
Identity in Mobile Security

WHITE PAPER | SEPTEMBER 2014

2 | WHITE PAPER: IDENTITY IN MOBILE SECURITY

Table of Contents

ca.com

Introduction 3

Section 1: Recent Threats 4

Section 2: Challenges in Securing Mobile Apps 5
Protection of APIs
PKI (Public Key Infrastructure)
Evolving security standards

Section 3: Requirements 6

Section 4: A New Approach to Security 7

Section 5: Server-Side Features 8

Section 6: Client Architecture 9
Client token and private key storage
Client-side libraries

Section 7: Provisioning Protocol Flow 11

Section 8: Conclusion 12

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

3 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Introduction
In recent years, the concept of “Anywhere, Anytime Computing”
has become the common denominator in driving personal
electronic device sales, as users are adopting to new categories
of devices such as smartphones, tablets, and smartTVs. These
devices enable consumers and employees to access
information and services from almost any device at any time.
Gartner studies show that the estimated mobile phone market
is to reach 1.8 billion devices in 20131.

As the surge in mobile device sales continues, the number of
iOS and Android applications that provide a more personalized
app experience for both professional and private usage is
proliferating. To meet high demand, developers worldwide are
leveraging social network identity platforms or enterprise
identity systems to provide a customized app experience. On
top of this, applications and data are now dispersed in multiple
datacenters around the globe, and the primary challenge is
how to manage the increasing number of user identities that
need to securely access these applications2 However, protecting
one’s identity information may not be taken into consideration
as often as users would like. In many cases, users need to
access different resources that reside in a cloud environment or
behind an enterprise firewall. Thus, fortressing identity has
superseded the traditional enterprise network perimeter as the
new model for security.

The concept of using identity as a basis of access control is not
a new digital invention; national passports for example have
been an unequivocal source of identity verification for over 600
years. But the ease of transferring information in adigital and
mobile-enabled world has made confidential data management
more imperative, especially in mobile applications.

Payment by mobile device is an example of a new and innovative
mobile service that relies heavily on verified but sensitive user
information. Exactly how any mobile app accepts user credentials
and verifies information is a critical success factor. Therefore, two
parts exist for this issue: authentication and protection of data.
Mobile apps need to resolve and verify user identities in a reliable

and trustworthy manner. The OAuth protocol was introduced to
defeat the anti-password pattern where users previously had to
share their credentials with apps whenever access to a protected
resource was necessary. Even though OAuth has improved the
situation, it is still often the case when the user is still required to
type out passwords. Consequently, this has lead to an increased
usage of low-entropy passwords. A recent study showed that
approximately 82% of passwords were cracked within an hour3.
This is a concern, and as user identity has quickly become the
main critical service enabler, which means a stronger focus on
mobile security is paramount. Until very recently, the mobile
industry as a whole has been mainly concerned with device
management, and what has been missing is a renewed focus on
enabling secure applications. In collaboration with Samsung, the
NSA (National Security Administration) has taken a step toward
this direction by creating SE Android. However, this solution is
only available through the Samsung Knox program, and does not
address a particularly important scenario where the mobile app
is consuming sensitive data on the backend.

By looking at the security gaps in mobile applications, the
following critical areas must be resolved in protecting user
identity and data. First, mutual trust should be established
between the client app and the backend API provider. Second, an
enterprise or organization’s identity management infrastructure
must develop a method of assisting mobile apps that require
access to resources behind firewalls. Third, the usage of
username-password authentication schemes is reduced to a
minimum while security rules are still applied.

This paper brings forth recent threats that have affected millions
of users and suggests a strong yet simple low-cost solution that
not only allows mobile apps to access sensitive data, but retains
the trustworthiness of client apps and its users.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

4 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Section 1:

Recent Threats
In 2012, millions of Facebook, Twitter and Pinterest user
accounts were compromised as attackers launched more
sophisticated social engineering attacks than ever before4.
Recently in early 2013, a large scale attack by a mobile app
that disguised as “secure banking software” victimized Android
users in several countries, by forwarding personal information
to hackers located in Russia5. On a smaller scale, some
Trojan-horse programs such as Android/MarketpayA made
purchases unbeknownst to the mobile user. These are just
some of the threats that have affected mobile users worldwide.

According to the McAfee Threats Reports, mobile malware
samples have increased alarmingly, reaching over 50,000 in
2013 with 28% detected just in the first quarter of the year6.
Simultaneously, as part of a set of recommendations for the
federal government, the GAO (U.S. Government Accountability
Office) reported that malware has increased by 185% in less
than a year7. Even though common motivations such as
financial gain and acquiring free content have continued to
boost the number of security threat cases, malicious spyware
and targeted attacks are reported to become more prominent
in 2013.

With the increased number of companies allowing BYODs (Bring
Your Own Device), employees’ personal mobile devices may not
contain the same level of security measures that most
enterprise administrators would specify in corporate-issued
devices. Mobile devices have become more versatile in its use,
from providing video calls to paying for coffee at the local café.
At the same time, corporate apps have access data that are
buried deep inside the enterprise. Many of the so-called BYOD
usage programs have made it harder to track device inventory,
and there is a shift toward controlling mobile apps and its
users. Yet, the most common form for authentication is based
on username-password mechanism to authenticate the user.
More alarming is that many apps streamline the login process
by storing credentials locally in clear text.

More often than not, securing user information is second to
device management in the development process; hence, flawed
implementations of identity verification protocols are common.
Consequently, Man-in-the-Middle attacks where the malicious
app can gain access to information from an enterprise or
sensitive user data has proliferated.

Section 2:

Challenges in Securing Mobile Apps
There are a plethora of reasons for the increase in security
breaches. App developers are generally on a tight schedule to
deliver high visibility features, and for that reason, security is
usually not the focus of their projects. Simultaneously, the
number of new attacks that surface is growing so quickly that
it is getting increasingly difficult to properly address them.
Ideally, one would expect the various device platforms to
provide adequate built-in security. The reality is that although
platform security is improving, it is not consistent across all
platforms, nor is it sufficient enough to address all security
issues. We identified three common challenges developers face
when building secure apps.

Protection of APIs
One of the main challenges with mobile apps is to be able to
consume the backend APIs while providing adequate access to
authenticated and authorized requests. While many solutions
point to OAuth as a solution, in reality this is only covering the
bare minimum. Different APIs have different requirements; in
case of high-value APIs where the protected resource has
monetary value or otherwise needs a high level of assurance,
one would expect a two-way trust establishment to take place
before the API can be successfully invoked. Additionally,
regulatory concerns such as HIPAA, PCI Compliance and
Sarbanes Oxley, where cryptographically secure levels of trust
are required by law, are of prime importance in some very large

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

5 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

industry sectors. A mutual trust needs to be established
between the app and the backend. It is only in that situation
where the protection of backend APIs occurs and the
transaction gets executed properly.

PKI (Public Key Infrastructure)
Cryptographic security through digital signatures and
encryption is useful in a number of areas. As a fundamental
building block in securing applications, PKI systems can
establish identities of components in a system as well as in
mobile app development that includes devices, apps, and
users. More importantly, PKI underpin trust establishment
between these entities.

Every entity participating in a PKI ecosystem has a public
and private key pair. The public key is embedded in a
digital certificate to bind it to the owner of the private key.
A Certificate Authority hierarchy is required to manage the
issuance and revocation of digital certificates within a PKI
system. Both parties in a transaction using digital certificates
will trust the Certificate Authority. It becomes extremely
important to secure the private signing keys of these Certificate
Authorities because if these keys are compromised, the entire
trust system will be broken. Equally, it is a challenge to keep
the private key secret in a mobile device that can easily be
exposed through malware.

Recently, the number of cases involving exploits, attacks, and
tampering of sensitive data calls for a need to improve
encryption practices in PKI architectures. Attacks such as the
hacking of VeriSign in 2010 and on various CA organizations
such as GlobalSign and DigicertMalaysia have raised serious
concerns among administrators around the globe8. Public key

systems are vulnerable to man-in-the-middle attacks. Because
these digital certificates carry vital information about identify
users, it can be concluded that protecting the authenticity and
integrity of the certificate is, indeed, imperative.

Evolving security standards
The industry and vendors are creating security standards
and solutions at an accelerated pace. The evolving standards
and solutions can be difficult to understand, implement, and
maintain for the average developer. There are numerous
technologies available for identification, authentication and
authorization. Just in the backend system alone there are an
infinite number of standards such as SSL with mutual
authentication, FTP Credentials, HTTP Basic, and X.509
Certificates. Additionally there are proprietary single
sign-on mechanisms that are relevant in app development
at the moment.

The adoption of OAuth has driven new requirements into the
OAuth 2.0 standard. Similarly, OpenID Connect is constantly
evolving to meet developers’ requirements. The rapid
developments of these standards leave developers with the
options of keeping the support for existing implementations or
adopt the new versions. All of these standards and solutions
may not necessarily be the app developer’s focus when there
are other more immediate concerns such as meeting a hard
project deadline for getting “something” to market. At that
point, there is certainly no time to provide advanced
capabilities that can dynamically arm API requests with the
appropriate security rigor.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

6 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Section 3:

Requirements
Organizations that expose APIs for mobile applications require full control over what threat protection
mechanisms are deployed. Yet “full control” must be balanced with a viable model that developers can
easily use and understand.

An optimal way to ease the developer effort around security is to offer mobile app developers a client-side
SDK that conceals the complexity of security. The SDK must provide a simple and easy-to-use API that
enhances the calls to the backend API with the necessary security rigor.

When a new authentication scheme is invented it will be easy to update a client library and backend
without forcing developer to understand the details. It provides a clean separation between app logic and
security concerns. The key requirements for this solution include providing mechanisms for mobile SSO
(Single Sign-On) and mutual SSL. The purpose of mobile SSO is to reduce amount of the password typing on
a device. When an SSO session is used, potentially confusing app behavior is avoided, and the user
experience is improved. At the same time, mutual SSL will ensure a two-way trust establishment between
the client and the backend API.

On the client side, any key material or tokens must be securely stored. However, this requirement remains a
challenge, as independent software vendors continue to rely on the strength of the underlying platform.
Furthermore, the architecture must distinguish between the main entities in a mobile security use case
user, app and device. Each may need to obtain an authentication token and a system admin should be able
to revoke access to each individual entity.

The remainder of this white paper will discuss a solution that uses a combination of OAuth 2.0, OpenID
Connect, and PKI to address these requirements.

Users

Apps Devices

Figure 1.

Relationship
between the users,
apps, and devices

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

7 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Section 4

A New Approach to Security
In this fresh approach to securing mobile apps, we aim to leverage existing infrastructure as much as
possible. To manage an organization’s APIs when exposed to external, partner or internal apps, an API
management solution is usually required to easily establish a security perimeter at the edge of your
network. The mobile apps tie to a client library that connects the app with the enterprise entry point at the
edge. With a simple API call the client establishes a single sign-on session and a secure channel for
backend API consumption. See Figure 2 below for an illustration.

This approach requires a server side that is capable of basic OpenID Connect and OAuth 2.0, and can
support additional protocol extensions.

Figure 2.

An overview of a
security perimeter

Enterprise
Network

CA Technologies

iPhone

Android

iPad

App-sharable Secure
Key Store Managed
by Client Libs

One-time PIN,
SMS, APNS, Call

API Servers

AT&T

Standards-based

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

8 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Section 5

Server-side Features
To provide a complete solution, a server side component that supports the standard OAuth 2.0 and OpenID Connect endpoints are
required. In addition, we propose extensions to these protocols in order to better manage the relationship between users, devices,
and apps.

To support a certain degree of security and usability when applications are used with mobile devices, new features must be added
to existing protocols. The goal is to provide security and protocol related tasks by the SDK in a way that it is more or less
transparent to the developer. Also, it is to give users control of the access of apps and the devices as much as possible without
having to call an administrator.

Table 1 below describes this solution in more detail.

Table 1: Mobile SSO Supported Features
Feature Description

OAuth 2.0 In this proposal for mobile SSO, OAuth 2.0 is required with support for password grant type and JSON Web
Token (JWT) Bearer Token grant type.

OpenID Connect
(including Mobile SSO
related extensions)

OpenID Connect is provided with extensions for Mobile SSO defined as a new scope (msso).

PKI Signing of CSRs that identify a device and register it for later validations.

Protocol related
endpoints

/connect/device/register: Registers a device and returns a signed certificate.

/connect/device/remove: Removes a device registration.

Protocol related OAuth
protected endpoints

/connect/device/list: Returns a list of devices of a user.

/connect/session/status: Returns the session status of a user.

/connet/session/logout: Logout a user and terminates the session.

/auth/oauth/v2/token/revoke: Revokes a token.

OpenID Connect OAuth
protected endpoints

/openid/connect/v1/userinfo: Returns claims about a user.

Management-related
endpoints

/msso/manager: A REST API-based simple view which allows a user to check session status, registered devices,
and running apps.

The protocol is using OAuth 2.0, OpenID Connect, JSON WebToken (JWT) and OAuth extensions. This way, the protocol not only
enhances but does not break any existing OAuth or OpenID Connect-related implementations. OAuth contains the concept of a
shared secret for applications (client_id/ client_secret) for authorization purposes. Some enterprises do not appreciate this
approach since it could be possible for app developers to get access to those values and misuse them. But to address this issue,
the protocol allows developers to use mutual SSL which adds strong authentication to the apps. The client-side certificate can be
used to authenticate a device or user.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

9 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Section 6:

Client Architecture
In order to conceal the complexity of the security and authentication protocols, we propose a client SDK
with easy-to-use APIs for mobile app developers. The client SDK will contain a library that the applications,
when participating in the mobile SSO session and consume backend APIs, will build against. In order to
make a secure sign-in container, the client library will manage the protocol flow and the secure storage of
any key material, access tokens, user tokens and certificates. Each app will have its own keychain. The apps
that are signed by the same enterprise developer key will use a shared keychain for certificates and user
token. The diagram below illustrates where the applications and certificates are stored, and how they
interact with each other on the device.

In the mobile device, the enterprise applications area contains only the applications that have been signed
by the enterprise. In Figure 3, the applications are marked with “A” and “B”. Each of these applications
contains the SDK (Software Development Kit), which handles the OAuth handshake, creates key pairs, and
generates a CSR (Certificate Signing Request). The Gateway will only accept the CSR if it contains a unique
DN (Distinguished Name).

Each application has access to only its respective private key chain. The private key chain contains the access_
token and refresh_token. All the applications within the enterprise area have access to the same shared key
chain through the SDK. In the shared key chain area, the trusted server certificate is imported from the
Gateway, which is required when a non-cartel CA (Certificate Authority) is used. The private key is generated
and the certificate is signed by the Gateway. The JWT (JSON Web Token) is available in the shared key chain as
long as the user is logged into the SSO (single sign-on). Once the user logs out, the JWT is removed.

Mobile
Device

App
App App

App
App

Private Keychain Private Keychain

Shared Keychain

Enterprise Apps

App A
(SDK)

App B
(SDK)

access_token
refresh_token

access_token
refresh_token

Trusted Server Certificate
JWT (JSON Web Token)
Private Key Certificate

AT&T

3rd Party
Apps

Figure 3.

Relationship
between the users,
apps, and devices

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

10 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Client token and private key storage
The main challenge is to store tokens and keys in a secure
manner on the client side. On the iOS platform, bearer tokens
and private key material (for example, private exponents for an
RSA key) are stored in the iOS keychain when not in use by an
app. Apps signed by the same developer key can share secrets
among themselves using the Keychain. The contents of the
Keychain are encrypted with a key that is entangled with both
the device’s lock pass code (if any)—this is the 4-digit pin on
iOS and the device’s secret hardware unique ID.

When a device is locked with a pass code, the key is erased from
memory and even if the device’s flash memory is cloned, the
keychain contents are inaccessible. A simple pass code can be
guessed eventually through trial and error but this requires
physical possession of the device because the UID cannot be
extracted from it. Because this must be done on the device and
the hardware is only capable of trying a limited number of codes
per second (well under 100), this can take a long time with a
complex pass code. Further, this requires plugging the phone into
USB hardware, since the iOS software layer can be configured to
instantly zeroize the device’s memory decryption key after 10
failed pass code guesses. Fishnet Security estimates that a
7-character alphanumeric pass code would take millennia to
brute force on-device9. On the Android platform, bearer tokens
and private key material are stored using the Android Credential
Storage mechanism when it is not in use by an app. This service
is provided by a system key store daemon that manages a
directory that contains encrypted files. Apps signed by the same
developer key and declaring the same Android user ID can share
secrets among themselves using this mechanism. The contents
of the key store are encrypted using a master key that is derived
from the device’s unlock code. An unlock code must be set on the
device in order to use this mechanism.

Screen locks of types “None” and “Slide” are disallowed while
credential storage is in use. The Settings activity will not
permit these screen lock types to be selected unless the user
activates the “Clear credentials” function first. The credential
storage master key is erased from memory when the device is
locked. Offline brute force attacks on cloned flash memory are
possible but are deterred by the use of PBKDF2 (with an
iteration count of 8192) as the key-derivation function. With a
high-end GPU capable of computing 4 billion PBKDF2 iterations

per second, a master key derived from a pass code with entropy
equivalent to a 10-character alphanumeric pass code should
take millennia to brute force (though it should be noted that
the attack can be split across as many such GPUs as the
attacker can afford).

Client-side libraries
Client-side libraries contain easy-to-use APIs for adding the
app to a Single Sign-on session. Mutual SSL is established and
only a single API call is needed to leverage cryptographic
security, OAuth, OpenID Connect, and JWT (JSON Web Token).
Client-side libraries enhance the request with the correct
security parameters according to the device configuration.
Below is an example of a client library that makes a Single-
Sign-on enabled API call with the
GET method.

L7SHTTPClient *httpClient = [[L7SHTTPClient alloc]
initWithBaseURL:
 [NSURL
URLWithString:@”https://www.example.com”]];

[httpClient registerHTTPOperationClass:[AFJSONRequestO
peration class]];

[httpClient setDefaultHeader:@”Accept”
value:@”application/json”];

NSMutableDictionary * parameters =
[[NSMutableDictionary alloc] init];

[parameters setObject:@”listProducts”
forKey:@”operation”];

[httpClient getPath:@”/path_to_resources”
 parameters:parameters
 success:^(AFHTTPRequestOperation
*operation,
 id responseObject) {

 //code to handle success response
 } failure:^(AFHTTPRequestOperation *operation,
NSError *error) {

 //code to handle failure response

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

11 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Section 7:

Provisioning Protocol Flow
Below are two diagrams that illustrate how a device receives an access_token. Figure 4 is a situation where the
device is registered for the first time and requests an access token. The area shaded in gray is the application
which connects the user replace after connects the user:, in this case, to the CA Mobile API Gateway.

Since it is the first time the user is registering the device, there are no keys or certificates available. Multiple
checkpoints are involved, as mutual authentication and private keys must be established first. The SDK
generates a private key and device id to the Enterprise Key Chain. At the same time, a CSR (Certificate-
Signing Request) is generated, and then the user profile information is forwarded to the CA Mobile API
Gateway. Additional proofing may occur at this point. Once the signed certificate is returned and the device
is successfully registered, access_token request can be granted.

User

User

App/SDK Private
Keychain

Enterprise
Shared

Keychain

CA
Mobile API

Gateway

App/SDK Private
Keychain

Enterprise
Shared

Keychain

CA
Mobile API

Gateway

1. Start Up App
2. Display Screen

3. Request Resources

4. Use Cert FromShared Keychain

5. No Key or No Cert Available
6. Prompt for Registration Credentials

7. Credentials 8. Generates Private Key
Including Deviceid in DN

9. Generates CSR

10. Register with Details

11. Validate Credentials, Sign Certificate

12. Returns Signed Certificate and Device Identifier

13. Stores Certificate

18. Stores JWT

19. Stores Tokens

17. JWT (JSON Web Token)

22. Returns Data

14. Device is Registered!

20. Uses Application

15. Request OAuth Token

21. Calls API with Full Security

16. Authenticates User and App

Figure 4.

Device registering
for the first time,
requesting an
access token

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

12 | WHITE PAPER: IDENTITY IN MOBILE SECURITY ca.com

Figure 5 portrays a simpler scenario where the device has already been registered and mutual
authentication has been established. In this case, the registered device requests a subsequent token. The
gateway validates the user with JWT (JSON Web Token) and the application. The access_token is issued
once the JWT and application are validated.

Section 8:

Conclusion
As security threats and identity theft continue to prevail, it is strongly encouraged to place security
measures for handling sensitive data as a higher priority in any mobile app development roadmap. The CA
Mobile API Gateway, which provides a mobile SSO solution, contains a complete end-to-end standards-
based security measure that is easy to implement. With a mobile SDK offering a simple API on the device,
any mobile developer can add SSO and secure API calls to backend through the Mobile Access Gateway,
without having to be a security expert. As this area of technology is evolving, we see several promising
areas of research.

First is the improvement of aspects within the OAuth flow. Currently, work is being done on the IETF for
dynamic registration of clients. This would considerably improve usability, as previously, no interactions existed
between parties10.

Secondly, a more dynamic provisioning of the client configuration could allow enterprises to update a
per-app or per-API configuration of requests. As mobile devices change context, the security rigor should
reflect the current threat level.

Thirdly, improving the storage of key material and tokens on the device is beneficial. Android 4.2 (also
known as “Jelly Bean”) supports key storage using the OpenSSL’s ENGINE cryptographic module support,
which is capable of using secure hardware key storage wherever hardware and driver support exist. The
ENGINE cryptographic module support allows a securely-stored RSA private key to be used for TLS client
authorization by utilizing RSA signing, during which the actual private key material never leaves the secure
hardware storage or appear in unprotected application RAM (even transiently).

App/SDK

App/SDK

CA Mobile API Gateway

CA Mobile API Gateway

1. Requests access_token

3. Issues access_token

2. Validates User (JWT) and App

Figure 5.

Device already
registered and is
requesting another
access_token

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

13 | WHITE PAPER: IDENTITY IN MOBILE SECURITY

Copyright ©2014 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. This document is for your
informational purposes only. CA assumes no responsibility for the accuracy or completeness of the information. To the extent permitted by applicable law, CA provides this
document “as is” without warranty of any kind, including, without limitation, any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. In
no event will CA be liable for any loss or damage, direct or indirect, from the use of this document, including, without limitation, lost profits, business interruption, goodwill, or
lost data, even if CA is expressly advised in advance of the possibility of such damages CS200-87343_0914

1 Gartner. “Gartner Says Worldwide PC, Tablet and Mobile Phone Shipments to Grow 5.9 Percent in 2013 as Anytime-Anywhere-Computing Drives Buyer Behavior”
http://www.gartner.com/newsroom/id/2525515. June 24, 2013.

2 CA Technologies. “Identity-centric Security.” http://community.ca.com/blogs/iam/archive/2013/05/13/identity-centricsecurity.aspx. CA Community blog, May 13, 2013.

3 Dan Goodin,“Anatomy of a hack: How crackers ransack passwords like ‘qeadzcwrsfxv1331’.”http://arstechnica.com/security/2013/05/how-crackersmake-minced-meat-out-of-your-
passwords/. Arstechnica, May 27, 2013.

4 Sophos. Security Threat Report 2013. http://www.sophos.com/enus/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf

5 “Android Mobile Attacks Spreading across the Globe, McAfee finds.” http://www.crn.com/news/security/240155913/android-mobile-attacks-spreadingacross-the-globe-mcafee-finds.
htm, CRN magazine, June 3, 2013.

6 McAfee. McAfee Threats Report: First Quarter 2013. http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2013.pdf?cid=BHP014

7 United States. GAO. “Information Security: Better Implementation of Controls for Mobile Devices Should Be Encouraged.” http://www.gao.gov/assets/650/648519.pdf. September
2012.

8 “Examining Threats Facing PKI and SSL” http://www.securityweek.com/examining-threats-facing-public-key-infrastructure-pkiand-secure-socket-layer-ssl, SecurityWeek, February 11,
2012.

9 Colin Mortimer. Fishnet Security Blog. “iOS Passwords: Quick Tips to Maximize Your Security.” http://www.fishnetsecurity.com/6labs/blog/ios-passwords-quick-tipsmaximize-your-
security.

10 IETP. “OAuth 2.0 Dynamic Client Registration Protocol.” http://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg/. OAuth Working Group. July 29 2013

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables
them to seize the opportunities of the application economy. Software is at the heart of every business,
in every industry. From planning to development to management and security, CA is working with
companies worldwide to change the way we live, transact and communicate – across mobile, private
and public cloud, distributed and mainframe environments. Learn more at ca.com.

Connect with CA Technologies at ca.com

Fourth is investigating how backend applications can trust other sources of identities; for example, from a
MDM system or via an external source such as a PIV certificate on a Common Access Card. It would be
more cost effective to allow app developers to tie into an organization’s existing identity infrastructure
assets. Combining this with a more advanced authentication system can provide real-time, risk-based
authentication that would determine the risk level of online activities. Another benefit is amalgamating
user, app and device identification with geolocation and historical patterns, which can be used with custom
rules to calculate a risk of each authentication or transaction.

In conclusion, the right strategy for writing mobile apps that leverage backend APIs is to deploy a gateway
function at the edge of the network, and use client-side libraries to insulate the app developer from underlying
security protocols. The CA Mobile API Gateway provides this functionality through open standards.

http://www.ca.com
https://plus.google.com/+CATechnologies/posts
http://www.ca.com
http://www.ca.com
https://www.facebook.com/CATechnologies
https://www.linkedin.com/company/ca-technologies
https://twitter.com/CAInc
https://www.youtube.com/user/catechnologies
http://blogs.ca.com/
http://www.slideshare.net/cainc

