
WHITE PAPER | NOVEMBER 2014

Eliminate Software
Development and Testing
Constraints with Service
Virtualization

2 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

Table of Contents

ca.com

Executive Summary� 3

Section 1: Creating a “Live-Like” Environment� 4
Simulating Dependent Systems in Dev and Test Environments

Section 2: Enabling Parallel Development and Testing� 5
Dev and Test Teams Working Simultaneously

Section 3: Handling Test Data for Out-of-Scope Dependencies� 6
Missing Downstream Data is No Longer a Problem

Section 4: Supporting Heterogeneous Technology and Platforms� 8
Creating a Truly Complete Environment

Section 5: Conclusion� 10
Taking the Right First Steps

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

Executive Summary

ca.com3 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

Challenge
The growing complexity of applications, along with globally-dispersed organizations, means teams face a
barrage of bottlenecks as they strive to deliver. Examples of bottlenecks—or constraints—include access to
mainframe or ERP test environments, lack of test data, access to third-party systems, and budget limitations.
Often, constraints are created parallel development teams seeking access to the same environments. Often,
teams try to either copy a complete environment in a test lab, or “mock up” responsive systems by coding their
own versions for test purposes. This can become a costly and time-consuming endeavor.

Opportunity
In essence, Service Virtualization (SV) is the productization of the practice of “mocking and stubbing”
dev and test environments, with enough realism and context to push development forward faster,
while shifting testing left in the lifecycle so integration and release processes can happen faster,
with higher quality and less risk.

Benefits
What follows are a number of capabilities your organization should look for in a Service Virtualization
solution, enabling your extended teams to get high quality applications to market faster, with lower cost
and risk. These include:

Provides development with a more live-
like environment

Higher quality development and more effective
regression/system testing

Enables parallel development and testing Reduce cycle times, earlier defect discovery,
efficient use of resources

Virtualizes test data for out-of-scope systems Faster setup/teardown, more stability for
test automation

Enables high-performance environments Better realism and quantity of performance
testing at dramatically lower cost

Since no application development and testing environment is an island unto itself, it is also critical that
Service Virtualization solutions provide a “vendor neutral” substrate for the tools of choice that teams may
have in place. Service Virtualization should provide target environments that work alongside existing
application lifecycle solutions such as Test Management (TM), defect management/issue tracking and
leading hardware and test lab virtualization products that exist in the environment.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com4 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

Section 1: Creating a “Live-like” Environment

Simulating Dependent Systems in Dev and Test Environments
As application development trends toward more composite, service-oriented architecture approaches,
a much wider variety of upstream and downstream systems must be simulated by teams in their dev and
test environment. Service Virtualization should be applied at or between any layer where dependencies
exist, to provide the most realistic or “live-like” possible environment.

In the conventional approach, teams try to move forward with their own component development by
“stubbing” the next downstream system only.

For instance, if I am developing a web UI, I build a stub for a couple expected responses from the next layer
down, (i.e. the web service). Then the web service developers might stub out their underlying ESB layers, or
try to mock up some user requests from the web UI. Unfortunately, this is a manual process that is never
sufficient to encapsulate the many types of connections and data that exist within enterprise software
architectures, and may be completely unavailable if there’s not yet a UI coded, as seen below.

Alternatively, when teams are working with real data scenarios and real behaviors captured as Virtual
Services, their productivity level is higher, as the resulting environment is far more realistic and current
than sets of stubs that must be manually coded and maintained.

Therefore, the critical technique that enables “live-like” environments is automation of virtual service
creation and data maintenance. This enables development teams to be far more productive due to realistic
virtual lab environments, even if the user interface is incomplete, while spending less time working to
create or modify outdated stubs.

System in
Development

System in
Development

Live-like Service Virtualization Environment:
Before & After

Stub 1 Stub 2

Specs
wrong

Specs A Meeting Actual Captured
Behavior

Automation

Virtual Services

Many Real
Data Scenarios

Sample
Data

Only 1 data
scenario out of 100’s

Completely
unavailable

“We just wait”

Lost 30-60% productivity

Figure A.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com5 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

Expected benefits:
•	Ability to start development despite interface system unavailability

•	Reduced cycle time for test execution

•	Ability to improve the test coverage because of reduced data dependency on other applications and
available testing time

•	Improved unit testing with lesser effort

•	Improved code quality due to increased test coverage and regression testing

•	Ability to build a simulator quickly with low maintenance effort

Section 2: Enabling Parallel Development and Testing

Dev and Test Teams Working Simultaneously
The second critical capability of a Service Virtualization solution is enabling parallel development and
testing. When dev and test teams work simultaneously, the overall software lifecycle reaches a whole new
level of efficacy and efficiency. New solutions can be delivered at great value to the organization.

In parallel dev and test, Virtual Services act as the “go between” assets between the system under
development, and the system under test in a symbiotic fashion. In the example below, a team is developing
an order management service (OMS) while the team at the top is developing and testing an “e-store” app.

Parallel Development Process

E-Store

Order Management Service

Capture and
update to spec

Update model by
observing new build

Update model by
observing new build

Use live service
or virtual service

as needed

Feedback Feedback Feedback

Figure B.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com6 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

A Virtual Service is captured from the existing OMS system as an initial back-end for the e-store’s testing
activity. Then as the testing continues, the e-store team can communicate back any unexpected or new
response requirements as “feedback” virtual service requests that essentially become a next set of
requirements for development. Each parallel dev and test cycle continues to accelerate as each iteration of
Virtual Service model updates happens with each new build, and feedback happens faster and faster.

The perfect parallel development solution allows teams to execute against the live services where they are
available, functionally robust, and data synchronized. And in those cases where teams do not yet have
services that support the component correctly, they can switch immediately back to virtual services. This
ability to flip a switch and go between a purely virtual downstream system through virtual services, or to
the live system, knowing that you always can go back if a new build breaks, or if a new data scenario is
required, is a very powerful asset to creating a robust parallel development capability.

Is your practice of generating and updating software lab environments keeping in touch with reality?
In essence, the parallelism of Service Virtualization enables the agility we expected of Agile for complex
software environments—by more closely aligning dev and test cycles with business release goals in tight
iterative releases.

Expected benefits:
•	Ever-increasing speed of test and development cycles

•	Enables true responsiveness of Agile iterations, with continuous integration and builds aligned
around test results and business requirements

•	Reduced burden of version control, works with existing ALM and development management tools
to make them more effective

•	Increased rate of issue acceptance and resolution prior to production

•	Deliver function points up to 60% faster, with higher quality and accuracy to specification

Section 3: Handling Test Data for Out-of-Scope Dependencies

Missing Downstream Data is No Longer a Problem
Every team needing to provision a lab for their activities has some systems and associated data that are
considered in-scope, and others that are out-of-scope. An in-scope system is one in which they are performing
a development change or test directly on that system. An out-of-scope system is one that is required in support
of that in-scope system, but is in fact not the subject of the development or testing activity. It is considered a
dependency. It is necessary, but it is not the subject of the development or test activity.

In this scenario, the team developing and testing a booking engine is attempting to aggregate the needed
downstream and user input data scenarios, but they don’t have keys to the whole kingdom.

The most obvious solution is the usual practice of Test Data Management, importing data directly from the
in-scope systems, and “stubbing” or mocking those out-of-scope systems by attempting to write code and
import a couple lines of data to represent the expected responses of those out-of-scope dependencies.
These stubs are inherently brittle, and developers take the most expedient route in simulating the basic
functionality or response scenarios they expect. However, as the complexity of today’s distributed software
increases, the effort of manually coding and maintaining useful stubs has become far too costly.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com7 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

Is it real, or virtual data?
What we need is a way to simulate the behavior of those out-of-scope systems with enough intelligence so
that the in-scope system believes it is talking to the live system, but is in fact not.

Service Virtualization takes the approach of making all that missing data behind the in-scope system no
longer a problem, by automating the capture of relevant downstream scenarios that are out of scope.

TDM
Tool

Input Data Booking
Engine

Oracle

SQL Ops SaaS

CRS GDS

GDS SAPFF

Out-of-scope data not covered by Test Data Management

Input Data Booking
Engine

Oracle

SQL Ops SaaS

CRS GDS

GDS SAPFF

Virtualize out-of-scope test data

Figure C.

Figure D.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com8 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

The end-state example of virtualized Test Data Management shown here looks almost too simple, but this
is actually how your testing process should interact with external or out-of-scope dependencies. Virtual
models allow all your teams to always have on-demand access to relevant datasets for systems under test,
and that data will cover almost infinite valid data scenarios to support high-volume performance and
regression testing needs.

Service Virtualization capabilities should include mechanisms to bring all of the systems needed into
the development and test lab environment, including provisioning the data of out-of-scope systems, and
maintaining “stateful” transaction data as it passes between systems in a workflow over time. For instance,
simulating the changing of values such as dates or cumulative amounts in a long-running transaction so
these kinds of complex workflows can be validated at a necessary level of detail.

Expected benefits:
•	Eliminates delays due to lack of access or current data from out-of-scope systems

•	Availability of valid test scenarios 24/7 for multiple test and development teams

•	No conflicts over test data or invalidation of other teams’ activities by overwriting or changing data
in systems

•	Little or no impact on critical live systems

•	Support for “stateful” transactions to support complex processes that cross multiple technology
layers and need to maintain specific values such as dates, customer IDs, etc.

•	Reduced time spent on data setups and resets by up to 90%, cutting overall test lifecycle times
by 40-60%

Section 4: Supporting Heterogeneous Technology and Platforms

Creating a Truly Complete Environment
Recently I visited the architecture team of one of the world’s largest banks, when I heard a stunning
statistic. This gentleman said their hardware asset management system claims there are more servers
deployed in the bank than there are employees in the bank. Every project team would justify the expense of
its own development, testing, pre-production, and production hardware expenditures. Most every
application currently in use at the bank has at least these four environments behind it, even though the
maintenance or changes on those applications in many cases go months or years between releases.

Ironically, the greatest challenge most existing pre-prod environments have is that they are never the
complete system. A project team can purchase any number of servers, and use them to replicate some
hardware or components on VMs they have access to. But even though every team allocated their own
hardware budget, they still spend countless months of their development cycle waiting on access, and
inefficiently accessing shared system resources.

Heterogeneous systems are the norm in enterprise IT environments. Therefore, Service Virtualization
should be applied to virtualize any and all dependencies that can impact the system under test (SUT).
This includes web traffic (HTTP), web services (SOAP/XML), integration layers & ESB (JMS, etc.), as well as
simulating transactions and connections with underlying mainframes (CICS, CORBA, etc.), databases (JDBC,
etc.) and third-party services.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

ca.com9 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

Since every connection point in your software architecture represents a potential point of change, and
presents a potential risk of failure, it becomes critical that Service Virtualization provides a better way for
teams to “virtualize everything else” and thereby isolate themselves from dependencies on these
heterogeneous components.

Using Service Virtualization, hundreds of pre-production labs are folding into one vastly simpler to manage
infrastructure, with software based provisioning on an on-demand basis for any of the required
environments. Projects not currently under change will no longer consume power, generate heat, or
consume floor space. Dependencies are captured and eliminated. Instead of needing live system access for
the mainframe partition, the team will provision a virtual service of the customer information management
system on-demand.

Expected benefits:
•	Faster delivery through anytime 24/7 access to isolated lab environments for all dev and test teams

•	Reduced cost of conventional pre-production infrastructure—potentially saving $20M+ per year for larger
enterprises

•	Eliminates service costs and fees of accessing remote systems

•	Allows teams to “shift testing left” and build in quality at a component development and system
integration level far before conventional user acceptance testing activities. Reduced time spent on data
setups and resets by up to 90%, cutting overall test lifecycle times by 40-60%.

Also note that heterogeneity applies to process-level tools which teams use to collaborate, and not just the
assets you virtualize. It is critical that Service Virtualization solutions provide a “vendor neutral” substrate
for the tools of choice that teams may have in place. Service Virtualization should provide target
environments that work alongside existing application lifecycle solutions such as Test Management (TM),
Defect Management/Issue Tracking, Test Data Management and leading Hardware and test lab
virtualization products that exist in the environment.

MAINFRAME DATA LEGACY EXTERNAL

ESB

SUT

SUT
Figure E.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

10 | WHITE PAPER: KEY CAPABILITIES OF A SERVICE VIRTUALIZATION SOLUTION

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables
them to seize the opportunities of the application economy. Software is at the heart of every business,
in every industry. From planning to development to management and security, CA is working with
companies worldwide to change the way we live, transact and communicate – across mobile, private
and public cloud, distributed and mainframe environments. Learn more at ca.com.

Connect with CA Technologies at ca.com

Copyright ©2014 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. This document is for your
informational purposes only and CA assumes no responsibility for the accuracy or completeness of the information contained herein. To the extent permitted by applicable law,
CA provides this document “as is” without warranty of any kind, including, without limitation, any implied warranties of merchantability, fitness for a particular purpose, or
noninfringement. In no event will CA be liable for any loss or damage, direct or indirect, from the use of this document, including, without limitation, lost profits, business
interruption, goodwill or lost data, even if CA is expressly advised in advance of the possibility of such damages. � CS200-94676_1114

Section 5: Conclusion

Taking the Right First Steps
How many times have you approached your development or testing manager with the question: “Why
didn’t you deliver when you said you would?” Only to hear every reason for the delay was because of other
teams and their presumed broken promises or challenges. Examples that have been related to us, and that
I have experienced myself include:

•	“Yeah, but we were supposed to get the build for the new order management system last month but we
just got it last week.”

•	Or, “Yeah, but every new build of the order management system introduced some new things we needed
but broke other things we already had working.”

•	Or, “Yeah, but the stub that other team gave me for order management only has one customer profile in
it, so I can’t build or test any of the other scenarios that I really need in order to get this thing done.”

Ultimately, we can’t finish our job until the other guys are finished with their “Yeah, but…” job we are
depending on. Each team associated with a composite application must be free to construct its own lab
from the infrastructure, on-demand. There will inevitably be intra-team dependencies. This is why Service
Virtualization capabilities are so critical. Each team is free to take the specifications from its downstream
dependencies and build the expected, To-Be state of its downstream dependencies, before they even need
to see the first build of those downstream dependencies.

Service Virtualization provides an essential platform for enterprise software development and testing.
There are many other details to consider when planning a strategy for SV enablement, especially on the
organizational side. Who contributes to the solution, and who consumes it? Who owns and manages the
virtual services within your extended organization of teams and partners? A well-rounded approach to
Service Virtualization will take into account not just the technical details but the operational ones that can
best guarantee widespread adoption and success.

http://www.ca.com
https://plus.google.com/+CATechnologies/posts
http://www.ca.com
http://www.ca.com
https://www.facebook.com/CATechnologies
https://www.linkedin.com/company/ca-technologies
https://twitter.com/CAInc
https://www.youtube.com/user/catechnologies
http://blogs.ca.com/
http://www.slideshare.net/cainc

