
D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

1

BROUGHT TO YOU IN PARTNERSHIP WITH257259

Test Design Automation:
Driving Testing at the Speed of Agile

WRITTEN BY GEDEON HOMBREBUENO, PRODUCT MARKETING MANAGER, CA TECHNOLOGIES

The days of yearly product, feature, or code releases are long
gone. And while monthly releases were common in previous
years, today, bi-weekly releases are gaining traction — though
there are a few over-achievers. By moving to AWS, Amazon
bursts out releasing code every 11.7 seconds. Etsy steadily
follows a 50+ deployments per day cadence. And Netflix
releases thousands of times daily. Needless to say, quality at
speed at these companies is producing real results in terms of
stellar revenue growth, dramatic cost savings, and enviable
customer loyalty. This is only possible because teams have
fundamentally changed the way they think about software
quality to enable them to test at the speed of agile.

Testing at the speed of agile drives quality at speed. But
getting there can be a challenge for many organizations.
These challenges start all the way to the left of the Software
Development Lifecycle (SDLC) with 64% of total defect cost
traced to poorly defined or incomplete requirements. We’ve
seen this happen time and again when there’s a disconnect
between requirements and the final output.

This is particularly important because of the trickling
effect of this issue. If you don’t get your requirements right,
costly rework and defects are sure to happen, affecting the
bottom-line and possibly the brand. On the flip side, get your
requirements right, and you’ll see that 64% defect rate drop
significantly, resulting in better quality outcomes — at speed.

THE CURRENT STATE OF TESTING: WHY LEGACY
TESTING HASN’T CHANGED IN 30 YEARS
It’s hard to believe that after 30 years, 70% of testing is still
performed manually. A major bottleneck in the SDLC, legacy
testing remains a barrier to speed and quality — unable to

keep up with today’s agile, continuous testing model. Here’s
what I mean.

Ideas and customer needs are discussed with visual aids such
as diagrams on a whiteboard or piece of paper. These ideas are
converted into written, text-based requirements. What follows
is a series of manual steps — arguably, the most tedious, labor
intensive part of the testing lifecycle. This includes:

CONTENTS

 ö THE CURRENT STATE OF TESTING:

WHY LEGACY TESTING HASN’T

CHANGED IN 30 YEARS

 ö WHAT IS TEST DESIGN

AUTOMATION?

 ö CRITICAL CAPABILITIES OF

TEST DESIGN AUTOMATION

TECHNOLOGY

 ö TEST DESIGN AUTOMATION: REAL

RESULTS TODAY AND BEYOND

 ö WHAT’S NEXT FOR TEST DESIGN

AUTOMATION?

https://quay.io/plans/
https://www.ca.com/us/collateral/assessment/requirements-management-tool-assessment.html?utm_medium=onlineads_onl-dsp&utm_source=dzone&utm_campaign=ct_ard_acquire&utm_content=na_assessment1-requirements-mgmt

BROUGHT TO YOU IN PARTNERSHIP WITH

Test at the speed of Agile.

Only CA offers a Test Design Automation strategy that lets you do
shift left testing into the design phase. Drive quality at speed today.

Explore >

Automatically create tests with maximum
coverage right from your requirements.

https://www.ca.com/us/trials/ca-agile-requirements-designer.html?utm_medium=onlineads_onl-dsp&utm_source=dzone&utm_campaign=ct_ard_acquire&utm_content=na_trial1-ard

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

3

TEST DESIGN AUTOMATION

BROUGHT TO YOU IN PARTNERSHIP WITH

• Reading requirements; understanding user stories
and acceptance criteria.

• Creating a requirements traceability matrix, providing
visibility on the desired coverage against those
requirements.

• Designing detailed test cases; outlining expected results.

• Identifying test data requirements satisfying the test
cases you just created.

• Identifying internal and third-party interfaces needed
to run those tests against the test data.

• Automating tests. This is challenging because test
automation technology hasn’t evolved at the pace
of application development technology. We still rely
on test automation approaches like OCR, object-
based recognition, or image-based recognition, and
they tend to be brittle, with those scripts breaking
easily when application changes or new builds
occur — leaving you to manually resynch objects.
And depending on how you’ve implemented your
framework, you have to rework the actual scripts and
so on. The answer to that? Automate only the tests that
are not expected to break: the regression testing suite.

• Provisioning test data and enabling real or virtual
interfaces.

Only after all these laborious (and typically manual) steps
are performed can you finally start test case execution.

Testing practitioners know that these mundane tasks
take a lot of time, effort, and grief before getting to the
tail end of the process, which includes executing those
test cases and creating and fixing defects. And that’s
where the real value is for the agile team: that quick,
immediate feedback on the code that was just checked in
or deployed to the environment, and not just feedback on
application regression.

And so, many organizations today that want to go agile and
speed up their application delivery and release processes
find that traditional testing no longer fits their need for
speed and quality.

WHAT IS TEST DESIGN AUTOMATION?
As more and more organizations adopt test-driven, agile
development methods, they gravitate towards test design
automation — practices and technology that help test
teams automatically generate reusable test assets like
test cases, test data, and test automation scripts right

from clearly defined and complete requirements. QA rises
above the challenge and goes from being a bottleneck
to becoming a driver for better and faster application
development and delivery. In the end, test automation and
development within the same sprint becomes a reality.

You’ll know that you’re on the right track toward agile
testing when you’re able to do full-on “in-sprint everything.”
Take the current sprint you’re in right now with your
development team. A good litmus test is that you’re not
only doing the automated test execution of your regression
testing scripts for that sprint but you’re also automatically
generating your test automation scripts for the new features
being coded in that same sprint. This means within that
sprint, you’re doing the following:

1. Automatically generating your Selenium code, VB
script code, or any language your test automation
tool works with depending on the application you’re
testing. This includes your Gherkin feature files if
you’re into behavior-driven development (BDD) or
acceptance test-driven development (ATDD), as you
can automatically generate those from your models.

2. Hooking up those scripts with a continuous integration
tool like Jenkins or what have you to kick off those
scripts in your favorite test automation engine

Why does this matter? Imagine the remarkable cutback in
test cycles by reducing — if not essentially eliminating —
script maintenance because now everything is derived from
a model. In effect, you can tie everything that’s related to
your acceptance criteria, including your user stories and
requirements, and get them tested automatically right
within the sprint. Further, in true “in-sprint everything”
fashion, if a change occurs during the sprint (like when new
code is introduced days before the end of the sprint to fix a
defect or better code gets written as a result of refactoring),
it won’t derail you in any way because all you have to do is
make those changes on the models. This allows you to easily
regenerate your testing artifacts including all your tests, your

https://quay.io/plans/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

4

TEST DESIGN AUTOMATION

BROUGHT TO YOU IN PARTNERSHIP WITH

data, and your automated scripts, and still get those going
within the sprint hooked up within your CI pipeline.

In the end, there’s no sprint-lag effect. You’re in a position to
have a shippable product at the culmination of every sprint,
thus achieving in-sprint everything. This model-based
testing approach allows you to have your test cases and test
automation scripts ready to go on day one of the sprint, just
waiting for the application code to be available for testing.

What’s clear is without applying test design automation
practices and technology, none of this would be possible.
By enabling you to automate the above-mentioned testing
activities, test design automation shortens testing time
significantly and helps you avoid costly defects that stem
from poor requirements. You’re not only building better
quality apps; you’re also delivering them to market faster at
lower costs. The question then becomes: In what ways does
test design automation drive agile testing?

KEY USE CASES FOR TEST DESIGN
AUTOMATION
Increasingly, organizations apply test design automation
practices around the following four key use cases.

1. Requirements Engineering

Business analysts, developers, and testers usually get
together to flesh out the details around a requirement.
They tend to start with a whiteboard where they draw
their initial vision for the new feature or change to be
implemented. But the next step is usually where it all
breaks down. Time and again, we see amazing
information gets captured clearly and completely
through diagrams on a whiteboard only to get
translated to an inherently ambiguous medium called
“the written language.” Defining requirements in this
text-based manner is inefficient. They tend to be
error-prone, and the lack of intuitive support for
traceability makes this approach even more risky. Not
to mention, it is just plain hard to organize,
communicate, and collaborate on a text-based
document or tool. Grooming and optimizing those

requirements can be a challenge, as it is hard to find the

information across paragraphs, bullet lists, tables, etc.

And when changes happen, dealing with the impact of

those changes across all that text, whether manually or

with some tooling, can be even more daunting.

At the heart of requirements engineering is this

concept of modeling, where that original requirement

conveyed on a whiteboard does not get converted into

traditional text-based requirements. These diagrams

represent requirements as mathematically precise

visual flows, adding accuracy to requirements

engineering and reducing requirements ambiguities

while supporting better collaboration and

communication across key stakeholders.

2. Automatic Test Generation

One way to boost testing speed and velocity is having

the ability to automatically create test cases linked

to the right data and expected results right from

your requirements models. Test design automation

technology can get you there. By automating

the automation, it allows you to generate every

automated test needed to exhaustively test an

application. This active automation approach enables

the automated generation of the test cases and

automated test scripts themselves. In other words,

it automates all phases and elements of the testing

process. Further, when used in conjunction with test

data management technology, the data required for

relevant test cases is automatically generated and

used when running those tests.

3. Test Case Migration and Optimization
Test case migration and optimization allow you to

create the smallest number of test cases for maximum

coverage. So, you end up with just the right tests

needed to deliver better apps, faster. And since most

organizations use various test case management

or lifecycle management tools for their test case

maintenance and management, integration with

these various management systems and tools such

as CA Agile Central, Micro Focus ALM, Atlassian JIRA,

and more is imperative. This integration allows test

teams to easily import test cases, remove duplicates,

and export optimized test cases back to their existing

management system.

https://quay.io/plans/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

5

TEST DESIGN AUTOMATION

BROUGHT TO YOU IN PARTNERSHIP WITH

This means that existing test cases can be imported
from these lifecycle management tools and converted
into an unambiguous, active flowchart. Everyone has
those old regression testing suites with hundreds or
thousands of manual test cases and, for the most part,
they don’t know whether those tests are still valid.
Sound familiar? Imagine if you could optimize that
old regression testing suite and ensure that you have
only valid tests moving forward and that there is zero
maintenance on them as the application changes.
You can do that by maintaining the model, which will
regenerate all those optimized test cases whenever
there are application changes and store them in your

current test case management tool.

4. Achieving Agile Testing
Following in the footsteps of agile development
principles, agile testing involves baking in quality to
the product as they are being defined, designed, and
delivered. In this use case, testing occurs within the
sprint, allowing the various stakeholders to
collaborate actively with the development team. So,
ongoing feedback happens, turning into executable
specifications that guide coding. Both coding and
testing are performed incrementally and iteratively
within the sprint, building each feature in accordance
with quality standards.

This agile testing use case rounds up the previous
three use cases leading up to this ultimate goal of
testing at the speed of agile. This means employing
test design automation practices, providing testers
with everything they need to test the most
functionality possible at speed, within the sprint.

CRITICAL CAPABILITIES OF TEST
DESIGN AUTOMATION TECHNOLOGY
REQUIREMENTS GROOMING
Many organizations today use requirements management
or test case management tools to capture and store their

requirements, including user stories and associated test
cases. But these tools usually lack the capability to model
requirements in visual and dynamic flowcharts and they don’t
have the capability to optimize tests for maximum coverage.

The key idea behind requirements grooming is having the
capability to create requirements directly and organically
or model the environment in a supported lifecycle
management tool and import it. Support for common tools
like Microsoft Visio and Business Process Models via BPMN
and XML Process Definition Language (XPDL)-compliant
formats becomes a must, as well as the ability to import test
assets such as user stories and existing test cases from a
range of tools, including JIRA, VersionOne, MicroFocus ALM,
and CA Agile Central. That is important, as those testing
assets can be used as the starting point for grooming a
requirement when there is nothing currently documented.
While there are a variety of options for requirements
grooming, the key point here is that once you have captured
your requirements in a flowchart, all the remaining artifacts
(specifically, test cases and test scripts) are automatically
generated from the flowchart.

AUTOMATIC REQUIREMENTS MODELING
Once you start defining your requirements as models, you
are effectively going into the realm of model-based testing.
In this case, your requirements and your testing model
become one and the same.

Here’s an example to show why this approach has
advantages. In the traditional testing process, you usually
define your requirements by hand in some text-based
format. Your testing team then creates test cases based
on them. When these requirements change, your testers
will need to scour through the change request, analyze the
impact of those changes on your existing test cases, and
painstakingly carry out those changes across potentially
hundreds or thousands of test cases by hand. This slow and
error-prone approach simply goes away when you choose to
take the model-based testing route.

A model-based testing approach delivers real ROI, but
building your initial model can take time and effort. One

https://quay.io/plans/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

6

TEST DESIGN AUTOMATION

BROUGHT TO YOU IN PARTNERSHIP WITH

way to break this barrier to model-based testing adoption
is using technology to automatically create models for you.
Truly game-changing automatic requirements modeling
accelerates model creation, allowing you to quickly and
easily generate your initial flow. That is accomplished by
capturing the user actions (steps, assertions, data used,
etc.) during your regular regression testing cycle. The data
captured from those actions is then parsed into a flowchart.
With the flowchart, this automatic requirements modeling
capability allows you to deduplicate the steps, turning them
into one concise model. As you can imagine, this allows
you to radically simplify and accelerate the creation of your
initial models, opposed to manually creating them by hand.
Then, you just inspect the model for accuracy and add to it
what you might have missed.

TEST CASE DESIGN AND OPTIMIZATION
The right test case design and optimization approach
greatly reduces the number of tests by only generating the
minimum number of tests needed to achieve the desired
coverage — driving testing efficiencies in the process.

In practice, there are different variations of test cover-
age. These include (in order of most coverage to least): all
possible paths; all pairs (that is, every pair of edges); all in/
out edges (every pair of edges where one can follow directly
from the other); all edges; all nodes; and probabilistic. But
oftentimes, the balance between your testing needs and
how much you’re willing to compromise for cost determine
your desired coverage level. In any case, test case design
and optimization can provide metrics that show the amount
of coverage you currently have. You can also see if you’re
over-testing by showing how much each part of your model is
being tested more than once. On the flip side, you can see if
you’re under-testing by showing how much exposure you’re
potentially dealing when your test coverage is lacking.

TEST AUTOMATION SCRIPT GENERATION
Once you have determined your desired coverage and
generated your manual test cases from the model, test
automation script generation allows you to generate a
suite of automated test scripts. For this, you must define a
configuration file for your application, primarily consisting of
standard and custom functions for the language you intend
to use in your test automation execution engine (Selenium,
Appium, VBScript, C#, Java, Ruby, etc.). Each of these
functions are available to be referenced from blocks in your
model. With each block referencing the functions in your
configuration file, as each path through the model is defined
based on the coverage technique you selected, the series of

function calls concatenated from each block will form a fully
executable test automation script that your test automation
execution engine will pick up and execute.

You can run these with in test automation frameworks such
as Selenium, CA Application Test, Ranorex, etc. Automation
makes running and, more importantly, rerunning tests much
faster and more efficient.

CHANGE AUTOMATION
Change automation can single-handedly make testing
much more cost-efficient by simply having the ability for
test cases to be updated automatically when requirements
change. If you’re still stuck doing the more traditional
testing approaches, how do you make changes to the
actual test cases when changes in requirements occur? The
conventional way is to ignore existing tests in your suite and
recreate them all by hand. Some say it’s easier that way. Yes,
you can do this, of course. But doing so is highly inefficient
and potentially costly. Just imagine if a given change only
affects 8% of test cases. You’re effectively wasting the other
92% of the test cases, which are now being discarded and
recreated just as they were. This is utterly unnecessary and
on an enterprise-class project involving a large number of
tests, the cost of recreating these tests can be huge.

Change automation becomes even more valuable to the
business, as it provides the following capabilities in an
automated manner:

• Analyze the impact of a change. This means that test
cases that are affected by the changes in requirements
are automatically detected.

• Heal your test suite. This means that test cases that
were detected to have been impacted by a change
can be fixed automatically, so they adapt to the new
requirements. Or even better, when new tests are
generated, they will be confined to paths that haven’t
already been covered by existing tests.

What if those test cases haven’t been automated? If you’re
part of an agile team, analyzing the impact of that change to
the automated scripts — in addition to the manual test cases
— would represent a considerable additional effort that
won’t fit in your current sprint.

The power of change automation is magnified when
you’re working in an agile environment. Those impacted
automated scripts, in this example, would’ve been
automatically healed or regenerated without the need to
manually inspect and update scripts. How’s that for ROI?

https://quay.io/plans/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

7

TEST DESIGN AUTOMATION

BROUGHT TO YOU IN PARTNERSHIP WITH

INTEGRATING WITH TEST DATA AND VIRTUAL SERVICES
Going beyond requirements and test case design, test design
automation delivers greater business value when it is further
associated with test data and virtual services for testing.

Integration with test data management allows you to create
and link the test data needed for testing, so when you run a
test, relevant test data is generated automatically based on
the appropriate parameters.

Integration with virtualized services allows you to access
test data beyond the control of the development team. For
example, if you are working in a B2B environment, you will
need to test against data that is provided by your business
partners, simulating this and other sources of data for testing
purposes. You’re not necessarily testing your business
partners’ systems; you’re testing your own application, which
needs data from those partners. That way, you’re breaking
the dependency on those external teams and not slowing
down your development and testing activities.

INTEGRATING WITH BROADER DEVOPS ENVIRONMENT
The right test design automation technology integrates
with the majority of testing frameworks. This is particularly
important since organizations involved in software
development looks for technology that enhances their
existing testing practices and tools. This means tests (either
manual tests or test scripts) can be exported into CA Agile
Central, Micro Focus ALM, and Atlassian JIRA, among others.
These integrations go beyond just passing information from
one to the other. For example, synchronization with JIRA
supports both sync up and sync down — so, once synced, any
change in either tools will update the other automatically.

Going beyond testing framework integrations, your test
design automation technology must have the capacity to
import your existing test cases in a variety of formats — from
basic spreadsheets to test cases written in XPDL, as well as
tests output by Bender and SoapUI.

The experience must be smooth and simple so you can easily
import your existing tests, reformat the resulting requirements
model, and produce a suite of optimized test cases before
exporting them back into your test case management tool of
choice. Moreover, once this has been done once, there’s no
need to import a second time. You can simply keep refining
your requirements and generating test cases.

TEST DESIGN AUTOMATION: REAL RESULTS
TODAY AND BEYOND
Testing at the speed of agile entails reducing manual testing
effort while delivering higher-quality applications to market

faster. Helping you drive agile testing approaches within
every sprint, test design automation technology enables
you to automatically generate the optimal set of tests
right from your requirements modeled as complete and
unambiguous flowcharts. Automatically updated when
requirements change, these tests allow you to deliver
software that reflects changing user needs.

Is it possible to reduce time- and labor-intensive testing
tasks to mere slivers of their former selves and still produce
a correctly working product? Can test scripts take less time
per sprint and less time overall?

For organizations that leverage test design automation
practices and technology, the answer is yes. Here are two
examples of organizations that have realized real results by
taking this approach.

1. A Top 20 global bank started converting their
manual script test process to be model-based,
allowing them to achieve a 70% reduction in
script creation time, going from five days per
sprint to one day. But there is more here than
just a time advantage. Of excellent value to
users is co-monitorial modeling, which reduces
the number of scripts needed to execute to
get complete coverage. Traceability, from
requirements to test cases, is also of immense
value since legacy systems often leave no
straightforward way to find out if a change has
been introduced during a sprint cycle and then
fix it in a fast and efficient manner.

2. A global financial services leader went from doing
manual requirements definition and test case
design to a model-based testing and test design
automation approach. They started building
requirements models and creating business
process flows. This was followed by automatic
test case generation and script creation. The
result? The firm dramatically improved their
testing efficiency, delivering test cases 10x faster
by automating the process in hours as opposed
to days or weeks prior to test design automation
adoption. Further, they went from 90+ days
behind in new automation to full, in-sprint
automation with little to no technical debt.

Test design automation can help you break the barriers to
testing at the speed of agile, while helping you focus on
improving quality, collaboration, speed, and efficiency. More

https://quay.io/plans/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

8

TEST DESIGN AUTOMATION

BROUGHT TO YOU IN PARTNERSHIP WITH

and more organizations that have adopted these practices
and technology were able to:

• Improve quality, optimizing testing by getting
maximum coverage with the smallest number of tests.

• Boost application delivery speed, reducing
manual effort by automating test design and
execution processes, data allocation, and change
implementation.

• Reduce testing cost, reducing costly rework and
detecting defects earlier (where they require less time,
resources, and cost to fix).

WHAT’S NEXT FOR TEST DESIGN AUTOMATION?
Keeping up with customer demand and getting ahead
of the competition means that you have to continuously
deliver high-quality apps and experiences. Organizations
are therefore embracing agile testing practices to deliver
quality at speed more than ever before. The impact of test
design automation in driving testing at the speed of agile is
increasingly evolving. We see this advancing even more as
organizations take requirements and test case design more
seriously as an imperative for a broader set of applications
and environments from legacy systems to web-based or

mobile applications. In particular, with cloud adoption on
the rise, the need for test design automation delivered as
a cloud service emerges, as well. Test design automation-
as-a-service will allow organizations to get all the benefits
of test design automation as described above, amplified by
myriad advantages of the SaaS model, particularly in terms
of speed, scale, and simplicity.

Written by Gedeon Hombrebueno, Product Marketing Manager, CA Technologies
Gedeon has extensive product marketing and product management experience with enterprise IT
solutions in various domains including: DevOps, Cybersecurity, and Systems Management across
physical, virtual, and cloud environments. Currently, Gedeon is a Principal Product Marketing Manager
at CA Technologies, focusing on bringing CA’s Continuous Testing and Delivery solutions to market.

DZone, Inc.
150 Preston Executive Dr. Cary, NC 27513
888.678.0399 919.678.0300

Copyright © 2017 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

DZone communities deliver over 6 million pages each
month to more than 3.3 million software developers,
architects and decision makers. DZone offers something
for everyone, including news, tutorials, cheat sheets,
research guides, feature articles, source code and more.
"DZone is a developer’s dream," says PC Magazine.

https://quay.io/plans/
http://www.dzone.com

