
Table of Contents
Abstract

Dawn of SRE
The Traditional Service
Management Approach

The SRE Approach

The Relation Between SRE and
DevOps

The SRE Tenets

Final Considerations on the SRE
Persona

The Mainframe SRE
Why SRE for Mainframe?

Mainframe SRE Skills and Persona

Mainframe SRE Team/Organization

Mainframe SRE Toolchain

Final Considerations

References

White Paper

Abstract
Site Reliability Engineer (SRE) is a job role and a set of principles and
practices focused on ensuring the reliability of mission-critical systems.
SREs apply engineering and systems thinking skills to make the production
environment more robust. Since its inception at Google around 2003, it has
become one of the most popular industry standards for managing high-
availability environments.

In this white paper, we will examine the role of the SRE as it was originally
conceived, its tenets, and the skills and practices that make up the SRE
persona. We will then explore its implications for Mainframe services
management in counterpart to the traditional implementation for
distributed systems. Finally, we will assert the importance of this job role for
the Mainframe as the next logical step towards platform modernization and
integration into a more hybrid-cloud approach.

Some principles discussed in this document are universally applicable to
both mainframe or distributed systems. However, we will explicitly identify
where these concepts might be different. It is important to highlight that
whenever we refer to the mainframe platform we are primarily focusing on
z/OS systems due to the presence of z/OS on the majority of mainframes
today. We also recognize that the architecture of z/OS systems differs more
significantly from that of distributed systems when compared with other
mainframe operating systems like Linux on Z (zLinux).

Dawn of SRE
It is well known that the majority of the cost of a software system is not in
its initial development stage but its ongoing maintenance. It is also widely
accepted that no matter how automated the system, there will always exist
a certain amount of human intervention and maintenance. This is especially
true for complex, data-intensive systems that run many critical production
services.

In this section, we will explore two approaches for software services
management; the traditional approach and the SRE approach as it was
originally conceived by Google. In later sections, we will discuss how the
latter can be applied to the traditional mainframe service management
model, and we will highlight some of the similarities, differences, and
ultimately, the benefits of adopting the SRE model.

Mainframe Site Reliability Engineering
The SRE Role in a Mainframe Infrastructure Scope

Mainframe Site Reliability Engineering

White Paper

The Traditional Service Management Approach
Historically, even before the need to manage large
and complex applications, humans needed to manage
complex systems. For this reason, the discipline
of operations was established. This discipline sets
rigorous standards and rules of engagement for the
management of such systems.

For decades the IT industry has adopted the same
approach to infrastructure and service management.
In this document, we will refer to this approach as the
sysadmin approach. It consists of hiring and managing
teams of system administrators that will be responsible
for the IT infrastructure management of a company.

These professionals are responsible for assembling
software components and deploying them to work
together to produce a service. Along with that, the
sysadmins are tasked with running these services and
responding to events as they occur.

As the system grows in size and complexity, the
amount of required maintenance labor grows, causing
the sysadmin team to also grow to absorb the
additional work. Moreover, it is not only the amount
of work that increases but also the expertise required
to do that work. This ultimately leads sysadmin teams
to split into more granular teams with more specific
areas of expertise such as database administration and
storage support, to mention a few.

Since the kind of work that sysadmins and other
traditional infrastructure management teams do usually
requires a different set of skills than that required to
build products and services, developers and sysadmins
are divided into two discrete categories: development
and operations.

This approach to service management has several
advantages. Since it is a familiar industry paradigm,
a relevant talent pool is already widely available
along with extensive knowledge, tools, practices, and
standards that companies can quickly implement.

At the same time, it also has its pitfalls. This hard
segmentation between Dev and Ops teams also means
that they both have diametrically opposing incentives.
On one hand, development teams are encouraged to
release new features faster and frequently to attend
to new customer demands, while on the other hand,
operations are guided by the stability of existing
systems, where every new change represents a

potential outage risk to production services. This
creates a constant conflict between these groups, a
lack of clear communication, and consequently an
unreliable and often toxic working environment, one in
which both teams resort to a form of trench warfare to
advance their interests.

The SRE Approach
As a counterpart to this traditional methodology, and
to address the challenges of the segmentation between
development teams and operations, there is the SRE
approach.

As previously mentioned, the SRE is a concept that
originated at Google around 2003. According to
the Site Reliability Engineering book, the SRE is a
job function where software engineers are tasked
with activities that would traditionally fall under the
operations umbrella, with a special focus on the
reliability of mission-critical applications and services.
This approach leads to teams comprised of people
who quickly become bored by performing tasks by
hand, and have the necessary skill set to automate their
previous manual work.

The concept of the SRE originates from the premise
that everything is software, not only applications that
generate value to customers but everything, including
the underlying infrastructure. All applications will
eventually run on physical hardware, but until then,
everything depends on software. As such, managing
the IT infrastructure becomes a software engineering
problem. This realization is also one of the key ideas of
DevOps as we will see later.

It is important to clarify that although it is common
in the industry to treat the software engineer and
software developer roles as the same, in the context of
this white paper, we are treating them as two separate
personas. The reason for this is merely to make
explicit the potential differences in the skillsets of both
professionals.

Moreover, it’s not only the amount
of work that increases but also the
expertise required to do that work.

On one hand, development teams are
encouraged to release new features
faster and frequently to attend to
new customer demands, while on the
other hand, operations are guided
by the stability of existing systems,
where every new change represents
a potential outage risk to production
services.

Mainframe Site Reliability Engineering

White Paper

On one hand, the software developer is a professional
that is responsible for transforming business needs
into working software through coding. However, this
professional does not necessarily need to have a
profound understanding of the underlying systems in
which the application will run, nor must it be an expert
on computer science concepts. On the other hand, the
software engineer is a professional that is also capable
of transforming business needs into working software,
however in this case this professional has a wider range
of skills in computer science and is capable of working
at a lower level on system-wide improvements and
algorithm optimizations.

For example: While coding a business application,
a software developer might need to sort a large list
of values. In most cases the developer will not need
to implement a sorting algorithm from scratch. Most
high-level programming languages include built-
in abstractions that can solve problems like sorting
very efficiently. However, in some scenarios where
performance is absolutely critical, there might be a
need to do algorithm optimizations to solve this and
many other common computing problems. This is
where computer science skills become a requirement.

With this in mind, SREs are, first and foremost,
engineers. They are professionals that apply the
principles of computer science and engineering to
the design and development of computing systems.
Next, there is the focus on reliability. Understanding
that it is the most fundamental feature of any product,
SREs focus on finding ways to improve the design and
operations of systems to make them more scalable,
reliable, and efficient.

The Relation Between SRE and DevOps
DevOps and SRE are sometimes treated as two
completely different disciplines, however, they are
actually very much related. DevOps principles including
breaking silos, heavy reliance on automation versus
human effort, and the application of engineering
concepts to operational work are all present within
many of the SRE principles and practices. In fact,
DevOps could be perceived as a wider philosophy and
culture for the entire enterprise organization, while SRE
being a specific implementation of DevOps with some
extensions.

In many organizations, there is the role of a DevOps
Engineer or simply DevOps. Depending on the size of
the organization, this engineer might be solely focused
on the software delivery pipelines, a function that is
also commonly referred to as release engineering.
Meanwhile the SRE focuses on the reliability
and continuous improvement of the underlying
infrastructure. In other cases, the SRE can absorb the
function of the DevOps Engineer as well.

The SRE Tenets
While there are nuances within the priorities and
day-to-day activities of different SRE teams in an
organization, they all share a common set of core
tenets. These tenets can be summarized as follows:

• Ensure focus on engineering: A fundamental aspect
of the SRE role is that, by definition, they need to
focus on engineering work, otherwise they will be
swallowed by operations work. As a rule of thumb,
SRE teams should cap their operational load by
50%. This means that, ideally, they should spend no
more than 50% of their time doing operations labor.
This includes incident response, changes, and any
traditional system administration and management
activities. The other 50% should be spent on
engineering work to either automate the operational
activities, eliminate toil, or to make the system more
stable.

In practice, this is accomplished by monitoring the
operational work of SRE teams and redirecting any
excessive manual workload to product development
teams, and by integrating developers using on-
call rotations. The redirection ends when the
operational load drops back to 50% or lower. This
shared ownership also creates an effective feedback
mechanism, inspiring developers to build systems
that do not need manual intervention.

Blameless postmortems should be written for all
significant incidents, even if it did not result in a team
or member being paged. In fact, postmortems that
did not trigger a page are even more important,
as they are likely related to a monitoring gap. The

The concept of the SRE originates from
the premise that everything is software,
not only applications that generate
value to customers but everything,
including the underlying infrastructure.

DevOps principles including breaking
silos, heavy reliance on automation
versus human effort, and the
application of engineering concepts
to operational work are all present
within many of the SRE principles and
practices.

Mainframe Site Reliability Engineering

White Paper

focus of the postmortems should be to investigate
the truth of what happened in detail, and assign
actions to correct the problem or improve how it is
addressed next time. The blameless aspect fosters
a culture of truth discovery rather than blaming
individuals, creating incentives for people to come
forward whenever they make a mistake instead of
creating a punitive environment.

• Enable maximum change velocity without violating
service level objectives: This tenet aims to eliminate
the structural conflict from Dev and Ops and the
pace of innovation and product stability by the
introduction of the concept of error budget.

The error budget is a principle of applying a
consequence for service level objectives (SLOs).
Consider that the SLO for a given service is for
99.99% of availability, this means that it can only be
0.01% unavailable. This permitted 0.01% unavailability
is the error budget. Development teams can
spend this error budget on anything as long as
they do not overspend it. It is ideally spent taking
risks, implementing new features to products and
adding value to customers. This approach enables
yet another self-regulation mechanism that allows
development teams to ship code fast, without
needing to fight with the operations teams.

The introduction of an error budget concept also
promotes clever approaches and optimizations to
release management, like phased rollouts, where the
changes are applied first to only a small portion of
the users, minimizing the impact of any outages and
therefore the budget spent.

The error budget assumes that 100% is the wrong
reliability target for almost anything. In general,
the users of any software service cannot tell the
difference between a system being 100% available
and 99.999% available. There usually exist many other
systems in the path between the user and the service
and those systems collectively are far less available
than 99.999%, meaning that the difference between
these availability rates is lost in the noise of another
unavailability.

• Monitor: Monitoring is the basis of reliability. When
a rocket is launched telemetry is what enables us to
understand if everything is working as expected—the
trajectory, the speed, and so on. Similarly, in software,
if you are not monitoring a service, you do not know
what is happening, and if you are blind to what is
happening you cannot be reliable.

A classic and common approach to monitoring is
to watch for a specific value or condition and then
trigger some sort of alerting (usually email) when
that value is exceeded or the condition occurs.
However, this type of alert is not usually an effective

monitoring solution. A system that requires a human
to read and interpret the alert to decide whether
or not an action should be taken is fundamentally
flawed. Monitoring should never require a human to
interpret any part of the alerting domain. Instead,
software should be responsible for interpreting,
and humans should only be notified when an action
should be taken, or when an automated response has
already occurred.

Another fundamental aspect of monitoring is the
understanding that alerts are, in general, closely
related to symptoms—not causes. Therefore, a
mature monitoring strategy should consider both.

• The Four Golden Signals: In general, the four golden
signals represent the basic indicators for a decent
monitoring of a software service.

 – Latency: The time it takes to process a request

 – Traffic: A measure of how much demand is being
placed on the system.

 – Errors: The rate of requests or processes that fail.

 – Saturation: Basically, how full the service/system is.

• Emergency Response: Reliability can be calculated
as the function of mean time to failure (MTTF)
and mean time to repair (MTTR), where the most
relevant metric in evaluating the effectiveness of the
emergency response is how quickly the response
team can bring the system back to a state of health.

Humans add latency to any process. Even if a given
system experiences more failures, if it can avoid
emergencies that require human intervention it will
have a higher availability than systems that require
constant hands-on intervention. When humans are
ultimately necessary, a well-established framework
of knowledge sharing with thoughtful procedures
and best practices produces huge improvements
in MTTR. In addition to that, constant training and
exercises as the “wheel of misfortune” are essential
to prepare engineers to react to on-call events. While
no playbook, no matter how comprehensive, is a
substitute for well-versed engineers able to think on
the fly, a prepared on-call engineer strategy works
better than having a jack-of-all-trades on-call person.

• Change Management: The majority of production
outages occur as a consequence of changes.
Automations in this domain are a key necessity,
especially in the following areas:

 – Progressive rollouts

 – Quickly and accurately detect problems

 – Quickly and safely roll back changes when
problems arise

Mainframe Site Reliability Engineering

White Paper

By removing humans from the loop, these practices
avoid the normal problems or fatigue, familiarity/
contempt, and inattention to highly repetitive tasks.

• Performance and Capacity Planning: Understanding
current demand, projecting future demand, and
ensuring proactively that sufficient capacity exists to
support the requirements for availability are essential
responsibilities of the SRE.

Final Considerations on the SRE Persona
This section introduced the concept of an SRE, its
main responsibilities, practices, and how it represents a
significant break from the traditional industry model for
managing large data-intensive systems.

Although many of the concepts and technologies are
new, for mainframe professionals, a good part of what
has been presented is not entirely new. This is because
the mainframe industry has been practicing reliability
since its origins and continues to do that to this day. In
fact, there is a good chance many companies already
have professionals that fit this role but are simply not
calling it SRE.

The next sections will provide more insights on the role
of an SRE, but now for the mainframe perspective.

The Mainframe SRE
Why SRE for Mainframe?
Before we navigate through the possibilities of the SRE
role in the mainframe, let’s first discuss the reasons why
we believe that this concept not only makes sense for
the mainframe, but it is also an inevitable part of the
modernization of how we approach platform service
management.

It is a logical conclusion that the concept of a job role
based on the reliability of mission-critical services
must also be applicable to the most reliable computing
platform on the planet. In the world of computing,
no other platform has had the history and impact of
the mainframe. Since its introduction, the mainframe
has remained the backbone of the most critical and
data-intensive applications in retail, finance, insurance,
healthcare, aviation, and payment processing
industries—just to name a few. The unparalleled
reliability, availability, security, performance, and
scalability of the platform along with data and software
applications are continuing to power that backbone to
this day and will do so for the foreseeable future.

The long history of mainframes, however, has
contributed to the reputation of mainframes being
labeled as old or legacy. The reality, however, is
completely different. With emerging technological
trends and related business requirements, the

mainframe as a platform continues to evolve and re-
invent itself in all aspects including hardware, software,
pricing models, and most importantly culture and
mindset.

The need for SRE is born out of a need created by
a change in the way development is done, the Agile
transformation, and the emergence of DevOps, which
together enable a constantly increasing velocity of
application changes.

Although the mainframe may have lagged behind the
rest of the IT world when it comes to Agile and DevOps,
it is clearly making huge advancements over the past
several years. In addition to making the platform more
secure with pervasive encryption, the mainframe
has also evolved to support modern languages and
frameworks like Node.js, Spark, Go, Python, REST/
JSON, and containerization. Enterprises relying on the
mainframe are going thru a cultural transformation to
make it part of their digital transformation journey by
embracing open source and opening up the mainframe
applications and data to the new generation of tools,
processes, and developers. One clear example of this
transformation is Zowe, the first mainframe open-
source project.

It is also clear that the requirement to change the
way operations are done will reach the mainframe if
it has not already. Therefore, it seems reasonable to
conclude that the SRE role on the mainframe not only
makes sense but is inevitable, and that the specific
requirements of the SRE role on the mainframe can
be assumed to be similar to the same role in the
distributed and cloud world.

Another reason why the SRE concept should be
applied to mainframe environments is the set of
benefits that it can bring to how we manage its
services. SRE teams should significantly contribute
to reducing the MTTR of critical services, as well as
support a comprehensive monitoring strategy for them.
Moreover, SRE teams can also act as a catalyst for the
continuous improvement and modernization of the
platform.

It i s a logical conclusion that the
concept of a job role based on the
reliability of mission-critical services
must also be applicable to the most
reliable computing platform on the
planet.

Mainframe Site Reliability Engineering

White Paper

Mainframe SRE Skills and Persona
While we learn more about the SRE in the IT world
we keep asking ourselves how this professional would
fit into a mainframe organization, especially in the
infrastructure services or the Service Delivery teams.
We highlighted some important questions that serve as
our case study starting point to understand the role in
the Mainframe context.

• What are the background skills of the SRE?

• What are the core skills of the SRE?

• Is it possible to build an SRE career path internally
from my organization?

• Should I hire an external professional to be the SRE?

In the following topics we will contextualize these
questions.

• SRE Skill Model: Let us start with the professional
skill model. We can identify three types of
professional skills. In the IT world, we usually have
the I-shaped professionals, who are the expert in
one thing, very present in most of the organizations
where we see silos structured by competencies and
specific skills. The second professional type is the
Generalist. There have been some movements to
create the Generalist—professionals capable of doing
a lot of things, but not really an expert in any of them.
Finally, the last type of professional skill is T-shaped—
capable of doing a lot of things and an expert in one
of them.

To build an SRE professional, it is essential to
be focused on a T-Shaped model. It is crucial to
have strong expertise in one critical area, usually
the original background skill. Originally in a
distributed environment the SRE usually starts
with a development/engineering background and
then builds the horizontal trait of the T—looking for
broader knowledge in the infrastructure operational
skills.

However, in a mainframe environment, considering
the applicability context of this white paper
(MF Infrastructure – Platform – Service Delivery
Management) we believe that it should be the
other way around. Considering the complexity of
mainframe infrastructure skills, we suggest building
an SRE starting from professionals with operational
background skills.

As you might recall from the Dawn of SRE section
the core activities for an SRE would vary from
Engineering and Operations, however, it is essential to
ensure that an SRE works at least 50% on incidents.

As another suggestion, you can still balance the
background skill from your squad by adding
fewer professionals with an original background in
development/engineering and enabling them in the
operational infrastructure side. However, this will
require more effort from the professional based on
mainframe complexity particularities.

Create successful SRE teams from individuals who possess a broad range of mainframe skills.

Mainframe Site Reliability Engineering

White Paper

In summary, as per the three skills models listed
below, you can think about what is the predominant
skill type that your organization is based on.

 – I-shaped professional: An expert in one thing.

 – Generalist: Capable in a lot of things, but not an
expert in any.

 – T-shaped practitioners: Capable in a lot of things
and expert in one of them.

T-shaped is a new way of learning where you
combine a deep understanding of a foundational
skill where you are the expert with a broad range of
knowledge. T-shaped teams can view problems from
various mindsets and competencies and resolve them
at a faster speed. That’s the core skill model required
for a professional looking for SRE skills

• SRE Core Skills: There are many skills required to
build an SRE professional, this is not specific to
mainframe only, and it is not technology wise. Below
the core skills are comprised in six main areas:

 – Data analysis: Mathematical and statistical models
to assess trends, data-driven/scientific approach to
fact-finding, monitoring and event management.

 – Software engineering: Provide solution
optimization, innovate breakthrough solutions, and
develop strategic plans.

 – Platform skills: System thinking for reliability,
troubleshooting, monitoring and event
management, security.

 – Tools skill: Deploy and release services, tools, and
technology across the SDLC.

 – Process skills: Organizational knowledge, DevOps
and Agile principles and practices, and engage
thinking at strategic levels.

 – Leadership skills: Strong communication/
collaboration, a work ethic of caring about
production systems, availability, and users,
communicate on an executive level, employ cross-
organizational leadership, employ collaborative
influence, and engage in client projects on a
leadership/trusted advisory level.

Mainframe SRE Team/Organization
First and foremost, we must make clear that there
could be many different implementations of an SRE
team for the mainframe environment. They will be
heavily dependent on each organization’s environment
and needs. However, just like the traditional distributed
services SRE teams might have different priorities and
day-to-day activities, they all should share a common
set of core tenets. Based on that, in this white paper
we will explore the possibilities and propose a mental
exercise on the composition of an SRE team and how it
would operate.

That being said, regardless of the organization
structure, we believe that any implementation of an
SRE team for the mainframe should be composed by
professionals from different backgrounds and skillsets,
because a team with a diverse background results in
higher-quality solutions, as the team will have a holistic
view of the environment.

As previously established, one disruptive premise of
the traditional approach for distributed services SREs
is that only developers/engineers should be hired
into an SRE function. We believe that this should be
approached differently for mainframe environments.
The reason for this is that the premise of a distributed
system SRE is that it is easier to teach a software
engineer system operations activities due to the
proximity of their skillset. For the mainframe we believe
that, generally, there is a larger skill gap of traditional
application development to infrastructure work,
hence it should be easier to teach engineering skills to
infrastructure support teams.

For this exercise, from the many different combinations
of skillsets that could compose an SRE team for the
mainframe, one of them is a team composed majorly of
professionals from z/OS System Support, Automation,
and Performance & Capacity teams. This choice of
team composition comes from the expertise each of
these professionals brings to the table and how they
relate to the role that an SRE would play in a mainframe
environment. For example, the z/OS System support
has a deep understanding of the operating system and
is capable of troubleshooting problems from a variety
of sources, and it is also capable of performing general
system administration tasks. The Automation support
brings the knowledge of the mainframe automation
technology stack, scripting knowledge, and alert
management. Finally, the Performance support brings
the knowledge of the mainframe performance and
capacity management, monitoring, and metrics.

Of course, we must emphasize that this selection of
skillset does not mean that other skills and areas of
expertise are not valuable to the role of SRE, only

Considering the complexity of
mainframe infrastructure skills, we
suggest building an SRE starting
from professionals with operational
background skills.

Mainframe Site Reliability Engineering

White Paper

that from the range of skills available, we believe that
these three cover a larger area of demands required
to fill the SRE role. For example, depending on how an
organization chooses to create the team, it could also
be composed of experts in other areas like mainframe
networking, security, and storage support. However, in
some cases, a well-versed z/OS system administrator
could also support these areas. In the end, it will all boil
down to how the organization is structured.

Another possibility is to have the SRE team mixed with
other SRE teams for the distributed platform. Although
initially, they will remain siloed, the proximity between
both teams under the same management structure
means that they will be able to learn and share SRE
skills and practices from each other.

What would be the work dynamic of such a team?
Based on what we’ve learned about the site reliability
engineering responsibilities and practices we can
elaborate on the following scenario:

Just like in the traditional implementation, the SRE
team would be responsible for running the mainframe
infrastructure, however, we would cap their operational
load at, ideally, 50%. The other half of their time would
be spent on eliminating toil, making the system more
robust, and other modernization projects.

During their operational work they would share
responsibilities with the other infrastructure support
teams. For example, they might work on tickets and
changes from z/OS System Support, Performance, and
Automation. However, the exceeding requests would be
routed to the support teams themselves. The SRE team
would also be involved in critical incidents, however,
differently from the other support teams, the SRE
would be involved whenever an application/service is
impacted. This means that although the SRE team has
a holistic view of the entire mainframe infrastructure,
they are responsible for the health of the critical
applications running on it. Ultimately the mission-
critical applications running on the platform are what
actually deliver value to the customer.

For this to work, the SRE teams must have a deep
understanding of the critical applications running on
the mainframe, and a complete monitoring strategy
in place for the tasks, jobs, transactions, and any
middleware infrastructure that support it.

Meanwhile, as we are managing a multi-disciplinary
team, even though each team member might have
a specific area of expertise, the team must conduct
regular cross-training sessions early on so everyone in
the team is ultimately capable of performing any task.

Mainframe SRE Toolchain
With the emergence of a new generation of mainframe
SREs, the tooling that enables them to do their job
effectively and efficiently is anchored by three key
tenets: Open Source, Integrated Environments, and
Simplification.

Back in 2013, the Open-Source survey concluded
that “Open source is eating the software world”. Fast
forward to today, it has become a reality that many
Enterprises are embracing. In line with that strategy,
the new breed of mainframe SREs should leverage the
power of open-source tools to modernize and optimize
their workflow.

Integrated environments that enable SREs to do more
with fewer tools are key to SRE efficiency. As discussed
earlier, there are several tasks that an SRE is responsible
for including software development, data analysis,
monitoring, installation, and configuration, and so on.
Having an integrated environment that allows SREs to
do all those activities using one solution would improve
workflow and efficiency.

Simplification and consolidation of the data and
processes to monitor and do root-cause analysis
would help an SRE be more effective at their job. With
the emergence of AI-driven prediction models, it is
important to consolidate alerts and present the relevant
information in an easy to consume fashion.

The objective of this section is to provide a list of
categories and technology choices that we believe a
Mainframe SRE can leverage to perform their regular
as well as ad-hoc tasks. However, it is important to
highlight that this is not, by any means, an exhaustive
list of tools and technologies.

Development Environment and Source Control:
Automation of manual process would entail writing
code/scripts and managing them in a version control
system for ongoing maintenance and automation. Open
source and integrated environments are the tenets
driving the tooling considerations. Several open-source
tools and technologies are available:

This means that although the SRE
team has a holistic view of the entire
mainframe infrastructure, they are
responsible for the health of the critical
applications running on it.

Mainframe Site Reliability Engineering

White Paper

• IDEs (Visual Studio Code, Eclipse Che): 3270
terminal emulators have been the most popular
IDE for mainframe code development, but with the
Zowe-powered open-source revolution, new talent
can leverage open-source IDEs like VSCode, Eclipse
Che, and so on. These tools provide the flexibility
for developers to use the rich client or a web-based
interface to write REXX, JavaScript/Typescript, or
Python code without having to jump to a different
tool. For a modern mainframe SRE, a VSCode like
development environment is the best tool to develop
and manage the automation code.

• Git: Git has emerged as the de-facto standard in
software version control. Git enables developers to
work in isolation and integrate their changes with
others when ready. Enterprise Git repos like GitHub,
GitLab, Bitbucket, and so on. use the Git protocol and
enable collaboration capabilities like pull requests on
top of standard Git. All the popular IDEs provide Git
integration for code development, and CI/CD tools
like Jenkins and source scanners like Sonar have
integrations with Git.

Automation: The daily bread of SRE is building and
maintaining any automation that might be useful.
Automation for a mainframe SRE could involve CI/
CD pipeline automation, software install/maintenance
automation, configuration management, auto-recovery,
and manual task automation where everything is
managed as code. Automation is a category that
is driven by several tenets. Automation leverages
open-source tools, enabling the integration of off-
platform tools with mainframe processes resulting in
simplification—a repeatable process with the push of a
button. Managing configuration, infrastructure, policy,
observability, and so on as code that can be versioned,
reused, or reverted enables the SRE teams to achieve
repeatable processes. There are several choices
available for mainframe SREs to pick the right tool for
the right automation job.

• Zowe: An open-source initiative under Open
Mainframe Project enabling the integration of off-
platform tools, open-source or otherwise, to integrate
with the mainframe processes and tools. SREs can
leverage the power of Zowe CLI, SDKs, and secure
API ML to automate CI/CD pipelines using tools like
Jenkins, CircleCI, and so on.

• Ansible: A framework developed for remote
node management primarily with a focus on non-
developers. It is particularly strong for inventory,
credential, or task management. SREs can leverage
Ansible to automate manual IT tasks. Ansible is
supported on z/OS and can be the framework for
managing hybrid environments that span mainframe
and cloud environments.

• z/OSMF Workflows: Though not open source,
z/OSMF workflows are emerging as part of the new
standard for z/OS software management. From the
technical perspective, a z/OSMF workflow is an XML
file defining a set of steps (JCL, REXX, shell scripts)
and variables that are used to guide users through
a process. A workflow can be also executed without
human interaction to enable automation of software
and infrastructure management.

• z/OS Automation solutions: Again, not open source,
but z/OS traditionally has automation solutions
that monitor and react to system events and early
problem detection. Broadcom OPS/MVS, BMC
AMI Ops Automation for z/OS®, and IBM Z System
Automation are a couple of examples of such
automation solutions.

Performance Management: Performance Management
includes monitoring, alerting, and quick triaging as a
part of the SRE responsibility. Though there has been
only limited uptake of open-source tools in this space,
simplification and artificial intelligence are key drivers.

• Monitoring: Traditional resource monitoring tools
provide insights into the health of a diverse set of
resources, including subsystems, storage devices, and
networks.

• Dashboarding: To provide better visibility into the
overall performance of the system, there is a trend
to move towards dashboards presenting relevant
information at a higher level and enabling information
from multiple sources to be combined to streamline
root cause analysis. Technologies used here include
Grafana, Prometheus, and Superset.

• Proactive Issue Detection: Increasingly, AI engines
are used to detect issues before they become
problems. SREs should tune these engines where
possible to detect more and more issues as they shift
from reactive to proactive management of their data
center.

• Alert Management: The above monitoring and issue
detection tools run the risk of overwhelming SREs
and Operators with alerts fighting for attention. By
centralizing alert management, SREs can define
business rules to minimize noise and focus on the
alerts that matter.

… the new breed of mainframe SREs
should leverage the power of open-
source tools to modernize and optimize
their workflow.

For more product information: broadcom.com
Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.
MFD-Site-Reliability-Engineering-WP100 April 27, 2022

Mainframe Site Reliability Engineering

White Paper

Final Considerations
Throughout this white paper, we have discussed the role of Site Reliability Engineering in the modern IT industry.
We briefly described its origins, the context that led to its creation, the differences with the traditional sysadmin
approach for systems management, its intersections and differences with DevOps, and the tenets that guide the
SRE profession.

It is not a surprise that many of the concepts presented in this white paper are not entirely new to us mainframers.
Reliability runs in our veins. The mainframe is a state-of-the-art technology that has been evolving and adapting to
meet our customers’ most bold technical demands with the utmost reliability and performance.

In this white paper, we have explored the possibilities around the role of the SRE in a modern mainframe ecosystem.
We have laid out our arguments on why we believe that this role is not only a natural next step for our industry,
but it is inevitable. We presented some of the possibilities, but at the end of the day, each organization will have to
decide which path they will follow.

References
• The Site Reliability Workbook

• Site Reliability Engineering

• On Designing and Deploying Internet-Scale Services

• Tenets of SRE

About the Authors
Writing and other contributions from each of the following individuals were included in the creation of this white paper.

• Venkatauday Balabhadrapatruni, Broadcom

• Guilherme Cartier, Kyndryl

• Michael DuBois, Broadcom

• Per Kroll, Broadcom

• Greg MacKinnon, Broadcom

• Jan Prihoda, Broadcom

• Viviane Sanches, Kyndryl

Kyndryl and the Kyndryl logo are trademarks or registered trademarks of Kyndryl, Inc. in the United States and/or other countries.

https://www.broadcom.com
https://sre.google/workbook/table-of-contents/
https://sre.google/sre-book/table-of-contents/
https://www.usenix.org/legacy/events/lisa07/tech/full_papers/hamilton/hamilton.pdf
https://www.oreilly.com/content/tenets-of-sre/

