
DevOps
Perspectives 5
Insights and Guidance from
DevOps Leaders and Practitioners

2

Of particular note are two public sector use case
exemplars—one from a UK local authority perspective
where agile techniques are being used at Stockport
Council to revolutionise development and introduce cost
savings in an age of austerity, and one from the U.S. where
the US Citizenship and Immigration Service is chasing the
Chaos Monkey in its own attempts to inculcate a DevOps
culture within government agency bureaucracy.

Both are great examples of the cultural and change
management challenges that DevOps evangelists face.
They’re challenges found in the private sector, and,
in the risk-averse environment of the public sector—
where the political will meets the administrative
won’t—are all the more magnified and engrained.

As USCIS CIO Mark Schwartz puts it, “Bureaucracy is
based on making a plan and getting everything down
on paper, which really isn’t a very effective way to
oversee IT programmes.”

But with organisations such as the UK’s Gov.UK
committed to the advancement of agile techniques
and development methods in government IT,
there’s growing weight behind breaking down the
existing practices and moving to a better approach.
Demonstrable results such as those at Stockport,
where the relationship between IT and government
services has matured and transformed over the past
year, shows that these are not just tech improvements
but business process improvements as well.

DEVOPS PERSPECTIVES 5 | INTRODUCTION

Political Will Meets Administrative
Won’t: Using DevOps to Change
Government IT Culture
It’s perhaps indicative of the growing footprint of the DevOps movement that
the articles in this edition cover such a wide gamut of topics from mechanical
sympathy to the networking team as a DevOps organisational entry point to
some excellent case study examples of best practices, such as that of Live
Nation’s Ticketmaster operation.

Contents

DevOps—No Monkey Business in Growing a DevOps Culture
in Government 4

Golden Ticket to a DevOps Cultural Revolution 7

Sympathy Pangs 10

Capitalization, Agile and Why You Need to Care 12

Agile Development Drives Service Change at Stockport Council 20

Networking as the DevOps Entry Point 23

Devs, Ops and the Future for the Software Development Lifecycle 26

DevOps and Deviance—When Bad IT Practices Become
Accepted as Normal 29

Contributors 32

DEVOPS PERSPECTIVES 5

4

DevOps—No Monkey Business in
Growing a DevOps Culture in Government
Mark Schwartz

Back in 2014, Mark Schwartz, CIO of
US Citizenship and Immigration Service
(USCIS), made a bold statement about a
monkey running amok. “If you read that
Chaos Monkey has shut down Homeland
Security, take it as a success,” he quipped.

This particular simian is a script that sets out to
cause deliberate havoc and try to screw up things
in production, and which USCIS uses as part of its
development work internally to ensure the robustness
of systems before they go live.

Two years on, Schwartz is still a fan of the Chaos
Monkey approach. “It’s an interesting direction that
I believe in more and more,” he says. “You have to
test systems in production. You can’t just assume
things will work when there’s a problem. You need
to really test and exercise.”

That said, the idea of crashing Homeland Security
systems in any way is one that sent shivers down the

DEVOPS PERSPECTIVES 5 | DEVOPS—NO MONKEY BUSINESS IN GROWING A DEVOPS CULTURE IN GOVERNMENT

5

collective spine of the USCIS bureaucracy back in 2010,
when Schwartz made the move from the private to
the public sector. What he found when arriving in his
new office was a situation common to government
organisations and agencies around the world—a way of
doing combined with a not-invented-here mindset that
was holding back change and efficiency.

Schwartz recalls situations such as being told that it
would take eight months to a year just to make a few
changes to a web page, something that he could do in
a couple of minutes, because of the need to follow the
strictures of the software development lifecycle (SDLC)
as laid out in Management Directive 102 (MD102).

MD102 cast a long shadow over Schwartz’s work.
It was cited as a reason for not doing something
differently on multiple occasions, leading to him
examine it closely. Rather surprisingly, perhaps, he
describes it as “a beautiful document,” into which a
lot of work had been put to meet the needs of the
then-embryonic, post-9/11 Department of Homeland
Security, under whose auspices USCIS sits.

When MD102 is put into the context of the “total
chaos” of bringing together 22 components of
government overseen by 102 Congressional
Committees, then, argues Schwartz, a different side
to it can be seen. “It’s been written by human beings
in a government organisation trying to do their best
at a difficult time,” he argues. “This is not a faceless
bureaucracy, its real people.”

Flash forward to 2016 and that argument is still front
and centre for Schwartz. He’s clear in his reasoning
about the suitability of the DevOps and continuous
delivery model for government and can list the benefits:
• Easier change management in procurement, with

everything being scripted and regression test suites
allowing new contractors to come in and not have
to wade through piles of documentation left by
their predecessors

• Better metrics, because it’s necessary to prove that every
decision has been made objectively and catalogued

• Easier to meet compliance requirements, such as for
the Federal Information Security Management Act

(FISMA), by working during the development process,
rather than having gatekeepers come in at the end
and find that a system isn’t compliant

• Enhanced security through continuous monitoring
of vulnerabilities and feedback from developers
during production

• Better risk management capabilities by dealing
with issues as they emerge during development,
not discovered after the system is complete

• Reduced expense and waste, an across-the-aisle
issue that can unite policymakers

But organisations can only realise these benefits if
there’s a cultural shift toward doing things differently.
In government terms, that involves finding new
approaches without digging up the foundations that
have been put in place to support what Schwartz calls
a necessarily low-trust environment. Government will
always be risk-averse. Worldwide, policymakers and
change agents coming into the public sector have run
into the situation of “political will meets administrative
won’t.” It’s a common theme.

“ You have to test systems in production. You
can’t just assume things will work when there’s
a problem. You need to really test and exercise.”

DEVOPS PERSPECTIVES 5 | DEVOPS—NO MONKEY BUSINESS IN GROWING A DEVOPS CULTURE IN GOVERNMENT

6

Over the past few years, progress has been made,
says Schwartz. “Within our agency, we’ve done a lot
of cultural change. We have agile coaches around the
place, but their role today is more about technical
methodologies. We’re trying to institute a shift toward
a hands-on approach where everybody is involved in
a quality check sort of role. I want everybody to be
involved in creating products or checking results. So
we have our agile coaches pair with developers and
get involved in the creation process. It’s the same
with Quality Assurance and Test Oversight.”

“We’re also encouraging our middle management
layers to remember their technology roles. We have a
new workforce coming into IT now which is made up
of very talented technologists. They tend to respect
management more if they, too, are hands-on. We have
a lot of people who used to love coding—and still do—
but they don’t do it as much, so they feel disconnected.
Equally, you get these brilliant young technologists
coming in and you can have management feel that
their coding skills aren’t as strong as they used to
be, but we encourage them to do the brilliant stuff,
because they can probably still do it.”

It’s also about transitioning to a new approach to
working, adds Schwartz. “The transition that I would
like us to make is toward a learning-and-feedback
approach, rather than controlling things though
upfront plans. Bureaucracy is based on making a
plan and getting everything down on paper, which
really isn’t a very effective way to oversee IT
programmes. We need fewer heavyweight, upfront
plans and more lightweight check-ins on progress.”

“I want to move the focus onto measuring outcomes.
I don’t want to start with a big list of requirements,
but with outcome metrics that we want to optimise.
So where there’s a need for manual intervention in a
process, the outcome we want should be to speed up
the ability to do that intervention. So, we would say
that there is a product owner for that who will just
prioritise the things that will impact that outcome.
What we need to do is to show the oversight bodies
that this actually gives them more control than they
have with the huge requirements documents.”

He adds, “Using DevOps and continuous delivery,
we can give the overseers what they need, but there’s
just a different way of thinking about it. The planned-
delivery approach never really worked. The reality
would never actually match the plan that was on
paper. With DevOps, we can control our projects
better and provide the best possible outcomes. We
can accomplish more.”

But in government it all takes time. Circling back to
MD102 and 6 years after it first came into Schwartz’s
life, it remains a work in progress. There is now
agreement to pilot new approaches as MD102
substitutes with five programmes in Homeland
Security at work on these. “These are intended to
show overseers that this will give them more control,
not less,” concludes Schwartz. “Based on feedback,
we will then rewrite MD102.”

“ I want to move
the focus onto
measuring out-
comes. I don’t want
to start with a big
list of requirements,
but with outcome
metrics that we
want to optimise.”

DEVOPS PERSPECTIVES 5 | DEVOPS—NO MONKEY BUSINESS IN GROWING A DEVOPS CULTURE IN GOVERNMENT

7

A 230-percent increase in the number
of developers but only a 12-percent
increase in the number of operations
personnel—that’s a situation that’s
going to bring pressure to bear on any
organisation. So it was at Live Nation’s
Ticketmaster business in 2014, where
incoming CTO Jody Mulkey found
himself faced with just such a dynamic.

His response to this over the past two years has
been to inculcate a new people-centric culture of
empathy, empowerment and metrics to create a new
development model for a firm that is in fact one of
the oldest SaaS companies in the world.

Mulkey’s argument is simple: DevOps isn’t about
technology; it’s a mindset that needs to be about
working together as human beings. “If you put great
people together, then they will do great things,”

he posits. “We are not in the operations business;
we are in the software development business.”

He adds, “The only way we make money is by
meeting market needs and the only way we do that
is by changing our software. We serve the customer
through software products.”

Inevitably, as happens so often when introducing
DevOps into any organisation, there was an inherent
resistance to change within Ticketmaster, with some
people whispering that Mulkey was “crazy, he’s going
to let developers touch the software.”

Two years on, Mulkey can admit that change is hard and
that this has been a challenging process for longer-serving
members of the Ticketmaster team, some of whom have
over 10 years of service under their belts. That duration
of tenure itself brings its own challenges when trying to
introduce new working methods and models.

“What’s interesting of course is that Ticketmaster is
a market leader in its field and we have quite a few
folks that have been here a long time,” says Mulkey.
“So, when I say to some people. ‘We need to go

Golden Ticket to a DevOps
Cultural Revolution
Jody Mulkey

“ DevOps isn’t about
technology; it’s a
mindset and that
mindset needs to be
about working together
as human beings. If
you put great people
together, then they will
do great things.”

DEVOPS PERSPECTIVES 5 | GOLDEN TICKET TO A DEVOPS CULTURAL REVOLUTION

8

faster,’ they look at me and say, ‘Why? We’re already
number one.’”

“You can try to make the change through logic, but
logic doesn’t create change—emotion does. As a
global market leader, there’s always a handful or more
of smaller companies all trying to take a bit of our
business away. I need to show the team who those
companies are and how fast they’re growing so that I
can stir them up a bit and get them to understand that
this great place is number one today, but we always
need to act like we’re number two. We need the
fighting spirit, and the emotion drives that.”

Mulkey’s approach is built on three prongs:

Empathy—This applies both internally, “You can’t
make material change without engaging hearts and
minds” and externally, so that Ticketmaster employees
understand the importance of enabling a great
customer experience. To that end, staff go out and
work with clients in the field. Mulkey jokes that if a
developer is present at a One Direction concert when
5,000 people want to get in and the ticket scanner
breaks, it gives them a new sense of urgency.

Empowerment—This goes back to the great
people wanting to work with great people idea.
“Game attracts game,” says Mulkey. “We have 100
development teams globally and they want to run
their own projects. Today, 100 percent of the
73 teams we have in the U.S. push their own code
all the way to production.”

Metrics—Business metrics are what really matter,
argues Mulkey. This wasn’t something that was
built into the Ticketmaster culture, with none of the
product managers talking about money. Now, there
are revenue graphs on all the operational dashboards,
while the focus has shifted from output to outcomes.
“We had been a ‘ship the feature’ company rather than
a ‘solve the problem’ one,” recalls Mulkey.

A longer-running resistance came from the ops side
of DevOps, something Mulkey attributes to a changing
locus of leadership across the years. Back in the
dot-com era of the early 2000s, that locus sat with
operations, because even though the software was
relatively simple, running it at scale across thousands
of servers was a challenge.

That locus then shifted, first to software developers
in the Web 2.0 era, and now to design professionals.
“Ops had all the power in the company and that
has shifted,” says Mulkey. “But we are not an
operations company, we are a software development,
SaaS company.”

“ And we’re continuously
hiring, and hiring for
the mindset rather than
the skill set. It is getting
easier. Great people
want to work with great
people and we have a
lot of great people.”

DEVOPS PERSPECTIVES 5 | GOLDEN TICKET TO A DEVOPS CULTURAL REVOLUTION

9

That said, things level out over time, he adds.
Inevitably, in any cultural evolution, there will be
those who just won’t make the grade in the new
regime. “If people signed up to do something and
that changes, even if the new thing they’re being
asked to do is better, they may no longer want to
be here,” Mulkey reasons. “Any organization has
turnover and we believe a healthy amount of
self-selected attrition can make our team stronger
and our products better.”

Over time, new people will also come in to an
organisation who are on the same wavelength as
the new culture. It’s a never-ending journey, says
Mulkey, one that’s exponential in nature. “There’s
a non-linear path to where we want to go,” he says.
“We’re on the way, maybe 50 percent of the way
there. We’re using a big move to public cloud as
a manifestation of the change.”

“And we’re continuously hiring, and hiring for the
mindset rather than the skill set. It is getting easier.
Great people want to work with great people and
we have a lot of great people.”

In fact, he concludes, only two people he’s
interviewed haven’t ended up working for
Ticketmaster—and one of those had a plum
offer from Uber and is now a multi-millionaire.
“He’s not regretting his choice,” laughs Mulkey.

“ You can’t make material change without
engaging hearts and minds.”

DEVOPS PERSPECTIVES 5 | GOLDEN TICKET TO A DEVOPS CULTURAL REVOLUTION

10

As a three-time Formula 1 champion, there’s clearly
something to his thesis, which boils down to an
argument that understanding the technology which goes
into building the race car makes you a better driver.

Martin Thompson, proprietor of the blog “Mechanical
Sympathy” and founder of the LMAX Disruptor open
source project, took that idea and applied it to the
software development world, positing that a better
understanding of hardware is essential to the creation
of the software that is going to run on it.

A lack of awareness of this synergy leads to scenarios
where the software of today doesn’t feel as though it’s
running any faster than DOS-based applications from
20+ years ago. “This is a 20–30-year-old problem,
there is a collective amnesia in our industry that
means that we don’t learn from the past,” he declares.
“We should be coming into jobs and working with
people who’ve done this for a long time and know
how to do things well, and learning from them. In
any other discipline, that would be the case. But the
problem is that IT is so new.”

“That’s particularly true of the software development
industry. How many of us could say that our parents
were in the software industry? Who can say they
are a second- or third-generation programmer?
Not many. Really, we’re living in an era of software
alchemy, where we are like 16th-century physicists,
making things up as we go along. Fundamentally,
there is science underpinning this. We have to have
hypotheses for how things work.”

For his part, Thompson’s developer history dates back
to the ZX80s, Spectrums, BBC Micros of the 1980s,
when it was necessary to deal directly with memory
when coding. This produced an acute awareness of
how much memory you had to play with and how it
worked. Developers had to understand this or they
couldn’t create performing systems.

The same is true today, he suggests. “It’s about
making sure that things are correct,” he says. “When
you’re storing data in a database, you can be running
on various file systems, so then knowing you are not
getting into a mess is good. Have you chosen the right
system for storage? Do you know how it works and
which choices to make to get the best result?”

It was renowned motor racing driver Jackie Stewart who declared,
“You don’t have to be an engineer to be a racing driver, but you do have
to have Mechanical Sympathy.”

Sympathy Pangs
Martin Thompson

DEVOPS PERSPECTIVES 5 | SYMPATHY PANGS

11

There’s a cultural mind shift that needs to take place,
argues Thompson. “We have had a view of, ‘let’s throw
hardware at a problem’ and that has worked in some
cases, but not in others.” he says. “If you look at the
world from the ‘50s and ‘60s through to the 2000s,
processors kept getting faster, memory got faster, disks
evolved. Then CPUs stopped getting faster, disks didn’t
get faster until SSDs came along. We’ve flipped over.”

“As time progresses however, CPUs are not going to get
significantly faster, so the question becomes how we
split up work in such a way that it is going to be truly
scalable. If you want to scale things, then there has to
be a cost model. If you’re gong to add more resource,
then you should be getting economies of scale. Most
software today is not written with that in mind.”
Some basic understandings are simply overlooked
today, adds Thompson. “We don’t measure things until
we hit problems,” he states. “We choose to wait until
the last possible responsible moment, but that
responsible moment often comes too late. Individuals
come across unknown unknowns, but these are often
things that are well known and understood across the

industry. For example, TCP is a very well-understood
protocol whose issues are well known to some parts of
the community. But how you work with it is only well
known to a limited part of the DevOps community. We
tend to follow the latest, coolest trend. We want instant
gratification, but some stuff requires a bit of work.”

Another case in point is the enthusiasm for working
with microservices. “Everyone is crazy about
microservices, but who’s talking about how they
are going to communicate with one another?” asks
Thompson. “That’s all about protocols of interaction.
How do you design for cohesion? I’m not seeing
anywhere near enough focus or discipline around this.
You ask some people about cohesion and they can
come up with some kind of definition, but then you
look at their code, it’s not there.”

So how will this change? And what is the mindset
that needs to come into play? “Cost is always an
interesting driver of change,” suggests Thompson.
“Are you using IT efficiently? Are you getting the best
out of it? Are you being cost-effective? To operate in
any environment without being aware of the cost is

not professional. If you measure ROI across various
disciplines, we in IT rank as one of the worst and most
inefficient across any other domain.”

But the likelihood is that this is a long journey and one
that’s going to be a bumpy ride with lots of back and
forth on the way. “We’ve had a software crisis since the
1960s which the agile movement helped to address,
but things have gone too far the other way now,”
Thompson suggests. “Today, big upfront design is seen
as a bad thing, so there is virtually none done. But not
doing any upfront design is just as bad as doing too
much. We will move forward and we will swing from
extreme to extreme and we will learn from that.

“Different parts of the DevOps community will move
at different rates,” he concludes. “I do see elements
of it where there are individuals who are talented and
who are doing the right thing. It’s whether or not this
becomes a wider culture. We will have to do it. It’s just
a case of when we do it.”

“ We don’t measure things until we hit problems. We choose
to wait until the last possible responsible moment, but that
responsible moment often comes too late.”

DEVOPS PERSPECTIVES 5 | SYMPATHY PANGS

12

Capitalization, Agile and Why You
Need to Care
Dan Greening

Software development is an investment in the long-
term future. We spend money upfront on engineer
salaries and then (hopefully) profit later from cost
savings or revenue. If we invest wisely—converting
cash (one type of asset) into software (another type
of asset)—the company’s value should go up. Tax
authorities and investors rely on financial reports to
understand the value of a company. How we report
development expenses matters.

First, let’s define capitalization and expensing.
Capitalization means spreading investment costs
(sometimes called capital investments or capital
expenses) over a long-term asset’s life of returning
value. Capitalization is used in tax filings and financial
reports (such as P&L reports). Capital investments
become part of the declared assets of the company.
Expensing means taking the hit of a cost immediately
as an operational expense that returns short-term or
no value. A company that expenses all of its software
development has a hard time arguing that its software
is part of its long-term value.

DEVOPS PERSPECTIVES 5 | CAPITALIZATION, AGILE AND WHY YOU NEED TO CARE

In many companies, Agile software development is misunderstood and
misreported, causing taxation increases, higher volatility in profit and loss
(P&L) statements and manual tracking of programmer hours. I claim Scrum
teams create production cost data that are more verifiable, better documented
and more closely aligned with known customer value than most waterfall
implementations. Better reporting can mean significant tax savings and greater
investor interest. Agile companies should change their financial reporting
practices to exploit Scrum’s advantages. It might not be easy, but it can be done.

“ Misunderstandings
in how to track and
report agile project
costs have cost
many companies
millions of dollars
in improper taxation.”

13DEVOPS PERSPECTIVES 5 | CAPITALIZATION, AGILE AND WHY YOU NEED TO CARE

It’s easy to make damaging mistakes when classifying
software costs. Some companies incorrectly treat all
software investment as an operational expense, which
could provide an opportunity for impropriety. Classifying
software investments as operational expenses usually
just results in the company overpaying taxes and
understating its value, which in turn would depress its
stock price and reduce its borrowing power.

Agilists Should Understand
Capitalization
Agilists should learn proper capitalization and teach
their colleagues. Misunderstandings in how to
track and report agile project costs have cost many
companies millions of dollars in improper taxation.
Poor capitalization rules create choppy income
statements for agile companies, making them look
poorly managed. So-called conservative waterfall
processes can rarely track which design efforts or
management tasks led to which features, while
agile methods can. Yet accountants typically do not
understand how to properly track and report labor
in agile projects.

“ Companies can gain tax advantages by capitalizing software
development: by deferring costs they typically offset more
taxable revenue and gain more interest income.”

14

On the positive side, Scrum Masters and agile
department heads who understand capitalization can
generate millions in tax savings because good agile
practices can enable more verifiable capitalization,
and because spreading investment costs over time
often reduces the overall tax and helps find earlier
funding to hire additional engineers.

Scrum Masters, often more than anyone else in the
company, can correctly classify work as long-term
investment or short-term expense, and usually have
all the data needed to defend their classifications
with financial staff and external auditors.

Scrum Masters promote processes that more reliably
align actual team behavior with documented goals.
Scrum techniques have an adaptive statistical basis,
backed by experimentation, which is absent in classic
project management techniques. In my experience,
auditors can trust agile-based reporting more than
waterfall-based actuals.

If, as a Scrum Master, you want to tackle this opportunity,
labor classification will then likely become your
responsibility, along with other Scrum Masters in the
company. You will likely become, by necessity, an expert
on the topics of software capitalization, depreciation and
impairment. Welcome to the world of finance.

Proper Classification Creates
a Bright Future
Tax authorities and investors use operational
expense and capital expense concepts to make
better decisions. They usually want companies to
invest in the long term, so they let companies spread
investment costs over time to offset revenues roughly
in parallel as the investment earns money.

Software work can provide short-term value (all
ROI in under a year) or long-term value (ROI over a
multiyear period). Here’s a short-term example: a
contract software company might create a website
for a customer, get paid for it and retain no further
rights. In this case, we say development cost is an
operational expense (opex).

Public companies usually must report yearly and
quarterly profit to shareholders and tax authorities.
Computing the profit seems easy:

profit = revenue – expense

Here’s a long-term example: a toy retailer builds a
website to sell its toys. Years after it built the website,
the long-completed work keeps generating revenue.
In this case, we say development cost is capital
expense, a long-term investment. Computing the total
profit, ex post facto, is easy:

total_profit =
revenue(year_1) + … + revenue(year_n) – investment

Every year, shareholders and tax authorities expect a
financial report; their first concern might be to ask,
“What were our profits last year? If we have a long-
term software project that gains no revenue in its
first year, and if we have to treat it as an operational
expense, we might need to post a loss. Fearful
shareholders might sell shares of our company.
Maybe we don’t have to pay taxes this year, great. But
next year, we might have no development expense
and a lot of revenues from our toy retail site, in
some jurisdictions taxed in full.” If we had to treat
development efforts this way, it would discourage us
from investing long-term.

Wisely, tax authorities and accounting groups let
us spread these capital expenses over time using
a system called depreciation. Most depreciation
schedules spread a capital expense evenly over the
expected lifetime of the software; if the toy retail site
we develop will likely stay in use over a 5-year period,
we can expense 20 percent of the development
cost the first year after deployment and 20 percent
each year after through the fifth year. (Contact an
accountant for more information on depreciation
schedules, which can vary depending on the expected
lifetime of an asset.)

An investment might not be usable right away. Since
we don’t immediately gain revenue from it, we can
usually defer depreciation until it goes into use. The
accounting shorthand for this time before deployment
is the capitalization period. (Capitalization benefits
continue after depreciation starts, by the way.) If we
remove features in our website software or stop using
it entirely (possibly because we replaced it) either
before or after deployment, we “impair” our
old investment and then have to immediately
expense all remaining costs.

Companies can gain tax advantages by capitalizing
software development—deferring costs they typically
offset more taxable revenue and gain more interest
income. Departments also gain some advantages
in hiring. When a department can defer software
investment costs, it often can spend that deferred
cost on employee salaries (hiring more people,
providing raises, etc.)

DEVOPS PERSPECTIVES 5 | CAPITALIZATION, AGILE AND WHY YOU NEED TO CARE

15DEVOPS PERSPECTIVES 5 | CAPITALIZATION, AGILE AND WHY YOU NEED TO CARE

Profit and Loss, With and
Without Depreciation
The graph illustrates how P&L can be affected by
depreciation. The numbers shown are in thousands
of dollars. As is typical for software projects, the major
costs (dev cost) occur at the beginning of the project:
$2 million in 2012 and $2 million in 2013. In 2014
and beyond, the costs will be $200,000 per year
which is the cost of adding features to the software.
The project doesn’t start earning revenue or cost
savings until it is deployed in 2014, and at that point
it may earn $1.2 million yearly. If project costs are not
depreciated but expensed immediately, the blue line
tells the P&L story: Huge losses in the first two years,
then enormous profits in subsequent years.

When costs are depreciated, the green line tells a
different P&L story. No costs are taken from P&L until the
software is put into use, and when it is, we compute our
profit by depreciating the cost over a five-year window.

Why is this important? Governments typically tax
P&L on positive amounts, and make it difficult to use
losses to reduce future year taxable P&L (unless you
can justify your choice with depreciation).

Finance people often over-expense by treating all
software expenses as operational expenses, claiming
this is somehow conservative behavior. It isn’t. If
you are investing in the long term, placing software
investments in a short-term expense class will make
your company look volatile—that’s irresponsible to
your shareholders. It can generate higher tax liability,
which is both irresponsible to your company and
out of line with the goals of your host country, which
would want you to invest long-term.

A company with high profits can offset a product
development department’s production losses. This
would avoid the tax problem, but it doesn’t avoid the
poor-planning problem. In my experience, executives
pay attention to departmental profits and losses and
drive headcount from that. Who among us hasn’t seen
boom-and-bust cycles of hiring and firing in large software
concerns? In part, this headcount volatility is caused by
failure to properly recognize software as an investment.

Finally, if agile software projects are expensed and
waterfall projects are not, it would essentially doom
any long-term enterprise adoption of agile practices.
If waterfall projects can hire more employees but
agile projects can’t, guess what methodology
managers will promote?

Recommended Accounting
Practices Ignore Agile
Accounting practices are not completely dictated
by tax and securities law. Instead, the U.S. Financial
Accounting Standards Board (FASB) interprets these
laws to produce generally accepted accounting
practices (GAAP). FASB guidelines for internal use
software are in [ASC 350-40], and for externally
sold software are in [ASC 985-20]. Their treatments
are roughly equivalent for this discussion. The
International Accounting Standards Board (IASB)
produces the International Financial Reporting
Standards (IFRS). FASB and IASB provide guidance on
how to interpret law. Their recommendations, which
were written before agile practices were popular, show
how to classify work using waterfall examples

16

Waterfall capitalization timeline
Misinformed people believe FASB and IASB guidelines
force agile projects into a waterfall world of engineer
time tracking, with RUP-like phases of analysis,
prototyping, development, packaging and maintenance.
Instead, the guidelines state that market analysis prior to
development is expensed, prototyping prior to a decision
to invest is expensed, development for long-term value
is capitalized, packaging for shipment is capitalized and
maintenance (fixing bugs) is expensed. The figure above
shows capitalized items in green.

Auditors recognize that FASB and IASB guidance cannot be
routinely applied to new situations. What tax authorities
and auditors look for is conformance to law and its spirit,
consistent application and full transparency. We can give
them all that; but because agile practice is new, we must
understand the law and its motivations, document our
capitalization policies and practices, track project work
consistently and be perfectly transparent. This aligns well
with agile principles.

However, if you ignore the law and its motivations,
inconsistently track work or fail to document processes
clearly, you risk the wrath of tax authorities and investors.
Adverse audit findings and the resulting submission
of corrected financial reports can cause tax authorities
and investors to lose trust in the company, which would
subject it to higher scrutiny and a lower stock price.

Finance departments are justifiably conservative in
their approach. If your finance department doesn’t like
how you do things, they could:
• Force engineers to track hours (degrading their creativity

and productivity with mind-numbing work-tracking)

• Undercapitalize software development (leaving huge
sums on the table)

• Reclassify past expenses (raising investor questions
about the stability of the company)

It’s easy to make multimillion dollar mistakes in this
area. Because the vast majority of companies make
capitalization mistakes that increase tax receipts, the
authorities don’t complain. And because agile software
practices are arcane to investors, they don’t complain
either. But they should.

If you involve at least one person that has a
moderately good understanding of three fields—
finance, engineering and process—you can
dramatically improve your bottom line. Since the
returns are so high, it may be worthwhile to hire a
consultant to help get it right.

How to: Financial Reporting in the
Agile Frontier
Until FASB and IASB guidelines are revised to explicitly
discuss agile examples, responsible agilists must work
directly with their own corporate finance departments
and auditors to craft acceptable capitalization processes.

First, establish a clear and consistent bright line
demarking when your company could start capitalizing
work. ASC 350-40 states that cost capitalization can
begin when all work in the preliminary project phase
is complete, when management commits to funding
it and when it is probable that the project will be
completed, and used. Capitalization begins when you
move from what to how you will design and develop
the software asset.

In most cases, capitalization should begin when the
whole production team assembles for its first sprint.
Your company should complete an initial market
exploration and architectural design before it invests
in a full team of designers, engineers and testers.
However, if a research team runs a feasibility spike
sprint to determine which architecture to use or
whether the market warrants further sprints before it
can create something that could provide long-term
value, you are likely in a preliminary project phase, and
your costs should be treated as operational expenses.

Once your company has committed funding to a
project likely to be completed and used, you can start
capitalizing the work. All work critical to designing,
creating, testing and deploying the asset should
be capitalized, including engineers, testers, user
experience designers, product management, project
management and Scrum Masters.

Second, establish whether the entire or only part of
the project should be capitalized. In many cases after
the preliminary project phase, the entire project cost
can be capitalized. This happens when a significant
percentage of the work (we felt 95 percent was
sufficient) should be classified as capital expense.
However, some common activities must be expensed.

If any of the following apply to you, you may have
a mixed-mode project:
• Your team is fixing regression bugs in a released

product while developing new features.
• Your team is creating a product for

international release and localizing the product
for multiple languages.

DEVOPS PERSPECTIVES 5 | CAPITALIZATION, AGILE AND WHY YOU NEED TO CARE

17

• Your team (not just its software) manually converts
data from one form to another.

• Your team helps train people to use the software.

• Your team participates in operations activities
beyond deployment, such as monitoring, reporting,
backup, machine configuration.

• Your team performs routine Sarbanes-Oxley (SOX)
or security reviews [15 USC 7211].

• Your team refactors code unlikely to be relevant to new
functionality (you probably shouldn’t do this anyway).

• Your team modifies software to support
individual customers.

Whether these items or others should be expensed
or capitalized will depend on your finance department
and technical accounting advisors.

How to: classify mixed-mode projects
If you have mixed-mode projects, establish a way to
apportion labor to operational or capital expenses.
If you have strong Scrum practices within your
organization, you can likely defensibly use proportional
allocation of estimation points (also called story
points) for each team. If each team has a different
point scale, it can be accommodated. For a quarter,
sum the points completed by the team then divide it
by the total cost of the team (including product owner,
Scrum Master, team members and the appropriate
percentage of part-time contributor salaries). You will
now have the cost per point.

ID Description Estimate Cap?
1 Add internal language capability 8 Y

2 Fix regression bug in English-
language version 5 N

3 Localize for Spain, France, Germany 13 N

4 Customize software for Acme
Corp client 3 N

5 Restructure site with better
graphics, information flow 13 Y

6 Fix bug that “export” never
worked on Mac OS X 8 Y

7 Implement import function 13 Y

In this example, the team completed 63 estimation
points in its 4-week sprint, and could capitalize those
42 points. If the total team cost (the total salaries for
the team) for those 4 weeks was $112,000, then the
capital expense was $112,000 × (42 ÷ 63) = $75,000.

DEVOPS PERSPECTIVES 5 | CAPITALIZATION, AGILE AND WHY YOU NEED TO CARE

18

If product owners write product backlog items in a
ritualized story form, it can be easier to determine
whether it is a capital or operational expense. My
preferred product backlog item story form, a variation
of a form promoted by Chris Matts and Dan North
[North 2006], helps clarify most classification work.
It looks like this:

As a <stakeholder>,
I can <perform an action>,
so our company <receives business value>

Acceptance tests:
<acceptance test 1>
<acceptance test 2>

In this format, you substitute specific values for
<stakeholder>, <perform an action>, <receives
business value> and <acceptance test …>. The
stakeholders are never the team, but they can
be anyone else consuming the product: a user, a
customer, a systems operator, a business analyst or an
administrator. If you aren’t serving someone outside
the team, it isn’t really a user story. <Perform an
action> should be something that the stakeholder can
do that they couldn’t do before the product backlog
item was completed. <Receives business value>
is a phrase usually articulated with the developing
company in mind: Why are we building this? Will
we get more users? Will users pay more for the
product? We will gain a competitive edge or match a
competitor’s features? Will we save operations costs?
On rare occasions, the <stakeholder> can be a future
developer; this accounts for focused efforts to reduce
technical debt, however; make sure the acceptance
tests confirm that future developers benefit.

Finally, we have acceptance tests. I counsel
teams that acceptance tests should be written so
stakeholders (usually non developers) can verify that
the work was done, ideally in the sprint review. An
acceptance test written for a team member to verify
is not really an acceptance test.

Here’s an example:

As a systems operator, I can monitor the current load
on the system, so the company can add machines if
the load approaches the point where new users will
be denied access.

Acceptance tests:

From the administration screen, a systems operator
can easily find the load.

If the load is in the green area, at least 50-precent
more users can be added to the system without
concern. If the load is in the yellow area, at least
20-percent more users can be added to the system
without concern. When the load is in the red area,
additional machines can be added to bring the load
back to the yellow or green region.

This story should be capitalized because it adds
functionality not previously available, even though it
serves a stakeholder inside the company. This subtlety
is sometimes missed, but is clear from thoughtful
reading of [ASC 350-40], which contains the concept
in its title “Internal Use Software.” Because most
cloud computing and website development projects
run in the developer company’s machines, they are
characterized as internal use software.

This format not only serves well for financial
classification, but also has benefits in helping the
team understand the context of its work.

What about tracking hours?
Whenever capitalization comes up, someone usually
suggests that one just track programmer hours. This is
a mistake, not only because it disrupts agile behavior,
but because measurement is likely inaccurate and
not as verifiable.

Hour-by-hour financial monitoring slows down
software development. Software development is
creative work and interruptions to track hours disturb
the creative process. If we enforced hour-by-hour
tracking with engineers, we would pull developers
from their Zen state of thinking about the stakeholder,
stakeholder actions, the acceptance tests and the code
into a self-conscious state of thinking about what they
did in the last hour.

So, to avoid the disruption, companies almost always
simply ask engineers to fill out time cards at the end
of the week, at best. By this time, the work they’ve
done is lost in the fog of the past. In my experience,
their weekly reporting is quite inaccurate.

Auditors support accounting practices that provide
honest transparency while maintaining high
productivity. Those auditors I’ve encountered
acknowledge that hour-by-hour tracking is problematic.
When I have suggested that proportionally allocating
actual cost by story points would provide honest
transparency, they have, at first, cautiously agreed.

DEVOPS PERSPECTIVES 5 | CAPITALIZATION, AGILE AND WHY YOU NEED TO CARE

19

In doing so, I make an assertion that estimated effort is
highly correlated with actual work time. This assertion
is defensible. The Scrum framework is designed to
help teams drive toward high correlation between
estimation points and actual time. Scrum provides
better forecasting accuracy than waterfall, and teams
that embrace Scrum principles examine their estimation
points and outcomes, trying to ensure that their sprint
forecasts are roughly met by the sprint result.

Auditors become enthusiastic supporters of this
approach when they see the effect. When we track
product backlog items, estimation points and
completion dates (sprint end dates), we know exactly
which team did the work, usually have a day-by-day
task burndown and a proportional allocation.
The product backlog items we report are well
documented and understandable (thanks to the story
form). When auditors visit team members, the team
members say the same thing as the executives. This
is an auditors dream: that managers and executives
report aggregate data verifiably backed by statements
from individual contributors.

What Happens in a Transition
to Agile Capitalization?
If you are about to embark on a transition from
waterfall to Scrum, this is a great opportunity
to consider changes in financial reporting. Agile
approaches to software development are radically
different from waterfall and justify a significant change
in financial reporting methodology.

First, you can create a nearly bulletproof system for
tracking engineering costs that eliminates the need to
track actual hours. Auditors and financial staff will at
first be wary with this new approach, then delighted
when they realize that everyone—from developers
to Scrum Masters to product owners to managers to
finance staff—discuss the work your company does
consistently and thoughtfully.

You may find that transitioning to a more accurate
and responsible capitalization approach dramatically
increases the amount of work capitalized. Your finance
department should expect a high rate of capitalization
because the work of software development is usually
an investment in a long-term future. However, a
dramatic change can be seen as a red flag to them
and their auditors.

You should address these concerns head-on. Explain
that agile software practices make this detailed
approach feasible. It can be difficult for waterfall
teams to responsibly track which design efforts or
project management tasks led to which features, while
agile methods will expose this information naturally
through sprint backlogs. For example, in the past,
your company might have lumped post-investment-
decision design work into the preliminary project
phase; this would no longer be appropriate.

Furthermore, because agile practices create releasable
software every month, they can tie infrastructure
development work with individual features, and you can
capitalize those efforts. Some waterfall companies have
felt that infrastructure work was so indirectly connected
with user features that it had to be expensed.

Regardless of your situation, be completely frank with
finance and auditors. If you expect your capitalization
rate to increase dramatically, share that information
with them. Discuss why this will happen. And finally,
explicitly connect these changes to your company’s
transition to agile. Your commentary may actually
appear in a company shareholder report, which you
should welcome, proud agilest that you are.

Summary: Agile Capitalization
as Opportunity
If you have read this far, you are likely an enterprise
agilest, comfortable with the idea that agile thinking
should affect not just engineering, but also finance
and other departments. Welcome.

Now that you know more about agile capitalization,
your company has an opportunity to report its
activities more responsibly to shareholders and tax
authorities. This can require a lot of negotiation,
planning and process changes to do so. However, your
engineering group may be able to hire more engineers,
your company may be able to reduce its tax burden
significantly and your company’s financial reports
may stabilize. The value of these improvements may
be in the millions.

For agility and the greater good, I remain your
humble servant.

20

Agile Development
Drives Service Change at
Stockport Council
Emma Collingridge

DEVOPS PERSPECTIVES 5 | AGILE DEVELOPMENT DRIVES SERVICE CHANGE AT STOCKPORT COUNCIL

But Stockport has the added complication of being
part of the Greater Manchester Devolution, which sees
councils in the region given powers over transport,
housing, planning and policing, as well as health and
social care budget control. There’s a need for a new
approach to service delivery, which in turn dictates
a new approach to systems development—which is
where agile development comes into play.

“There is a challenge out there for all of us in local
government,” says Emma Collingridge, Digital by
Design Programme Manager at Stockport Council.
“The budget pressures are more complex and more

multi-faceted, around demand, around living wage,
around ageing population. What we know is that we
are in an era of unprecedented change.”

“In Stockport, as well as the ten local authorities with
the gift of devolution, we are in a situation where not
only do we have less money and more demand but
we also have the opportunities and challenges around
Greater Manchester devolution, such as some of the
changes around health and social care integration, the
way children’s services and some of the place-based
services are being delivered.”

Faced with pressure to do more for less, Stockport Council in the UK has set
out a plan to deliver public services in a more agile manner called Investing
in Stockport. It’s in part a response to the need to deliver citizen-facing services
more efficiently, something common to all local authorities in an ongoing
age of austerity.

21

One challenge that had to be faced up to was a need
to put in place systems that are agile enough to cope
with future needs. “This can’t be about making one-
time changes. This is not about putting lipstick on
a pig,” says Collingridge. “It’s about not just trying
to cope with now and manage the current crisis; it’s
about trying to find a way to cope with now, but in
such a way that really sets us up for the future.”

That’s not something that a waterfall approach to
development was going to be able to deliver. That’s
the sort of approach that Collingridge describes as:
“a big traditional implementation, with products
from big vendors and implementing them to almost
meet our needs.”

“When we went to the market, we started to feel
increasingly unsure about that approach and
increasingly unsure about how this would deliver to
meet our requirements,” recalls Collingridge. “It might
do the bit about ‘fixing the now’ but would it deliver
the ongoing solution we want?

“What we felt as we spoke to more people was that
there was another option, a road that would allow
us to do more fundamental organisational redesign
and organisational change by the back door; by
using technology and some of the ways of working,
particularly in agile ways of working and agile IT. We
could get so much more bang for our buck than just
implementing a massive new CRM.”

The result of coming to this conclusion was to decide
not to buy anything, but to go back to the drawing
board. “We went into a period of discovery to try
to find out what kind of a technical architecture

and infrastructure would deliver that kind of deep
organisational change that we wanted at the pace
that we needed,” explains Collingridge.

“What we found was that a lot of the solutions that
we wanted to go for weren’t necessarily the cheapest
solutions, but they were going to be the right thing
for us for a long time. They embedded some of
those principles around agility, around being able
to constantly change. We know that if we design a
system for now, it can be the wrong system by the
time it comes out and [certainly] by three to six
months down the line.”

Some principles were laid down as a result of this
period of thinking. “What we realised was important
was that we should build modular solutions around
common standards,” says Collingridge. “We should
build capabilities to enable continuous change. We
shouldn’t commit to the long term and we should
build in the agility and organisational change that
we needed.”

The shift across to delivering systems according
to these new principles is now beginning. “We’re
doing delivery in a completely agile process,” says
Collingridge. “We’re changing pretty much our entire
IT infrastructure. This isn’t about putting a team on
top, this is about changing the way that we do IT and
more importantly about the way that we serve people
and the way we understand their needs.”

“We have a very large, complex programme with lots
and lots of people doing lots of agile development,”
she adds. “What we are looking to do is deliver viable
product around the platform over the summer. The
initial platform release will deliver a number of
benefits, but more importantly, it will be a one-step
change release that will spark a different relationship
with the public and a different relationship with
services. After that, it will be about a continuous
process, about continuous development.”

This has ramifications beyond DevOps. “The way that
we do change at the moment is very much hooked
up to a financial cycle, not hooked up to when we
can deliver benefits as soon as possible,” explains
Collingridge. “We really want to take on the kind of
Government Digital Service (GDS) model of being
able to have the confidence and ability with senior

“ There is a challenge
out there for all of us
in local government.
The budget pressures
are more complex and
more multifaceted,
around demand, around
living wage, around
ageing population.”

DEVOPS PERSPECTIVES 5 | AGILE DEVELOPMENT DRIVES SERVICE CHANGE AT STOCKPORT COUNCIL

22

stakeholders and services to release capabilities
and improvements as and when, so we can go live
with those improvements all the time. That’s not
just tech improvements, but all business process
redesign improvements as well.”

All of this has already made a difference within
Stockport Council. “There has been such a change,

even in the past six months, about the relationship
between services and IT and the energy and
productivity within teams,” says Collingridge, pointing
to “the kind of evangelical comments” that IT is
getting from the business stakeholders.

“Agile IT and agile development and the way they’re
changing fits perfectly,” concludes Collingridge.

“Children’s Social Care has said that agile IT, and the
way that we’re moving toward it, fits like a glove with
the way that they’re doing change and the way we’re
helping them to do change. They don’t really have a
big waterfall plan, so waterfall IT doesn’t fit with it.”

DEVOPS PERSPECTIVES 5 | AGILE DEVELOPMENT DRIVES SERVICE CHANGE AT STOCKPORT COUNCIL

“ This isn’t about putting a team on top, this is about
changing the way that we do IT and more importantly
about the way that we serve people and the way we
understand their needs.”

23

Networking as the
DevOps Entry Point
David Gee

DEVOPS PERSPECTIVES 5 | NETWORKING AS THE DEVOPS ENTRY POINT

In recent times, the maturity slope has hit immutable
infrastructure and thus destructible runtime
environments. Several updates a day can be pushed
to an application, and private infrastructure like PaaS
can be extended out to public offerings to provide
on-demand elasticity.

Networking remains the last thought-about-thing,
but in terms of DevOps, the networking space, while
a challenging entry point, is the most pervasive.

Networking is the backbone fabric for internal business
communication, business-to-business, partner and
business-to-consumer transactions. It’s the very fabric
that applications hook into. Without the network, there
would be no internet, no cellular communication and
no access to business function serving applications,
and thus, no agility as we understand the term today.

The networking movement for years has developed
various self-protection mechanisms, some more
healthy than others. There are accredited engineers
who for years studied the standards-based protocols
that originate from the Internet Engineering Task
Force (IETF) and Institute of Electrical and Electronic
Engineers (IEEE).

Some network hardware and software vendors have
built entire career paths for IT professionals based on
education, certification and skill promotion in addition
to shipping product. These people are the network
warriors who spend hours looking at terminal screens,
configuring network elements with well-honed domain
specific instructions. The trouble is, that’s great for
“build it and walk away,” but not for the agile and
dynamic world of DevOps or the agile responses
required in modern IT architecture.

The natural place for the now DevOps movement to originate was always going
to be the server and application space. It’s the space where sysadmins realized
major benefit early on, from simple to now full stack and gated deployments
of mutable infrastructure like bare metal servers and virtual machines.

24

By overlooking the network team, organizations can be
missing an incredible source of design and operation
knowledge that an application or development team
does not possess. Instead of simple access tiers and
overlay-based networking to bypass the networking
team, join forces and bring the agility to the end-to-
end network. The coupling between the two parties
has unbelievable, business-changing potential.

DevOps to the Network
When we say DevOps, we immediately think about
automatically deploying code to an environment,
gated processes and rapidly available telemetry
for sharing. DevOps for networks is a little different,
but not as different as you think.

Networks are predominantly based on a push model
in terms of configuration. Being able to test
configuration changes is somewhat of a complicated
problem due to the simple fact that every network is
akin to a snowflake. But that said, the basic principles
remain true of each Ethernet and IP-based network.
Frames and packets traverse a network infrastructure.
The network has resiliency and redundancy built
into its very core and is not designed to fail fast.

Testing configuration is complex, but in the name
of failing fast, generating and pushing configuration
based on a deployable set of code with information
pulled from a normalized and verified source of truth
like a network team-owned database, is absolutely
possible. Distributed testing will verify that the
configuration is in place and operating as expected.
Sure, tiered fallback has to be considered in case of
functional test failure and there is much more to
consider like availability budgets. This article brushes
the very surface of this concept.

Imagine a world where a container is spooled up,
pretending to be an application that tests the new
network segment and chain of functions that make
up the service. Another container pretending to be a
client could be spooled up on an external public cloud
and a functional test is automatically executed from
the network with results going back to the gatekeeper
function. At this point, the network canvass has been
tested and thus the actual application can be pushed
in full confidence; the infrastructure is ready to receive
it. That big green tick now not only suggests the code
has been pushed, but a user experience has been
emulated from the very network it’s been deployed to.

Bring in the desire to tread the DevOps path and the
network team becomes massively important in providing
this crucial agility factor into the wider company effort.
Does it mean network engineers become developers?
Some. Not all aspects of a network will be automated
and security also has to fall in line with the movement.
Automation is often best employed between boundaries
within an organization, and with a healthy, curious and
blame-free culture, these complexities can be exercised
for the full benefit of the business.

There’s a way to go yet. Using networking as an entry
point is still fairly new, and region by region, the interest,
desire and skill level changes. Internet service providers
can see immediate benefits of tight integration. Service
providers have never been under so much pressure to
deliver competitive, over-the-top services.

Europe, in my experience, is the most conservative
of each region, with APAC leading the way in bravery,
I suspect from an absolute need to do more and close
the delivery gaps of services. The U.S. so far appears
to be somewhere in the middle, taking a business-as-
usual approach.

DEVOPS PERSPECTIVES 5 | NETWORKING AS THE DEVOPS ENTRY POINT

“ Networking remains the last thought-about-thing, but in
terms of DevOps, the networking space, while a challenging
entry point, is the most pervasive.”

25

For those who have embraced the idea of DevOps,
the opportunity to learn something new and solve
the problems of today has relit the flame that has
slowly been doused over the years. The number of
network engineers learning to code is phenomenal,
and even if they never write an application, a whole
level of understanding has been opened up to build
on or create new relationships with people in their
organization they might have never thought
about before.

Useful additional reading:
http://ipengineer.net/2015/07/netdevops-delivering-network-levers/
http://ipengineer.net/2014/05/from-cli-to-python-beginner/

Also, this podcast was done in 2014 on the
network engineering journey to that of a more
programmable world:
http://blog.ipspace.net//2014/07/network-programmability-with-
david-gee.html#mor

DEVOPS PERSPECTIVES 5 | NETWORKING AS THE DEVOPS ENTRY POINT

“ Bring in the desire to tread the DevOps path
and the network team becomes massively
important in providing this crucial agility
factor into the wider company effort.”

http://ipengineer.net/2015/07/netdevops-delivering-network-levers/
http://ipengineer.net/2014/05/from-cli-to-python-beginner/
http://blog.ipspace.net//2014/07/network-programmability-with-david-gee.html#mor
http://blog.ipspace.net//2014/07/network-programmability-with-david-gee.html#mor

26DEVOPS PERSPECTIVES 5 | DEVS, OPS AND THE FUTURE FOR THE SOFTWARE DEVELOPMENT LIFECYCLE

Devs, Ops and the Future for the
Software Development Lifecycle
James Woolfenden and Matthew Skelton

With the traditional software
development Lifecycle (SDLC),
everything’s fine if there’s complete
synchronisation between developers
and the operations team.
How often does that happen? The answer to that
question brings painful recognition to all too many
organisations, where the phrase, “Well, it worked fine
in development,” is met with irritable frowns from
the operations team.

So what impact can a DevOps approach have on
this unfortunate status quo? Well, it’s not an entirely
simple silver bullet waiting to be fired. It demands
discipline, organisational process change in some
changes, and most of all, a willingness to challenge
some of the accepted norms of the SDLC.

While those might be intimidating requirements
for some organisations, there’s a need to face up to
changing realities. With applications becoming far
more ephemeral, most notably seen in the rise of

27

mobile apps, it’s critical that development teams have
more immediate feedback to drive improvements and
ensure a high-quality customer experience.

That also means that the operations team needs to
be able to support those goals and rethink its own
role. “I can’t see any future for a traditional
Ops department; for me this is how it already is,”
says James Woolfenden, DevOps consultant at
EqualExperts. “There are two streams: those already
embracing the new methods and those becoming
bypassed. Ops is a vestige of old IT practices.”

Woolfenden says he has seen the shift happening
in his experience. “I didn’t have Ops in my previous
project; I certainly don’t have anything like that in the
current one,” he says, “There isn’t any separate role
for them. If there is, then they should be part of the
team and in no way separate. We don’t have separate
test teams either. I am part of a small, self-contained
cross-functional team. I can only see this approach
developing further. I can only see me encountering
Ops departments when I’m helping in the transition
of legacy IT teams.”

But while the goal to improve the customer experience
is admirable, how can it be measured in practice? It’s
a question picked up by Matthew Skelton, principal
consultant at Skelton Thatcher, who argues that the
starting point needs to be the user experience (UX).

“The starting point for Ops team metrics and
monitoring efforts should be UX; this is quite a
departure for many teams, and so some help from
UX specialists on the Dev side works well,” he says.
“Ops teams can help improve customer experience
hugely by focusing their deep experience of metrics
and monitoring on UX and business-level KPIs.
Also, we need to ensure that developers are able to
use operational data effectively and explore, with
Ops team members, how to make use of metrics/
monitoring/logging data to improve the software
products on a daily basis.”

But Skelton strikes a warning note about trying to over-
metricise, particularly when it comes to measuring the
level of DevOps collaboration. “We need to be cautious
about measuring DevOps collaboration itself, partly

because collaboration is a means to an end and not
always the right approach,” he suggests.

“Our metrics should have far more applicability to
how our platforms provide consistent and reliable
user experiences than to internal team performance.
Customer satisfaction may be measured in a market-
specific way (basket checkout speed, repeat order
frequency, etc.) and correlated to user experience
changes via A/B and multivariate testing. Feature
usage reporting is also generally acceptable now for
most products, as long as the data is anonymised.”

Woolfenden argues that metrics should be built into
the applications themselves. “Our application is fully
instrumented,” he says. “We can tell how it’s being
used in real time. Features can be partially or fully
rolled out and switched via toggles in production,
our responsibility. Each week we demo new, major
features in production to the main stakeholders.”

“ We need to be cautious about measuring DevOps collaboration
itself, partly because collaboration is a means to an end and
not always the right approach.”

DEVOPS PERSPECTIVES 5 | DEVS, OPS AND THE FUTURE FOR THE SOFTWARE DEVELOPMENT LIFECYCLE

28

But in this new world order, what’s left for the traditional
Ops team to do? As elements like configuration,
provisioning and test-driven development are

automated, what’s left beyond the inevitable keeping
the lights on? If that question isn’t answered, cultural
resistance to change is likely to kick in from the Ops side.

Woolfenden takes a firm stand on this. “I’d split up the
Ops team and make them part of a cross-functional
team. Getting rid of silos is key to what DevOps is
supposed to be about,” he states bluntly. “Maybe
some of those old skills can be assimilated. There
has been a revolution in the approach taken with
Stateless/Immutable backed up by having automated
infrastructure as code for the entire stack.”

Skelton on the other hand does see a new role
for switched-on Ops teams. “The Ops mindset is
necessarily different from the Dev mindset,” he argues.
“Service restoration, incident response, pre-emptive
capacity or resilience improvements are all crucial
things that Ops teams know how to do well, and that
Devs often don’t know or about.”

It’s also necessary to kill off some myths, he adds.
“The idea that automation and cloud mean that Ops
have no role to play is causing a significant amount of
pain for many organisations,” he says. “We only have
to look at the recent (and increasingly frequent) data
breaches to understand that proactive security and
resilience activities are more needed than ever before.”

“Yes, old-school Ops people who prefer to rack-
and-stack servers or configure SANs will have fewer
opportunities, but it is woefully naive of tech teams
to believe that there is no need for the proactive,
diagnosing Ops mindset or experience, whether your
software is in the cloud, on-premises or deployed
as IoT sensors.”

In the end, there’s a new world order, but it’s going to
require some mind shifts to achieve the real benefits
and make a positive impact on the SDLC of old.

“ We only have to look
at the recent (and
increasingly frequent)
data breaches to
understand that
proactive security and
resilience activities
are more needed than
ever before.”

DEVOPS PERSPECTIVES 5 | DEVS, OPS AND THE FUTURE FOR THE SOFTWARE DEVELOPMENT LIFECYCLE

29

How many times have you witnessed a suboptimal IT practice that everyone
else thinks is ok? Then, over time, have you accepted the behavior as being
just fine and dandy and started practicing it too? Of course you have; it’s
normal human behavior.

DevOps and Deviance—When Bad
IT Practices Become Accepted as Normal
Peter Waterhouse

DEVOPS PERSPECTIVES 5 | DEVOPS AND DEVIANCE—WHEN BAD IT PRACTICES BECOME ACCEPTED AS NORMAL

Regardless of whether you lead a startup or work in
an established business, we all have a tendency to
accept dodgy and suspect behaviors. Even if outsiders
see them as wrong, our IT teams are so accustomed to
using them (without any adverse consequences) that
they’re quickly established as normal and accepted.

Studies into what’s commonly referred to as the
normalization of deviance have been conducted in
areas from health care to aerospace, with evidence
showing that many serious errors and disasters occur
because established standards have been bypassed
and bad practices normalized.

While examining this phenomena is critical in the
context of safety, it’s equally applicable in how we
develop, secure and operate software applications.
With the boundaries blurred between the digital and

physical world, any adverse behavior leading to security
and reliability issues could have dire consequences for
customers. And when software becomes infused into
long-lasting products (from light bulbs to limousines)
it’s not so easy to discretely exit markets.

As businesses look to software innovation for growth,
the critical differentiators become faster time-to-market
and high quality applications. Unfortunately,
both can be compromised if pre-existing change
aversion or newer speed-at-all-cost mandates lead
to a normalized bad practices. More critically,
if a head-in-the-sand IT culture persists, systemic
business failures may eventuate—think massive
security breaches or major cloud application outages.

The DevOps movement, with its focus on collaboration
across development and other IT functions, is now

30

regarded as the best way to establish the culture
and environment needed to support fast and reliable
software delivery. This, together with guidance from
other fields, can help IT identify and eliminate poor
practices. In the field of health care for example,
studies illustrate seven factors that lead to a
normalization of deviance, all of which are extremely
relevant in IT:
• The rules are stupid, dumb and inefficient.

In health care, accidents occur when practitioners
disable equipment warning systems because alarms
are seen as distracting. This happens in IT all the
time, like in IT operations where staff will filter out
noise and alerts on the many monitoring consoles
because they regard them as irrelevant. It also
surfaces when testing is skipped because of lengthy
manual processing and setup delays.

• Knowledge is imperfect and uneven. Employees
might not know a rule exists, or they might be taught
a practice not realizing that it’s suboptimal. In IT,
this persists because many new employees feel
uncomfortable asking for help, or when the application
of new technologies distorts logical thinking.

• The work itself, along with new technology, can
disrupt work behaviors. To support goals of more
continuous software delivery, organizations are
introducing many new technologies and methods—
like microservices and containers. New work
practices and learning demands may lead staff to
poorly implement technology or use it to perform
functions it was never designed for; for example,
containerizing monolithic legacy applications just
because it’s possible.

• We’re breaking rules for the good of the business.
Staff may bypass rules and good practice when
they’re incentivized on faster delivery times or
delivering new functional software enhancements.
For example, repeatedly procuring additional
(but unnecessary) hardware to rush through an
update, rather than addressing the root-cause of
performance problems.

• The rules don’t apply to us … trust us.
Autonomous agile teams are extremely valuable,
but empowering them to select their own one-off
tools, haphazardly use open source code or bypass
compliance policies can compromise program
objectives or lead to security breaches. Unfortunately
in today’s fast-paced digital business, talented
professionals often feel completely justified in
playing the trust card.

• Employees are afraid to speak up. Violations
become normal when employees stay silent. How
many times have poor software code, costly projects
(and bad managers) been tolerated because junior
staff are afraid to speak up? Even in IT organizations
with a strong, blameless culture, people can and will
stay quiet for fear of appearing mean.

• Leaders withhold or dilute findings on application
problems. Whether you work in health care or IT,
no one wants to look bad to managers. Rather than
present ugly and unpleasant realities, many will
distort the truth, presenting diluted or misleading
information up the command chain. In IT, this
behavior is easily normalized, especially if teams
get away with reporting technical vanity metrics
over more actionable and outcome-centric
performance indicators.

No sudden cultural reawakening across the IT
organization or liberal sprinkling of collaboration
fairy dust will eliminate ingrained bad practices, but
DevOps and Lean thinking can help identify warning
signals. This starts with leaders clearly visualizing
the flow of value delivered by software applications,
pinpointing all the bottlenecks and constraints
impeding delivery. Analogous to pathway stepping
stones, these are all the value interrupts, which when
lifted, reveal all the process and technology issues that
cause good people to do the wrong things. Immediate
candidates are software release and testing functions,
but analysis shouldn’t be limited to the development
side of the software factory. Every stone, be that
enterprise architecture, stakeholder engagement,
information security, vendor management, operations

“ Regardless of whether
you lead a startup
or work in an
established business,
we all have a tendency
to accept dodgy and
suspect behaviors.”

DEVOPS PERSPECTIVES 5 | DEVOPS AND DEVIANCE—WHEN BAD IT PRACTICES BECOME ACCEPTED AS NORMAL

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821100/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821100/

31

or customer support can hide ugly behaviors that over
time can and will become normalized.

Of course, identification is just the start. Next comes
the hard part, with leaders using evidence to impress
how behaviors impact current performance and business
outcomes. This might involve using new tools, but this
again courts disaster when advanced technologies
become a vehicle to automate bad processes.

As with anything involving people, the organizational
and psychological barriers encouraging staff to break
rules or for their colleagues to remain silent is where
most attention should be focused.

“ No sudden cultural reawakening across
the IT organization or liberal sprinkling of
collaboration fairy dust will eliminate
ingrained bad practices, but DevOps and Lean
thinking can help identify warning signals.”

DEVOPS PERSPECTIVES 5 | DEVOPS AND DEVIANCE—WHEN BAD IT PRACTICES BECOME ACCEPTED AS NORMAL

32

Mark Schwartz is the CIO of USCIS. One of his key
goals is to increase the organization’s responsiveness
to mission needs by reducing time from concept to
deployment for new capabilities. To support this goal,
Schwartz has introduced such practices as agile and
Lean development, continuous delivery and DevOps.
He also leads efforts across DHS to introduce agile
IT approaches.

In 2015, Schwartz received the AFFIRM award for
Leadership in Technology Innovation and an Amazon
Elite 100 award. Before this position, Schwartz was the
CIO of Intrax Cultural Exchange, where his innovative
Family Room application drove dramatic market share,
revenue and profit growth. In 2006, CIO Magazine
recognized this accomplishment with a CIO 100
award. In 2010, he was named one of the Premier
100 IT Leaders by Computerworld Magazine.

Martin is a Java Champion with over two decades of
experience building complex and high-performance
computing systems. He is most recently known for his
work on Aeron and SBE. Previously at LMAX, he was
the co-founder and CTO when he created the Disruptor.
Prior to LMAX, Martin worked for Betfair, three different
content companies wrestling with the world’s largest
product catalogues, and was a lead on some of the
most significant C++ and Java systems of the 1990s
in the automotive and finance domains.

Martin blogs at mechanical-sympathy.blogspot.com,
and can be found giving training courses on
performance and concurrency when he is not cutting
code to make systems better.

Martin Thompson
High-performance and low-latency
computing specialist

An accomplished technologist and transformational
engineering leader, Jody is known for building high-
performance systems and teams. Prior to Ticketmaster,
Jody spent over 14 years at Shopzilla, Inc., a leading
source for connecting buyers and sellers online that
reaches a global audience of over 40 million shoppers
monthly. As Chief Information Officer there, Jody led
the overall technology development and operations of
the company. Part of the inaugural team at Shopzilla,
then Bizrate, Jody built the company’s data systems,
analytics and infrastructure from the ground up.

Jody Mulkey
CTO, Ticketmaster

DEVOPS PERSPECTIVES 5 | CONTRIBUTORS

Mark Schwartz
CIO, Office of Information Technology
Management Directorate

https://github.com/real-logic/Aeron
https://github.com/real-logic/simple-binary-encoding
http://lmax-exchange.github.io/disruptor/
http://mechanical-sympathy.blogspot.com

33

Dan R. Greening coaches executives, managers
and teams to help them gain and maintain global
agility. Dan first used and researched Scrum, agile
and Lean methods in 2007, and rapidly became a
thought leader in the field, publishing groundbreaking
work in agile metrics, portfolio management and
capitalization. Now, Dan has distilled personal, team
and organizational agility into a set of five agile base
patterns: if you do them, you’re agile; if you don’t,
you’re not.

Emma Collingridge is the Digital by Design Programme
Manager at Stockport Council. She has a background
in data analytics, policy development and business
transformation. With expertise in organisational
design and service change, she has senior
management experience in successfully implementing
innovative programmes that use the latest technology
to improve frontline services for citizens and deliver
value for money.

Emma Collingridge
Digital Design Programme Manager

DEVOPS PERSPECTIVES 5 | CONTRIBUTORS

Dan Greening
Managing Director, Senex Rex

David Gee is EMEA lead for the Brocade NetDev
services team. Some of his previous roles include:
founder of a high-profile specialist gaming website
company, technical director for a VAR, principal
consultant for an SI and core architect for an ISP. He
has delivered courses on NETCONF and YANG and has
more training sessions planned. In addition to his
role at Brocade, David is also a podcast co-host on
Ivan Pepelnjak’s excellent education and networking
technology website, http://ipspace.net. David blogs
at http://ipengineer.net.

David Gee
EMEA Lead and Principal, NetDev team,
Network Automation and Evangelist

http://ipspace.net
http://ipengineer.net

34

Pete has been involved in the development, support
and marketing of software solutions for more than
20 years. He has held a number of management,
consulting, technical sales and strategy positions
in areas such as cloud computing, DevOps and
IT business management. Pete blogs on a range
of disruptive business and technology trends,
with articles appearing in publications including
InformationWeek, Wired Insights, DevOps.com and
App Developer.

Pete Waterhouse
Senior Director, DevOps Strategy and Marketing

DEVOPS PERSPECTIVES 5 | CONTRIBUTORS

Matthew Skelton has been building, deploying, and
operating commercial software systems since 1998.
Co-founder and Principal Consultant at Skelton
Thatcher Consulting, he specialises in helping
organisations adopt and sustain good practices for
building and operating software systems: continuous
delivery, DevOps, aspects of ITIL and software
operability.

Matthew Skelton
Co-founder, Skelton Thatcher Consulting

A veteran DevOps contractor, James grew up in and
around the IT business, getting his start in IT building
Compaqs and XTs in then-upcoming Clerkenwell.
He has worked in a wide variety of IT sectors and in
multiple roles within the SDLC and now contracts for a
leading agile/DevOps consultancy.

James Woolfenden
DevOps Specialist

Next Steps
Mainstream adoption of DevOps is here. Is your organization ready to seize all the business benefits
and opportunities it presents? At CA Technologies, we have built a portfolio of products and solutions
on our DevOps expertise.

Visit ca.com/contact to learn more about how CA can help you close the gap between your developers
and your operations—and keep your competitive edge in the application economy.

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables
them to seize the opportunities of the application economy. Software is at the heart of every business,
in every industry. From planning to development to management and security, CA is working with
companies worldwide to change the way we live, transact and communicate—across mobile, private
and public cloud, distributed and mainframe environments.

For more information on DevOps solutions from CA Technologies, go to: ca.com/insights/devops

#BusinessReWrittenBySoftware

CS200-233592_1016

Copyright © 2016 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

http://www.ca.com/us/contact.aspx
http://rewrite.ca.com/us/expertise/devops.aspx

