
W
H

ITE
 P

A
P

E
R

: S
EC

U
R

IN
G

 Y
O

U
R

P
R

IV
A

TE
 K

E
Y

S
 A

S
 B

ES
T P

R
A

C
TIC

E
FO

R
 C

O
D

E
 S

IG
N

IN
G

 C
ER

TIFIC
A

TES

Securing Your Private Keys As Best
Practice for Code Signing Certificates

White Paper

Stuxnet, a high-profile cyber-attack, used malware
signed with legitimate code signing certificates.
What went wrong and how can you protect your
own assets?

By Larry Seltzer
Security Analyst and Writer

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

2

Securing Your Private Keys As Best Practice for Code
Signing Certificates
Stuxnet, a high-profile cyber-attack, used malware signed with
legitimate code signing certificates. What went wrong and how
can you protect your own assets?

ContentS

executive Summary 3

Introduction 3

the Basics of Code Signing 4

Development 6
Revocation 7

 net Strong name Assembly Signatures 8

Stuxnet – What Happened? 8

the Costs of a Breach 11

Best Practices: How to Avoid a Breach 12

 Separate Test Signing and Release Signing 12
 Test Certificate Authority 13
 Internal or External Timestamp Authority 13
 Cryptographic Hardware Modules 14

Conclusion 15

 Physical Security 16

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

3

executive Summary

The efficacy of code signing as an authentication mechanism for software depends
on the secure storage of code signing private keys used by software publishers But
a series of recent malware attacks using malicious programs signed with legitimate
certificates shows that some developers don’t take sufficient precaution

Code signing is a technology that uses digital certificates and the public key
infrastructure to sign program files so that users can authoritatively identify
the publisher of the file and verify that the file hasn’t been tampered with or
accidentally modified As with other PKI technologies, the integrity of the system
relies on publishers securing their private keys against outside access

Nobody who’s talking knows what actually happened at the two companies whose
private keys were compromised, but it appears that attackers obtained access to
their private keys through some form of break-in, probably an electronic one The
damage to these two companies has been considerable and goes beyond the mud
through which their names were dragged Without minimizing the culpability of the
actual criminals who broke in to their networks, it’s fair to conclude that these two
companies did not take sufficient precautions to protect their private keys

Companies that are diligent and willing to invest in the appropriate security
measures can make the compromise of their private keys highly unlikely Changes
in developer processes may be necessary, but these should not impose serious
inconvenience This paper describes recent security breaches and why they may
have happened It discusses best practices, especially for the Windows platform,
which can help to safeguard the private keys associated with code signing
certificates Critical factors are:

•	 Security of the developers’ networks and the developers’ systems themselves
•	 Minimal access to the private keys associated with genuine code signing

certificates and the code signing process

Introduction

The security world is abuzz over Stuxnet, perhaps the most sophisticated malware
attack ever It appears to have targeted certain facilities in Iran, particularly
nuclear facilities, and infiltrated networks one would think to be actively secured
Stuxnet used many new and innovative tools to perform this infiltration, and one of
them was to use binaries digitally signed with the code signing certificates of two
legitimate companies

A code signing certificate, also known as a software publisher certificate, has
special fields and options particular to code signing An SSL certificate, for
example, cannot be used for code signing Certificate authorities offer different
types of code signing certificates for different code types Symantec ™, for example,
offers certificates for Microsoft Authenticode, for Java, for Adobe AIR, for Microsoft
Office, and others

1Dataquest Insight: Application Stores; The Revenue Opportunity Beyond the Hype, Gartner, Inc , January 2010

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

4

In one sense, an attack like this was inevitable Code signing places certain
responsibilities on users, and not all users are responsible This paper aims to help
you to take measures so that your organization’s certificates and good name don’t
become the tools of malicious hackers

the Basics of Code Signing

A reputable Certificate Authority (CA) that sells a code signing certificate will not
just take the applicant’s word for their identity The CA will perform checks on the
company names, phone numbers, and other information that is required to prove
identity – a process that can take up to several days With a Software Publisher
Certificate and the associated private key, a programmer can digitally sign files
distributed with the software Code signing is a process that uses Public Key
Infrastructure (PKI) technology to create a digital signature based on a private
key and the contents of a program file, and packages that signature either with
the file or in an associated catalog file Users combine the file, the certificate and
its associated public key to verify the identity of the file signer and the integrity of
the file

Code signing starts with public and private keys created by a user Users can
create their own digital certificate containing the public key using one of the many
available free tools, or can purchase one from a trusted CA to whom they provided
the public key The user provides a name for the entity, typically a company,
and other identifying information The CA provides a certificate to the user The
certificate is also signed by theCA

As the main subject of this paper emphasizes, it is essential that users keep private
keys secure and confidential, restricting access only to those who absolutely need
them Anyone who has access to a private key can create software that will appear
to be signed by the owner of the certificate A general description of the process
follows For more detailed information on how developers actually work with the
code signing process, see the Development section on page 6

Digital signing of software begins with the creation of a cryptographic “hash” of the
file being signed A hashing function is a mathematical process that creates a hash
value, often called a digest, which has a 1:1 correspondence with the original data
This digest provides no hints of how to recreate the original data, and even a small
change in the original data should result in a significant change in the hash value

The code signing program then uses the private key to sign the digest, meaning
it generates a signature in the form of a string of bits Good digital signature
algorithms allow a user with the public key to verify the creator of the signature,
but not allow someone who does not have the private key to generate a signature
The next step in the code signing process is to copy the Software Publisher
Certificate into a new PKCS #7 (Public Key Cryptography Standards) signed data
object 1 This object is embedded into the signed file or, in some cases, in a separate
file Pay close attention to the signing and the expiration dates of the certificate
The shorter the lifespan of a certificate, the more frequently the identity of the
signer is verified by the CA

1RFC 2315 - PKCS #7: Cryptographic Message Syntax (http://tools ietf org/html/rfc2315)

It is essential that users
keep private keys secure and
confidential

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

5

A certificate authority can revoke a certificate for a number of reasons For
example, the user may violate legal terms, such as by signing a malicious program,
or the user may report to the CA that the private key has become compromised
Client systems can check to see if a certificate has been revoked

This image shows an example of how Windows provides to users a way to see
details of the code signing certificate through the File Properties dialog box The
user can view the actual certificate details, including the issuer and when the
certificate expires Windows takes the signature and certificates that are attached
to the program, recalculates the hash, uses the certificate to obtain the public
key of the publisher, and uses that public key to verify several characteristics of
the file:

•	 The certificate is valid
•	 The digest in the certificate matches the one calculated by Windows
•	 The signature is valid, meaning that it was created with the private key

associated with the public key
•	 The date of the signature is within the valid date range
•	 The certificate has not been revoked by the CA
•	 The CA is itself trusted or has its own certificate signed by one of the Windows

Trusted Root Certificates

In many cases, this information is checked automatically Apple Software Update,
for example, downloads updates and checks the signatures before installing them
Such automated update systems don’t usually provide any positive feedback for
users on their connections to servers If the connection is successful, users rarely
see anything more informative than “Connected to update server ”

Digital Signature Details

Digital Signature information
This digital signature is not valid

Signer Information

Name:

E-mail:

Signing time:

Countersignatures

Corporation

Not available

Friday, June 11, 2010 4:00:39 PM

View Certificate

Details

Symantec Time... Not available Friday, June 11,...

Genral Advance

Name of signer: E-mail addre... Timestamp

Ok

Figure 1. Windows shows a signed file’s certificate as
being valid

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

6

In the static case, checking the signature causes the software to recalculate the
hash for the file to check it against the stored one When even a single byte is
changed in the file from the above “valid certificate” example, Windows informs
the user that the signature is not valid

It is worth noting that code signing signatures don’t check for safety or quality
Code signing confirms who published the file, and that it has not been modified
since it was signed It is important not to trust software merely because it is signed,
but to examine the signer and evaluate their trustworthiness

Development

Signing code isn’t hard, but in most environments it is performed with command
line tools Microsoft has a suite of command line tools included with their
development platforms for creating and using code signing certificates 2 They are
analogous to the tools offered by other vendors

Microsoft’s makecert exe creates a digital certificate This is necessary in order
to create an in-house CA to sign in-house software, but most users don’t need
to touch this tool cert2spc exe converts a digital certificate into the Software
Publisher Certificate, which is a certificate in code signing format pvk2pfx exe, the
actual code signing tool, takes the imports, the private key, and software publisher
certificate into a pfx file signtool exe, the actual code signing tool, takes the pfx
file as input Alternatively, signatures may be stored in a separate CAT file which is
created with makecat exe

The JDK (Java Development Kit) comes with a similar suite of command line tools
With Java, once the certificate is installed into the Java keystore, the jarsigner tool
is run, specifying the JAR file to sign and the certificate to use The signature is
added to the JAR file 3

Figure 2. After the file has been tampered with, the
signature is no longer valid

2makecert (http://msdn microsoft com/en-us/library/bfsktky3%28VS 100%29 aspx) cert2spc (http://msdn microsoft com/en-us/
library/f657tk8f%28VS 100%29 aspx) pvk2pfx - (http://msdn microsoft com/en-us/library/dd434714 aspx) signtool -
(http://msdn microsoft com/en-us/library/8s9b9yaz%28VS 100%29 aspx) makecat (http://msdn microsoft com/en-us/library/
aa386967(VS 85) aspx)
3How to Sign Applets Using RSA-Signed Certificates (http://java sun com/j2se/1 5 0/docs/guide/plugin/developer_guide/
rsa_signing html)

Anyone who has access to a
private key can create software
that appears to be signed by the
owner of the certificate

Digital Signature Details

Digital Signature information
This digital signature is not valid

Signer Information

Name:

E-mail:

Signing time:

Countersignatures

Corporation

Not available

Friday, June 11, 2010 4:00:39 PM

View Certificate

Details

Symantec Time... Not available Friday, June 11,...

Genral Advance

Name of signer: E-mail addre... Timestamp

Ok

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

7

Apple’s code signing tools are part graphical tool, part command line There are
graphical tools for generating certificates, but the code signing utility is a classic
UNIX-style command-line tool that performs signing as well as verification of files 4

Microsoft’s Visual Studio also integrates code signing into the development
environment Using the Solution Explorer, the programmer can select a certificate
from the Windows Certificate Store, from a file, or have Visual Studio generate a
test certificate Thenceforth, code builds will automatically sign the software 5

Many other integrated development environments are capable of running the
command line tools in an automated fashion as part of the build process Once set
up, code signing is easy

Revocation

When a certificate has become compromised or for certain other reasons, the
CA revokes it The certificate itself contains links to the CA’s Certification
Revocation List (CRL) where clients can check to see if it is revoked, and there
are two methods

CRLs are simple lists of certificates, or rather serial numbers of certificates When
a client needs to check a certificate they download the CRL from the CA at the
link indicated in the certificate If the certificate serial number is in the list, the
advisable course is not to trust the certificate

CRLs have a number of problems, including the fact that they can become quite
large and cumbersome, especially from a busy CA A new solution was developed
called OCSP or Online Certificate Status Protocol This is a communication protocol
between a client and the CA at a link specified in the certificate to determine
whether that particular certificate is revoked OCSP is preferred now, but clients
must be able to check both it and CRL as some CAs don’t always support OCSP

A software publisher who determines that their certificate was compromised
doesn’t necessarily want to invalidate it for all the software they have signed with
it and distributed This is why revocation records include a date/time If the
publisher can say that the breach occurred no earlier than some point in time, they
can revoke as of that date Thereafter, when a client checks whether a certificate
is revoked, they can compare the date/time of revocation to the date/time of
the signature

This scheme depends on a system of timestamps used in signatures A timestamp
is a date/time value and an assertion from a trusted source called a Timestamp
Authority (TSA) that the signature was in existence at the time of the timestamp
If the timestamp precedes the revocation date of the certificate, then it is still
considered valid for usage A similar rule follows for expired certificates If the
signature timestamp precedes the certificate expiration date/time then the
signature is still valid Otherwise all code signed with the certificate would be
suspect and untrustworthy

4Mac OS X Reference Library – “Code Signing Guide” (http://developer apple com/documentation/Security/Conceptual/
CodeSigningGuide/)
5MSDN – How to: Sign Application and Deployment Manifests (http://msdn microsoft com/en-us/library/che5h906%28VS 80%29 aspx)

Because self-signing doesn’t
involve a trusted CA, there is no
revocation mechanism – so the
compromise of a private key can
be disastrous

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

8

Even though timestamps are optional, these issues make them highly advisable
Without a timestamp, code signed with an expired or revoked certificate must be
considered untrustworthy There are many public timestamp authorities

 net Strong name Assembly Signatures

Windows NET programs in the form of “assemblies” have a special code-signing
method which involves self-signing, meaning that no trusted CA is involved The
developer generates his own public and private keys, uses the private key to sign
the assembly file which contains both the public key and signature embedded
The embedded public key is used to test the embedded signature for validity The
public key plus a few other factors, including the file name, are used to form the
“Strong Name” which can be considered unique

Because there is no trusted CA, there is no revocation mechanism, and so the
compromise of a private key can be disastrous For this reason, some developers
combine the Strong Name mechanism with more traditional code signing
technologies like Microsoft’s Authenticode

sn exe is the NET Framework SDK’s Strong Name Tool8, used to apply strong name
signatures to assemblies 6 It has options for key management, signature generation
and verification It supports test signing, release signing, and delay signing With
delay signing, only the public key is included in the file and space is reserved for a
signature until later, after testing is complete, when the file is finally signed

Stuxnet – What Happened?

In June of 2010, a new form of malware was uncovered by Minsk anti-virus
company – Virus-BlokAda 7 The immediately interesting part of it was that it
exploited a “zero-day” vulnerability, a term which refers to a software vulnerability
which is exploited before it is otherwise known to the public Before all the analysis
was over, it turned out that Stuxnet, in fact, exploited four zero-day vulnerabilities,
which is certainly a record The mountain of research about Stuxnet includes a
paper from Symantec entitled Win32 Stuxnet Dossier8 It summarizes what we
know on the matter and adds some interesting new details dug out of the innards
of the code

Some summary characteristics of Stuxnet from the paper:

•	 It self-replicates through removable drives exploiting a vulnerability allowing
auto-execution Microsoft Windows Shortcut ‘LNK/PIF’ Files Automatic File
Execution Vulnerability (BID 41732) 9

•	 It spreads in a LAN through a vulnerability in the Windows Print Spooler
Microsoft Windows Print Spooler Service Remote Code Execution Vulnerability
(BID43073) 10

6sn exe (http://msdn microsoft com/en-us/library/k5b5tt23(VS 80) aspx)
7Rootkit TmpHider - http://anti-virus by/en/tempo shtml
8Win32 Stuxnet Dossier - http://www symantec com/content/en/us/enterprise/media/security_response/
whitepapers/w32_stuxnet_dossier pdf
9Microsoft Windows Shortcut ‘LNK/PIF’ Files Automatic File Execution Vulnerability (BID 41732) -
http://www securityfocus com/bid/41732
10Microsoft Windows Print Spooler Service Remote Code Execution Vulnerability (BID 43073) -
http://www securityfocus com/bid/43073

Stuxnet exploited four zero-day
vulnerabilities, which is certainly
a record

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

9

•	 It spreads through SMB (Server Message Block, the application-layer networking
protocol for Windows) by exploiting the Microsoft Windows Server Service RPC
Handling Remote Code Execution Vulnerability (BID31874) 11

•	 It copies and executes itself on remote computers through network shares
•	 It copies and executes itself on remote computers running a Siemens WinCC

database server 12
•	 It copies itself into SIMATIC Step 713 projects in such a way that it automatically

executes when the Step 7 project is loaded
•	 It updates itself through a peer-to-peer mechanism within a LAN
•	 It exploits a total of four unpatched Microsoft vulnerabilities, two of which are

previously mentioned vulnerabilities for self-replication and the other two are
escalation of privilege vulnerabilities that have yet to be disclosed

•	 It contacts a command and control server that allows the hacker to download
and execute code, including updated versions

•	 It contains a Windows rootkit that hides its binaries
•	 It attempts to bypass security products
•	 It fingerprints a specific industrial control system and modifies code on the

Siemens PLCs to potentially sabotage the system
•	 It hides modified code on PLCs (Programmable Logic Controllers), essentially a

rootkit for PLC

Stuxnet was discovered in June but seems to have existed for at least a year prior
Microsoft said recently at a security conference that there is evidence that Stuxnet
code dates back to January 2009 This is both impressive in and of itself, and
confirmation of the sophistication of the programming in Stuxnet The distribution
pattern of Stuxnet was also unusual While it eventually crept out to the world at
large, the majority of infections for some time were in Iran Symantec network
analysis in July, 2010 showed 58 85% of actively-infected machines in Iran, with a
substantial number of the remainder in other south Asian countries 14

All this gives the impression of a targeted attack written by an unusually
sophisticated group of programmers Forensic analysis of Stuxnet invariably
remarks on the professionalism of the programmers and the quality of the
code as compared to most malware No wonder many suspect it was written
by a state actor

11Microsoft Windows Server Service RPC Handling Remote Code Execution Vulnerability (BID 31874) -
http://www securityfocus com/bid/31874
12Siemens Automation Technology - http://www automation siemens com/mcms/automation/en/Pages/automation-technology aspx
13Siemens SIMATIC Step 7 - http://www automation siemens com/mcms/simatic-controller-software/en/step7/Pages/Default aspx
14Symantec Connect, W32 Stuxnet — Network Information - http://www symantec com/connect/blogs/
w32stuxnet-network-information

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

10

But one of the earliest things analysts noted about Stuxnet was that the two
binaries used to infect users’ systems were digitally signed with code signing
certificates from two legitimate companies These certificates were quickly revoked
by Symantec, who had issued them, but the fact that the programs were signed
might have helped them to achieve access to legitimate machines and networks

How could this have happened? The two companies aren’t saying, and we can only
speculate But it’s well-understood that it’s the developers’ responsibility to keep
the private key secure Not to excuse the theft, but there’s an argument that no
matter how it happened, it’s the certificate holder’s responsibility to prevent it
Clearly Stuxnet’s perpetrators were sophisticated and had good resources at hand,
but it’s also entirely possible that the certificate holders did not go as far as they
should have in the protection of their private keys

A few specific circumstances are possible:

•	 A successful network intrusion into the company network allowed attackers to
steal the certificate and private key

•	 A successful network intrusion into the company network allowed attackers
to gain access to a system, perhaps a developer system that had access to the
certificate and private key

•	 A successful physical intrusion allowed attackers access to these resources
•	 An inside job: Someone at the companies either made the malware themselves

or sold access to their systems or the certificate and private key

Certificate

This digital signature is not valid

Genral Details Certification Path

Valid from

Certificate information

This certificate is intentend for the following purpose(s):

● 2.16.840.1.113733.1.7.23.3

¤ Refer the certificate authorty’s statement for details.

● Protects softwere frpm alteration after publication

Learn more about Certificate

Ok

Issuer Statement

Issued by:

Issued to:

Symantec class3 code signing 2009-2 CA

9/ 29/ 2009 to 9/ 30/ 2011

You have a private key that corresponds to this certificate.

● Ensures Software came from software publiser

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

11

In many cases there is no practical difference between the first two circumstances
If the private key is not properly secured, then any developer system that can use it
can also get a full copy of it Surely the thieves would be better off simply stealing
the private key whole It’s possible, but unlikely, that the developers could follow
some best practices (see the Best Practices section) but not others, in which case
a developer system could sign code, but not necessarily obtain a full copy of the
private key

The inside job seems quite unlikely First, there were two companies involved and
two inside jobs would be hard to believe And it has been widely reported that both
companies have offices in the same office park in Taiwan, perhaps elevating the
possibility of a physical intrusion in at least some aspect For instance, perhaps all
tenants in the office park share a common physical computer network

Given the technical sophistication of Stuxnet’s designers a computer-oriented
break-in seems more likely But there’s nothing that can get past systems that are
properly secured

the Costs of a Breach

The damage to the reputation of a company that suffers a code signing certificate
breach is serious enough All security decisions reduce to trust decisions at some
level, and trust must suffer in the case of such a breach

The breach almost certainly indicates a severe security weakness, possibly in the
building security, and certainly in the network security of the company If the code
signing certificates were stolen, what else was? What was modified? Is it possible
that Trojan horse code was inserted into the company’s source code? The number
of distressing possibilities is large

Customers must worry about these possibilities and whether any products of the
company that they are running may have been tampered with

Meanwhile, the company will have to have the CA revoke their code signing
certificates If there are other private keys that were stored in a similar manner
to the ones that were stolen, all of them need to be revoked This magnifies the
impact of the problem

The company must decide whether they can make a confident statement as to the
date of the intrusion, or if it was definitely after a certain date If so, they must
set that as the date of the certificate revocation If they can’t, they must revoke
the certificates, and probably revoke all certificates that were obtained as of the
acquisition date of the compromised certificate

The company must replace any code in the hands of customers that was signed
with what is now a revoked certificate This means contacting customers and
explaining what happened, which you probably should do in any event It’s
embarrassing, but it’s the right thing to do if you hope to regain customer trust

A compromised developer system
is not just an opportunity to
lose intellectual property; it’s
an opportunity for an outsider
to plant unwanted code in your
program

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

12

Best Practices: How to Avoid a Breach

There’s an old joke that the only safe computer is one that’s completely shut off
from the rest of the world, and there’s more than a grain of truth to it That’s why
the most secure systems, including those with access to genuine code signing
certificates, need to have the least connection possible to the outside world

All protections, which are normally best practice, go double for developer systems
They must be “locked down” to the greatest extent possible, not necessarily
because of access to private keys – normally, such systems should have no access
to real code signing private keys – but because they have access to source code,
your company’s intellectual property A compromised developer system is not just
an opportunity to lose intellectual property; it’s an opportunity for an outsider to
plant unwanted code in your program

A full accounting of the measures which are advisable for securing such systems
are out of the scope of this paper, but they include using the principle of least
privilege, multi-factor authentication for access to the system and network,
blocking all but the most necessary network ports, installing all available security
updates, and running an updated antivirus scanner Give developers at least
two systems to work with; actual development systems should probably be on a
separate network with separate credentials from those used for ordinary corporate
computing, like e-mail

None of that specifically relates to the security of code signing private keys
But the measures described below do A Microsoft paper entitled Code-Signing
Best Practices15 covers these and many other related issues on the subject This
paper will not go into the same level of detail on the implementation of measures
which aid in the security of code signing private keys We strongly recommend
referencing it, especially for Windows development environments

Separate test Signing and Release Signing

You need to test your code when it’s signed, but there’s no reason to expose
your real private keys and signing mechanisms more often or to more users
than is necessary Therefore it is best practice to set up a parallel code signing
infrastructure using test certificates generated by an internal test root certificate
authority In this way, the code will be trusted only on systems with access to the
test CA; if any pre-release code escapes the development/test network it won’t
be trusted And these practices will minimize the chances that something will be
signed which shouldn’t be

Signing your test code is good practice as well because it tests any effects that
signing may have on the application (which should be little or none) By using test
signing, you can be freer with access to test certificates; in fact, by distributing
different certificates to different groups or individuals you can be certain who
created a particular binary

15Code Signing Best Practices - http://www microsoft com/whdc/driver/install/drvsign/best-practices mspx

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

13

You can set up test signing in two ways: Use self-signed certificates or set up an
internal test signing CA In either case, the signature names should make clear that
the signature is a test signature, for instance by making the organization name
“TEST SIGNATURE – EXAMPLE CORP ” See your legal department for any additional
legal disclaimers they may wish to add to the certificate

The makecert tool described in the Development section above can be used to
generate self-signed certificates The advantages are that the tools are free; they
require no public key infrastructure and the developer can operate independently
of the development network But self-signed certificates won’t be, by default,
trusted and the developer or tester will have to do a little work to make them
trusted It’s not the work that matters; it’s the artificial circumstance of trusting
a self-signed cert And different developers won’t necessarily be working with the
same test parameters

test Certificate Authority

A better solution, especially as the size and complexity of the development and
testing environments increase, is to deploy a test certificate server implementing a
test root certificate Microsoft Certificate Server (a k a Active Directory Certificate
Services)16 can serve this role and works best in an Active Directory domain
environment where Group Policy can be used to manage and revoke certificates
But there are other tools including OpenSSL17, OpenCA18 and EJBCA19

There are several different ways, procedurally, to run a test CA

•	 The CA can issue certificates to all developers and testers
•	 Clients can be required to make certificate enrollment requests of the server

These can either be fulfilled manually by an administrator or through some
policy mechanism or ACLs set up by the administrator

•	 Certain users, team leaders for example, can be designated to make certificate
enrollment requests on behalf of certain other users

Whether you use self-signed certificates or a CA, it’s important to automate the
signing process and integrate it into the development environment This helps
to ensure high quality and avoid problems This is especially true of complex
application environments that may have different signing requirements: device
drivers and conventional applications, for example, may use different signature
packaging configurations

Internal or external timestamp Authority

In most cases, you can use a public timestamp authority20, but sometimes it is
necessary to timestamp code without accessing public networks In such cases
you should consider the use of an internal Timestamp Authority, such as Thales
(nCipher) Time Stamp Server21 or OpenTSA22

16Active Directory Certificate Services - http://technet microsoft com/en-us/windowsserver/dd448615 aspx
17The OpenSSL Project - http://www openssl org/
18OpenCA Research Labs - http://www openca org/
19EJBCA, J2EE PKI Certificate Authority - http://sourceforge net/projects/ejbca/
20For a list of public timestamp authorities, including some free ones, see Wikipedia - http://en wikipedia org/wiki/
Trusted_timestamping
21THALES TIME STAMP SERVER - http://iss thalesgroup com/en/Products/Time%20Stamping/Time%20Stamp%20Server aspx
22OpenTSA - http://opentsa org/

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

14

This approach can be problematic, as the timestamp will be trusted only in the
local network where the internal Timestamp Authority is trusted This may be
acceptable, in fact even desirable, for test environments Refer to the Microsoft/
nCipher white paper, Deploying Authenticode with Cryptographic Hardware for
Secure Software Publishing 23

Code signing requires access to the private key and thus should not be exposed
to the public Internet But time stamping may require access to public timestamp
authorities on the Internet Therefore, for final external release code it is best
practice to use a separate, heavily secured but Internet-facing computer to perform
the time stamping separate from the rest of the signing process

Cryptographic Hardware Modules

Keys stored in software on general-purpose computers are susceptible to
compromise Therefore it is more secure, and best practice, to store keys in
secure, tamper-proof, cryptographic hardware device These devices are less
vulnerable to compromise and, in many cases, theft of the key requires theft of
the physical device

Such devices are trusted for the most critical applications For example, Symantec
uses hardware security modules (HSMs) to hold and protect the private keys they
use to sign digital certificates

There are three types of such devices typically used:

•	 Smart cards
•	 Smart card-type devices such as USB tokens
•	 Hardware security modules (HSM)

The following table24 shows the feature comparison between these device types:

Criteria Smart card HSM

Certification: FIPS 140-2 Level 3 Generally no Yes

Key generation in hardware Maybe Yes

Key backup No Yes

Multifactor authentication No Maybe

Speed Slower Faster

Separation of roles No Yes

Automation No Yes

Destruction Yes Yes

Some HSMs will also never allow the export of keys, which is a significant security
benefit In such a case, in order to steal the keys you would need to steal the actual
HSM, and even then, without further credentials, you may not be able to use the
keys in it

23Deploying Authenticode with Cryptographic Hardware for Secure Software Publishing - http://technet microsoft com/en-us/
library/cc700803 aspx
24Microsoft - Code Signing Best Practices, p 33 - http://www microsoft com/whdc/driver/install/drvsign/best-practices mspx

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

15

FIPS (Federal Information Processing Standards) 140-225 is a NIST standard for
conformance testing of cryptographic modules performed by NIST-certified
test labs

140-2 has four levels of security at which the device may be certified At level 3, in
addition to supporting certain cryptographic functions, the device must be highly-
resistant to tampering

As you can see from the table, smart cards and smart card-type devices are less
robust and feature-rich than HSMs

High-quality FIPS 140-2 Level 3-compliant smart card-type devices can be had for a
reasonable price these days

A recent test, including a torture test, of tamper-resistant USB flash drives26
included devices for under $100 that take a licking and keep on ticking:

The hardware didn’t flinch when thrown off the roof of a four story building, spiked
down a flight of stairs, put through the dishwasher and anchored under Barnegat
Bay for a month The body took the blow of a 20-pound weight, although the cap
did split open after a direct shot The USB connector, however, was undamaged

HSMs, typically in the format of an add-on card or network-attached device, can
also perform cryptographic operations internally Critically, they can generate and
operate on keys internally and back them up encrypted externally, so that they
need never be stored in plain text outside of the device Some smart cards support
key generation

If only as a procedural matter, development organizations should require multiple
sign-offs for the use of code signing private keys This is usually implemented
using the “k of n” rule, where k authorizations out of a total of n authorizers must
approve for the procedure to proceed Some HSMs implement this method directly
with multifactor authentication The same protection can be secured with smart
cards or USB keys by storing them in a safe that has multiple keys or combinations
and implements k of n Smart cards can also require a PIN

Conclusion

HSMs have dedicated cryptographic processors and operate in form factors, which
lend themselves to higher performance HSMs also support automation of signing
operations If you have high-volume needs for signing, you need an HSM

HSMs support separation of administrative and operational roles, which increases
the overall security of the process by not relying on a single individual or team
Finally, HSMs support key destruction, which is an important task in the event a
key must be revoked

25FIPS PUB 140-2 - http://csrc nist gov/groups/STM/cmvp/standards html#02
26eWEEK - IronKey USB Flash Drives Prove Their Mettle by Matt Sarrel - http://www eweek com/c/a/Data-Storage/IronKey-USB-Flash-
Drives-Prove-Their-Mettle-718976/

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

16

Physical Security

There is no security without physical security If it’s possible for an outsider, or
even a visitor like a contract employee, to gain unnecessary access to code signing
keys then all the cryptography measures are for naught

We won’t go into detail on what measures: cameras, guards, fingerprint scanners;
are appropriate to protect your critical assets, but you need to take them as
seriously as you take the computer security measures

Sometimes we don’t take security measures we know to be necessary until the
threat is more appreciable than just a theory in a journal This is what the case has
been for the security of code signing certificates for many development shops It
has long been axiomatic that you must take serious and robust measures to protect
your private keys It’s also been inconvenient and expensive to do so

The usual excuses are unjustifiable in the face of Stuxnet That Stuxnet
appears to have been written by a first-class group of malcoders with excellent
espionage capabilities is irrelevant The two companies whose private keys were
appropriated weren’t targeted because they were themselves interesting; they
were targeted because they were vulnerable and had assets – their code signing
certificates – which were of value to Stuxnet’s authors They were in the wrong
place at the wrong time, and anyone could get caught there

Fortunately, if you value your intellectual property and your reputation, there
are measures you can take to protect them By securing your developer networks
and facilities, formalizing code signing processes with multiple sign-offs and test
signing, placing final code signing in a highly secured environment and using
hardware cryptographic devices to implement the signing, you can make yourself
too hard a target to bother with

White Paper: Securing Your Private Keys As Best Practice for Code Signing Certificates

More Information

Visit our website
http://www symantec com/ssl

To speak with a Product Specialist in the U S
1-866-893-6565 or 1-650-426-5112

To speak with a Product Specialist outside the U S
For specific country offices and contact numbers, please visit our website

About Symantec
Symantec protects the world’s information and is the global leader in security,
backup, and availability solutions Our innovative products and services protect
people and information in any environment – from the smallest mobile device to
the enterprise data center to cloud-based systems Our industry-leading expertise
in protecting data, identities, and interactions gives our customers confidence
in a connected world More information is available at www symantec com or by
connecting with Symantec at: go symantec com/socialmedia

Symantec World Headquarters
350 Ellis Street
Mountain View, CA 94043 USA
1-866-893-6565
www symantec com

Copyright © 2013 Symantec Corporation All rights reserved Symantec, the Symantec Logo, and the Checkmark Logo are trademarks or registered trademarks of Symantec Corporation or its affiliates in
the U S and other countries Other names may be trademarks of their respective owners

UID: 072/10/13

http://www.symantec.com/ssl
http://www.symantec.com/page.jsp?id=contact-authentication-services
http://www.symantec.com
http://go.symantec.com/socialmedia
http://www.symantec.com

	Executive Summary
	Introduction
	The Basics of Code Signing
	Development
	Revocation

	.NET Strong Name Assembly Signatures
	Stuxnet – What Happened?

	The Costs of a Breach
	Best Practices: How to Avoid a Breach
	Separate Test Signing and Release Signing
	Test Certificate Authority
	Internal or External Timestamp Authority
	Cryptographic Hardware Modules

	Conclusion
	Physical Security

