

VMware Empowering the Modern SOC

Table of contents

Useful Queries for the VMware Carbon Black Cloud Splunk App 4
Introduction
Alert Triage
Investigating CB Analytics Alerts
Process Details for Watchlist Alerts
Handy URLs6
More Readable Enriched Events
Alert Trends
Alerts over time by type
Alerts over time by severity
Alerted Devices over time
Top Alerted Processes 9
Top Watchlists & Reports
Blocked Malware
Device Enrichment
Most Risky Endpoints
Endpoints Not Checking In
Threat Hunting
Threat Hunting
Threat Hunting
Threat Hunting 14 MITRE 14 CB Analytics Alerts 14
Threat Hunting 14 MITRE 14 CB Analytics Alerts 14 Watchlist Hits 15
Threat Hunting 14 MITRE 14 CB Analytics Alerts 14 Watchlist Hits 15 Combining CB Analytics Alerts & Watchlist Hits 16
Threat Hunting14MITRE14CB Analytics Alerts14Watchlist Hits15Combining CB Analytics Alerts & Watchlist Hits16Commonly Abused Commands17
Threat Hunting14MITRE14CB Analytics Alerts14Watchlist Hits15Combining CB Analytics Alerts & Watchlist Hits16Commonly Abused Commands17Log4Shell18
Threat Hunting14MITRE14CB Analytics Alerts14Watchlist Hits15Combining CB Analytics Alerts & Watchlist Hits16Commonly Abused Commands17Log4Shell18Audit Logs19
Threat Hunting 14 MITRE 14 CB Analytics Alerts 14 Watchlist Hits 15 Combining CB Analytics Alerts & Watchlist Hits 16 Commonly Abused Commands 17 Log4Shell 18 Audit Logs 19 Flagged Audit Logs 19
Threat Hunting14MITRE14CB Analytics Alerts14Watchlist Hits15Combining CB Analytics Alerts & Watchlist Hits16Commonly Abused Commands17Log4Shell18Audit Logs19Flagged Audit Logs19Logins19
Threat Hunting14MITRE14CB Analytics Alerts14Watchlist Hits15Combining CB Analytics Alerts & Watchlist Hits16Commonly Abused Commands17Log4Shell18Audit Logs19Flagged Audit Logs19Logins19Live Response19
Threat Hunting14MITRE14CB Analytics Alerts14Watchlist Hits15Combining CB Analytics Alerts & Watchlist Hits16Commonly Abused Commands17Log4Shell18Audit Logs19Flagged Audit Logs19Logins19Live Response19User Activity20
Threat Hunting14MITRE14CB Analytics Alerts14Watchlist Hits15Combining CB Analytics Alerts & Watchlist Hits16Commonly Abused Commands17Log4Shell18Audit Logs19Flagged Audit Logs19Logins19Live Response19User Activity20Vulnerabilities23
Threat Hunting14MITRE14CB Analytics Alerts14Watchlist Hits15Combining CB Analytics Alerts & Watchlist Hits16Commonly Abused Commands17Log4Shell18Audit Logs19Flagged Audit Logs19Logins19Log Asponse19Log Asponse20Vulnerabilities23Endpoints with Critical Vulnerabilities23

	Logged in users	25
	Credential Harvesting	. 25
	Chrome Extensions	27
A	dditional Resources	28
	Change Log	. 28
	About the Author and Contributors	28

Introduction

The VMware Carbon Black Cloud App brings visibility from VMware's endpoint protection capabilities into Splunk for visualization, reporting, detection, and threat hunting use cases. With so much data, your SOC can find endless opportunities for value. But sometimes, it's helpful to have a few examples to get started.

All queries use Splunk eventtypes and sourcetypes defined in the Carbon Black Cloud Splunk App. You can find more information on installing & configuring the app on the **Developer Network Splunk Integration** page. Each use case lists additional requirements, including which Carbon Black Cloud products your org must have enabled and which data sources, alert actions, and custom commands you need to configure in Splunk.

To determine which products your organization has enabled, in the Carbon Black Cloud console click your username in the upperright corner. Enabled products will have the "ENABLED" tag.

>	Bruce Deakyne (cb-internal-alliances.com) 🛛	
	Endpoint Standard ENABLED	
	Enterprise EDR ENABLED	

Alert Triage

Investigating CB Analytics Alerts

Required Product: Endpoint Standard

Every CB Analytics (NGAV) Alert is tied to one or more Enriched Events. It's very helpful to pivot to these events (also known as "Alerted Events") and identify the behavior that led to the alert. This can provide insights like what processes, cmdlines, and users were involved if any network connections occurred, and what files or registry keys were modified.

The syntax varies depending on whether you're using the App Inputs & Alert Actions or Data Forwarder.

- Using App Input & Alert Actions
 - Required Data/Configurations: Alerts (App Input), Enrich CB Analytic Events (App Alert Action), CB Analytics -Ingest Enriched Events (Splunk Alert)
 - $\circ~$ Follow the setup instructions from the App Configuration Video
 - Alerts Inputs (timestamp 5:17)
 - Alert Actions (timestamps 6:38 and 8:30).
- Using the Data Forwarder
 - Required Data: Alerts (Data Forwarder), Endpoint Events (Data Forwarder)
 - The Data Forwarder can be configured to push both Alerts and Endpoint Events into Splunk via an AWS S3 bucket. You can filter to send only Alerted Events, which are just a small fraction of all endpoint events, with the following Custom Query Filter:

alert_id:*

Using App Input & Alert Actions

```
eventtype="vmware_cbc_cb_analytics"
| eval alert_id = id
| dedup alert_id
| join alert_id [
   search eventtype="vmware_cbc_base_index" sourcetype="vmware:alert_action:vmware-enrich-events"
   | rename alert_id{} as alert_id
   | stats dc(event_id) as event_count, values(event_type) as event_types, values(process_cmdline{}) as
process_cmdlines, values(event_description) as enriched_event_descriptions by alert_id
]
   table alert_id, severity, device_name, reason, event_count, event_types, process_cmdlines,
enriched_event_descriptions
```

Using the Data Forwarder

```
eventtype="vmware_cbc_cb_analytics"
| eval alert_id = id
| dedup alert_id
| join alert_id [
  search eventtype="vmware_cbc_events" alert_id = *
  | stats
    dc(event_id) as event_count,
    values(type) as event_types,
    values(process_cmdline) as process_cmdlines,
    values(event_description) as enriched_event_descriptions
    by alert_id
]
| table alert_id, severity, device_name, reason, event_count, event_types, process_cmdlines,
enriched_event_descriptions
```


Process Details for Watchlist Alerts

Required Product: Enterprise EDR

Required Data/Configurations: Alerts (App Input or Data Forwarder), Process GUID Details (App Alert Action), Process GUID Details (user-created Splunk Alert)

Carbon Black Cloud has dozens of metadata fields about every process that executes on an endpoint. While not all of it is included in a Watchlist Alert, the "Process GUID Details" Alert Action can automatically query Carbon Black Cloud for all process details following a Watchlist Alert. Follow the setup instructions from the App Configuration Video (timestamps 6:38 and 9:13). Any field tagged "DETAILS" in the Process Search Fields documentation will be available.

Watchlist Alerts with rich process metadata

```
eventtype="vmware_cbc_watchlist"
| join process_guid [
    search eventtype="vmware_cbc_action_index" sourcetype="vmware:alert_action:vmware-process-guid-details"
    | rename results{}.* as *
]
| table device_name, report_name, severity, process_cmdline{}, process_username{}, parent_cmdline
```

device_name ✓ ¢	report_name ≑	severity	<pre> process_cmdline()</pre>	/	/ process_username() \$	parent_cmdline \$
QA\TESTSYS	EXE_Source ips with severity 10	1	0 C:\WINDOWS\system32\svchost.exe -k NetworkServic -s CryptSvc	e-p	NT AUTHORITY\NETWORK SERVICE	C:\WINDOWS\system32\services.exe
carbonblack-win1	Defense Evasion – Window: Event Command Line Utili Use		<pre>8 C:\WINDOWS\system32\cmd.exe /c "wevtutil gl "Security""</pre>		NT AUTHORITY\SYSTEM	C:\Program Files\test\test_conf_win_srv \test_conf_win_srv.exe

Handy URLs

Products Required: Any

Required Data: Alerts (App Input or Data Forwarder)

When investigating an alert, it can be helpful to pivot back to the Carbon Black Cloud console to view purpose-built NGAV and EDR content, such as the process tree. There are a variety of pages you may want to visit and those may vary team to team. These URLs can be formed based on the content of an Alert.

Each URL requires your Carbon Black Cloud console domain (e.g. https://defense-prod05.conferdeploy.net). If you're using the App Input for alerts, the query will get it from the Splunk host field. If you're using the Data Forwarder input for alerts, the query will get the console URL from the available alert_url field.

Carbon Black Cloud URLs for each alert


```
eventtype="vmware_cbc_alerts"
| rex field=alert_url "^(?<cbc_console>https:\/\/[^\/]+)\/.*"
| eval cbc_console = case(isnotnull(cbc_console), cbc_console, like(host, "%confer%.net%"), "https://" + host,
1=1, "https://replaceme")
 eval alert_page_url = cbc_console + "/alerts?selected[id]=" + id +
"&s[highlight]=true&s[c][query_string]=alert_id%3A" + id + "&orgKey=" + org_key
| eval alert_triage_url = if(type = "CB_ANALYTICS", cbc_console + "/triage?incidentId=" + id + "&orgKey=" +
org_key, "N/A")
| eval process_tree_url = if(type = "WATCHLIST", cbc_console + "/analyze?processGUID=" + process_guid +
"&alertId=" + id + "&deviceId=" + device id + "&orgKey=" + org key, "N/A")
| eval investigate_process_url = cbc_console + "/investigate/processes?query=alert_id%3A" + id + "&orgKey=" +
org_key
| eval investigate_events_url = cbc_console + "/investigate/events?query=alert_id%3A" + id + "&orgKey=" +
org_key
| eval endpoint url = cbc console + "/inventory/endpoints?s[query]=deviceId%3A" + device id + "&orgKey=" +
org_key
| table *_url
```

alert_url \$	/	endpoint_url \$	/	investigate_events_url \$	investiga
https://defense.conferdeploy.net/cb/investigate/processes?orgId=1105& query=alert_id%3Add3a03a8-bec0-4545-bce1-abe67c6c1ce0+AND+device_id%3A4467271 searchWindow=ALL	1&	https://defense.conferdeploy.net /inventory /endpoints?s[query]=deviceId%3A44672 orgKey=ABCD1234	71&	https://defense.conferdeploy.net/investigate /events?query=alert_id%3Add3a03a8-bec0=4545-bce1-abe67c6c1ce0& orgKey=ABCD1234	https:// /proces: orgKey=/
<pre>https://defense.conferdeploy.net/cb/investigate/processes?orgId=1105& query=alert_id%3Add14fccf-9f55-45da-9d84-53880c7e8997+AND+device_id%3A4467271 searchWindow=ALL</pre>	1&	<pre>https://defense.conferdeploy.net /inventory /endpoints?s[query]=deviceId%3A44672 orgKey=ABCD1234</pre>	71&	<pre>https://defense.conferdeploy.net/investigate /events?query=alert_id%3Add14fccf-9f55-45da-9d84-53880c7e8997& orgKey=ABCD1234</pre>	https:// /proces: orgKey=/

More Readable Enriched Events

Products Required: Endpoint Standard

Required Data: Events (Data Forwarder) or Enrich CB Analytic Events (App Alert Action)

Enriched Event descriptions are preformatted for a user interface and contain some HTML markup. This can be effectively stripped away, though you may lose some context. For example:

```
The application "<share><link
hash="643ec58e82e0272c97c2a59f6020970d881af19c0ad5029db9c958c13b6558c7">C:\Windows\system32\svchost.exe -k netsvcs -p
-s Schedule</link></share>" invoked the application "<share><link
hash="f1f67830fc3531dfbdaf5315f59422438ab9f243d89491ac75d1818e7ed98b5d">C:\program files
(x86)\google\update\googleupdate.exe</link></share>". The operation was <accent>blocked by Cb Defense</accent>.
```

Becomes

The application "C:\Windows\system32\svchost.exe -k netsvcs -p -s Schedule" invoked the application "C:\program files (x86)\google\update\googleupdate.exe". The operation was blocked by Cb Defense.

Remove tags from Enriched Events

eventtype="vmware_cbc_events" event_description="*"

- | rex mode=sed field=event_description "s/(<[^>]+>)//g"
- | table event_description

event_description \$

The application "C:\Windows\System32\svchost.exe -k NetworkService -p -s DoSvc" accepted a TCP/7680 connection from 10.176.186.147:53581 to 10.203.96.177:7680. The device was on the corporate network using the public address 65.111.99.2 (DEV01-37x-1.TEST.COM, located in Mountain View CA, United States). The operation was successful.

The application "C:\windows\syswow64\cmd.exe" invoked the application "C:\windows\system32\conhost.exe". The operation was successful.

The application "c:\windows\system32\conhost.exe" attempted to open the process "c:\windows\syswow64\cmd.exe", by calling the function "OpenProcess". The operation was successful.

The application "C:\Windows\system32\svchost.exe -k netsvcs" invoked the application "C:\windows\system32\taskeng.exe".

Alert Trends

Products Required: Any

Required Data: Alerts (App Input or Data Forwarder)

Aggregate data can help identify improvements in your SOC workflows. Are their known-good processes driving false positive alert volume? Can existing Watchlist Reports be tuned for greater efficacy? What type of alerts should new SOAR playbooks focus on?

Some of these visualizations are already built into the Carbon Black Cloud Splunk App's Alerts Overview dashboard, but these queries may enable your SOC to more easily customize what's important to you.

The data is available from both the data model and the indexed data. The data model queries should execute much faster, especially if you're looking for 7+ day trends in large environments. However, as they're less intuitive to edit, your team may choose to work from the indexed data queries for any customizations.

Alerts over time by type

Indexed Data

```
eventtype="vmware_cbc_alerts"
| timechart span=1d dc(id) by type
```

Data Model

```
| `vmware_tstats` earliest(All_CBC.Alerts.create_time) as create_time
from datamodel=VMWare_CBC
where nodename=All_CBC.Alerts
by All_CBC.cbc_event_id, All_CBC.type
| rename All_CBC.* as *
| rename Alerts.* as *
| rename cbc_event_id as alert_id
| eval _time = strptime(create_time,"%Y-%m-%dT%H:%M:%S.%3QZ")
| timechart span=1d dc(alert_id) by type
```


Alerts over time by severity

Indexed Data

```
eventtype="vmware_cbc_alerts"
| timechart span=1d dc(id) by severity
```

Data Model

```
| `vmware_tstats` earliest(All_CBC.Alerts.create_time) as create_time
from datamodel=VMWare_CBC
where nodename=All_CBC.Alerts
by All_CBC.cbc_event_id, All_CBC.Alerts.severity
| rename All_CBC.* as *
| rename Alerts.* as *
```

| rename cbc_event_id as alert_id | eval _time = strptime(create_time,"%Y-%m-%dT%H:%M:%S.%3QZ") | timechart span=1d dc(alert_id) by severity

Alerted Devices over time

Indexed Data

eventtype="vmware_cbc_alerts"
| timechart span=ld dc(device_id) by type

Data Model

```
| `vmware_tstats` earliest(All_CBC.Alerts.create_time) as create_time
from datamodel=VMWare_CBC
where nodename=All_CBC.Alerts All_CBC.Alerts.severity>=1
by All_CBC.cbc_event_id, All_CBC.device_id, All_CBC.type
| rename All_CBC.* as *
| rename Alerts.* as *
| rename Alerts.* as *
| rename cbc_event_id as alert_id
| eval _time = strptime(create_time,"%Y-%m-%dT%H:%M:%S.%3QZ")
| timechart span=1d dc(device_id) by type
```


Top Alerted Processes

Indexed Data

| stats
 dc(id) as alert_count,
 dc(device_id) as device_count
 by process_name
| sort -alert_count
| head 10

Data Model

```
| `vmware_tstats`
dc(All_CBC.cbc_event_id) as alert_count,
dc(All_CBC.device_id) as device_count
from datamodel=VMWare_CBC
where nodename=All_CBC.Alerts All_CBC.Alerts.severity>=1
by All_CBC.Alerts.process_name
| rename All_CBC.* as *
| rename Alerts.* as *
| sort -alert_count
| head 10
| table process name, alert count, device count
```

process_name \$	/	alert_count 🗘 🖌	device_count 🗘 🖉
wevtutil.exe		2577	1
cmd.exe		1295	3
svchost.exe		460	49
services.exe		163	2
SYSTEM		87	8
tiworker.exe		20	2
msedge.exe		18	2
googleupdate.exe		15	6
updatenotificationmgr.exe		10	3
nessus-service.exe		8	2

Top Watchlists & Reports

Products Required: Enterprise EDR

Indexed Data

```
eventtype="vmware_cbc_watchlist"
| stats
  values(watchlists{}.name) as watchlist_names,
  max(severity) as severity,
  dc(id) as alert_count,
  dc(device_id) as device_count,
  dc(process_name) as process_count,
  by report_name
| sort -alert_count
| head 10
```

Data Model

```
| `vmware_tstats`
max(All_CBC.Alerts.severity) as severity,
values(All_CBC.Alerts.watchlist_name) as watchlist_names,
dc(All_CBC.cbc_event_id) as alert_count,
dc(All_CBC.device_id) as device_count,
dc(All_CBC.process) as process_count
from datamodel=VMWare_CBC
where nodename=All_CBC.Alerts All_CBC.Alerts.severity>=1
by All_CBC.Alerts.report_name
| rename All_CBC.* as *
| sort -alert_count
| head 10
```


| table report_name, watchlist_names, severity, alert_count, device_count, process_count

report_name \$	/	watchlist_names \$	/	severity 🖌	alert_count 🖌 ‡	device_count 🖌 ‡	process_count 🖌
Defense Evasion - Windows Event Command Line Utility Use		Carbon Black Endpoint Suspicious Indicators		8	3869	1	2
EXE_Source ips with severity 10		Proofpoint Emerging Threats EXE_Source		10	219	49	4
EXE_Source ips with severity 9		Proofpoint Emerging Threats EXE_Source		9	129	12	2
测试1		测试		4	46	3	6
Report test		SRPTEST		5	40	5	2
report		Jess-test-nov-17-1 Jess-test-nov-17-3		5	24	3	1
SYSTEM		Jess-Test-Nov-15th		5	12	3	1
Testing		Jess-Nov-15th-test-2		5	12	3	1
EXE_Source ips with severity 8		Proofpoint Emerging Threats EXE_Source		8	9	6	2
Persistence – Regmod Run or Runonce Key Modification		Carbon Black Endpoint Suspicious Indicators		3	8	3	4

Blocked Malware

Products Required: Endpoint Standard

Indexed Data

```
eventtype="vmware_cbc_cb_analytics"
blocked_threat_category IN ("KNOWN_MALWARE", "NEW_MALWARE")
| stats
    dc(id) as alert_count,
    dc(device_id) as device_count,
    values(device_name) as device_names,
    values(sensor_action) as sensor_actions
    by process_name
| sort -alert_count
```

Data Model

```
| `vmware_tstats`
dc(All_CBC.cbc_event_id) as alert_count,
dc(All_CBC.device_id) as device_count,
values(All_CBC.device_name) as device_names,
values(All_CBC.sensor_action) as sensor_actions
from datamodel=VMWare_CBC
where nodename=All_CBC.Alerts All_CBC.Alerts.severity>=1 All_CBC.Alerts.blocked_threat_category IN
("NEW_MALWARE", "KNOWN_MALWARE")
by All_CBC.Alerts.process_name
| rename All_CBC.* as *
| rename Alerts.* as *
| sort -alert_count
```

	table pr	ocess_name,	alert_count,	device_count,	device_names,	sensor_actions
--	----------	-------------	--------------	---------------	---------------	----------------

process_name ≑	1	alert_count 🗘 🖌	device_count 🗘 🖌	device_names ≑	1	sensor_actions \$
powershell.exe		11	1	WB-Auto-QA		DENY
attack_graph.py		1	1	CBC\bd-carbonblack		DENY
svch0st.exe		1	1	DESKTOP-IS01v1		DENY

Device Enrichment

If you're investigating an endpoint, you may want the latest information in Splunk. With the cbcdvcinfo command, you can bring up to date device metadata into your query. The full schema is available via the **Devices API on Developer Network**.

The command first needs to be configured in the app configuration under the "Custom Commands" tab. Limit your Splunk search to 100 devices to avoid potential API throttling.

Most Risky Endpoints

Required Product: Any

Required Data: Alerts (App Input or Data Forwarder), VMware CBC Device Info (App Custom Command)

This query gets device metadata, such as the last contact time, Carbon Black Cloud sensor version & state, and OS version, for the endpoints in your environment that have triggered the highest severity alerts.

Enrich Endpoint Info for risky endpoints

```
eventtype="vmware_cbc_alerts" severity >= 8
| stats dc(id) as alert_count by device_id, org_key
| sort -alert_count
| head 10
| cbcdvcinfo
| table org_key, device_id, name, alert_count, sensor_version, last_contact_time, os_version, sensor_states
```

org_key ∡ ≑	device_id 🖌 \$	name ≑	/	∡ alert_count ≑	sensor_version	/	last_contact_time \$	/	os_version \$	/	sensor_states \$	/
ABCD1234	4467271	Carbonblack-win1		11338	3.7.0.1253		2021-12-14T03:07:32.7	20Z	Windows 10 x64		ACTIVE LIVE_RESPONSE_NOT_RUNN LIVE_RESPONSE_NOT_KILL LIVE_RESPONSE_ENABLED	
ABCD1234	4483118	CBTest-2		93	3.7.0.1253		2021-12-14T03:06:17.9	73Z	Windows 10 x64		ACTIVE LIVE_RESPONSE_NOT_RUNN LIVE_RESPONSE_NOT_KILL LIVE_RESPONSE_ENABLED	ED
ABCD1234	4483137	CBTest-1		93	3.7.0.1253		2021-12-14T03:06:52.4	78Z	Windows 10 x64		ACTIVE LIVE_RESPONSE_NOT_RUNN LIVE_RESPONSE_NOT_KILL LIVE_RESPONSE_ENABLED	
ABCD1234	4857176	KG-App-VM-1		79	3.7.0.1503		2021-12-14T03:08:17.4	837	Windows 10 x64		ACTIVE	

Endpoints Not Checking In

Required Product: Enterprise EDR

Required Data: Endpoint Events (Data Forwarder), VMware CBC Device Info (App Custom Command)

If an endpoint stops checking in to Carbon Black Cloud, it may warrant investigation.

This can be accomplished by forwarding process start endpoint events (custom query filter type:endpoint.event.procstart) to Splunk. They're only a few percent of all EDR data but provide tremendous visibility. Nearly every endpoint will generate process starts during a normal day.

Consider filtering further, such as by device group or policy, to segment:

- Critical endpoints such as Domain Controllers or production servers, where investigation should occur if data is missing for just a few hours.
- User endpoints such as laptops, where being offline for days may be normal.

Run this query across the past 5-10 days. It will identify the top 100 endpoints whose last event was received more than 24 hours ago, then retrieve the endpoint's last contact time from the Carbon Black Cloud Devices API.

Note it uses the app's built-in data model to get days' worth of event data quickly, so you'll need to run this with the VMware Carbon Black Cloud app selected. It's a long query, but most of it is just timestamp wrangling.

Endpoints not checking in

```
| `vmware_tstats`
  latest(All CBC.Endpoint.backend timestamp) as last event data
  from datamodel=VMWare_CBC
 where nodename=All CBC.Endpoint
 by All_CBC.device_name, All_CBC.device_id, All_CBC.org_key
| rename All_CBC.* as *
 eval epoch_last_event_data = strptime(last_event_data, "%Y-%m-%d %H:%M:%S %z")
 eval window = relative_time(now(), "-24h@h")
where epoch_last_event_data <= window</pre>
 sort last_event_data
 head 100
 cbcdvcinfo
| eval epoch last contact = strptime(last contact time, "%Y-%m-%dT%H:%M:%S.%3N%Z")
| eval diff = floor(abs(epoch_last_contact - epoch_last_event_data))
 eval diff_between_last_contact_and_data = tostring(diff, "duration")
| table device_name, device_id, org_key, last_contact_time, last_event_data, diff_between_last_contact_and_data
```

device_name 🗘 🖌	device_id 🗘 🖌	org_key 🗘 🖉	/	last_contact_time \$	/	last_event_data 🗢	/	diff_between_last_contact_and_data
Workbench-test-	4082591	ABCD1234		2021-12-11T06:55:06.523Z		2021-12-11 06:59:28 +0000 UTC		00:04:21
ATTACK\pc2	4532326	ABCD1234		2021-12-14T03:07:42.825Z		2021-12-12 18:12:43 +0000 UTC		1+08:54:59
DESKTOP-98CPI3M	4950371	ABCD1234		2021-12-13T02:52:31.523Z		2021-12-13 02:53:00 +0000 UTC		00:00:28

Threat Hunting

MITRE

Carbon Black Cloud aligns to the MITRE ATT&CK Framework in both CB Analytics Alerts and Watchlist Hits. This enables easy and effective threat hunting, such as:

- Identifying and investigating endpoints that have observed the most unique MITRE TIDs
- Identifying and investigating endpoints that have observed specific MITRE TIDs, such as those used in an emerging threat
- Identifying which MITRE TIDs have been observed on a specific endpoint already under investigation

CB Analytics Alerts

Required Product: Endpoint Standard

Required Data: Alerts (App Input or Data Forwarder)

CB Analytics Alert TTPs contain MITRE techniques. In addition to the MITRE TID, they have a concise description of the technique, which is handy for those of us who don't have the entire ATT&CK framework memorized. Any time a sub-technique's TTP is included with a CB Analytics Alert, the parent's TTP will also be included.

Examples: MITRE_T1596_SEARCH_OPEN_TECHNICAL_DATABASES and MITRE_T1596_001_DNS_PASSIVE_DNS

Carbon Black Cloud strives to keep current with the MITRE's routine updates the ATT&CK framework. Deprecated MITRE TTPs will still be included with alerts for 12 months. If you are using a specific MITRE TID for detections, keep up to date with the latest changes.

- Carbon Black Cloud's list of deprecated & supported MITRE TIDs, including recommended new TIDs for those which have been deprecated
- Carbon Black Cloud MITRE v7 deprecation announcement
- Carbon Black Cloud Developer Newsletter (so you're notified of any planned deprecations with plenty of notice)

Top Endpoints by unique MITRE TID count

```
eventtype="vmware_cbc_cb_analytics"
| rename threat_indicators{}.ttps{} as mitre_ttps
| mvexpand mitre_ttps
| rex field=mitre_ttps "^MITRE_(?<mitre_tid>T\d+(\_\d{3})?)_(?<mitre_tid_name>.*)$"
| where not isnull(mitre_tid)
| eval mitre_tid = lower(mitre_tid)
| stats
    dc(mitre_tid) as mitre_tid_count
    values(mitre_tid) as mitre_tids,
    values(mitre_tid_name) as mitre_tid_names
    by device_id, device_name
| sort -mitre_tid_count
```

Top MITRE TIDs by endpoint count

```
eventtype="vmware_cbc_cb_analytics"
| rename threat_indicators{}.ttps{} as mitre_ttps
| mvexpand mitre_ttps
| rex field=mitre_ttps "^MITRE_(?<mitre_tid>T\d+(\_\d{3})?)_(?<mitre_tid_name>.*)$"
| where not isnull(mitre_tid)
| eval mitre_tid = lower(mitre_tid)
| stats
    dc(device_id) as device_count,
    values(device_name) as device_names,
    by mitre_tid, mitre_tid_name
| sort -device_count
```


device_id 🗘 🖉	device_name \$	/	mitre_tid_count \$	/	mitre_tids \$	/	mitre_tid	_names \$
4885462	QA\PSBSYS			4	t1055 t1057 t1059 t1106		NATIVE_	DISCOVERY
4873393	QA\782021w2k16			3	t1046 t1057 t1059		NETWORK_	_OR_SCRIPT_INTER SERVICE_SCANNING DISCOVERY
4938802	DESKTOP-E3NJVI9			3	t1046 t1057 t1543		NETWORK_	R_MODIFY_SYS_PROC SERVICE_SCANNING DISCOVERY
mitre_tid \$	/ mitre_tid_n	ame 🌲		/		device_coun	t ‡ 🖉	device_names ‡
t1046	NETWORK_SE	RVICE_SCANNING					7	DESKTOP-E3NJVI9 QA\782021w2k16 SUPLAB-433-WIN WIN10-LCHAI manticorewin832 win10-CBClient1 win10-ps-moid
t1057	PROCESS_DI	SCOVERY					7	Brian-Thrashbx2 CBSTD-WKSH DESKTOP-E3NJVI9 PSB760 QA\782021w2k16 QA\GL-PI-SRP-79 QA\PSBSYS
t1059	CMD_LINE_C	R_SCRIPT_INTER					5	Brian-Thrashbx2

Watchlist Hits

Required Product: Enterprise EDR

Required Data: Watchlist Hits (Data Forwarder)

Watchlist hits also contain MITRE techniques in the report tags. While the tag doesn't contain the technique name, we can substitute the report name.

Top Endpoints by unique MITRE TID count

```
eventtype="vmware_cbc_base_index" sourcetype="vmware:cbc:s3:watchlist:hits"
| rename report_tags{} as mitre_tids
| mvexpand mitre_tids
| regex mitre_tids="^t\d+$"
| eval mitre_tid_name = report_name
| stats
    dc(mitre_tids) as mitre_tid_count,
    values(mitre_tids) as mitre_tids,
    values(mitre_tid_name) as mitre_tid_names
    by device_id, device_name
| sort -mitre_tid_count
```

Top MITRE TIDs by endpoint count

```
eventtype="vmware_cbc_base_index" sourcetype="vmware:cbc:s3:watchlist:hits"
| rename report_tags{} as mitre_tids
| mvexpand mitre_tids
| regex mitre_tids="^t\d+$"
| eval mitre_tid_name = report_name
```



```
| stats
values(mitre_tid_name) as mitre_tid_names,
dc(device_id) as device_count,
values(device_name) as device_names,
by mitre_tids
| sort -device_count
```

∕ device_id ≎	device_name 🗢	/	✓ mitre_tid_count ≎	✓ mitre_tids ≑	mitre_tid_names \$
4833716	OR-EP01-VN		14	t1016 t1021 t1037 t1047 t1049 t1059 t1070 t1082 t1136 t1175 t1543 t1547 t1552 t1557	Credential Access - Credentials in Files #2 Credential Access - LLMNR/NBT-NS Poisoning - LLMNR Traffic Detected Defense Evasion - File Deletion Discovery - System Information Discovery Discovery - System Network Configuration Discovery #5 Execution - Command and Scripting Interpreter Execution Execution - System Profiling via WMI Lateral Movement - DCOM - svchost Launching Command Interpreter Lateral Movement - Remote Desktop Protcol Login Detected Lateral Movement - Remote Desktop Protcol Login Detected Lateral Movement - Remote Desktop Protcol #2 Persistence - Create Accounts Using GUI Persistence - Regmod Run or Runonce Key Modification Persistence - Service Deleted via sc.exe
4938665	DESKTOP-U8Q202M		14	t1007 t1012 t1016 t1021 t1037 t1049 t1059	Credential Access - LLMNR/NBT-NS Poisoning - LLMNR Traffic Detected Defense Evasion - BITS Jobs - BitsAdmin Policy Modification Discovery - Query Registry Discovery - System Information Discovery Discovery - System Network Connections Discovery #2 Discovery - System Service Discovery - net.exe Start
mitre tide	/				device count

mitre_tids 🖌 ‡	mitre_tid_names \$	device_count	\$	device_names \$	/
t1557	Credential Access - LLMNR/NBT-NS Poisoning - LLMNR Traffic Detected		50	2748S-W10-CB1 ATTACK\pc2 AWS-WEBSERVER BAS\bas-carbonblack Brian-Thrashbx2 CB-H10 Carbonblack-win1 DEM0\HR-SERVER-EAST DESK-F1-178 DESKTOP-98CPI3M DESKTOP-83NJVI9 DESKTOP-L3LAAMH DESKTOP-U8Q202M EC2AMAZ-9TMIHI7 EXAPIL\PIL-CB7-2 MARVEL\win10-abdullah OESISREMOTE\OR-EP01-VN	

Combining CB Analytics Alerts & Watchlist Hits

Required Product: Endpoint Standard & Enterprise EDR

Required Data: Alerts (App Input or Data Forwarder), Watchlist Hits (Data Forwarder)

If you have both Endpoint Standard and Enterprise EDR, these queries can be combined into a unified view of MITRE.

Top MITRE TIDs by endpoint count, including the technique name and data source.

eventtype="vmware_cbc_cb_analytics"


```
| rename threat_indicators{}.ttps{} as mitre_ttps
| mvexpand mitre_ttps
| rex field=mitre_ttps "^MITRE_(?<mitre_tid>T\d+(\_\d{3})?)_(?<mitre_tid_name>.*)$"
where not isnull(mitre tid)
 eval mitre tid = lower(mitre tid), source = "CB Analytics Alerts"
 fields device_id, device_name, mitre_tid, mitre_tid_name, source
| append [
  search eventtype="vmware_cbc_base_index" sourcetype="vmware:cbc:s3:watchlist:hits"
  | rename report tags{} as mitre tids
   mvexpand mitre tids
  | regex mitre tids="^t\d+$"
  | eval mitre_tid_name = report_name, source = "Watchlist Hits"
  | fields device_id, device_name, mitre_tid, mitre_tid_name, source
1
| stats
 dc(mitre tid) as mitre tid count
 values(mitre_tid) as mitre_tids,
 values(mitre_tid_name) as mitre_tid_names,
 values(source) as sources
 by device id, device name
| sort -mitre_tid_count
```

device_id 4	¢ ♦ device_name \$	mitre	_tid_count 🖌 \$	mitre_tids \$	/	mitre_tid_names \$	sources \$	/
488546	2 QA\PSBSYS		4	t1055 t1057 t1059 t1106		CMD_LINE_OR_SCRIPT_INTER Credential Access - LLMNR/NBT-NS Poisoning - LLMNR Traffic Detected Discovery - Query Registry Discovery - System Information Discovery Discovery - System Service Discovery Detected Execution - Command and Scripting Interpreter - Powershell Execution - Command and Scripting Interpreter Execution Execution - Command-Line Interface (cmd.exe /c) Execution - Powershell Execution With Unrestricted or Bypass Flags Detected Lateral Movement - DCOM - svchost Launching Command Interpreter Lateral Movement - Remote Desktop Protocol NATIVE_API PROCESS_DISCOVERY PROCESS_INJECT	CB Analytics Alerts Watchlist Hits	

Commonly Abused Commands

Required Product: Enterprise EDR

Required Data: Endpoint Events (Data Forwarder)

The blog Windows Commands Abused by Attackers is a great reference to help identify early stages of initial investigation and reconnaissance. Individually, these are normal commands. However, when multiple are observed on the same endpoint in a short time period, it may be cause for investigation.

This can be accomplished by forwarding process start endpoint events (custom query filter type:endpoint.event.procstart) to Splunk.

This query uses a long regex to pull out these commands, only when they're a standalone word. You may want to do additional tuning such as allowing adjacent characters like . and / as well as allow-listing certain known good processes that invoke some of these commands and might contribute to noise.

Endpoints with the most commonly abused commands

```
| `vmware_tstats` count from datamodel=VMWare_CBC where nodename=All_CBC.Endpoint by All_CBC.device_name,
All_CBC.device_id, All_CBC.org_key, All_CBC.Endpoint.process_cmdline, All_CBC.process_executable
| rename All_CBC.* as *
| rename Endpoint.process_cmdline as cmdline
| rex field=cmdline
"(^|\s)(?<command>tasklist|ver|ipconfig|systeminfo|net\stime|netstat|whoami|net\sstart|qprocess|query|dir|net\s
view|ping|net\suse|type|net\suser|net\slocalgroup|net\sgroup|net\sconfig|net\sshare|at|reg|wmic|netsh\sadvfirew
all|sc|wusa)($|\s)"
| where not isnull(command)
| stats dc(command) as command_count, values(command) as commands, values(process_executable) as processes,
values(cmdline) as cmdlines by device_name, device_id
```


| sort -command_count

		/	1	1			
device_name \$	/	device_id \$	command_count ‡	commands \$	processes \$	/	cmdlines \$
OR-EP01-VN		4833716	5	ipconfig ping sc ver wmic	<pre>c:\program files\confer\blade: \livequery\osqueryi.exe c:\windows\system32\cmd.exe c:\windows\system32\ipconfig. c:\windows\system32\sc.exe c:\windows\system32\sc.exe c:\windows\syswow64\cmd.exe c:\windows\syswow64 \wbem\wmic.exe</pre>		<pre>"C:\Program Files\Confer\Blades\LiveQuery\osqueryi.exe"flagfile="C:\Progr cast(trim(substr(filename, instr(filename, '.')+1), '.jar') as REAL) as ver, and ver < 15;" "cmd.exe" /c wmic bios get serialnumber "cmd.exe" /c wmic computersystem get model C:\Windows\system32\cmd.exe /c ipconfig > ip.txt ipconfig ipconfig ipconfig /release ipconfig /release ipconfig /renew ping oesisremote.test ping or-ep01.oesisremote.test sc delte WaRemoteTest wmic bios get serialnumber wmic computersystem get model</pre>
BAS\bas-carbonblack		4242869	4	netstat ping systeminfo wmic	<pre>c:\windows\syswow64\cmd.exe c:\windows\syswow64\netstat.e c:\windows\syswow64\ping.exe c:\windows\syswow64 \systeminfo.exe c:\windows\syswow64 \wbem\wmic.exe</pre>	xe	C:\Windows\system32\cmd.exe /c systeminfo /FO CSV && wmic CPU get Name /FORM C:\Windows\system32\cmd.exe /c wmic computersystem get Name, UserName /FORM/ C:\Windows\system32\cmd.exe /c wmic diskdrive where "MediaType='Removable Me C:\Windows\system32\cmd.exe /c wmic path CIM_LogicalDevice where "Descriptic /FORMAT:LIST C:\Windows\system32\cmd.exe /c wmic process get Name, ProcessId, HandleCount netstat -anp tcp ping -n 4 -w 4000 8.8.8.8

Log4Shell

Required Product: Any

Required Data: Audit Logs (App Input)

You can leverage the Data Forwarder and Custom Query Filters to forward Log4Shell-relevant EDR data to Splunk. Check out Tech Zone article for Detecting Log4j in the Carbon Black Console to learn more.

Identify java spawning powershell

```
| tstats summariesonly=t
 values(All_CBC.Endpoint.parent_process_exec) AS parent_process_cmdline,
 values(All_CBC.Endpoint.procstart.childproc_name) as childproc_names,
 values(All CBC.process guid) as process guids,
 values(All_CBC.type) as event_types
 latest(_time) AS latest,
 earliest(_time) AS earliest
 from datamodel=VMWare CBC
 where ((All_CBC.Endpoint.parent_process_exec="*java*" OR All_CBC.Endpoint.parent_process_exec="*tomcat*") AND
All_CBC.process_executable="*powershell*")
 by All_CBC.device_name, All_CBC.device_id, All_CBC.org_key, All_CBC.process_executable
rename All_CBC.* as *, process_executable as process_cmdline
 eval _time=latest
l reltime
convert ctime(latest), ctime(earliest)
| table device_id, device_name, event_types, process_guids, parent_process_cmdline, process_cmdline,
childproc_names, reltime, earliest, latest
```

device_i	device_name			/ parent_process_cmdline	
	÷	event_types 🗢 🛛 🖌	process_guids 🗢 🖌	÷	process_cmdline 🗢
394500	DESKTOP- E33JRXY	endpoint.event.procstart	7YQSBCDE-003c325c- 000036c8-00000000-1d7f6ff79a9e054	d:\java\jdk1.8.0_231 \bin\java.exe	C:\windows\System32\WindowsPowerShell\vI.0\powershell.exe -version 2 -NoProfile -EncodedCommand JgAgAHsACgBbAEMAbwBuHMAbwBSAGUAXQA6ADoATwB1AHQACAB1AHQARQBuAGMAbwBkAGKAbgBnACAAPQAgAFsAUxBSAHMAdAB1AGBALgBUAGUAeAE

Audit Logs

Required Product: Any

Required Data: Audit Logs (App Input)

Audit Logs have visibility into everything happening in your Carbon Black Cloud environment. Using Splunk's built-in iplocation command can further enhance the audit data to help quickly identify users logging in from unexpected locations.

Flagged Audit Logs

Carbon Black Cloud flags suspicious audit logs, such as when failed logins come from previously unused IP addresses and if an account is locked due to too many failed login attempts.

Flagged Audit Logs

```
eventtype="vmware_cbc_auditlogs" flagged=true
| iplocation src
| eval location = case(Region = "", Country, City = "", Region + ", " + Country, 1=1, City + ", " + Region + ",
" + Country)
| table _time, user, src, location, description
| sort -_time
```

Logins

Sometimes, it's helpful to go back to the basics and monitor login successes and failures.

List login successes and failures

```
eventtype="vmware_cbc_auditlogs" ("Logged In" OR "Login") NOT "Connector"
| iplocation src
| eval success = if(description = "Logged in successfully" OR like(description, "Login in successfully through
%"), "Login Success", "Login Failure")
| eval location = case(Region = "", Country, City = "", Region + ", " + Country, 1=1, City + ", " + Region + ",
" + Country)
| table _time, user, src, location, success
| sort -_time
```

_time ‡	user \$	/	src ≑ 🛛 🖉	location 🗘	/	success 🗘 🛛 🖉
2021-12-14 09:37:31	bdeakyne@carbonblack.com		73.217.0.4	Boulder, Colorado, United States		Login Success
2021-12-14 09:37:25	bdeakyne@carbonblack.com		73.217.0.4	Boulder, Colorado, United States		Login Failure
2021-12-14 09:17:52	user2@partner2.co.uk		79.177.0.229	Ramat Gan, Tel Aviv, Israel		Login Success
2021-12-14 06:36:13	user1@partner1.com		1.39.0.10	Bhubaneswar, Odisha, India		Login Success
2021-12-14 05:20:55	user2@partner2.co.uk		79.177.0.229	Ramat Gan, Tel Aviv, Israel		Login Success
2021-12-14 04:52:51	user1@partner1.com		1.39.0.20	Bhubaneswar, Odisha, India		Login Success
2021-12-14 03:59:35	user3@vmware.com		122.172.0.28	Bengaluru, Karnataka, India		Login Success

Live Response

Live Response is a powerful capability that provides remote access to endpoints. All Live Response sessions and commands should be closely monitored; pay special attention to the create process, kill, and put file commands. Some SOCs even fire an alert whenever a Live Response session is initiated.

This search lists each endpoint and user combination, along with the actions, commands, and details of each session.

Audit Live Response details by user and endpoint


```
eventtype="vmware_cbc_auditlogs" description="*liveresponse*"
| eval description = replace(description, "[\r\n]","")
| rex field=description "LiveResponse\s+(?<device_name>[^\|]+)\|Action\s+(?<action>[^\|]+)\|URL\s+/live\-
response\?deviceID=(?<device_id>\d+)\|(Details\s+(?<details>.*))?"
| rex field=details "\"name\": \"(?<command>[^\"]+)\""
| iplocation src
| eval location = case(Region = "", Country, City = "", Region + ", " + Country, 1=1, City + ", " + Region + ",
" + Country)
| stats
values(action) as actions,
values(command) as commands,
values(location) as locations,
by device_id, device_name, src, location, user
```

/ device_jd ¢ device_name ¢ / src ¢ / location ¢ / user ¢ / actions ¢ / commands ¢ details ¢ / locatio	s ¢
33254 carbom-back- integration-endpoint 4212.8.218 Boardam, Oregon, United States 64212.8.219 Boardam, Oregon, United States 6 Command (2): ("name": "reg enum key", "path': "http://LOCL_MODINE\USDFTWAE\/test", "session_id": "1105:325348") Boardam United States File Fetrieved via General (D): ("file_id": "C3DBoaRS-2D8-6432-038-338550d1137", "name": "put file", "path': "Ci.\\test\\test\\test_\	n, Oregon, States

User Activity

It can be helpful to break out user activity by category to see at a glance what each user (or API key) is doing and where from. Since most of the valuable information in the audit log is in plain text, the query parses the most common audit logs and outputs a category for more effective grouping. This is by no means a complete list, but should capture many common scenarios.

Summarize user activity

```
eventtype="vmware_cbc_auditlogs" user=*
| eval category = case(
like(description, "Updated report %"), "Report Updated",
like(description, "Connector % logged in successfully"), "API Key Connection",
like(description, "A bulk policy update has been applied%"), "Device Policy Updated",
like(description, "Changed device % policy %"), "Device Policy Updated",
like(description, "Added API ID %"), "API Key Created",
like(description, "Added user %"), "User Created",
like(description, "Alert % dismissed %"), "Alert Dismissed",
like(description, "Changed Password%"), "User Password Changed",
like(description, "Created Config: {%"), "Data Forwarder Created",
like(description, "Created custom role %"), "Role Created",
like(description, "Custom role % updated %"), "Role Updated",
like(description, "Deleted API ID %"), "API Key Deleted",
like(description, "Deleted Config: %"), "Data Forwarder Deleted",
like(description, "Device % uninstalled"), "Device Uninstalled",
like(description, "Downloaded policy configuration%"), "Policy Downloaded",
like(description, "LiveResponse%"), "Live Response",
like(description, "Logged in successfully"), "User Login Success",
like(description, "Login in successfully through %"), "User Login Success (MFA)",
like(description, "Password did not match %"), "User Login Failure",
like(description, "Password reset %"), "User Password Reset",
like(description, "Policy % was deleted"), "Policy Deleted",
like(description, "Account locked %"), "User Account Locked",
like(description, "Policy % was modified%"), "Policy Modified",
like(description, "Ran query%"), "Live Query Executed",
like(description, "Created grant%"), "User Grant Created"
like(description, "Requested sensor upgrade%"), "Device Version Update Requested",
```


like(description, "Searched for reputations%"), "Reputation Search", like(description, "Sensor Bypass Enabled%"), "Sensor Bypass Enabled", like(description, "Sensor Bypass Disabled%"), "Sensor Bypass Disabled", like(description, "Set BACKGROUND_SCAN to off%"), "Device Background Scan Disabled", like(description, "Set BACKGROUND_SCAN to on%"), "Device Background Scan Enabled", like(description, "Set BYPASS to off%"), "Device Un-Bypassed", like(description, "Set BYPASS to on%"), "Device Bypassed", like(description, "Set DHASS to one", "Device Dypused", like(description, "Set QUARANTINE to off%"), "Device Quarantine", like(description, "Set QUARANTINE to on%"), "Device Quarantined", like(description, "Successfully exported query results%"), "Live Query Results Exported", like(description, "%Policy Settings Changed%"), "Policy Updated", like(description, "Updated Config:%"), "Data Forwarder Updated", like(description, "Successfully confirmed the email%"), "User Confirmed Email", like(description, "Updated custom role%"), "Role Updated", like(description, "Updated watchlist%"), "Watchlist Updated", like(description, "User % added Reputation Override%"), "Reputation Override Added", like(description, "User % retrieved secret%"), "API Key Secret Viewed", like(description, "User % accepted EULA%"), "User Accepted EULA", like(description, "%Tab:Settings (Enrollment)%"), "Viewed Devices Page", like(description, "Hash % was %requested to be deleted %"), "Device Malware Deleted", like(description, "Failure deleting hash %"), "Device Malware Delete Failed", like(description, "Looked up reputation %"), "Reputation Lookup", like(description, "Replaced % reports in %"), "Watchlist Updated", like(description, "Re-registration of device %"), "Device Re-Registered", like(description, "Sent deregister request %"), "Device De-Registered", like(description, "Delete Deregistered Devices %"), "Device Deleted", like(description, "% was deleted from your organization %device%"), "Device Deleted", like(description, "% deregistered through %"), "Device De-Registered", like(description, "Success deleting hash % off of device %"), "Device Malware Deleted", like(description, "Downloaded output of job %"), "Search Results Downloaded", like(description, "Sensor registered on VM %"), "Device Registered on VM", like(description, "Invalid authentication method %"), "User Login Failure", like(description, "Upload Hash %"), "Device Malware Upload", like(description, "%Tab:Malware Removal%"), "Viewed Malware Removal Page", like(description, "Delete Hash % requested for device%"), "Device Malware Deleted", like(description, "Going to update device% to version%"), "Device Version Updated", like(description, "Created event export job%"), "Search Results Exported", like(description, "Registration Id not found for VM %"), "Device Registration on VM Failure", like(description, "Request to delete owner %"), "User (Owner) Deleted", like(description, "Sent upgrade sensor version request %"), "Device Version Update Requested", like(description, "%devices were bulk % policy%"), "Device Policy Updated", like(description, "Bulk ignored % report%"), "Watchlist Report Ignored", like(description, "Appliance%Registration %"), "Appliance Registered", like(description, "Success"), "Something was Successful", like(description, "Uploaded file%"), "File Uploaded", like(description, "Log export % for appliance %"), "Appliance Logs Exported", like(description, "Updated access profile %"), "Role Updated", like(description, "Updated user %"), "User Updated", like(description, "Alert % undismissed %"), "Alert Undismissed", like(description, "Undismissed % alert%"), "Alert Undismissed", like(description, "Dismissed % alert%"), "Alert Dismissed", like(description, "Created policy%"), "Policy Created", like(description, "Created%feed%"), "Feed Created", like(description, "Created%watchlist%"), "Watchlist Created", like(description, "Created report%"), "Watchlist Report Created", like(description, "Deleted custom role%"), "Role Deleted", like(description, "Deleted grant%"), "User Grant Deleted", like(description, "Initiated request%to undismiss%"), "Alert Undismissed", like(description, "Initiated request%to dismiss%"), "Alert Dismissed", like(description, "Query%deleted%"), "Live Query Deleted", like(description, "Query run%stopped%"), "Live Query Run Stopped", like(description, "%dashboard%"), "Dashboard Updated", like(description, "Set Quarantine to On%"), "Device Quarantined", like(description, "Set Quarantine to Off%"), "Device Unquarantined", like(description, "Set Bypass to On%"), "Device Bypassed", like(description, "Set Bypass to Off%"), "Device Unbypassed", like(description, "Updated alert notification%"), "Alert Notification Updated", like(description, "%tagging for watchlist%"), "Watchlist Tagging Updated", like(description, "Installation triggered %"), "Device Installation Triggered", like(description, "Sensor installation failed%"), "Device Installation Failed",

by Broadcom

```
like(description, "Regenerated API key %"), "API Key Updated",
like(description, "Updated API %"), "API Key Updated",
like(description, "Threat ID % undismissed%"), "Threat Undismissed",
like(description, "Threat ID \% dismissed "), "Threat Dismissed",
like(description, "%deleted Reputation Overrides%"), "Reputation Override Deleted",
like(description, "Vulnerability%export%"), "Vulnerabilities Exported",
like(description, "Password is not set%"), "User Password Not Set",
like(description, "Bulk-applied % policy changes %"), "Device Policy Updated",
like(description, "Deleted admin%"), "User (Admin) Deleted",
like(description, "Sensor installation is ERROR%"), "Device Sensor Installation Failed",
like(description, "Sensor installation is SUCCESS%"), "Device Sensor Installation Succeeded",
like(description, "Updated policy%"), "Policy Updated",
like(description, "Updated grant%"), "User Grant Updated",
match(description, "device"), "Device Other",
match(description, "disabled"), "Other: Disabled",
match(description, "enabled"), "Other: Enabled",
match(description, "updated"), "Other: Updated",
match(description, "changed"), "Other: Changed",
match(description, "deleted"), "Other: Deleted",
match(description, "downloaded"), "Other: Downloaded",
1=1, "Other"
)
| eval user type = if(match(user, "^[0-9A-Z]{10}$"), "API Key", "User")
| iplocation src
| eval location = case(Region = "", Country, City = "", Region + ", " + Country, 1=1, City + ", " + Region + ",
  + Country)
| stats
  values(category) as user_actions,
  dc(Country) as country_count
  values(src) as ips,
  values(location) as locations,
  by user, user_type
```

user ‡	/	user_type ≑	/	user_actions 🗢 🛛 🖌	country_count	\$	ips 🗢 🖌	locations 🗘 🖌 🖌
ABCDE12345		API Key		API Key Connection Device Quarantined Device Un-Quarantine		3	134.238.0.223 3.0.0.159 59.88.0.108 59.88.0.11	Amsterdam, North Holland, Netherlands Korba, Chhattisgarh, India Singapore
user4@vmware.com		User		User Accepted EULA User Confirmed Email User Login Success User Password Reset		2	40.94.0.16 88.203.0.110	San Antonio, Texas, United States Sofia, Sofia-Capital, Bulgaria

Vulnerabilities

Required Product: Vulnerability Management for Workloads or Endpoints

Required Data: Vulnerabilities (App Input)

Carbon Black Cloud can provide a vulnerability assessment of all workloads or endpoints. Through a partnership with Kenna Security, the assessment goes beyond traditional CVSS scores to include risk-based prioritization so your organization can focus on resolving vulnerabilities most likely to result in compromise.

The Carbon Black Cloud Splunk App vulnerabilities input queries the Get Vulnerability List API and returns the Device Vulnerability List schema.

Endpoints with Critical Vulnerabilities

A good starting point for vulnerability assessment is to identify any endpoint with critical vulnerabilities. With that information, you could move the impacted endpoints to a more restrictive policy, or just keep a closer eye on any alert that fires from that endpoint.

Endpoints with critical vulnerabilities

```
eventtype="vmware_cbc_vulnerability_os_list"severity="CRITICAL"
| rename affected_assets{} as device_name
| mvexpand device_name
| stats
    dc(cve) as critical_cve_count,
    values(cve) as critical_cves
    by device_name
| sort -critical_cve_count
```

device_name \$	/	critical_cve_count 🗘 🖌	critical_cves \$
Demo-windows-2			7 CVE-2017-0199 CVE-2017-8464 CVE-2020-1350 CVE-2020-1472 CVE-2021-1675 CVE-2021-34527 CVE-2021-40444

Endpoint Vulnerability Trends

Is your organization effectively mitigating vulnerabilities? Trending the number of vulnerable endpoints over the past few weeks can show that at a glance.

Vulnerability Trends

```
eventtype="vmware_cbc_vulnerability_os_list" vuln_info.risk_meter_score >= 5
| timechart span=ld dc(affected_assets{}) as device_count by severity
```

Endpoint Vulnerabilities

When investigating an endpoint during threat hunting or incident response, having a snapshot of vulnerabilities can help inform next steps. For example, if behavior indicates one of those vulnerabilities is being actively exploited, the endpoint can be immediately quarantined.

Endpoints vulnerable to each CVE

```
eventtype="vmware_cbc_vulnerability_os_list"
```


- | rename affected_assets{} as device_name
- | mvexpand device_name
- | where device_name = "your-device-name-here"
- | stats
- max(vuln_info.risk_meter_score) as risk_meter_score, values(category) as category, max(vuln_info.easily_exploitable) as easily_exploitable, max(eval(strftime(_time, "%Y-%m-%d"))) as last_seen, values(vuln_info.cve_description) as description, values(eval(mvappend(vuln_info.solution, vuln_info.fixed_by))) as solution, values(vuln_info.nvd_link) as link by cve sort -risk_meter_score

Live Query

Required Products: Audit & Remediation

Required Data: Live Query Input (App Input)

Live Query leverages osquery to interrogate endpoints. You can find the full list of tables & schemas in the osquery's site.

It's worth noting results will only be pulled into Splunk once the query completes. Scheduled queries will be marked as completed as soon as the next scheduled one begins, so if you're running daily, your data could be delayed up to a day.

Logged in users

Live Query can pull the list of logged-in users from one or more endpoints daily or on-demand from the logged_in_users table. My query is named "List Logged In Users" and does a simple osquery, schedule daily:

```
SELECT * FROM logged_in_users
```

Which endpoints does each user log into?

```
eventtype="vmware_cbc_base_index" sourcetype="vmware:cbc:livequery:result" query_name="List Logged In Users"
status=matched
| rename device.* as device_*, fields.* as *
| eval _time = time
| reltime
| stats
   values(device_name) as device_names,
   values(device_id) as device_ids
   by user
```

What users are logging into each endpoint?

eventtype="vmware_cbc_base_index" sourcetype="vmware:cbc:livequery:result" query_name="List Logged In Users"
status=matched
| rename device.* as device_*, fields.* as *
| eval _time = time
| reltime
| stats
values(user) as users
by device_name, device_id

user 🗢	1	device_names 🗢		1		device_ids 🗘 🖌
bdeakyne		Desktop-CB				4886724
root		SERVER-265				4322377
runlevel		SERVER-265				4322377
sarcher		SERVER-265				4322377
device_name 🖨			1		device_id 🗘 🖌	users ≑
Desktop-CB					4886724	bdeakyne
SERVER-265					4322377	root runlevel sarcher

Credential Harvesting

When Credential Harvesting/Dumping is observed, analysts likely want to know which users were logged in at the time and may have had their credentials compromised.

The Splunk app includes a "Run Live Query" Alert Action.

The first search will run as an Alert in Splunk on a regular basis, maybe every 5 – 10 minutes, and identify any possible instances of credential theft. It also defines the Live Query SQL we'll run.

Query for Splunk Alert

```
eventtype="vmware_cbc_cb_analytics" threat_indicators{}.ttps{} = "MITRE_T1003_OS_CREDENTIAL_DUMP"
| eval query_logged_in_users = "SELECT * FROM logged_in_users;"
| dedup device_id
```

For each result, trigger the "VMware CBC Run Livequery" Alert Action with the parameters shown in the image below.

Trigger Conditions							
Trigger alert when							
	is greate	r than 🔻	0				
Trigger	Once		Fo	For each result			
Throttle ?							
Trigger Actions	+ Add Actions 💌						
When triggered	✓ 💮 VMwareCB	✓ → VMwareCBC Run Livequery Remove					
	Run a new Live	Query					
	LiveQuery Name	Splunk: Logged	In Users (memory so	crapin Enter the name for the live query.			
	SQL Query	query		Enter the field that contains the SQL query to be run.			
	Device IDs	device_id		Enter a the device ids field.			
	Device OS	device_os		Enter the device OS field.			
	Policy Name	policy name					
			,	used.			

Now when Carbon Black Cloud detects credential scraping, Splunk will automatically figure out who was logged in to the impacted endpoints and bring in those results through the App/IA's built-in Live Query input. We can then run a splunk query to combine the original alerts with the logged in user information.

Combine Alerts & Logged In Users

```
eventtype="vmware_cbc_cb_analytics" threat_indicators{}.ttps{} = "MITRE_T1003_OS_CREDENTIAL_DUMP"
| dedup id
| reltime
| join device_id type=outer [
   search eventtype="vmware_cbc_base_index" sourcetype="vmware:cbc:livequery:result" query_name="Splunk: Logged
In Users (memory scraping)" status=matched
   | rename device.* as device_*, fields.* as *
   | eval_time = time
   | reltime
   | strcat "User=" user ", type=" tty ", SID=" sid ", " reltime login_string
   | stats values(login_string) as logins by device_id
]
```


/ device_id \$	✓ device_name ≎	✓ reltime ≑	✓ sensor_action ≎	threat_cause_actor_name ∠ ≑	reason \$	/	logins \$
4483137	CBTest-1	23 hours ago	TERMINATE	c:\temp\scenario \tmp\procdump.exe	The application procdump.exe attempted to create a memory dump for a system security process (lsass.exe). A Terminat action was applied.		User=bdeakyne, type=RDP-Tcp#1, SID=S- 1-5-21-1183524871-323597517-2965227890-500, 1 day ago

Chrome Extensions

Live Query can fetch a full list of Chrome Extensions on a daily basis to help you inventory out-of-date or malicious add-ons. For this query, it's probably more interesting to look at the less popular extensions that appear on only a few endpoints.

Note: due to the 10,000 result limit per query, you may want to tune your Live Query SQL to filter out known-good extensions.

Show the least-used Chrome Extensions, versions, and associated endpoints/users

```
eventtype="vmware_cbc_base_index" sourcetype="vmware:cbc:livequery:result" query_name="Chrome Extensions"
status=matched
| rename device.* as device_*, fields.* as *
| stats
  values(version) as versions,
  dc(device_id) as device_count,
  values(device_name) as devices,
  values(username) as users,
  by name
| sort device_count
```

name ≑	/	versions \$	/	device_count \$	/	devices \$	/	users \$
Google Slides		0.9			1	SDE\USB01SEFS-01		bdeakyne
Just Black		3			1	DEVELOPMENT\VM-BEATS-DEV		a.archer
LastPass: Free Password Manager		4.79.0.3 4.80.0.3 4.81.0.2 4.82.0.2			1	DEVELOPMENT\VM-BEATS-DEV		a.archer
Legacy MindMup (discontinued)		0.0.0.20			1	SDE\USB01SEFS-01		bdeakyne

Additional Resources

- 1. For more information on developer docs, see Carbon Black Cloud Splunk App
- 2. If you like to see an end-to-end demo on how to get Endpoint Events and Alerts into Splunk using the Carbon Black Cloud Event Forwarder, AWS S3+SQS, and the AWS Add-on for Splunk watch: Carbon Black Cloud & Splunk Integration

Change Log

The following updates were made to this guide:

Date	Description of Changes
1/07/21	

About the Author and Contributors

Bruce Deakyne is a Product Line Manager at VMware Carbon Black Cloud, focused on improving the ecosystem of APIs & integrations. Outside of cyber security, he enjoys cycling through the mountains of Boulder, CO.

