
TECHNICAL BRIEF

Responsibly Intercepting TLS and the
Impact of TLS 1.3

Introduction
TLS is an inherently complex protocol due to the specialized
knowledge required to implement and deploy it correctly. TLS stack
developers must be well versed in applied cryptography, secure
programming, IETF and other standards, application protocols,
and network security in general. Application developers using
TLS should have the same qualities; especially if the application is
TLS intercept. Throw government regulations, unique customer
requirements, misbehaving legacy endpoints, and performance
requirements into the mix, and it soon becomes clear that mature
systems engineering skills and strong attention to detail are
prerequisites to building a reliable and trustworthy TLS intercept
solution. Paraphrasing Bruce Schneier: security requires special
design considerations because functionality does not equal quality1.
The goal of this paper is to contribute to the security community
by listing areas of concern in TLS intercept solutions and by
highlighting the impact of TLS 1.3 on TLS intercept.

Most people think of TLS intercept as a mechanism to decrypt TLS,
but it is important to qualify the meaning of the term in the context
of this paper. The term can refer to the intercept of TLS with the
cooperation of one of the endpoints, usually through configuration,
or to a malicious or clandestine intercept, typically by exploiting
a vulnerability in the protocol or a specific TLS implementation
or both. The term TLS Intercept Application (TIA) appears
throughout the paper, and without exception, it will refer to an
application with a security purpose. Whenever we use TLS intercept
in a malicious context, it will appear as just Man-In-The-Middle
(MITM).

Secondly, TLS intercept could either be active, where the TIA
controls the flow of the protocol, or passive, where the application
only has access to a copy of the network traffic (either real-time
or using data-at-rest). Passive TLS decrypt is usually deployed in
environments where the TLS server endpoint shares private key
material with the TIA. Theoretically, you can passively decrypt
TLS sessions if one of the endpoints share the TLS session secrets
with the TIA, although this is not practical in most cases. We will
not consider the class of applications that use machine learning to
detect anomalies and malware without decrypting TLS. However,
you should review the information in this paper when compiling
best practices for machine learning products in the TLS space.

Author: Roelof Du Toit

The focus of this paper will be active TLS intercept with TLS client
endpoint configuration – commonly found in antivirus products
and middlebox (TLS relay, forward proxy, NGFW, and more)
deployments. Although it is not the focus, many of the principles in
this paper also apply to TLS offload deployments, where “offload”
is referring to the stripping of the TLS layer before forwarding the
traffic, e.g., HTTPS to HTTP (a.k.a. reverse proxy deployments). The
paper assumes a basic knowledge of TLS, as well as the concept of
TLS intercept using an emulated X.509 certificate.

Responsible TLS Intercept
Cryptography is harder than it looks, and TLS intercept is complex.
Vendors of security products must act responsibly in general but
should take extra care during the development of TLS intercept
applications. A few basic principles would go a long way towards
improving security, but vendors must be willing to invest the
time and resources to follow the principles. The techniques
and proposals described in this paper should by no means be
considered a definitive list, but rather as a starting point. Good
security benefits all – vendors, consumers, and all of the industry.

Given that TLS intercept applications have a security purpose
it should go without saying that those applications should not
downgrade the security attributes of the TLS session. The
principles below will qualify that statement.

Principle #1: Do not downgrade the
cryptographic strength
First, follow secure coding guidelines and cryptography best
practices. Uninitialized data and buffer overflows would more than
likely put your product on the CVE Hall of Fame (or rather Hall of
Shame). TIAs should always use a cryptographically secure PRNG,
seeded with a TRNG. The importance of a strong RNG cannot be
overstated - weak random numbers open up holes in many parts of
the TLS protocol.

Second, the TIA should attempt to retain as much of the client TLS
attributes, advertised in CH2, as possible. This retention is called
the limiting-modifications principle. Take, as an example, the CH
cipher-suite list. Modern browsers take special care when crafting
the CH cipher-suite list; accounting for cryptographic strength as
well as the potential performance impact (especially on mobile

02TECHNICAL BRIEF | RESPONSIBLY INTERCEPTING TLS AND THE IMPACT OF TLS 1.3

devices). The order of each cipher-suite is critical, and the TIA
should limit modifications to the list. Reordering the list is not good
practice, but acceptable modifications include removing weak,
deprecated, and unsupported cipher-suites. Unfortunately, many
TIAs use cipher-suite lists that are independent of the original CH
cipher-suite list, usually with only a short list of supported cipher-
suites. It is imperative to add support for as many modern cipher-
suites as possible to prevent situations like downgrading a client
with GCM/CCM cipher mode support to CBC mode3.

The same argument about limiting modifications to the CH can
be made for other TLS attributes, e.g., TLS version, key exchange
algorithm, ECDHE curve, signature algorithm, and TLS extensions.
Certain known TLS vulnerabilities can only be mitigated by later
TLS versions and specific TLS cipher modes and TLS extensions – a
good example is the padded oracle attack called Lucky134, which
can be mitigated with GCM/CCM cipher modes or support for the
encrypt-then-mac TLS extension5. It is the responsibility of the
TIA to support all the latest security-enhancing features in TLS. In
general, modern non-malicious TLS client applications advertise
TLS attributes that are beneficial to security, including the order in
which TLS attributes are presented to the server. The TIA should
trust the client to some degree, but in practice, this should balance
with detection and prevention of malicious TLS sessions.

As further background, the techniques used by most TIAs could be
reduced, on a high level, to the protocol flow in either Figure 1 or
Figure 2. Gray text in braces, e.g., {FIN}, is an indication that those
specific messages are encrypted. Note that variations in timing
would not change the high-level classification.

Technique 1 (Figure 1) defers the upstream TLS session until
the first application level payload is processed, but it prevents
the server from influencing the TLS attribute negotiation on TLS
session #1.

The approach taken with technique 2 (Figure 2) is to create the
upstream TLS session #2 as soon as the TLS session #1 CH is
received, which allows the TIA to modify the upstream CH according
to the limiting-modifications principle. The SH on TLS session #1
also follows the SH on TLS session #2, which allows the server
endpoint some level of control over the attributes of both TLS
sessions.

Third, the emulated X.509 certificate sent to the client should
retain as much as possible of the original server X.509 certificate,
including attributes like key type, key size, and subject. It is
especially important to retain the validity status of the original
X.509 certificate for client applications to enforce endpoint policies
and properly present TLS session errors to users (see Principle #4
for more detail). The emulated X.509 certificate should retain the
original not-before and not-after dates, and self-signed certificates
should remain self-signed. Special care must be taken when adding
X.509 extensions to the emulated X.509 certificate because some
X.509 extensions are not appropriate for emulated certificates,
specifically those extensions that are added by a public CA as part
of extended validation (EV). You should retain the values of certain
X.509 extensions without modification, e.g., SubjectAltNames,
BasicConstraints, KeyUsage, and ExtKeyUsage.

Principle #2: Actively track, fix, and
protect against known vulnerabilities
Malicious players rapidly exploit vulnerabilities in applications and
protocols on an almost daily basis. TIA vendors and the developers,
in particular, have a responsibility to actively track vulnerabilities
in their systems and respond in a timely manner. Issues in TLS
stack implementations, or the TLS protocol itself, usually have
far-reaching implications because other applications depend on
the confidentiality, authentication, and data integrity properties
of TLS. The Heartbleed6 vulnerability emphasizes the point about
responding promptly, but active tracking was not necessary in that
case due to the widespread news coverage. TIA developers should

C [1.2]

CH [1.2]

TLS session #1 TIA S [1.2]
TLS session #2

SH [1.2],SC,SKE,SHD

CKE,CCS,{FIN}

CCS,{FIN}

{HTTP}
CH [1.2]

SH [1.2],SC,SKE,SHD

CKE,CCS,{FIN}

CCS,{FIN}

{HTTP}

Build X.509 from SNI, or used
cached server information

Figure 1 - TLS Intercept Technique 1

C [1.2]

CH [1.2]

TLS session #1 TIA S [1.2]
TLS session #2

SH [1.2],SC,SKE,SHD

CKE,CCS,{FIN}

{HTTP}

CH [1.2]

CKE,CCS,{FIN}

CCS,{FIN}

{HTTP}

Figure 2 - TLS Intercept Technique 2

CCS,{FIN}

SH [1.2],SC,SKE,SHD

03TECHNICAL BRIEF | RESPONSIBLY INTERCEPTING TLS AND THE IMPACT OF TLS 1.3

go beyond just reading technical news articles, and should also: (a)
follow and participate in discussions about current and future TLS
related standards, (b) track changes in open source TLS stacks as
well as major open source TLS endpoint applications (e.g., Chrome,
Firefox), (c) educate themselves on application level protocols,
especially in the context of how endpoint applications integrate with
the TLS protocol.

Principle #3: Respect regulations and
privacy
Privacy must be a fundamental issue for TIA designers and
developers - not only from an ethical viewpoint but also due to the
regulatory framework in which the TIA will operate.

Due to the location of the TIA, it has the responsibility to protect
the user’s PII (Personally identifiable information) as well as PHI
(Protected Health Information). Protection must be two-pronged:
(1) allow for masking of PII by all the security tools that touch the
decrypted payload, and (2) limit intercept of certain categories
of data (e.g., PHI), which includes evaluation of risk level and
geolocation.

In deployments where the TIA is used to feed other security tools, it
would be possible for the TIA to provide a data integrity guarantee
by preventing any changes to the decrypted content from being
propagated to the endpoints. Not only would it reduce the impact
of misbehaving security tools, but it could also simplify compliance
with certain regulations.

Principle #4: Validate, validate, validate
The following documents standardize X.509 certificate path
validation:

RFC 5280: Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile

RFC 6818: Updates to the Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile

RFC 6960: X.509 Internet Public Key Infrastructure

Online Certificate Status Protocol - OCSP

The proliferation of public sites switching to HTTPS is arguably
good, but unfortunately, some of the mechanisms described in
those standards, especially revocation checking, are not reliable
or practical in such an environment. This situation has been a
problem for some time, and browser vendors have implemented
different mechanisms with varying levels of success. Sending the
OCSP response in the TLS handshake mitigates part of the problem.
This method is known as OCSP stapling, and was added to TLS in
RFC 3546 and defined in its current form in RFC 6066 (updated by

the pending TLS 1.3 standard). TIAs should support OCSP stapling,
which means that the stapled OCSP response must determine the
revocation status of the server X.509 certificate. As mentioned
in Principle #1, the TIA should propagate the status of the original
X.509 certificate in the emulated X.509 certificate – this includes
the revocation status. The TIA should generate emulated OCSP
responses at the same as generating the emulated X.509 certificate.
Some client applications even have the policy to require either
a stapled OCSP response or a valid X.509 CRLDistributionPoint
extension. As an interim workaround, the TIA must, at a minimum,
ensure that the client would view the emulated X.509 certificate as
invalid if the original X.509 certificate has been revoked – it is up
to the respective TIAs how to implement this – otherwise malicious
sites might present as valid to the client application.

Client applications usually go further than just checking the X.509
path validity by also validating the server name (SNI extension sent
in CH) against the names listed in the X.509 certificate. TIAs should
follow the guidelines in the following document:

RFC 6125: Representation and Verification of Domain-

Based Application Service Identity within Internet

Public Key Infrastructure Using X.509 (PKIX)

Certificates in the Context of Transport Layer Security

(TLS)

The minimum requirements for the TIA: (a) validate the SNI against
the X.509 certificate before matching a TIA policy rule against SNI,
(b) only perform SNI matching against X.509 SubjectAltNames
(SANs), with possible exceptions if the X.509 certificate does not
have any SANs.

Some browsers implement SNI checks for known attacks, e.g.,
Punycode checks for Cyrillic-only international domain names
(IDNs) that could be used to spoof legitimate sites for malicious
reasons – a recent example7 is: https://xn--80ak6aa92e.com would
look almost identical to https://apple.com unless the browser
implements special security checks. Responsible TIAs would also
implement those extra security checks, or at least give the customer
the option to configure special rule matching when the SNI is a
Punycode IDN.

Principle #5: Be secure by default
The configuration of TIAs require special knowledge, and few
customers have the know-how to do it securely and correctly.
Educating customers would go a long way, but the TIA designers
and developers could also help by anticipating which areas
of configuration could potentially cause confusion, and then
simplifying some of the decisions and presenting configuration
choices alongside clear explanations of the impact of each option.
That is easier said than done, but at a minimum, the TIA must
ensure that it is secure by default.

04TECHNICAL BRIEF | RESPONSIBLY INTERCEPTING TLS AND THE IMPACT OF TLS 1.3

The Impact of TLS 1.3
The primary purpose of the IETF Transport Layer Security (tls)
working group, according to their charter8, is (currently) to develop
TLS 1.39 while considering the following design goals:

• Reduce observable data

• Reduce session setup latency, primarily for HTTP

• Address known payload protection issues (CBC, RC4)

• Reevaluate TLS handshake content

• Improve privacy, e.g., padding and less long-term-identifying
values

After a few years of intense discussion and analysis (which is
putting it mildly), the result is an elegant, efficient, and extensible
protocol that should provide the required level of security for the
foreseeable future. Extensibility is especially relevant in the context
of adding post-quantum cryptography algorithms.

Where appropriate, this paper will refer to important differences
between TLS 1.3 and TLS 1.2, but it will not attempt to list every
detail – that information is readily available from many online
sources, and it would distract from the goal of highlighting the
impact of TLS 1.3 on TLS intercept.

TLS 1.3 poses unique challenges to TLS intercept applications.
Vendors will have to commit to significant investment in R&D, even
if the TIA is using an open source TLS stack implementation. TLS
1.2 is not going away anytime soon, so most vendors will probably
take the position that it is acceptable to downgrade TLS 1.3 to
TLS 1.2 – that would be a valid strategy in the short term, but it
forces the TLS intercept vendor to be extra diligent when enforcing
the policy so as not to downgrade security beyond responsible
levels. Downgrading TLS 1.3 is perceived as not keeping up with
standards, and knowledgeable consumers and customers would
demand support for TLS 1.3 intercept. Also refer to the downgrade
discussion later in this section for a description of a scenario where
TLS 1.3 downgrade is risky.

The first TLS working group design goal for TLS 1.3 was to reduce
observable data, and they have succeeded for the most part.
The problem is that TIAs have come to rely on the availability of
the server X.509 certificate to make proper policy decisions –
especially policies that prevent intercept of certain categories of
TLS sessions due to regulations. A TLS 1.3 server sends the X.509
certificate, with an optional stapled OCSP response, during the
encrypted phase of the handshake – this prevents extraction and
validation of policy information without advanced mechanisms.
These mechanisms will invariably require extra TLS 1.3 sessions
originating from the TIA to access and optionally cache the
hidden X.509 information, adding to the load on TLS 1.3 servers.
Independent of TLS 1.3, TLS servers might already be configured

to return many different X.509 certificates depending on the
negotiated session attributes, which further complicates the
mechanisms to obtain the correct policy information. Complexity
adds risk, so special care should be taken by TIA developers when
designing these mechanisms.

The lack of plaintext X.509 information would impact other
application classes as well:

• Security tools that use machine learning to enforce malware
detection policy without TLS intercept.

• Inline tools that do not intercept TLS, but still require X.509
information in policy.

• Tools that monitor and classify TLS sessions based on
category. The SNI information might be available, but cannot
be validated (see Principle #4: Validate, validate, validate).

All those tools would require new mechanisms similar to traditional
TIAs, and for some tools, it would not be possible to add such
mechanisms (specifically tools that do not intercept TLS).

Whichever application or tool uses the new mechanisms,
performance weighs against security during design – developers
should favor the latter.

TLS 1.3 Protocol Flow
For reference, the protocol flow differences between a full (non-
abbreviated) TLS 1.2 session and a TLS 1.3 session is shown in
Figure 3. Interesting observations from the diagram are: (a) TLS 1.3
reduces the handshake setup from 2-RTT to 1-RTT, (b) TLS 1.3 does
not need an explicit ChangeCipherSpec (CCS) signal to switch to the
encrypted phase, (c) in TLS 1.3 the application payload is encrypted
with different keys than the handshake messages.

Figure 3 - TLS 1.2 2-RTT vs TLS 1.3 1-RTT

C [1.2]
TLS 1.2

S [1.2]

CH [1.2]

SYN

CKE,CCS,{FIN}

RTT #2

{HTTP}

SH [1.2],SC,SKE,SHD

SYN-ACK

CCS,{FIN}

RTT #1

C [1.2+1.3]
TLS 1.3

S [1.2+1.3]

CH [1.2+1.3]

SYN

{FIN}

SH [1.3],{EE,SC,CVer,FIN}

SYN-ACK

[HTTP]

RTT #1

05TECHNICAL BRIEF | RESPONSIBLY INTERCEPTING TLS AND THE IMPACT OF TLS 1.3

TLS 1.3 Intercept Protocol
Flow
An intercepted TLS 1.3 session (technique 2 used in Figure 2) would
follow the protocol flow depicted in Figure 4.

TLS 1.3 adds a complication: the CH must include the (EC)DHE
public value in the KeyShare extension. If the server does not
support or does not prefer the algorithm pre-selected by the client,
then it will trigger a HelloRetryRequest (HRR). For the TIA to use
the same (EC)DHE attributes on both TLS sessions (according to
the limiting-modifications principle), it must also send an HRR to
the client, as shown in Figure 5, even if the TIA does support the
algorithm selected by the client.

TLS 1.3 Passive Decrypt
TLS 1.3 deprecates the use of RSA key exchange in favor of (EC)
DHE, which implies that, for practical purposes, a TIA must be inline
to participate in the TLS handshake. One alternative would be to
share per-session secret information with one of the TLS endpoints.
This sharing would only be practical and useful if the TIA has the
cooperation of all the possible endpoints under the legal control
of the customer and enterprise – not to mention the infrastructure
and security measures needed to safely transfer the information in
a mostly non-homogeneous environment. Another alternative that
required installing a shared static DH private key was presented to
the IETF TLS working group recently10. It sparked many discussions
and prompted the creation of a document listing the perils of TLS
intercept11, with a bias towards preventing TLS intercept. The
argument from enterprise operational teams is that they require
a mechanism to aid in troubleshooting, compliance checking, and
performance management. More proposals and open debate are
required.

TLS 1.3 Downgrade
Detection
An attacker would downgrade TLS to a protocol version lower
than what is supported by both endpoints to exploit some known
vulnerability in the lower version. A TLS 1.3 client would advertise
support for TLS 1.3 in the CH and then wait for the SH from
the server to indicate which protocol version should be used.
The dilemma for the TLS 1.3 client is that it must avoid being
tricked into using a lower protocol version. TLS 1.3 attempts to
mitigate the protocol downgrade attack vector through a new TLS
version downgrade detection mechanism (TLS 1.2 uses the TLS_
FALLBACK_SCSV mechanism12). A TLS 1.3 server that negotiates
TLS 1.2 encodes the word DOWNGRD followed by 0116 in the last
8 bytes of the SH random field – this is called the downgrade
marker. A TLS 1.3 client that receives the marker should abort the
handshake with an illegal_parameter alert.

A TIA should implement the TLS 1.3 downgrade detection
mechanism as well as logic to prevent false aborts, as outlined in
Figure 6 through Figure 10. In Figure 6 the TIA downgrades TLS 1.3
to TLS 1.2 for some unspecified reason, e.g., the TIA does not yet
have support for TLS 1.3. The TLS 1.3 server adds the downgrade
marker, but the TIA does not propagate the marker to the TLS 1.3
client. The TIA acts as a TLS 1.2 server on the client side and as
a TLS 1.2 client on the server side, which explains why it does not
alert (on the server side) or propagate the marker (on the client
side).

C [1.3]

CH [1.3]

TLS session #1 TIA S [1.3]
TLS session #2

SH [1.3],{EE,SC,CVer,FIN}

{FIN}

CH [1.3]

{FIN}

Figure 4 - TLS 1.3 Intercept

SH [1.3],{EE,SC,CVer,FIN}

[HTTP]
[HTTP]

C [1.3]

CH [1.3]

TLS session #1 TIA S [1.3]
TLS session #2

CH [1.3]

{FIN}

CH [1.3]

CH [1.3]

{FIN}

Figure 5 - TLS 1.3 Intercept Requiring HelloRetryRequest

SH [1.3],{EE,SC,CVer,FIN}

HRR
SH [1.3],{EE,SC,CVer,FIN}

HRR

[HTTP]
[HTTP]

06TECHNICAL BRIEF | RESPONSIBLY INTERCEPTING TLS AND THE IMPACT OF TLS 1.3

In Figure 7 the client does not support TLS 1.3. The TIA propagates
the server’s downgrade marker, but the client ignores the marker
and continues with the TLS 1.2 handshake. The TIA acts as a TLS
1.3 server on the client side and as a TLS 1.2 client on the server
side – in fact, the TIA should act as a TLS 1.3 server (in how it
handles the downgrade marker) even if it does not support intercept
of TLS 1.3!

In Figure 8 the client supports TLS 1.3, but an attacker (MITM)
between the TIA and the server attempts to downgrade the session
to TLS 1.2 (or lower). The TLS 1.3 server sends the downgrade
marker, which then traverses the MITM and reaches the TIA. Since
the TIA is acting as a TLS 1.3 client on the server side, it will detect
the marker and abort the TLS handshake on both sides.

The attacker (MITM) can also be positioned between the TLS 1.3
client and the TIA, as shown in Figure 9. The client supports TLS
1.3, but the MITM attempts to downgrade the session to TLS 1.2 (or
lower). From the viewpoint of the TIA, is looks identical to Figure 7,
where the TIA propagates the downgrade marker on the client side.
The marker traverses the MITM and reaches the TLS 1.3 client,
at which point the client aborts the TLS handshake. The TIA also
propagates the alert to the server.

The scenario in Figure 10, from the point of view of the TIA, is
identical to the scenario in Figure 6 where the TIA is responsible
for the downgrade from TLS 1.3 to TLS 1.2. The attacker (MITM)
is between the client and the TIA, and the MITM is aware of the
presence of the TIA. Furthermore, the MITM knows that the TIA
does not support TLS 1.3, and it utilizes this to its advantage – the
MITM essentially abuses the fact that the TIA will downgrade TLS
1.3 to TLS 1.2. Even worse, the TIA does not propagate the marker
(per the logic in the description of Figure 6), which then prevents
the client from detecting that the server supports TLS 1.3. This is a
very good example of the security risk of not supporting TLS 1.3.
The same argument can be used to explain why TIAs should support
the latest algorithms, cipher-suites, and TLS extensions.

TLS 1.3 0-RTT Data
TLS 1.3 introduces the concept of 0-RTT data (a.k.a. early data),
which is referring to encrypted application level payload that is
sent as part of the first flight of data from the client to the server
– implying that it does not require any negotiation with the server
before it can be sent. The early data is encrypted with traffic keys
derived from a pre-shared-key (PSK), and the PSK is typically
extracted from a previous TLS 1.3 session, which gives the early
data weaker security properties than the application level payload
sent after the 1-RTT handshake has completed. There is no delivery
guarantee associated with early data because the server might not
have access to the PSK needed for decrypt. A TIA that encounters
TLS 1.3 early data on TLS session #1 could opt to discard it, but to
enhance endpoint application performance, the TIA should forward

C [1.2]

CH [1.2]

TLS session #1 TIA S [1.3]
TLS session #2

CH [1.2]

Figure 7 - TLS Downgrade Scenario 2

SH [1.2] + marker
SH [1.2] + marker

C [1.3]

CH [1.2+1.3]

TLS session #1 TIA MITM S [1.3]
TLS session #2 TLS session “#2”

Figure 8 - TLS Downgrade Scenario 3

alert

CH [1.2+1.3]

alert

SH[1.2] + marker
SH[1.2] + marker

CH [1.2+1.3]

alert

C [1.3]

CH [1.2+1.3]

TLS session #1 MITM TIA S [1.3]
TLS session #”1” TLS session #2

Figure 10 - TLS Downgrade Scenario 5

SH[1.2]

CH [1.2+1.3]

SH[1.2]

SH[1.2] + marker

CH [1.2]

C [1.3]

CH [1.2+1.3]

TLS session #1 TIA S [1.3]
TLS session #2

CH [1.2]

Figure 6 - TLS Downgrade Scenario 1

SH [1.2]
SH [1.2] + marker

C [1.3]

CH [1.2+1.3]

TLS session #1 MITM TIA S [1.3]
TLS session #”1” TLS session #2

alert

Figure 9 - TLS Downgrade Scenario 4

SH[1.2] + marker

CH [1.2]

alert

SH[1.2] + marker
SH[1.2] + marker

CH [1.2]

alert

Copyright ©2017 Symantec Corporation. All rights reserved. Symantec, the Symantec Logo, and the Checkmark Logo are trademarks or registered
trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

350 Ellis St., Mountain View, CA 94043 USA | +1 (650) 527 8000 | 1 (800) 721 3934 | www.symantec.com

SYMC_TB_TLS_v1

About Symantec
Symantec Corporation (NASDAQ: SYMC), the world’s leading cyber security company, helps organizations, governments and people secure their most important data wherever it
lives. Organizations across the world look to Symantec for strategic, integrated solutions to defend against sophisticated attacks across endpoints, cloud and infrastructure.
Likewise, a global community of more than 50 million people and families rely on Symantec’s Norton and LifeLock product suites to protect their digital lives at home and
across their devices. Symantec operates one of the world’s largest civilian cyber intelligence networks, allowing it to see and protect against the most advanced threats. For
additional information, please visit www.symantec.com or connect with us on Facebook, Twitter, and LinkedIn.

the early data to the server on TLS session #2. The TIA should take
special care not to erroneously upgrade the security properties of
the early data.

Figure 11 depicts a scenario where the TIA can decrypt the early
data (HTTP1), but then sends the early data to the server as part
of the post-handshake application data, essentially upgrading the
security properties of the early data.

Figure 12 shows what the TIA is supposed to do to retain the
security properties of the early data (HTTP1), which is to send the
TLS session #1 early data as early data on TLS session #2.

There is another complication with TLS 1.3 0-RTT data: if the TIA
is used to feed decrypted payload to a third-party security stack,
then special markers must be added to demarcate decrypted
payload with weaker security properties (the 0-RTT data) from the
subsequently decrypted payload. The problem also exists when the
TIA performs internal security processing of the decrypted stream
– the internal application layer (e.g., HTTP) should still be aware
of the demarcation point and should treat the application layer
payload with weaker properties differently.

Conclusion
Cryptography is hard, and security is hard. The combination is
extra hard, which implies that TLS intercept application developers
must have strong attention to detail. TLS 1.3 adds another layer of
complexity, which makes intercepting TLS 1.3 even harder. Security
vendors, and TLS intercept vendors, in particular must ensure to
put enough focus on proper design.

TLS intercept vendors and TLS endpoint application vendors must
both act responsibly. Part of that responsibility is to work at paving
the way towards closer cooperation between the security industry
and the endpoint application industry, while also involving the
designers of the TLS (and related) standards.

C [1.3]

CH [1.3 + PSK]

TLS session #1 TIA S [1.3]
TLS session #2

(end-of-early-data)

{FIN}

CH [1.3 + PSK]

{FIN}

Figure 11 - TLS 1.3 0-RTT Intercept: Erroneous Properties Upgrade

SH [1.3 + PSK],{EE,FIN}
SH [1.3 + PSK],{EE,FIN}

[HTTP1]

[HTTP2]

[HTTP2]

(HTTP1)

C [1.3]

CH [1.3 + PSK]

TLS session #1 TIA S [1.3]
TLS session #2

(end-of-early-data)

{FIN}

CH [1.3 + PSK]

(end-of-early-data)

{FIN}

Figure 12 - TLS 1.3 0-RTT Intercept: Retain Properties

SH [1.3 + PSK],{EE,FIN}
SH [1.3 + PSK],{EE,FIN}

[HTTP2]
[HTTP2]

(HTTP1)
(HTTP1)

References
1 https://www.schneier.com/essays/archives/1997/01/why_cryptography_is.html
2 CH=ClientHello, SH=ServerHello, SC=ServerCertificate, SHD=ServerHelloDone, etc.
3 https://tools.ietf.org/html/rfc7457
4 http://www.isg.rhul.ac.uk/tls/Lucky13.html
5 https://tools.ietf.org/html/rfc7366
6 http://heartbleed.com
7 https://www.xudongz.com/blog/2017/idn-phishing
8 https://datatracker.ietf.org/wg/tls/charter
9 The TLS 1.3 specification is still in draft: https://tools.ietf.org/html/draft-ietf-tls-tls13-21
10 https://tools.ietf.org/html/draft-green-tls-static-dh-in-tls13-01
11 https://github.com/sftcd/tinfoil
12 https://tools.ietf.org/html/rfc7507

https://www.symantec.com
https://www.symantec.com
https://www.facebook.com/Symantec/
https://twitter.com/symantec
https://www.linkedin.com/company/1231
https://www.schneier.com/essays/archives/1997/01/why_cryptography_is.html
https://tools.ietf.org/html/rfc7457
http://www.isg.rhul.ac.uk/tls/Lucky13.html
https://tools.ietf.org/html/rfc7366
http://heartbleed.com
https://www.xudongz.com/blog/2017/idn-phishing
https://datatracker.ietf.org/wg/tls/charter
https://tools.ietf.org/html/draft-ietf-tls-tls13-21
https://tools.ietf.org/html/draft-green-tls-static-dh-in-tls13-01
https://github.com/sftcd/tinfoil
https://tools.ietf.org/html/rfc7507

