
111 1

Microsurfaces: The Role of APIs
in a Microservice Architecture

22

Microservices Adoption
Continues to Grow
in All Industries
According to a recent survey, 86 percent of respondents expect
microservice architecture to be their default approach to building
software systems within five years.

There are many reasons for moving to a microservice architecture, from increasing
delivery speed to improving evolvability and scalability. However, there are also
potential pitfalls as complexity shifts from place to place in the system and the
associated organizational landscape. As a result, organizations moving to a microservice
architecture need tools and techniques to help them deal with these new challenges.

When it comes to microservice technologies, people have called containers the
“gateway drug to microservices,” and containers can certainly ease deployment and
operability. However, API-based communication may be even more vital to delivering
value in all aspects of a microservice architecture. This ebook explores the varied roles
that APIs play in the microservices landscape.

https://www.globenewswire.com/news-release/2018/05/02/1494613/0/en/New-Research-Reveals-Record-Growth-in-Microservices-Is-Disrupting-the-Operational-Landscape.html
https://searchmicroservices.techtarget.com/feature/Capital-Ones-use-cases-for-implementing-microservices

33

APIs vs. Microservices
Before analyzing the value of APIs in a microservice architecture, it helps to clear up
any confusion between the definitions of APIs and microservices. When someone
says they are “building an API,” they are likely developing a microservice with an API
front door. Conversely, there are some who refer to API facades for legacy services as
microservices. Both examples blur the lines between the terms.

What is an API?
•	An application interface exposedon a

network

•	Can use many styles (e.g., REST),
protocols (e.g., HTTP) and data formats
(e.g., JSON)

•	Can be implemented in many ways
(standalone microservice, monolithic
application, API gateway, ESB)

•	The consumer’s view of a service

What is a microservice?
•	An independently deployable

application component

•	Often self-contained (e.g., interface,
logic, data)

•	Exposes functionality to other services
and external clients via APIs

•	The provider’s view of a service

It is important to remember
that the API is just the interface,
and even more important to
remember that the service
consumer views the API as a
contract, and they don’t care
what’s behind it as long as they
get what they need.

44

Microservices Origins
In their seminal 2014 blog post,
Microservices: a definition of this
new architectural term, James
Lewis and Martin Fowler called
out API-based communication as
a fundamental characteristic of
microservices:

“The two protocols used most commonly are HTTP request-response with resource APIs
and lightweight messaging.”

Although the microservices trend spiked in popularity following that blog post, it became
clear that companies such as Netflix and Amazon had been using this architectural
approach for a number of years. Notably, these same organizations that were early
adopters of microservices were also key pioneers in the API economy.

This is no coincidence. APIs and microservices share three common origins:

•	The architectural principles of the World Wide Web

•	Technological affinity with mobile and cloud computing

•	A decentralized approach to process, organization and culture aligned
with the agile movement

https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://queue.acm.org/detail.cfm?id=1142065
https://www.infoq.com/articles/web-apis-business-perspective/

55

Microservices Origins Continued

The Web and Service-Oriented
Architecture
The rise of Web-based computing in the
1990s ushered in new possibilities and
complexities for distributed systems.
Service-oriented architecture (SOA)
became a popular approach to building
systems, but the SOA movement
faltered when its implementation
approach became overly centralized,
thus abandoning the principles of the
Web. In parallel, the Web API movement
offered more intuitive and task-oriented
interfaces to useful Web services.
Companies like Amazon and Netflix
synthesized SOA’s service concept with
“of the Web” interfaces to form a high
scale, high velocity architecture.

Mobile and Cloud
Computing
A decade after the Web explosion
came the rise of mobile as a desirable
computing platform. This drove the
need for mobile-friendly interfaces (Web
APIs) to modularized services. In parallel,
cloud computing gained prominence.
The emphasis on automation in the
cloud produced a new use for APIs, as
well as removing barriers to application
deployment. Cloud computing provided
a novel platform for deploying more
granular API-fronted application
components.

Decentralization
and the Agile Movement
As the capability and scale of distributed
systems have increased, there has been
a trend toward decentralization in both
the system itself as well as the supporting
organization. This is another trend that
follows the path of the World Wide Web.
The agile software movement arose as a
reaction to the same centralized approach
to enterprise IT that hampered the SOA
movement. Agile’s popularity and success
in software development led to the CI/CD
approach to software deployment, followed
by the cultural philosophy of the DevOps
movement. This “agile progression”
aligned well with systems of independently
deployable services communicating
through Web APIs.

https://www.infoworld.com/article/3080611/learning-from-soa-5-lessons-for-the-microservices-era.html
https://www.infoworld.com/article/3080611/learning-from-soa-5-lessons-for-the-microservices-era.html
https://www.infoworld.com/article/3075880/microservice-architecture-is-agile-software-architecture.html

66

The Business Value
of Microservices
There are many reasons for an organization to move to a microservice
architecture, but in general they are hoping to achieve “speed and safety
at scale” for their software delivery.

There are potential SDLC benefits, such as reducing the need for cross-team
coordination and opening up more language options; operational benefits, like more
flexible deployment and manageability; and even organizational benefits such as
alignment between technology assets and cross-functional teams.

Interestingly but not surprisingly, many of the benefits attributed to a microservice
architecture stem from the API-first nature of microservices, namely:

Composability
When services are published
through an API, it is easier to
use them in multiple business
contexts to assist in various
business processes

Testability
When services are accessible
over a network boundary,
it is easier to isolate tests
and exercise individual
components of the system

Evolvability
When services are exposed through
an API, implementation details
can be hidden from the consumer,
making it easier to change
components without impacting
dependent parts of the system

Comprehensibility
When a complex system is broken down into modular
APIs, it is easier to understand the overall business
functionality of the system, which helps in both
designing and maintaining the system

Automatability
Along with the data plane API benefits above,
control plane APIs allow automation in the
deployment and management of microservices,
thus increasing the velocity of software delivery

Once again, it is
clear that APIs are
a fundamental
part of succeeding
with a microservice
architecture.

https://apiacademy.co/oreilly-ebook-microservice-architecture-aligning-principles-practices-and-culture/
https://apiacademy.co/oreilly-ebook-microservice-architecture-aligning-principles-practices-and-culture/

77

Big Challenge, Bigger Benefit
Complexity is a given for distributed systems, and the key to dealing
with it is arriving at optimal abstractions. Microservices provide the
opportunity to modularize a big system effectively through service
boundary definitions; however, arriving at the right boundaries is tricky.

Applying Design Thinking
API design is a mature field with proven practices. Notably, APIs designed from the
consumer perspective with a focus on jobs to be done have greater usability and
higher rates of adoption. This same approach can be used when designing a system of
microservices, whether starting from scratch or breaking down an existing monolith.
API design thinking helps to identify the right service boundaries and helps to establish
loose coupling between services so that implementation details don’t leak through.

Furthermore, designing and defining a microservices system through APIs helps make
it more comprehensible for those tasked with managing the system, for those just
getting started on developing the system, and other external parties like business
stakeholders.

APIs are a living part of the
system that can be used to intuit
the functions the system and its
components provide.

https://www.apiacademy.co/explore/api-design
https://www.freshblurbs.com/blog/2014/02/11/why-open-data-fails-api-more-than-dataset-search.html

88

APIs for Managing
Microservices
When organizations switch to microservices from more monolithic application
architectures, their gains in delivery speed and scalability have the potential to be
offset by operational complexity in managing, monitoring and securing the new
distributed architecture. Monolithic app servers may have contributed to the issues that
microservice architecture purports to solve, but they did provide consistency in managing
these system concerns. For microservice implementers, one option in dealing with these
concerns is to adopt a single deployment platform, but that uniformity goes against many
of the principles and practices that have made microservice architecture effective.

A better option is to look at the APIs in the system that expose core business functionality
and allow service-to-service communication as a normalizing mechanism. A system of
microservices may be distributed across a variety of platforms, but by using APIs as the
control point in the architecture, the platform is less significant.

API management technology is an established capability
used by an abundance of organizations to provide:

•	Access control

•	Monitoring

•	Service level management and other system capabilities

These capabilities are vital for any distributed system and are
particularly important for multi-platform microservices.

99

APIs for Migrating Microservices
Most organizations moving to microservices have legacy systems already in place that
provide the key functions of their business. When moving to a microservice architecture, these
organizations need to decide the order in which they migrate these functions. In some cases—
such as infrequently changing legacy systems or vendor-provided software solutions—it would
not make sense or even be possible to migrate at all.

Regardless of the underlying implementation of the service—microservice, monolith, off-
the-shelf software—it can be exposed through an API. For services being migrated to a
microservice architecture, providing a Web API provides a loose coupling mechanism so that
the service implementation can be changed without impacting consumers. For services that
won’t be migrated to microservices, APIs provide a means for participating in a distributed
system with microservices.

Mike Amundsen’s STAR method (stabilize, transform, add functionality, rinse and repeat) is a
detailed approach that illustrated how APIs can be used to aid in microservice migration.

STAR METHOD ILLUSTRATING HOW APIS AID MICROSERVICE MIGRATION

Stabilize

Transform

Add Functionality

Rinse
and Repeat

https://www.apiacademy.co/profile/mike-amundsen

1010

Shared Evolution of APIs and Microservices
It is clear that Web APIs play a number of key roles in a
successful microservice architecture. As the widespread usage
of APIs becomes intertwined with the maturation of
microservices, the two movements are evolving together.

Reactive microservices systems are gaining popularity, as
organizations seek to maximize decoupling of domains.
This approach to microservices often utilizes asynchronous
communication through protocols like Apache Kafka or AMQP,
to avoid the synchronous nature of HTTP.

Service Mesh
The “service mesh” concept has been spawned from within the
microservices community to enforce system-wide policies on
microservice-to-microservice communication. Service mesh
solutions may favor new protocols like gRPC and data formats
like protobuf over HTTP-based =APIs based on a desire for more
optimized runtime performance. Service meshes also rely heavily

on runtime service discovery, a vital function in the ephemeral
microservices landscape.

Although Web APIs may not be used explicitly in either reactive
systems or a service mesh, the API industry has lessons to share
in both cases. Swagger (now the OpenAPI specification) provides
a universal metadata description language for Web APIs, helping
with interoperability, design time understanding and automated
activities like testing and monitoring. There is a similar need for
asynchronous protocols, and in fact Fran Méndez has already
evolved the OpenAPI concept into the AsyncAPI specification to
address this.

The value proposition of a service mesh is similar in functionality to
what an API gateway provides in an API implementation, but different
in non-functional characteristics. One can conclude that other API
management capabilities may be similarly valuable to a microservice
architecture, most notably the design time service discovery provided
through API developer portals or catalogs of services.

https://www.asyncapi.com/
https://www.ca.com/us/products/apim/gateway.html
https://www.ca.com/us/products/apim/api-management.html
https://www.ca.com/us/products/apim/api-management.html
https://www.ca.com/us/products/apim/developer-portal.html

1111

For product information please visit our website at: broadcom.com
Copyright © 2021 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, Symantec, and the Symantec logo, are among the trademarks of
Broadcom. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
BC-XXXXEN August 2021

APIs and Microservices
APIs and microservices have a linked history and a complementary
set of potential benefits. Using APIs in your microservice
architecture can help incent good design, comprehensive
management and ease migration of existing applications.

To dig a little deeper into these concepts, we suggest reading the following
O’Reilly books for free, compliments of Broadcom and Layer7:

DISCOVER HOW THE ANALYST-ACCLAIMED API MANAGEMENT
AND MICROSERVICES PORTFOLIO FROM CA TECHNOLOGIES CAN
HELP YOU MODERNIZE YOUR APPLICATION ARCHITECTURE WITH
APIS AND MICROSERVICES AT THE LAYER7 PRODUCT PAGE AT
BROADCOM.COM

Microservice
Architecture:
Aligning Principles,
Practice and
Culture

Securing
Microservice APIs:
Sustainable and
Scalable Access
Control

https://www.broadcom.com
https://www.broadcom.com/products/software/api-management
https://www.broadcom.com/products/software/api-management
https://apiacademy.co/oreilly-ebook-microservice-architecture-aligning-principles-practices-and-culture/
https://apiacademy.co/oreilly-ebook-microservice-architecture-aligning-principles-practices-and-culture/
https://apiacademy.co/oreilly-ebook-microservice-architecture-aligning-principles-practices-and-culture/
https://apiacademy.co/oreilly-ebook-microservice-architecture-aligning-principles-practices-and-culture/
https://apiacademy.co/oreilly-ebook-microservice-architecture-aligning-principles-practices-and-culture/
https://apiacademy.co/oreilly-ebook-securing-microservice-apis-sustainable-and-scalable-access-control/
https://apiacademy.co/oreilly-ebook-securing-microservice-apis-sustainable-and-scalable-access-control/
https://apiacademy.co/oreilly-ebook-securing-microservice-apis-sustainable-and-scalable-access-control/
https://apiacademy.co/oreilly-ebook-securing-microservice-apis-sustainable-and-scalable-access-control/
https://apiacademy.co/oreilly-ebook-securing-microservice-apis-sustainable-and-scalable-access-control/

