

PCI 9056AD→PCI 9056BA Conversion Documentation

This document details changes that designers must be aware of as they convert their PCI 9056AD silicon-based designs to use the latest generation PCI 9056BA. Technical assistance is available at the PLX technical support web page (<u>http://www.plxtech.com/support/default.htm</u>).

Related Documentation												
Document	Revision	Description	Publication Date									
PCI 9056 Data Book	0.91b	Preliminary Data Book	February 2002									
PCI 9056 Data Book r.91 Corrections	0.94	Data Book Corrections	June 2002									
PCI 9056BA Errata Documentation	0.90	PCI 9056BA Errata	September 2002									
PCI 9056AD Errata Documentation	0.95	PCI 9056AD Errata	September 2002									

Related Documentation

1. Package Marking

The following table details the package marking changes between the PCI 9056AD and the PCI 9056BA.

Table 1-1. PCI 9056AD & PCI 9056BA Package Markings

Note. For each chip, **XXXXXXXXX** is the lot number.

2. Errata Fixes

The PCI 9056BA fixes several PCI 9056AD errata. Refer to the documents "PCI 9056AD Errata Documentation" and "PCI 9056BA Errata Documentation" for details.

3. Pin Types

The following table details the pin type changes from the PCI 9056AD to the PCI 9056BA.

Ball Number	Symbol	AD Pin Type	BA Pin Type
			If ((DMAMODE0[14]=1)
	C/ I Modo		or (DMAMODE1[14]=1))
	C/J Mode	If ((DMAMODE0[14]=1)	Ι
	DMPAF	or	
	EOT#	(DMAMODE1[14]=1))	else
	EO1#	I	0
A12	M Mode		TP
	MDREQ#	else	24 mA
		0	Note for 2nd case:
	DMPAF	TP	If ((HOSTEN# not asserted & RST# asserted
	EOT#	24 mA	or (HOSTEN# asserted & LRESET# asserted)
	EO1#		(HOSTEN# asserted & ERESET# asserted) Or
			(BD_SEL# not asserted))
			Pin goes Hi-Z.
			O TP
	C/J Mode		24 mA
	LHOLD	0	Note:
A16		TP	If ((HOSTEN# not asserted & RST# asserted)
	<u>M Mode</u>	24 mA	or (HOSTEN# asserted & LRESET# asserted)
	BR#		(HOSTEN# asserted & LRESET# asserted) Or
			(BD_SEL# not asserted))
			Pin goes Hi-Z.

Table 3-1. PCI 9056AD→ PCI9056BA Pin Type Changes

4. AC Timing

The following tables detail the AC timing of the PCI 9056AD and the PCI 9056BA.

Signals (Synchronous Inputs) V _{CC} = 3.0V, T _a = 85°C	T _{SE}	TUP	T _{HOLD}			
	AD	BA	AD	BA		
ADS#	4.8 ns	2.1 ns	1 ns	1 ns		
BIGEND#	4.8 ns	4.0 ns	1 ns	1 ns		
BLAST#	4.0 ns	3.4 ns	1 ns	1 ns		
BREQi	1.7 ns	0.3 ns	1 ns	1 ns		
BTERM#	4.8 ns	4.0 ns	1 ns	1 ns		
CCS#	1.7 ns	2.9 ns	1 ns	1 ns		
DMPAF/ EOT#	4.7 ns	4.2 ns	1 ns	1 ns		
DP[3:0]	2.0 ns	2.9 ns	1 ns	1 ns		
DREQ[1:0]#	4.4 ns	3.3 ns	1 ns	1 ns		
LA[31:2]	4.0 ns	3.4 ns	1 ns	1 ns		
LBE[3:0]#	4.6 ns	3.6 ns	1 ns	1 ns		
LD[31:0]	4.9 ns	3.1 ns	1 ns	1 ns		
LHOLDA	4.2 ns	2.5 ns	1 ns	1 ns		
LW/R#	5.0 ns	3.5 ns	1 ns	1 ns		
READY#	4.7 ns	4.0 ns	1 ns	1 ns		
USERi/LLOCKi#	2.4 ns	2.9 ns	1 ns	1 ns		
WAIT#	4.7 ns	4.0 ns	1 ns	1 ns		
Input Clocks	M	in	Max			
Local Clock Input Frequency	0 N	1Hz	66 MHz			
PCI Clock Input Frequency	0 N	1Hz	66 I	MHz		

Table 4-1. C Mode Local Bus Input AC Timing Specifications

Signals (Synchronous Outputs) $C_L = 50pF, V_{CC} = 3.0V, T_a = 85^{\circ}C$	Output T _{VALID} (Worst Case)							
	AD ¹	BA ²						
ADS#	7.6 ns	6.3 ns						
BLAST#	7.6 ns	6.3 ns						
BREQo	9.5 ns	6.8 ns						
BTERM#	8.3 ns	6.8 ns						
DACK[1:0]#	7.6 ns	6.3 ns						
DMPAF/EOT#	8.5 ns	6.6 ns						
DP[3:0]	7.9 ns	6.8 ns						
LA[31:2]	8.0 ns	6.8 ns						
LBE[3:0]#	7.6 ns	6.3 ns						
LD[31:0]	7.8 ns	6.4 ns						
LHOLD	7.5 ns	6.8 ns						
LSERR#	10.2 ns	7.5 ns						
LW/R#	7.6 ns	6.3 ns						
READY#	9.0 ns	7.2 ns						
USERo/LLOCKo#	7.6 ns	6.3 ns						
WAIT#	7.6 ns	6.4 ns						

 $\begin{array}{ll} & \mbox{On high-to-low transitions, output T_{VALID} values increase/decrease by 23 ps for each increase/decrease of 1pF. \\ & \mbox{On low-to-high transitions, output T_{VALID} values increase/decrease by 20 ps for each increase/decrease of 1pF. \\ \end{array}$

2 On high-to-low transitions, output T_{VALID} values increase/decrease by 16 ps for each increase/decrease of 1pF. On low-to-high transitions, output T_{VALID} values increase/decrease by 20 ps for each increase/decrease of 1pF.

On high-to-low transitions, the slew rate at 50 pF loading is 1.93 V/ns typical; .94 V/ns worst case. On low-to-high transitions, the slew rate at 50 pF loading is 1.15 V/ns typical; .70 V/ns worst case.

Signals (Synchronous Inputs) $V_{CC} = 3.0V, T_a = 85^{\circ}C$	T _{SET} (Worst)	u⊧ Case)	T _{HOLD} (Worst Case)			
	AD	BA	AD	BA		
ADS#	4.9 ns	2.1 ns	1 ns	1 ns		
ALE	4.5 ns	1.7 ns	1 ns	1 ns		
BIGEND#	4.8 ns	4.0 ns	1 ns	1 ns		
BLAST#	4.0 ns	3.4 ns	1 ns	1 ns		
BREQi	1.7 ns	0.3 ns	1 ns	1 ns		
BTERM#	4.8 ns	4.2 ns	1 ns	1 ns		
CCS#	1.7 ns	2.9 ns	1 ns	1 ns		
DMPAF/ EOT#	4.7 ns	4.2 ns	1 ns	1 ns		
DP[3:0]	2.0 ns	2.9 ns	1 ns	1 ns		
DREQ[1:0]#	4.4 ns	3.3 ns	1 ns	1 ns		
LA [28:2]	4.0 ns	3.4 ns	1 ns	1 ns		
LAD[31:0]	4.9 ns	3.1 ns	1 ns	1 ns		
LBE[3:0]#	4.6 ns	3.6 ns	1 ns	1 ns		
LHOLDA	4.2 ns	2.5 ns	1 ns	1 ns		
LW/R#	5.0 ns	3.5 ns	1 ns	1 ns		
READY#	4.7 ns	4.2 ns	1 ns	1 ns		
USERi/LLOCKi#	2.4 ns	2.9 ns	1 ns	1 ns		
WAIT#	4.7 ns	4.0 ns	1 ns	1 ns		
Input Clocks	Mir	1	Max			
Local Clock Input Frequency	0 Mł	Ηz	66 MHz			
PCI Clock Input Frequency	0 M	Ηz	66	MHz		

Table 4-3. J Mode Local Bus Input AC Timing Specifications

Table 4-4. J Mode Local Bus Output AC Timing Specifications

Signals (Synchronous Outputs) $C_L = 50 \text{pF}, V_{CC} = 3.0 \text{V}, T_a = 85^{\circ}\text{C}$	Output T _{VALID} (Worst Case)							
	AD ¹	BA ²						
ADS#	7.6 ns	6.3 ns						
ALE	8.0 ns	See item 5.						
BLAST#	7.6 ns	6.3 ns						
BREQo	9.5 ns	6.8 ns						
BTERM#	8.3 ns	6.8 ns						
DACK[1:0]#	7.6 ns	6.3 ns						
DEN#	7.9 ns	6.4 ns						
DMPAF/EOT#	8.5 ns	6.6 ns						
DP[3:0]	7.9 ns	6.8 ns						
DT/R#	7.9 ns	6.3 ns						
LA[28:2]	8.0 ns	6.4 ns						
LAD[31:0]	7.8 ns	6.4 ns						
LBE[3:0]#	7.6 ns	6.3 ns						
LHOLD	7.5 ns	6.8 ns						
LSERR#	10.2 ns	7.5 ns						
LW/R#	7.6 ns	6.3 ns						
READY#	9.0 ns	7.2 ns						
USERo/LLOCKo#	7.6 ns	6.3 ns						
WAIT#	7.6 ns	6.4 ns						

1 On high-to-low transitions, output T_{VALID} values increase/decrease by 23 ps for each increase/decrease of 1pF. On low-to-high transitions, output T_{VALID} values increase/decrease by 20 ps for each increase/decrease of 1pF.

On high-to-low transitions, the slew rate at 50 pF loading is 1.93 V/ns typical; .94 V/ns worst case. On low-to-high transitions, the slew rate at 50 pF loading is 1.15 V/ns typical; .70 V/ns worst case.

		<u> </u>	peenieatione				
Signals (Synchronous Inputs) V _{CC} = 3.0V, T _a = 85°C	T _{SE}	TUP	T _{HOLD}				
	AD	BA	AD	BA			
BB#	4.9 ns	2.7 ns	1 ns	1 ns			
BDIP#	4.5 ns	3.8 ns	1 ns	1 ns			
BG#	4.4 ns	2.9 ns	1 ns	1 ns			
BI#	5.3 ns	4.0 ns	1 ns	1 ns			
BIGEND#/WAIT#	4.8 ns	3.8 ns	1 ns	1 ns			
BURST#	4.8 ns	4.1 ns	1 ns	1 ns			
CCS#	1.7 ns	2.9 ns	1 ns	1 ns			
DP[0:3]	2.0 ns	2.9 ns	1 ns	1 ns			
DREQ[1:0]#	4.4 ns	3.3 ns	1 ns	1 ns			
LA[0:31]	5.2 ns	3.6 ns	1 ns	1 ns			
LD[0:31]	4.9 ns	3.1 ns	1 ns	1 ns			
MDREQ#/DMPAF/ EOT#	4.7 ns	4.2 ns	1 ns	1 ns			
RD/WR#	5.3 ns	3.5 ns	1 ns	1 ns			
TA#	5.3 ns	4.1 ns	1 ns	1 ns			
TEA#	5.2 ns	4.4 ns	1 ns	1 ns			
TS#	4.8 ns	2.1 ns	1 ns	1 ns			
TSIZ[0:1]#	5.0 ns	3.6 ns	1 ns	1 ns			
USERi/LLOCK#	1.9 ns	3.2 ns	1 ns	1 ns			
Input Clocks	Mi	in	Max				
Local Clock Input Frequency	0 N	IHz	66 MHz				
PCI Clock Input Frequency	0 N	IHz	66 I	MHz			

Table 4-5. M Mode Local Bus Input AC Timing Specifications

Table 4-6. M Mode Local Bus Output AC Timing Specifications

Signals (Synchronous Outputs)									
$C_{L} = 50 pF, V_{CC} = 3.0V, T_{a} = 85^{\circ}C$	(Worst Case)								
	AD ¹	BA ²							
BB#	9.4 ns	6.8 ns							
BDIP#	7.7 ns	6.4 ns							
BIGEND#/WAIT#	7.6 ns	6.3 ns							
BR#	7.5 ns	6.8 ns							
BURST#	7.6 ns	6.3 ns							
DACK[1:0]#	7.6 ns	6.3 ns							
DP[0:3]	7.9 ns	6.8 ns							
LA[0:31]	8.0 ns	6.8 ns							
LD[0:31]	7.8 ns	6.3 ns							
MDREQ#/DMPAF/ EOT#	8.5 ns	6.6 ns							
RD/WR#	7.6 ns	6.3 ns							
RETRY#	9.5 ns	6.8 ns							
TA#	9.0 ns	7.2 ns							
TEA#	9.6 ns	7.5 ns							
TS#	7.6 ns	6.3 ns							
TSIZ[0:1]#	7.6 ns	6.3 ns							
USERo/LLOCKo#	7.6 ns	6.3 ns							

1 On high-to-low transitions, output T_{VALID} values increase/decrease by 23 ps for each increase/decrease of 1pF. On low-to-high transitions, output T_{VALID} values increase/decrease by 20 ps for each increase/decrease of 1pF.

2 On high-to-low transitions, output T_{VALID} values increase/decrease by 16 ps for each increase/decrease of 1pF. On low-to-high transitions, output T_{VALID} values increase/decrease by 20 ps for each increase/decrease of 1pF.

On high-to-low transitions, the slew rate at 50 pF loading is 1.93 V/ns typical; .94 V/ns worst case. On low-to-high transitions, the slew rate at 50 pF loading is 1.15 V/ns typical; .70 V/ns worst case.

5. J Mode ALE Output Timing

Description:

The following figures detail the J Mode ALE signal output timing changes between the PCI 9056AD and PCI 9056BA. LC_{HIGH} is the time in ns that the Processor/Local Bus clock is high.

6. Register 'Value After Reset' Values

The following table details the register 'Value After Reset' changes from the PCI 9056AD to the PCI 9056BA.

	.	
Pagiatar	PCI 9056AD	PCI 9056BA
Register	'Value After Reset'	'Value After Reset'
PCIREV; PCI:08h, LOC:08h	ACh	BAh
PCIHREV; PCI:74h, LOC:F4h	ADh	BAh

Table 6-1. PCI 9056AD → PCI 9056BA Register 'Value After Reset' Values

7. READY# Time Out Values

If the PCI 9056's READY# time out feature is enabled (LMISC2[0] = 1b), LMISC2[1] is used to determine the number of clocks to wait for a Processor/Local Bus READY# time out.

For the PCI 9056AD:

- LMISC2[1] = 0b selects a time out of **32** Processor/Local Bus clocks.
- LMISC2[1] = 1b selects a time out of **64** Processor/Local Bus clocks.

For the PCI 9056BA:

- LMISC2[1] = 0b selects a time out of **32** Processor/Local Bus clocks. (No change.)
- LMISC2[1] = 1b selects a time out of **1,024** Processor/Local Bus clocks. (Change.)

8. Extra Long EEPROM Load

If the PCI 9056AD uses an Extra Long EEPROM Load (LBRD0[25] = 1b) to overwrite the power on/reset values of its EEPROM-overwritable register bits, it reads EEPROM locations 00h through 5Ah for that purpose.

The PCI 9056BA, in addition to reading EEPROM locations 00h through 5Ah to overwrite the power on/reset values of the same register bits as the PCI 9056AD, reads EEPROM locations 5Ch through 62h to overwrite the power on/reset values of the following Power Management register bits.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		PCI	address	: 42h									PMC[2:0]; PCI address: 42h, Local address:182h				
			PCI add	ress: 47h	ì												
			PCI	address	: 44h												
	15		15 14 13 PI PCI Local	15 14 13 12 PMC[15: PCI address Local address PMDA PCI addi Local add PMDA PCI addi Local add PMDA	15 14 13 12 11 PMC[15:9]; PCI address: 42h Local address: 182h PMDATA[7:0] PCI address: 47f Local address: 187 PMDATA[7:0] PCI address: 187 PMDATA[7:0] PCI address: 187 PMDATA[7:0] PCI address: 187 PMCSR[14 PCI address	15 14 13 12 11 10 PMC[15:9]; PCI address: 42h	15 14 13 12 11 10 9 PMC[15:9]; PCI address: 42h Local address: 182h PMDATA[7:0]; PCI address: 47h Local address: 187h PMCSR[14:8]; PCI address: 44h	15 14 13 12 11 10 9 8 PMC[15:9]; PCI address: 42h Local address: 182h PMDATA[7:0]; PCI address: 47h Local address: 187h PMCSR[14:8]; PCI address: 44h	15 14 13 12 11 10 9 8 7 PMC[15:9]; PCI address: 42h Local address: 182h PMDATA[7:0]; PCI address: 47h Local address: 187h PMDATA[7:0]; PCI address: 47h Local address: 187h PMCSR[14:8]; PCI address: 44h	15 14 13 12 11 10 9 8 7 6 PMC[15:9]; PCI address: 42h Local address: 182h PMDATA[7:0]; PCI address: 47h Local address: 187h PMDATA[7:0]; PCI address: 187h PMCSR[14:8]; PCI address: 44h	15 14 13 12 11 10 9 8 7 6 5 PMC[15:9]; PCI address: 42h Local address: 182h Image: Second S	15 14 13 12 11 10 9 8 7 6 5 4 PMC[15:9]; PCI address: 42h Local address: 182h 2 2 2 2 4 PMC[15:9]; PCI address: 182h 2 3 7 6 5 4 PMC[15:9]; PCI address: 182h 2 3 3 4 3 3 3 4 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 4 3 3 4 3 3 3 4 3 3 3 4 3 3 4 3 3 3 3 4 3 3 3 4 3 3 3 3 4 3 3 <	15 14 13 12 11 10 9 8 7 6 5 4 3 PMC[15:9]; PCI address: 42h Local address: 182h Image: Strategy of the stra	15 14 13 12 11 10 9 8 7 6 5 4 3 2 PMC[15:9]; PCI address: 42h Local address: 182h P P P P P P P P P C Local P P C Local D P P P C Local Local D	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 PMC[15:9]; PCI address: 42h Local address: 182h PCI address: PCI address: PCI address: PCI address: PCI address: Local address PMDATA[7:0]; PCI address: 47h Local address: 187h PMCSR[14:8]; PCI address: 44h PMCSR[14:8]; PCI address: 44h PCI address: PCI address:		

Table 8-1. PCI 9056BA Additional Extra Long EEPROM Load Values

Note. Grey bits are reserved and should be set to 0b in the EEPROM.

9. Local Bus Pause Timer Values

If the PCI 9056's Local Bus Pause Timer is enabled (MARBR[17] = 1b), MARBR[15:8] are used to determine the number of the Processor/Local Bus clocks to wait after releasing the bus before attempting to re-arbitrate for the bus.

For the PCI 9056AD, MARBR[8] must be 0b, restricting the Local Bus Pause Timer value to an even number of clocks.

For the PCI 9056BA, MARBR[8] may be 0b or 1b, removing the restriction that Local Bus Pause Timer value be even.

10. IDDQEN#

For both the PCI 9056AD and the PCI 9056BA, hold the IDDQEN# input signal (ball B7) in its asserted state to put the chip in its IDDQ state.

For the PCI 9056AD to perform normal, non-IDDQ operation, during initialization its IDDQEN# input signal must transition from its asserted state to its de-asserted state prior to PCI RST# deassertion. This causes the PCI 9056AD to configure its PCI I/O buffers for proper bus operation. After this transition completes, hold IDDQEN# in its de-asserted state. **Note.** For CompactPCI Hot Swap applications, IDDQEN# must be held in its de-asserted state during pre-charge. As a result, CompactPCI Hot Swap applications require that IDDQEN# transition from its de-asserted state to its asserted state after pre-charge completes, and then transition back to its de-asserted state prior to Local PCI RST# de-assertion.)

For the PCI 9056BA to perform normal, non-IDDQ operation, hold IDDQEN# in its de-asserted state. (Note. For applications that use the PCI 9056BA's PCI Power Management D3cold PME Generation feature, de-assert IDDQEN# by tying it directly to the 2.5V power source for Vcore. The PCI 9056BA uses IDDQEN# to sense both when Vcore is going away to prepare to enter the D3cold state and when Vcore is coming back to prepare to leave the D3cold state. Do not tie IDDQEN# to the 2.5V power source for 2.5Vaux, and do not tie it to the 3.3V power source for either Vring or Card_Vaux.)

Even though the PCI 9056BA does not require any transitioning of its IDDQEN# input signal for proper PCI bus operation, transitioning the PCI 9056BA's IDDQEN# in accordance with the PCI 9056AD requirements will have no effect on PCI 9056BA operation. As a result, the PCI 9056BA can be substituted for the PCI 9056AD in existing PCI 9056AD designs without needing to remove the external PCI 9056AD IDDQEN# transitioning logic.

11. JTAG IDCODE Instruction

The PCI 9056AD does not support the JTAG IDCODE instruction.

The PCI 9056BA supports the JTAG IDCODE instruction, and returns the following IDCODE value:

M S B	Table 11-1. PCI 9056BA JTAG IDCODE Value																	L S B													
3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
	Vers	Version Part Number (9056 when converted to decimal)									PLX Manufacturer Identity																				
0	0	0	1	0	0	1	0	0	0	1	1	0	1	1	0	0	0	0	0	0	0	1	1	1	0	0	1	1	0	1	1

12. Initializing JTAG

Note. The following only applies if the chip's TRST# pin (C6) is *not* tied low (i.e., JTAG functionality is enabled).

For both the PCI 9056AD and the PCI 9056BA, if JTAG is enabled when power is applied, the chip's JTAG TAP controller comes up in a random state and must be put into the Test-Logic-Reset state.

The PCI 9056AD provides *one* way to put its JTAG TAP controller into the Test-Logic-Reset state:

1. Prior to PCI RST# de-assertion, transition the chip's TRST# pin (C6) from de-asserted to asserted and back to de-asserted.

The PCI 9056BA provides *two* ways to put its JTAG TAP controller into the Test-Logic-Reset state:

- 1. [Same as PCI 9056AD.] Prior to PCI RST# de-assertion, transition the chip's TRST# pin (C6) from de-asserted to asserted and back to de-asserted.
- 2. [New to PCI 9056BA.] Prior to PCI RST# de-assertion, hold the chip's TMS pin (A5) high while transitioning the chip's TCK pin (B5) five times from de-asserted to asserted.

13. PCI Master Abort/Target Abort During DMA

For the PCI 9056AD, if a PCI Master Abort or Target Abort occurs during a DMA transfer, all inprocess or future DMA and Direct Master transfers are prevented from arbitrating for the PCI bus until the Master Abort or Target Abort status bit (PCISR[13:12]) is cleared.

For the PCI 9056BA, if a PCI Master Abort or Target Abort occurs during a DMA transfer, all inprocess or future DMA transfers are prevented from arbitrating for the PCI bus until the Master Abort or Target Abort status bit (PCISR[13:12]) is cleared. However, Direct Master transfers can continue unabated.

For both the PCI 9056AD and the PCI 9056BA, if a PCI Master Abort or Target Abort occurs during a Direct Master transfer, all in process or future DMA and Direct Master transfers are prevented from arbitrating for the PCI bus until the Master Abort or Target Abort status bit (PCISR[13:12]) is cleared.

Copyright © 2002 by PLX Technology, Inc. All rights reserved. PLX is a trademark of PLX Technology, Inc. which may be registered in some jurisdictions. All other product names that appear in this material are for identification purposes only and are acknowledged to be trademarks or registered trademarks of their respective companies. Information supplied by PLX is believed to be accurate and reliable, but PLX Technology, Inc. assumes no responsibility for any errors that may appear in this material. PLX Technology reserves the right, without notice, to make changes in product design or specification.