
RESEARCH PARTNER SPOTLIGHT

DZONE’S GUIDE TO DEVOPS: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DEVOPS : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

2

BY G . RYAN SPAIN
PRODUCTION COORDINATOR, DZONE

497 respondents completed our 2017 Continuous Delivery

survey. The demographics of the respondents include:

• 19% of respondents work at organizations with

over 10,000 employees; 20% at organizations

between 1,000 and 10,000 employees; and 26% at

organizations between 100 and 1,000 employees.

• 45% of respondents work for organizations

headquartered in Europe, and 30% for organizations

based in the US.

• On average, respondents had 15 years of experience

as IT professionals; 27% had 20 years or more of

experience.

• 42% of respondents identified as developers/

engineers, and 27% identified as developer team leads.

• 82% of respondents work at companies using the Java

ecosystem, and 70% at companies using client-side

JavaScript.

TIME TO FACE THE STRANGE
DevOps has had some steady growth over the past year, as

more and more developers and organizations work towards

automation and cross-departmental collaboration. 41% of

respondents said their organization has a dedicated DevOps

team, up 7% over last year’s statistic (which had not changed

from the year before). Performance issue detection in the

software delivery process increased 5% year over year, while

automated performance testing increased 6% and automated

feature validation increased 4%. The number of respondents

who said they believe their organization has achieved

Continuous Delivery “for some projects” increased 9%

from 2016, and there was an 8% swing in respondents who

said that CD is a focus for their organization. Microservice

architectures are used 7% more compared to last year, and

container adoption is up 8%. The use of version control tools

reported in QA and Production have increased 15% and 18%

respectively, and the use of CI tools in those departments

increased 17% and 13%.

Despite this growth, there are some areas of stagnation in

CD results. From 2016, there was no statistically significant
change in respondents’ estimate of their mean time to

recovery (between hours and days) or mean time between

failures (between hours, days, and months). Most CD pipeline

pain points also remained the same from last year, with the

exception of automated testing, which dropped 7% as a pain

point, and the deployment process and regression testing,

which each dropped 4%.

SIZE MATTERS
With regards to having Continuous Delivery implemented

in an organization, and having Continuous Delivery

implementation be a focus for an organization, company size

plays a sizable role. Respondents’ belief that their company

has achieved Continuous Delivery trends upwards as the size

of their organizations increase. 51% of respondents working

at companies under 100 employees think their company

has either fully or partially achieved Continuous Delivery,

versus 60% of respondents who work at companies larger

HAVE YOU OR YOUR ORGANIZATION ADOPTED CONTAINER
TECHNOLOGY (E.G. DOCKER)

HAS YOUR ORGANIZATION MOVED TOWARDS A MICROSERVICE
ARCHITECTURE?

Key
Research
Findings

29%

26%

13%

27%

5%

NO, AND NO PLANS
TO DO SO

YES, FOR THE WHOLE
BUSINESS

YES, FOR SELECT
APPLICATIONS

CURRENTLY
TRANSITIONING

NO, BUT CONSIDERING
DOING SO

YES

STILL EVALUATING

NO, BUT CONSIDERING
DOING SO

NO, AND NO PLANS
TO DO SO

25%25%

26%24%

DZONE’S GUIDE TO DEVOPS: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DEVOPS: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DEVOPS : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

3

than 10,000 employees. And only 41% of respondents working

at sub-100 employee organizations say that CD is a focus for

their company, 15% less than those who work at companies

between 100 and 9,999 employees and 30% less than those

who work at 10,000+ organizations.

This goes hand-in-hand with larger companies’ ability, and

likely need, to have dedicated DevOps teams. Only about one

in four respondents (27%) at an organization with fewer than

100 employees said their company had a dedicated DevOps

team, compared to almost half (45%) of respondents between

100 and 9,999 employees and 62% over 10,000.

STOP... RECOVERY TIME
Overall, respondents’ estimated an average mean time to

recovery of just under 19 hours, with estimates ranging from

just minutes to 40 days, but with most estimates falling

somewhere between 2 and 24 hours. Several factors come

into play here, which can drastically change the mean-time-

to-recovery estimates. Respondents whose organizations

have push-button/automated deployment estimated
recoveries happen twice as fast as organizations that don’t

(12 hours versus 24 hours). Those respondents using or

evaluating container technologies estimated about 20% less

time to recover than non-container users (17 hours versus 21

hours). Microservice usage greatly affected these estimates.

Respondents who said their organization has not moved to

microservice architectures estimated, on average, a 29-

hour mean time to recovery; respondents at organizations

currently transitioning estimated 12 hours; and respondents

at organizations using microservices for some or all of their

applications estimated a 7 hour mean time to recovery.

BRING THE PAIN POINTS
We asked our survey-takers who said they believed their

organization had implemented Continuous Delivery in

some capacity what their biggest pain points were in the

CD pipeline, and likewise asked those respondents who

did not think their organization had achieved CD status

what they thought were the main barriers to adopting CD.

As mentioned earlier, most pain points appeared to be

just as painful this year as they were last year. The most

common pain points were environment config and setup
(56%), coordination of team members and resources (34%),

and regression testing (32%). Most other pain points were

experienced by roughly a quarter of respondents, with

the exceptions of build and compile (8%) and supply chain

management (7%).

Regarding barriers to adoption, this year’s respondents

again answered similarly to last year’s results, though all

barriers did drop somewhat. The biggest changes here were

“no support from management,” which dropped 7% from

last year, and “Engineers/Ops don’t have the right skill sets,”
which dropped 5%. All others dropped between 2 and 4

percent from last year. So, while progress is being made to

make CD easier to adopt and manage, there is still certainly

plenty of room for improvement.

WHAT ARE YOUR MAIN BARRIERS TO ADOPTING CONTINUOUS
DELIVERY?

WHAT ARE YOUR BIGGEST PAIN POINTS IN THE CONTINUOUS
DELIVERY PIPELINE?

0

10

20

30

40

50

60

Environm
ent configuration and

set-up

Coordination of team
 m

em
bers

and resources

R
egression Testing

U
ser Acceptance Testing

D
eploym

ent Process

Autom
ated Testing

Perform
ance Testing

Softw
are Change M

anagem
ent

(SCM
)

R
equirem

ents Issues

D
elivery and R

ollout

B
uild and Com

pile

Supply Chain M
anagem

ent

O
ther

56

34
32 31

29 29
27

25
23 22

8 7
3

Corporate Culture - not enough
collaboration/D

evO
ps practices

Lack of tim
e

Engineers/O
ps don’t have the

right skill sets

N
o support from

 m
anagem

ent

N
ot enough budget

Integrating autom
ation

technologies

D
on’t have the best release

or CI technology

Constrained by regulations
or legal requirem

ents

O
ther

0

10

20

30

40

50

60

53

47
43

30
27 26

15 15

6

While the benefits of Continuous
Delivery are well-documented, the
initial investment into tooling and training
can put a lot of managers off the concept. For
successful Continuous Delivery, it takes both management and

frontline developers to believe in the benefits and be
devoted to working towards them.

NO SUPPORT FROM
MANAGEMENT

Jamie Zawinski once famously said,
"Linux is only free if your time has no
value." Unfortunately, in the Enterprise,
whether you go for an open source or
proprietary tool, implementing DevOps
tools and processes take a lot of time that
you may not have, especially if you have delivery
dates looming.

LACK OF TIME

 The knowledge to put the pieces of your build pipeline
together may not exist in your organization, and even if it

does it could take a lot of work to integrate these tools,
especially if those tools are open source and you don't have

budget to spring for a proprietary product.

LACK OF BUDGET
If your organization doesn't have time to
go the open source route, you'll need to
use proprietary solutions, which you may
not have the budget for, especially if
you're a startup without VC or time to

spare. No money, mo' problems.

Company culture can be difficult to
establish, and even more difficult
to change. If a culture has built

silos that separate teams from each
other, it's going to be very difficult

to foster the collaboration, flexibility, and
speed that Continuous Delivery demands.

CD

Continuous Delivery is very difficult
without adopting several new tools,
and impossible without changing

processes. Learning all these new
technologies can be incredibly
difficult, especially if there's no prior
knowledge on your team.

LACK OF SKILL

30%

In this year's survey of DZone's audience, 48% of respondents believe they
have not adopted Continuous Delivery, and 38% believe they have adopted
Continuous Delivery only for some projects. Just over half of respondents
(54%) are currently focused on implementing Continuous Delivery in their
companies, so what's keeping them from reaching that goal, and what's
keeping the other 46% from trying to implement it? Turns out, there are a
lot of obstacles that can prevent developers or managers from making

headway in their adoption efforts. To learn more about them, we're going
to play a little game...

Imagine you're a plucky young startup with everything to prove, or perhaps
part of a seasoned corporation that's been around the block and is ready for
a transition to more modern methodologies. Can you achieve Continuous
Delivery without running into any of these barriers? A-maze us!

INTEGRATING AUTOMATION
 TECHNOLOGY

45%

53%

47%

27%27%

CORPORATE CULTURE

COPYRIGHT DZONE.COM 2017

DZONE’S GUIDE TO DEVOPS: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DEVOPS : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

6

Better Code for
Better Requirements

Quality is a very hot topic in the DevOps and

Continuous Delivery era. “Quality with speed” is

the theme of the hour. But most development and

testing teams have different views on what quality

means to them.

Looking back at my days as a professional

developer, I remember being tasked to follow

the company coding style guide. This described

the design principles and the code convention all

the developers should follow so that we wrote

consistent code. Thus when a change request came

in, anyone could read the code and make the edits,

and we could minimize maintenance.

Then there were the weekly reviews where we would get together

with a peer and go through the code to ensure we understood it

and were following the style guide. If the code checked out, we

then thought we had quality code.

But did that mean the applications we built were high quality? No!

SETUP
I’ve worked with plenty of agile dev teams that have adopted

DevOps and achieved Continuous Delivery. These teams typically

create basic, sometimes throwaway code just so they can

quickly push a build out to users to get feedback and make quick

adjustments. Of course this approach generates technical debt;

however, at this stage, speed is more valued than code that is

perfectly written according to any style guide.

Upon seeing positive feedback from users, these teams start

constantly refactoring the code to keep technical debt at

manageable levels. Otherwise, all the speed they’ve gained to

roll out the first builds is lost as the code grows and becomes

hard to change due to the technical debt accrued. The ultimate

consequence: team capacity and velocity for future iterations is

decreased, taking everyone back to square one – with not only less-

than-adequate code, but also an application that users don’t like.

So to keep improving their code in such a mature environment,

these teams use code quality tools to profile the code and
determine where to focus refactoring efforts first. This helps
them build things right. But no matter how good the code gets,

the user may still think the application sucks, simply because

they were not building the right things in the eyes of the user.

There is a difference between the two, and in my experience,

this is a huge gap in most Continuous Delivery initiatives.

So what’s the missing link? Requirements. The code may be of

the highest quality, but if it’s not reflecting what was specified in
the requirements, you may have built perfectly useless code.

Louis Srygley has an apt description for this:

“Without requirements and design, programming is the art of adding bugs

to an empty text file.”

BUILDING THINGS RIGHT VS. BUILDING THE RIGHT THINGS
The use of diagrams such as visual flowcharts to represent
requirements is something that helps analysts, product

owners, developers, testers, and op engineers. Diagrams are a

great communication tool to remove ambiguities and prevent

misinterpretations by each of these stakeholders – ultimately

leading to fewer defects in the code, as the visual flowcharts enable
all stakeholders to have a common understanding from the get-go.

The key is to change our mindset of using “testing” as the only

means to achieve application quality.

With Continuous Delivery we’re realizing that although we can run

unlimited automated tests at all levels to find defects, this approach
will always be reactive and more costly than tests that always pass

because there were no defects. That means we have prevented

Code may be of the highest
quality, but if it’s not reflecting
what was specified in the
requirements, you may have
built perfectly useless code.

By preventing defects from
being written into the code,
quality is thus built into the
application from the onset.

The use of a CAD-like tool
in software engineering not
only accelerates the software
lifecycle, but also ensures
developers are building the
right things.

01

02

03

Q U I C K V I E W

BY ALEX MARTINS
CTO/ADVISOR - CONTINUOUS QUALITY AT CA TECHNOLOGIES

https://www.linkedin.com/pulse/continuous-delivery-youre-doing-wrong-alex-martins
https://dzone.com/articles/the-solid-principles-in-real-life
http://www.makeuseof.com/tag/10-tips-writing-cleaner-better-code/
https://www.linkedin.com/pulse/death-star-ambiguous-requirements-issue-alex-martins?trk=mp-author-card
https://www.linkedin.com/pulse/death-star-ambiguous-requirements-issue-alex-martins?trk=mp-author-card

DZONE’S GUIDE TO DEVOPS: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV DZONE’S GUIDE TO DEVOPS: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE.COM/GUIDES DZONE’S GUIDE TO DEVOPS : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

7

defects from being written into the code, which consequently

means we have built quality into the application itself.

Martin Thompson says it best:

“It took us centuries to reach our current capabilities in civil engineering,

so we should not be surprised by our current struggles with software.”

We are on the right track. Tools have evolved and continue to

evolve at a never-before-seen pace. The area that has been lagging

in terms of advanced and easy-to-use tooling is the requirements-

gathering and definition process. Martin Thompson also has a
good quote on that:

“If we look to other engineering [disciplines], we can see the use of tooling
to support the process of delivery rather than imposing a process on it.”

Look at civil engineering. CAD (computer-aided design) software

revolutionized the designing of buildings and structures. We’ve

been missing a CAD-like tool for software engineering, but now

we are at a point where we have highly advanced and easy-to-use

solutions to fill that gap.

BUILDING QUALITY INTO THE CODE = APPLICATION
QUALITY
It is very common today for a product owner to draw an initial

sketch on a whiteboard describing what she wants built. That

sketch is then further refined through multiple iterations until the

product owner is satisfied and accepts it.

That initial sketch for a simple Flight Booking Path example could

look something like this:

SEARCH

US1 US2 US3 US4

SELECT
FLIGHTS

ENTER
PAX INFO

REVIEW
AND PAY

Then, through multiple conversations with the product owner,

developers, testers, and other stakeholders, the person assigned to

formally model the Epic could come up with the following model

shown at the top of the page.

As you can see, those conversations caused a few additional

process steps to be added as the model was formalized. We

now know that the product owner wants the user to select the

departure flight first and then select the return flight. It is also
clear that before going to the passenger information step, the user

must be prompted to log in. Lastly, it was clarified that the seats
must be chosen only after the passenger information has been

entered in the application.

Through the mere representation of the Epic in a visual model, ambiguities

are removed and defects are prevented from entering the application code.

Which means testing is truly “shifting left” in the lifecycle. And we’re

already starting to “build quality in” the application.

The visual model of the Flight Booking Path Epic becomes the

foundational layer for other stakeholders in the lifecycle.

A CAD-like tool in software engineering helps us build a

multilayered visual model of the requirements. These layers are

tied together, and just like the CAD tools in civil engineering, the

tool maintains full traceability across all layers as shown below.

So if there is a change to any of those layers, the impact is

automatically identified and communicated to the owner of each

impacted layer, prompting the owner for a decision to address

that impact.

From that visual model, the tool can then automatically:

1. Generate manual test cases.

2. Find, copy, mask, or synthetically generate the test data

required for each test case.

3. Generate request/response pairs as well as provision virtual

services for test cases to be able to run.

4. Generate test automation scripts in any language according

to the test automation tools being used by the team.

So while developers must continue to invest in increasing code

quality to build things right, the use of a CAD-like tool in software

engineering not only accelerates the software lifecycle (i.e.,

speed), but it also ensures developers are building the right things

(i.e., quality) from the beginning by providing unambiguous

requirements to all stakeholders across the SDLC.

ALEX MARTINS has more than 18 years of experience in largescale
application design, development and testing. For the last 13 years Alex has
been focused on software quality engineering and testing discipline as the
pillars for DevOps transformations. Going through all levels, from Tester to
Practice Leader in various technology companies such as EDS, IBM, HP and
Cognizant Technology Solutions, Alex built and ran several Enterprise
Testing Organizations in Latin America and the US for multiple clients. Alex now works as
a client advisor in the Continuous Delivery BU at CA Technologies and is also responsible
for the Continuous Quality Center of Excellence. When not talking tech, you will either
find Alex enjoying time with his family or on a beach somewhere surfing or kitesurfing.

FINISH

USER STORY 3

Enter search
parameters
and click on

search

Select
Departure

Flight

Select
Return
Flight

Login
Validate

parameters

Parameters
ok?

User
logged

on

Enter
Passenger

Info

Choose
Seats

USER STORY 4

Review
and
Pay

Payment
SuccessfulTRUE TRUE

FALSE

USER STORY 1 USER STORY 2FIG. 2

FALSE

TRUE

Validate
Payment

Info

FALSE

START

MODEL

TEST DATA

SERVICES

TEST AUTOMATION

PERFORMANCE
TESTING

Modeler
(PO/BA/Tester)

• Draws and maintains business process flows
• Baselines understanding across the team
• Removes all ambiguities

• Performance SLAs
• Load Testing
• Scenarios
• User Profiles

Test Data
Engineer

• Find and reserve data automatically
• Match test data to each test case

Services
Engineer

• No dependency on external interfaces
• Accelerate code development

Test Automation
Engineer

• Automatic creation of scripts
• Automatic impact analysis

Performance
Engineer

• Automatic generation of load scenarios
• Automatic creation of scripts

LAYERED APPROACH TO CONTINUOUS DELIVERY

https://www.infoq.com/news/2016/06/programmers-write-better-code

DZONE.COM/GUIDES DZONE’S GUIDE TO DEVOPS : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

8

It’s amazing to think of the change in economic behavior

over past 20 years. In 1995—the year both Amazon and

eBay launched—virtually all commerce was conducted in

the physical realm.

Today that’s changed. In the application economy,

customers’ impressions are overwhelmingly shaped by

their interactions with your web and mobile applications.

The battleground for consumer loyalty is no longer in the

physical world: it takes place on your web and mobile

apps. This means that whatever products or services your

company sells—and whether you realize it or not—your

company is in the software business.

To compete in the application economy, your organization

has to create software the way a modern factory

manufactures goods. Specifically, software needs to be

developed faster, at lower costs, and with high degree of

quality. And this is true across all virtual touchpoints: your

public-facing web and mobile apps, as well as your backend

systems, are all equally critical to delivering a superior

customer experience.

Agile development methodologies are a step in the right

direction. DevOps takes things one step further. But the

ultimate goal of any organization should be transforming

into a factory capable of continuously delivering software.

Continuous delivery is not an easy task. It requires

automation throughout the software development lifecycle,

as a bottleneck anywhere can back up the entire assembly

line. That means development, testing and release

automation all must occur continuously—and concurrently.

Testing is often the last hurdle to continuous delivery,

and achieving continuous testing means shift-left testing

practices, test automation, and testing at the API level.

CA offers an open and integrated portfolio of continuous

delivery solutions that automate software delivery—

from planning through production. These solutions help

you accelerate the delivery of innovative, high-quality

applications to drive competitive advantage and win in the

application economy.

WRITTEN BY BRENDAN HAYES
DIRECTOR OF DEVOPS SOLUTIONS MARKETING, CA TECHNOLOGIES

Where development, testing, and release teams can work in a unique
and open integrated ecosystem with proven results.

BLOG blogs.ca.com WEBSITE ca.com/continuous-deliveryTWITTER @CAInc

Continuous Delivery solutions By CA Technologies

CASE STUDY
GM Financial, the finance arm of General Motors, was striving to deliver

applications and updates faster, to better serve its customers—and make

it easier for them to get loans. Rapid growth within in the business and

increased competition meant traditional development methods were no

longer keeping pace.

GM Financial recognized the need to deliver higher quality software,

faster—something that could only be achieved by automating much of

the software development lifecycle.

A cohesive effort spanning dev, ops, and quality assurance did just this.

With the help of CA’s continuous delivery solutions, GM Financial was

able to shorten a standard server deployment from several hours to a few

minutes. Results like this have had a direct customer-facing impact: now

loans can be processed in 1 day vs. 1-2 weeks.

Listen to their story here.

STRENGTHS
• Integrated and open, end-to-end continuous

delivery ecosystem

• Develop continuously to release applications up

to 20x faster

• Test continuously to gain up to a 25% reduction

in testing cost and time

CATEGORY
DevOps and

Continuous Delivery

NEW RELEASES
Continuous

OPEN SOURCE
Yes

NOTABLE CUSTOMERS
• SunTrust

• Direct Line Group

• RaboBank

• Manheim

• AutoTrader

• Jewelers Mutual

SPONSORED OP IN ION

https://blogs.ca.com
https://ca.com/continuous-delivery
https://ca.com/continuous-delivery
https://twitter.com/CAInc
http://www.twitter.com/nginx
http://bit.ly/2j1J0vH

DZONE’S GUIDE TO DEVOPS: CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

DZONE’S GUIDE TO DEVOPS : CONTINUOUS DELIVERY & AUTOMATION, VOLUME IV

9

http://ca.com/continuous-delivery?DZone.com

