
11 1

5 OAuth Essentials for API
Access Control

2

Introduction:
How a Web Standard
Enters the Enterprise
OAuth’s Roots in the Social Web
OAuth puts the user in control of delegating
access to an API. This allows one service to
integrate with another service on behalf of
that user. The same social Web providers who
popularized the pattern of exposing an API to
enable third-party developers to enrich their
platforms were the first ones to apply such
delegated authorization mechanisms. OAuth was
defined in 2006, to standardize mechanisms of
this kind.

OAuth Comes to the Enterprise
Riding the popularity of APIs on the Web
and social media, enterprises increasingly
use APIs to expose their data, application
functionality and other information assets to
external departments, partners, customers
and the general public. Access to enterprise
APIs must be controlled and although
some of these APIs rely on proprietary
authentication schemes, OAuth provides
standard patterns upon which API providers
can base their token issuing.

OAuth has moved beyond its Web origins
and is now a common component of

enterprise APIs. Consequently, the OAuth
standard has grown to accommodate
an expanded range of use cases and
requirements. The original OAuth 1.0/1.0a
standard was mainly designed for third-
party authorization on the Web. The
recently-formalized OAuth 2.0 standard
introduces new “grant types”, which
address a wider range of use cases,
relevant to API access control in general.

Social Media Example: Letting Twitter
Post Tweets to Your Facebook Wall
OAuth is used to automatically syndicate a
user’s Twitter posts to that user’s Facebook
wall. To do this, Twitter must be allowed
to act on behalf of the user on Facebook.
Exposing the user’s Facebook login
credentials to Twitter would create privacy
and security issues. Instead, the user is
redirected between Twitter and Facebook,
in order to express consent. The output of
this “handshake” is a token, which is used by
Twitter when calling the Facebook API—
allowing Twitter to effectively write on the
user’s Facebook wall.

3

Introduction:
How a Web Standard
Enters the Enterprise (Continued)

Enterprise API Example: Charging an
Ecommerce Purchase to Your Mobile Bill
A mobile carrier creates an API that allows
ecommerce sites to give customers the option
of charging purchases to their monthly mobile
bills. OAuth is used to enable communication
between the carrier, the retailer and the
customer. Any customer who chooses the “bill to
my mobile account” option on the ecommerce
site is redirected to the carrier’s server in order to
authorize the ecommerce store to temporarily
access the customer’s account there and make
the charge.

The Challenges of Leveraging
OAuth for Enterprise APIs
OAuth standardizes a number of
important access-related challenges
for API publishers. However, deploying
OAuth as an authorization mechanism for
enterprise APIs raises challenges around
scalability, correct usage and integration.
To make matters worse, OAuth is a
relative newcomer to the enterprise; it is
not supported by existing infrastructure
and is poorly understood by many
enterprise architects.

In this eBook, we outline five key
considerations for organizations that are
thinking of using OAuth as a mechanism
for controlling access to enterprise APIs.
These considerations will give you the
basic knowledge and framework you will
need in order to address the complex
challenges associated with implementing
OAuth and managing an OAuth provider.
We also provide links to additional
resources that deliver more in-depth
knowledge.

4

Overview: 5 OAuth Essentials for
API Access Control

Design Your Solution for Optimal Performance & Scaling
ARCHITECT YOUR TOKEN ISSUING AND VALIDATION TO ENSURE EFFICIENT
PERFORMANCE AND SCALING

Deploy as Much Security as You Want & Need
OAUTH BY ITSELF IS NEITHER SECURE NOR INSECURE, SO YOU MUST
TAILOR IT TO YOUR SPECIFIC NEEDS

Integrate with Existing Identity & Access Infrastructure
LEVERAGE EXISTING INVESTMENTS – DON’T REINVENT THE WHEEL
OR CREATE IDENTITY SILOS

Design & Enforce Token Governance Policies
MANAGE THE TOKEN LIFECYCLE AND ENABLE TOKEN REVOCATION TO
CONTROL SECURITY CENTRALLY

Use the Appropriate Grant Type for Your Use Case
CHOOSE THE OAUTH 2.0 PATTERN THAT MEETS THE REQUIREMENTS
OF YOUR APPLICATION

55

WHAT
Your OAuth solution should be designed
to ensure that the process of OAuth-
based authentication does not impact
the performance of applications built
against your API.

In particular, your solution must be
scalable, so that app performance is
not impacted as the popularity of your
service increases and API calls multiply.

To achieve optimal performance and
scalability, you will need to architect
distributed enforcement points for your
API access rules as well as a central
authorization server.

WHY
The kinds of token issuing and token
verification operations associated with
OAuth-based access control can be
highly resource-intensive.

As your API becomes more popular, its
ability to support more demand will be
tied to your ability to issue and verify
more tokens.

With your OAuth solution coming
under ever-greater strain, latency is
likely to increase – and latency is a user
experience killer.

HOW
The most efficient way to architect an
OAuth solution is to use API Gateways,
deployed either

as hardware networking appliances or
virtually, in the cloud.

To maximize the scalability of your
solution and increase fault tolerance,
these API Gateways should be quickly
and easily clusterable.

A full-functioned API Gateway should
also be able to optimize performance by
caching token validity at the perimeter
and accelerating the issuing process.

Design Your Solution for Optimal
Performance & Scaling
ARCHITECT YOUR TOKEN ISSUING AND VALIDATION TO ENSURE EFFICIENT
PERFORMANCE AND SCALING

66

WHAT
Strong authorization control is essential
for protecting APIs against attack and
misuse. OAuth has emerged as the
leading authorization technology for API
security.

One of the great benefits of OAuth
(especially OAuth 2.0) is its flexibility. You
should leverage this to create a solution
tailored to your specific needs and
requirements.

It is important to remember that OAuth
is not inherently secure or insecure and
that OAuth-based authorization will
only be one element of a complete API
security solution.

WHY
APIs can significantly increase your
organization’s attack surface. Therefore,
they must have strong authentication
controls to protect them against
unauthorized access.

Each API will require a unique level
and type of security. Some API calls
are more sensitive than others; some
involve private information or financial
transactions.

OAuth does not dictate how identity is
validated; it simply provides guidelines
for token issuing patterns. It is up to you
to deploy patterns appropriate for you
use case.

HOW
Your OAuth authorization server
should be integrated with strong, multi-
factor authentication, wherever this is
applicable.

Ideally, your API Gateway should have
templates that will simplify the process
of designing token governance policies
and OAuth patterns appropriate to your
use case.

The Gateway technology should also
include a runtime policy enforcement
layer that will make it easier to enforce
and manage the policies and patterns
for multiple APIs.

Deploy as Much Security as
You Want & Need
OAUTH BY ITSELF IS NEITHER SECURE NOR INSECURE, SO YOU MUST
TAILOR IT TO YOUR SPECIFIC NEEDS

77

WHAT
Typically, an enterprise will already have
an identity and access management
(IAM) infrastructure, consisting of
technology solutions, identity stores and
policies.

Wherever possible, these existing IAM
investments should be integrated with
your OAuth architecture for reuse in the
API access control process.

In particular, you should aim to provide
Single Sign-On (SSO) access for
individuals who already have identity
attributes with your organization (e.g.
internal developers).

WHY
The chances are your organization has
already invested significant time, money
and expertise in mature IAM systems. It
would make no sense to replicate all
this effort.

Requiring existing users to create
and manage whole new sets of login
credentials to access your APIs
will frustrate developers, reducing
engagement with your APIs.

From your perspective, having users
with different identity attributes
located across multiple identity silos
will inevitably become a security and
management nightmare.

HOW
The API Gateway you choose must be
specifically designed to fully integrate
with your existing IAM technologies and
identity stores.

This will allow you to link existing identity
providers to your authorization server
policies and configure SSO agents in
order to verify incoming cookies at
handshake time.

You will also be able to look up identity
attributes and group memberships
in authorization and resource server
policies to enhance runtime authorization
decisions.

Integrate with Existing Identity &
Access Infrastructure
LEVERAGE EXISTING INVESTMENTS—DON’T REINVENT THE WHEEL
OR CREATE IDENTITY SILOS

88

WHAT
OAuth works by issuing tokens that
provide temporary access to resources
exposed by APIs. It is vital to ensure
these tokens provide appropriate levels
of access.

To achieve this, you must design and
enforce policies that define the lifespan
of the tokens you issue as well as a range
of other lifecycle considerations.

Other aspects of managing the token
lifecycle include creating an audit trail of
token session information and deciding
whether to support token revocation and
refresh.

WHY
Because every API (and every app built
against every API) has its own security
requirements, each will need a unique
set of token lifecycle policies.

API publishers, third-party application
providers and app users all need ways
to manage their live permissions and
revoke their tokens.

With all these elements affecting the
token lifecycle across a distributed
architecture, centralized token
governance becomes crucial to retaining
control of API security.

HOW
An OAuth-enabled API Gateway
will allow you to decouple token
management implementation from the
perimeter OAuth endpoints.

Tokens should be indexed in the Gateway
according to key properties (such as
client ID, user ID and scope) to make
retrieval quicker and easier.

Additionally, the API Gateway will make
it possible to connect subscriber portals,
administrative tooling and business
intelligence components to the correct
tokens.

Design & Enforce Token
Governance Policies
MANAGE THE TOKEN LIFECYCLE AND ENABLE TOKEN REVOCATION
TO CONTROL SECURITY CENTRALLY

99

WHAT
In OAuth-based access, the API publisher
provides an authorization grant to the
client app, allowing the app to issue the
user a token.

The relatively-new OAuth 2.0
specification defines four core grant
types: authorization code, implicit,
password and client credentials.

Additionally, a number of extension grant
types have become available (e.g. SAML
bearer, JWT bearer) and the list of these
extensions is growing.

WHY
Different grant types address the
needs of different scenarios e.g. user or
application authentication, confidential
or public clients, Web or mobile app.

The grant type will affect the user
experience. Users expect different
experiences in different scenarios and
the choice of grant type should
reflect this.

For example, although users will provide
credentials directly to applications they
trust, they expect to be redirected
in order to authorize third-party
applications.

Use the Appropriate Grant
Type for Your Use Case
CHOOSE THE OAUTH 2.0 PATTERN THAT MEETS THE REQUIREMENTS
OF YOUR APPLICATION

HOW
Your API Gateway should provide
implementation templates for all the
core grant types plus select extension
grant types.

The Gateway should also allow you to
set policies defining specific patterns
allowed for each grant type and
to disable grant types not used in
authorization server policies.

It is important to give developers
comprehensive documentation detailing
which grant types will work with
your APIs.

1010

OAuth’s Roots in the Social Web
In enterprise use cases, OAuth should be applied as a component of a complete API
Management infrastructure. As part of this infrastructure, an API Gateway should be
used to:

•	Expose OAuth endpoints (e.g. the authorization server, the resource server)

•	Provide OAuth templates, to which APIs and existing identity infrastructure are
attached

•	Manage tokens to control and distribute session information

The Layer7 API Gateway deliver all this functionality. The Layer7 API Gateway includes an
OAuth Toolkit, which features a range of easily-customizable implementation templates.
The OAuth Toolkit can easily be integrated with common enterprise IAM technologies
like Active Directory and Oracle Access Manager. Layer7 API Gateways offer the
simplest and most powerful way to leverage OAuth as part of a complete enterprise API
Management program.

Conclusion: Deploying an
OAuth-Capable API
Management Infrastructure

LEARN MORE | About Securing Your APIs
Click here to learn more about securing your API

https://www.broadcom.com/products/software/api-management/api-security

1111

For product information please visit our website at: broadcom.com
Copyright © 2021 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, Symantec, and the Symantec logo, are among the trademarks of
Broadcom. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
BC-XXXXEN August 2021

Layer7 API Management
provides enterprises with
a comprehensive set of

solutions
that externalize APIs in
a secure, reliable and
manageable way.

PLEASE VISIT THE LAYER7 PRODUCT
PAGE AT BROADCOM.COM

https://www.broadcom.com
https://www.broadcom.com/products/software/api-management
https://www.broadcom.com/products/software/api-management

