
111

For product information please visit our website at: broadcom.com
Copyright © 2021 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, Symantec, and the Symantec logo, are among the trademarks of
Broadcom. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
BC-XXXXEN August 2021

11 1

Five Simple Strategies
for Securing APIs

https://www.broadcom.com

2

What Are APIs and Are They Worth
the Risk?

The Three Attack Vectors to Watch
Out For

Five Simple Mitigation Strategies
You Might Have Overlooked

Conclusion

Contents

3

13

8

19

3

Risk?

APIs

What Are

and Are They
Worth the

4

APIs are an emerging technology for

integrating applications using web

technology. This approach is exploding

in popularity because it builds on well-

understood techniques and leverages

some existing infrastructure.

But it is a mistake to think we can secure APIs using the same methods and technology that we
used to secure the conventional, browser-centric web. While it is true that APIs share many of the
same threats that plague the web, they are fundamentally different and have an entirely unique
risk profile that you need to manage.

This eBooklet provides an overview of these new risks, and offers five simple solutions to counter
the common threats. By adopting a secure API architecture from the beginning, organizations
can pursue an API strategy more safely and securely—and reap the benefits of agile integration
promised by this exciting new technology.

How Do You Make the
Enterprise Flexible?

5

Since the early days of computing, developers have struggled to make applications

communicate. Specialized protocols, such as COM+, CORBA, and even SOAP, emerged

over the years, but none were sufficient to meet the need for scale, simplicity, and

cross-language functionality.

But the answer was actually in front of us the entire time. The World Wide Web was the first
truly scalable, distributed system that tied together disparate platforms with a protocol that
was simple to understand and deceptively powerful. The crucial insight was to leverage this
success for integrating applications other than the web browser/web server pair for which it
was designed.

APIs are the technology behind this approach. APIs allow developers to create an open
architecture for sharing functionality and data between applications. APIs are like windows
into an application—a direct conduit that leads straight into the core functionality and data
residing in the heart of the app.

APIs give client-side developers—both legitimate developers and potential system
crackers—much more finely grained access into an application than a typical web app. This
is because the granularity boundary for calls to back-end tiers moves from relatively secure
internal tiers (those that reside safely in a DMZ) all the way out to the client application
residing on the Internet.

I know, it sounds like rocket science. But a granularity boundary simply describes how much
of the back-end systems a calling application can access. The unfortunate irony is that the
same things that make APIs great, also make them a perfect target for hackers.

What is an API?

6

The problem with APIs is that they often provide a roadmap describing
the underlying implementation of an application—details that would
otherwise be buried under layers of web app functionality. This can
give hackers valuable clues that could lead to attack vectors they
might otherwise overlook. APIs tend to be extremely clear and self-
documenting at their best, providing insight into internal objects and
even internal database structure—all valuable intelligence for hackers.

But increased visibility isn’t the only risk APIs introduce. Increasing
the number of potential calls also increases the attack surface,
meaning that a hacker simply has more to exploit. Risk increases with
opportunity.

How Do APIs Increase an
Organization’s Risk?

HTTP ServerWeb Client App Server Database

Granularity
Boundarty

Granularity
Boundarty

7

APIs might represent increased risk for the

enterprise, but the potential benefits they

bring to an organization can overshadow

any inherent dangers. The greater threat

may be in how we implement APIs.

A well-designed API enables organizations to deliver powerful web tools directly to their
employees, clients, and customers. Good API developers understand the threat profile of what
they are designing. Unfortunately, many API developers come directly from a web design
background, and may bring with them some bad habits. It’s important to recognize that despite
their common roots and sharing of infrastructure, web design and API design have separate
goals and demand different approaches.

There are three main attack vectors that hackers target most frequently with APIs.
Understanding these will help you to build safer APIs.

Old Habits Die Hard

8

Watch
Out For

The Three Attack
Vectors to

9

Vectors
Explained
The most common attack vectors can be
broken down into three categories:

Parameters
Parameter attacks exploit the data sent into
an API, including URL, query parameters,
HTTP headers, and/or post content.

Identity
Identity attacks exploit flaws in
authentication, authorization, and session
tracking. In particular, many of these are the
result of migrating bad practices from the
web world into API development.

Man-in-the-Middle
These attacks intercept legitimate
transactions and exploit unsigned and/
or unencrypted data being sent between
the client and the server. They can reveal
confidential information (such as personal
data), alter a transaction in flight, or even
replay legitimate transactions.

10

Parameter attacks—the most common

of which is a SQL injection—attempt to

manipulate a system by providing it with

inputs that exploit behavior of applications

and the infrastructure that supports them

(such as databases).

These normally result from developers not carefully checking input into an application. And in
contrast to many web apps, APIs often clearly identify a parameter’s underlying usage by its
name, offering enticing clues to even the casual attacker.

Parameter attacks certainly are not new—the web has been exploited for years using this vector.
But they are on the rise in the API world because many developers neglect to sanitize inputs,
accustomed as they are to having this applied automatically by many web frameworks. The same
risk is associated with APIs, and the same precautions need to be taken to mitigate this threat.

Attack Vector: Parameters

11

Attack Vector:
Identity
We are all familiar with the idea of user
identity. But APIs also introduce the concept
of application identity—a key that uniquely
identifies which application is calling an API.
This key, for better or for worse, is commonly
called an API key. The API key is replicated
across every instance of an application. Its
intent is to support basic client management,
such as rate limiting, so that an app that
goes viral cannot monopolize an API to the
detriment of less popular apps.

Unfortunately, API keys are often treated
like authoritative credentials, which they
are not. API keys are typically hidden inside
the code of a calling client application,
and despite best efforts to conceal it on
the part of developers, they are generally
easy to find and exploit. Secure application
authentication has always been—and indeed
remains—a difficult problem to solve. APIs
bring this to light, but unfortunately there are
few easy answers to this problem.

The bottom line is: Never treat
API keys as secret.ns.

12

Attack Vector:
Man-In-
The-Middle
A man-in-the-middle attack describes a

situation in which an attacker sits in between

a sender and a receiver of information.

They may do this transparently, or they may
explicitly pose as one party or the other, but in
both cases they use this position to exploit the
exchange of unsigned or unencrypted data.

APIs that are not properly configured using
SSL/TLS are highly vulnerable to this form
of attack. Unfortunately, the culture in web
design is to leave most communications
in the clear, largely because of historical
challenges in scaling SSL loads. And
even when SSL/TLS is applied, often it is
misconfigured or vulnerable to downgraded
attacks that render it ineffective. In the API
world, the stakes are higher and transport
protection is essential to secure data,
sessions, and access to functionality.

Valid User

Valid User thinks
he/she is talking

with the Web Server

Man in the Middle

Valid User thinks
he/she is talking

with the Web Server

Web Server

Web Server thinks it is
talking to a Valid User

13

Five
Simple
Mitigation
Strategies

That Will Allow an Organization
to More Securely Publish APIs
Although APIs are susceptible to a
broad range of attacks, applying just five
simple mitigation strategies will allow an
organization to securely publish APIs.

14

Strategy 1: Validate Parameters
The first step for any resilient API implementation is to sanitize all incoming data to confirm
that it is valid and will not cause harm. The single most effective defense against parameter
manipulation and injection attacks is to validate all incoming data against a strict schema—
effectively a description of what are considered permissible inputs to the system. Schema
validation should be as restrictive as possible, using typing, ranges, sets and even explicit white
listing whenever possible. Consider also that the automatically generated schemas produced
from many development tools often reduce all parameters to models that are much too broad
to be effective at identifying potential threats. Hand-built schemas and white lists are more
preferred because developers can constrain inputs based on their understanding of the data
model an application expects.

One option for XML-based content types is to use the XML schema language, which is highly
effective in creating restricted content models and highly constrained structure. For the
increasingly common JSON data types, there are several JSON schema description languages.
Although not as rich as XML, JSON is far simpler to compose and understand—offering a
transparency which actually makes it simpler to secure.

Strategy 1:
Validate Parameters

Strategy 2: Apply Explicit Threat
Detetio

Strategy 3: Turn on SSL Everywhere

Strategy 4: Apply Rigorous Authentication
and Authorization

Strategy 5: Use Proven Solutions

15

Strategy 1: Validate Parameters

Good schema validation can protect against many injection attacks, but consider also explicit
scanning for common attack signatures. SQL injection or script injection attacks often betray
themselves by following common patterns that are easy to spot by scanning raw input.

Consider also that attacks may take other forms, such as a denial of service (DoS). Leverage
networking infrastructure to spot and mitigate network-level DoS assaults, but also check for
DoS attacks that exploit parameters. Very large messages, heavily nested data structures,
or overly complex data structures can all result in an effective denial-of-service attack that
needlessly consumes resources on an affected API server.

Apply virus detection to all potentially risky encoded content. APIs involved in file transfer should
decode base64 attachments and submit these to server-grade virus scanning before persisting
to a file system where they could be inadvertently activated.

Strategy 2:
Apply Explicit
Threat Detection

Strategy 2: Apply Explicit Threat
Detetio

Strategy 3: Turn on SSL Everywhere

Strategy 4: Apply Rigorous Authentication
and Authorization

Strategy 5: Use Proven Solutions

16

Strategy 1: Validate Parameters
Make SSL/TLS the rule for all APIs. In the 21st century, SSL isn’t a luxury; it is a basic
requirement. Adding SSL/TLS—and applying this correctly—is an effective defense against
the risk of man-in-the-middle attacks.

SSL/TLS provides integrity on all data exchanged between a client and a server, including
important access tokens such as those used in OAuth. It optionally provides client-side
authentication using certificates, which is important in many environments.

Strategy 3:
Turn on SSL Everywhere

Strategy 2: Apply Explicit Threat
Detetio

Strategy 3: Turn on SSL Everywhere

Strategy 4: Apply Rigorous Authentication
and Authorization

Strategy 5: Use Proven Solutions

17

Strategy 1: Validate Parameters

User and app identity are concepts that must be implemented and managed separately.
Consider authorization based on a broad identity context, including practical factors such as
incoming IP address (if known to be fixed or within a particular range), access time windows,
device identification (useful for mobile apps), geolocation, etc.

OAuth is quickly becoming the go-to resource for user-centric API authorization, but it still
remains a complex, rapidly changing, and difficult technology. Developers should defer to the
basic, well-understood OAuth use cases and always use existing libraries rather than trying to
build their own.

Strategy 4:
Apply Rigorous
Authentication
and AuthorizationStrategy 2: Apply Explicit Threat

Detetio

Strategy 3: Turn on SSL Everywhere

Strategy 4: Apply Rigorous Authentication
and Authorization

Strategy 5: Use Proven Solutions

18

Strategy 1: Validate Parameters
The first rule of security is: Do not invent your own. There is no reason to create your own API
security framework, as there are excellent security solutions that already exist for APIs. The
challenge lies in applying them correctly.

Secure API Architectures
The best way to secure your API from any type of intrusion is to separate out API
implementation and API security into distinct tiers. This is a very logical separation of concerns,
one that focuses expertise on the right problem at the right time.

This approach frees an API developer to focus completely on the application domain, ensuring
that each API is well-designed and promotes integration between different apps. Security then
falls into the domain of the expert, who can focus solely on identity, threats, and data security.

Strategy 5:
Use Proven Solutions

Strategy 2: Apply Explicit Threat
Detetio

Strategy 3: Turn on SSL Everywhere

Strategy 4: Apply Rigorous Authentication
and Authorization

Strategy 5: Use Proven Solutions

19

Conclusion
APIs represent a great
opportunity for the enterprise
to integrate applications
quickly and easily.
But APIs can be a double-edged sword:
promising agility, while at the same time
increasing risk. But if an organization can
address API security as an architectural
challenge long before any development
takes place, it can reap the rewards of this
technological breakthrough safely and
securely.

202020

For product information please visit our website at: broadcom.com
Copyright © 2021 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, Symantec, and the Symantec logo, are among the trademarks of
Broadcom. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
BC-XXXXEN August 2021

Learn more about the inherent
risks and benefits of APIs with
these resources:

www.broadcom.com/products/software/
api-management/api-security
Leverage industry leading white papers, research and industry
reports to gain insight into today’s top security trends.

www.apiacdemy.co
Learn how to securely connect your enterprise to mobile apps, cloud
platforms and developer networks through APIs.

https://www.broadcom.com
https://www.broadcom.com/products/software/api-management/api-security
https://www.broadcom.com/products/software/api-management/api-security
https://www.ca.com/us/products/api-security.html
https://apiacademy.co/

