD5 function.

Message-Authenticator Calculation:
HMAC-MD5 (Type, Identifier, Length, Request Authenticator, Attributes),
using the shared secret as the key

However, the HMAC-MD5 function is more complex:

• First, essentially all of the values in the UDP datagram are concatenated
together.

• Then the shared secret is used as the key.

Access Request

RADIUS Server Response

Detailing the Message-Authenticator Attribute | WHITE PAPER | 4

THE BLAST-RADIUS
ATTACK RELIED
UPON BEING ABLE TO
PREDICT OR CONTROL
VALUES IN THE INITIAL
SERVER RESPONSE.

BY EXTENDING PACKET
CONTENT VALIDATION
TO REQUESTS AND
RESPONSES, WE’RE
EFFECTIVELY PLACING
A GREAT BIG BAND AID
ON THIS ISSUE.

• Those values are entered into the HMAC-MD5 function, which is
described in RFC 2104—the appendix there has a good illustration.
ipad and opad values each modify the key and the text to provide
some baseline unpredictability. We expect for any small change to any
attribute that would necessarily cause a big and unpredictable change in
the Message-Authenticator value.

Notably, the BLAST-RADIUS attack relied upon being able to predict or
control values in the initial server response. It then proceeded to falsify those
values by dropping stuff and making it look close, so the colliding MD5 values
checked out against the rest of the packet. This yielded an elegant chosen-
prefix attack that leveraged some unfortunately helpful RADIUS attributes
and behavior.

By extending the packet content validation to requests and responses, we’re
effectively placing a great big band aid on this issue.

The Message-Authenticator Calculation
Let’s dissect a Message-Authenticator example:

The Message-Authenticator Attribute Value Pair (AVP) in a successful
authentication is displayed below.

Here is the formation of the Message-Authenticator at the RADIUS client
(NAS or VPN Server):

Access Request

https://www.rfc-editor.org/rfc/rfc2104

Detailing the Message-Authenticator Attribute | WHITE PAPER | 5

The data fed in to the HMAC-MD5 function for the Access-Request is as follows:

Code/Type: 1 (this is a one-byte value)
Packet Identifier: 1 (this is a one-byte value)
Length: 70 (or 0x46 in hex, a two-byte value)
Request Authenticator: e454bc04e6794169d757931a9919ca2e (16 byte random data)

AVPs:
Type: 1 (one byte value)
Length: 8 (one byte value)
Value: bsmith (6 bytes for bsmith, one byte for the type and one byte for the length)

Type: 4 (one byte value)
Length: 6 (one byte value)
Value: 0x0a8a0005 (four bytes)

Type: 2 (one byte value)
Length: 18 (one byte value)
Value: 0x4a02e1d6 0xb14c2ee5 0x0ca12884 0x0440abe5 (16 bytes)

Type: 80 (one byte value)
Length: 18 (one byte value)
Value: 0x00000000 0x00000000 0x00000000 0x00000000 (16 bytes)
Note: The signature string referenced in the RFCs is the Message-Authenticator AVP, but with a value of
all zeroes.

Concatenating these values provides the bytestream from the packet (in hex):

01010046e454bc04e6794169d757931a9919ca2e010862736d69746804060a8a000502124a02e1d6b14
c2ee50ca128840440abe550120000000000000000000000000000000000

Now stepping through the HMAC steps:

1. Take the shared secret and add zeroes until it is 64 bytes long (== 512 bits == chunks that MD5 operates
on). The shared secret is represented by question marks:
???????? ???????? ???????? ???????? 00000000 00000000 00000000 00000000

2. XOR the above with ipad (0x36 repeated):
???????? ???????? ???????? ???????? 36363636 36363636 36363636 36363636

3. Tack onto the above the bytestream from the packet:
???????? ???????? ???????? ???????? 36363636 36363636 36363636 36363636 01010046 e454bc04
e6794169 d757931a 9919ca2e 01086273 6d697468 04060a8a 00050212 4a02e1d6 b14c2ee5
0ca12884 0440abe5 50120000 00000000 00000000 00000000 0000

4. Throw that data into MD5:
0f38c805be11ecebe8bb2a6730cb357d

5. XOR the result in step 1 with opad (0x5C repeated):
???????? ???????? ???????? ???????? 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C

6. Append the result from step 4 onto this:
???????? ???????? ???????? ???????? 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 0f38c805 be11eceb
e8bb2a67 30cb357d

7. Take the above and feed it to MD5 slowly:
d124bdbfdce8d7fa59a812cee8ac17b9

The result shown in Step 7 is the HMAC, and its value should—and does—match the Message-Authenticator
value sent in the Access Request.

Message-Authenticator Example

Copyright © 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

VIP-BR-MA-WP100 September 24, 2024

Detailing the Message-Authenticator Attribute | WHITE PAPER | 6

For more information, visit our website at: www.broadcom.com

The following image illustrates the processing at work:

A would-be attacker that simply modified values in the packet by adding
or dropping AVPs, which was needed for the HASH-CLASH attack, would
drastically alter the Message-Authenticator value. The RADIUS server
would quietly drop that bad packet.

The RADIUS client (a NAS—for example: a VPN Server) performs this
calculation and places the HMAC into the Message-Authenticator
attribute. The RADIUS server repeats this calculation and confirms that it gets
the same answer. If it does, it’s most likely from the actual NAS. If not, it’s still
most likely to be a random error so the RADIUS server won’t reply—but we
need to throw it on the floor silently, as it might be beneficial to have debug
messages that log this. A RADIUS server that tried to provide a helpful reply
may run us afoul of things like the Bleichenbacher chosen-ciphertext attack,
which would be bad.

This process is repeated for the message from the RADIUS server to the
RADIUS client.

ADDITIONAL HELPFUL
TOOLS
If you would like to reproduce
some of these calculations, you can
use command line tools such as
hexdump, od, and xxd -r.

Online HMAC and md5 tools are
also helpful:

• Cryptii - An online HMAC
calculator that accepts hex as
input

• emn178 - An online md5 calculator
that accepts hex as input

Message-Authenticator

Access Request

https://www.broadcom.com
https://cryptii.com/pipes/hmac
https://emn178.github.io/online-tools/md5.html

