
Actionable Insights from Leading  
DevOps Practitioners

DevOps
Perspectives 6



2

Whisper it gently, but DevOps isn’t an 
automatic choice for developers. In 
fact, it’s entirely possible that attempts 
to introduce a DevOps culture into an 
organization might be met with resistance 
from the very community that would 
reasonably be expected to welcome it.

It’s perhaps a sign of the growing maturity of DevOps that 
such a scenario is actually feasible and that it’s a common-
enough phenomenon for serious consideration to have 
taken place around tactics and techniques to overcome it.

That growing maturity is a common theme across this edition. 
As well as looking at that sort of counterintuitive reaction to 
DevOps, we look at how other technology areas are touching 
on the subject—for example, how to bring DevOps into the 
realms of big data, data science and analytics.

Or consider security, every organization’s top priority until 
events come along that prove it wasn’t really after all. 
And by that time it’s too late. So how do we build security 
into DevOps? Step forward DevSecOps, a concept more 
discovered than invented and as such carrying with it real-
world credibility rather than academic or technical theory.

Of course, there’s no better way to consider DevOps 
maturity than to tap into real-world use cases, and there 
are few better examples than online grocery firm Ocado, 
which shares some of its learnings on growing a DevOps 
culture with us.

DevOps and the Art of Maturity
DEVOPS PERSPECTIVES 6 | INTRODUCTION



Contents

Nudge Theory: An Introduction 4

How to Fail at DevSecOps (and How Not To) 10

Testing Times at The Guardian 13

Site Reliability Engineering—It’s a Kind of Magic 16

Making Delivery Continuous 19

Why DevOps Delivers at Ocado 21

Hating Agile and Other Bad Habits 24

Spotting the Future of Anomaly Detection 27

Contributors 30

DEVOPS PERSPECTIVES 6 | ACTIONABLE INSIGHTS FROM LEADING DEVOPS PRACTITIONERS



“You build it, you run it” is a fine principle, but it means you need to let your 
teams make their own choices. No one wants to support a system running on 
(insert inappropriate or flaky technology here) just because that’s the company’s 
recommended queue technology or data store.

DEVOPS PERSPECTIVES 6 | NUDGE THEORY: AN INTRODUCTION

Nudge Theory:  
An Introduction
Sarah Wells

4

But what’s the implication for ongoing support of 
your services when you end up with multiple content 
delivery networks (CDNs), data stores, queuing 
technologies, issue-tracking systems, communication 
tools, build and deployment tools, and languages? 
It’s fine when a big team is working on the shiny new 
thing, but what happens when they leave and you 
have five people supporting all the legacy stuff?

And how can the technology leadership make sure 
program teams still pay attention to department goals 
that may not match their short-term incentives? You 
want to save costs on Amazon Web Services (AWS); 
they want to get stuff out there and optimize virtual 
machine (VM) size later.

At the Financial Times, where I work on building 
a semantic publishing platform, teams are pretty 
empowered to make the right decisions for themselves, 
but this means they’re resistant to top-down diktats.  
As a result, company leadership has to find other ways 
to influence people to do the right thing.

Luckily, there’s a fair amount of information out there 
on how to influence people rather than force them  
to do things, particularly in the realm of government.

In this article, I’m going to describe nudge theory 
and talk about why I think it’s relevant for software 
development.



5

What Is Nudge Theory?
“ A ‘nudge’ is essentially a means of encouraging  
or guiding behavior.”  
–David Halpern, Inside the Nudge Unit

Nudges try to influence you rather than force you: 
putting healthy food on display at eye level rather  
than banning sales of junk food; making sure there  
  are litter bins available and signs explaining that  
most people throw litter in bins rather than imposing 
fines on the spot.

Nudge theory was named and popularized  
in a book by Richard Thaler and Cass Sunstein,  
“Nudge: Improving Decisions About Health,  
Wealth, and Happiness.” It’s proven attractive  
to governments because it’s about small changes, 
avoiding legislation (which is costly) or financial 
incentives (again, costly).

Schiphol Airport Urinals
The canonical example is in Schiphol Airport.  
The black fleck in the picture is a painting of a fly. It 
turns out that men like to aim at something, and the 
fly is in the best place to avoid splashback. This simple 
change has reduced cleaning costs by 20 percent.

U.K. Organ Donation Register
Another example relates to the U.K. organ donation 
register. This is an  
opt-in register, and although 90 percent of people 
support the idea of organ donation, only 30 percent  
of people have signed up to the register.

When you renew your car tax online, you’re prompted 
to sign up. The Nudge Unit ran a randomized 
controlled trial, with eight alternative versions of the 
sign-up screen.

“ If you want someone to do something, you should 
make it easy—both to understand what the benefit is 
and to take the appropriate action.”

DEVOPS PERSPECTIVES 6 | NUDGE THEORY: AN INTRODUCTION

http://www.behaviouralinsights.co.uk/inside-the-nudge-unit/
https://en.wikipedia.org/wiki/Nudge_(book)
https://en.wikipedia.org/wiki/Nudge_(book)
https://en.wikipedia.org/wiki/Nudge_(book)
https://worksthatwork.com/1/urinal-fly
http://www.behaviouralinsights.co.uk/publications/applying-behavioural-insights-to-organ-donation/
http://www.behaviouralinsights.co.uk/publications/applying-behavioural-insights-to-organ-donation/


6

The variants were: 

1. The control

2. States what other people do in the same situation (there’s evidence that we’re 
affected by social norms)

3. and 4. Same thing as 2, but with pictures added (previous research suggested 
adding relevant pictures increases the chance of someone donating to charity) 

5. Framed in terms of negative consequences

6. Framed in terms of positive consequences

7. Framed in terms of reciprocity: Do to others what you want done to you

8. Pointing out the gap between the 90 percent who support organ donations  
and the 30 percent who actually register

The results were statistically significant:

Reciprocity does the best. Notable is that adding a picture of people to the  
social norms option was worse than the control, and framing in terms of negative 
outcome worked better than framing in terms of positive outcome.

What does this mean in terms of numbers? Well, in a year the difference  
between control and the best alternative would be around 96,000 extra 
registrations. Given that there are about 21.8 million people registered, that’s  
about a 0.4 percent increase in the total number of organ donors for the sake  
of a few changes to a webpage.

DEVOPS PERSPECTIVES 6 | NUDGE THEORY: AN INTRODUCTION



7

How Can We Apply This to Software 

Development?
The Nudge Unit came up with an acronym, EAST. They suggest that effective 
nudges are:

• Easy

• Attractive

• Social

• Timely

I think we can use each of these aspects to more effectively influence teams  
to do the things we care about as a company.

Easy
If you want someone to do something, you should make it easy—both to 
understand what the benefit is and to take the appropriate action.

Clear, simple messages and a good choice of defaults go a long way. We have 
a strong tendency to stick with the default, which is why it matters whether 
something is opt-in or opt-out.

Things we can do to make stuff easy: 

• Supply checklists, APIs, example code, libraries.

• Allow people to try your stuff out without having to wait for someone  
to allocate a key or set up a user account.

• Be customer-focused: Make sure people know whom to contact.  
Anytime I see a tumbleweed icon in a team’s slack channel, I wince.

At the Financial Times, we have APIs for creating change requests, which have 
replaced Salesforce forms.

However, the team has made things even easier by also supplying shell scripts  
and GitHub webhooks. I integrated the change requests for our systems in minutes 
thanks to this.

We use the power of defaults with our AWS instances, which default in our staging 
environments to being shut down overnight and on weekends. Teams have to 
actively choose to keep them running outside normal working hours rather than 
actively choosing to turn them off.

DEVOPS PERSPECTIVES 6 | NUDGE THEORY: AN INTRODUCTION

http://www.behaviouralinsights.co.uk/wp-content/uploads/2015/07/BIT-Publication-EAST_FA_WEB.pdf


8

Attractive

There are two senses in which you need to make something attractive: First, you 
need to attract people’s attention so they know what you’re asking them to do. 
Then you need to make that thing attractive by explaining why they should want  
to do this.

An example at the Financial Times comes from our security team. They want us 
to use WhiteSource, a tool for scanning libraries in various languages to look for 
known vulnerabilities. 

They’ve documented it comprehensively to explain what it is and why we should 
use it. They also have a one-pager for getting started that tells you exactly what 
you need to do and shows the languages that can use this. I’d assumed there 
wouldn’t yet be support for Go, but I quickly realized from this one-pager that my 
assumption was wrong.

Social
Humans are social animals. We’re influenced by what other people do: Sending 
someone a letter telling them 95 percent of people pay their tax on time is proven 
to make it more likely that they will do that too.

In software development, we can show how other people are doing: For example, 
wherever possible, we want our teams at the Financial Times to migrate to Amazon 
Linux, because it saves us money—and we have a website that shows each team 
how much they would save:

We also encourage people to talk about things that have worked for them, in 
lightning talks or blog posts. When we share information we can show how easy 
it is to do something and show what people can gain from it. My team adopted 
Graphite and Grafana because of a really good lightning talk that showed how 
useful it would be and how easy it would be to integrate it with our systems.

DEVOPS PERSPECTIVES 6 | NUDGE THEORY: AN INTRODUCTION



9

Timely
It’s important to pick the right time to ask people to do things. Usually, that’s when 
they are just starting to think about how they are going to approach their problem.

If you can provide a solution that already provides most of what the team wants, 
people are very likely to opt for that. 

We have an engineering checklist at the Financial Times that covers the things we 
expect teams to do. 

Here’s part of it:

For each item on the checklist, we link to documentation, libraries, code examples, 
etc. When teams need to get something done, they’re given all the relevant 
information right then and there.

Having a checklist also makes it easy to do the right thing and applies some social 
pressure on teams to do what the other teams are also doing, so it works across 
several of the levers.

Conclusion
My colleague Matt Chadburn has a great blog post about how a free market economy 
can be a great thing within a company: Let teams pick the best tools, either internal or 
external. This encourages internal teams to behave like service providers: They need to 
build great tools, easy to use, well documented and fit for purpose.

Internal teams don’t have a captive market, but they should have a massive 
advantage. They have their customers right there, and they only need to build tools 
for a single specific situation.

I think our tooling teams now understand this. They changed the way they worked. 
They started creating small individual tools and APIs. This means as a client, I can 
pick and choose. It’s a bit like the UNIX® philosophy in that it favors composability 
over monolithic design. We now have a set of tools that each does one thing, and 
does it well. The teams can then compose those however they wish.

How can an internal team persuade other teams to pick their tools rather than 
going externally? By making sure those teams know how easy it is to use the 
tools, the benefits they can get from them and that other people are using them 
successfully, and making sure they get this information at a time that’s relevant to 
them. This means nudge theory and EAST can help.

DEVOPS PERSPECTIVES 6 | NUDGE THEORY: AN INTRODUCTION

http://matt.chadburn.co.uk/notes/teams-as-services.html


10

Security is everyone’s concern. That, 
of course, ought to be one of the basic 
mantras baked into every organization 
on the planet by now. Looking at the 
impact of security breaches on companies 
such as Target or Yahoo should provide 
cautionary affirmation of it.

In reality security is a fluid concept, one whose 
requirements change and evolve over time. One thing that 
can be agreed upon, however, is that traditional perimeter 
security is no longer an option, particularly in a culture of 
DevOps-enabled iterative systems development.

Enter DevSecOps, an idea that has been discovered 
more than invented, says Greg Bledsoe, managing 
consultant at Accenture. At the heart of this is 
collaboration. When there are global development 
teams, operations teams and other cross-functional 
teams, there needs also to be a way of making security 
part of the structure.

“It’s about making security everybody’s  
problem,” says Bledsoe. “You’re re-defining everyone’s 
definition of ‘done.’ Nothing is ‘done’ until is it is 
secure. That’s what matters. If something is not 
secure, then nothing else matters.”

With that in mind, Bledsoe predicates that there  
are five ways for organizations to get this wrong— 
and, equally, five ways to get it right.

The first way to fail is simply to do nothing. This 
is unfortunately commonplace, with people and 
organizations seemingly content to continue to 
repeat the errors of the past, even when they know 
something is not working. “Why is SQL injection still 
a thing?” asks Bledsoe by way of illustration. “SQL 
injection has been a well-known problem for 15 years, 
and we’ve known for at least that long how to avoid 
it, but every day people still release new applications 
with SQL injection flaws.”

A solution here is to cultivate more of a shared 
perspective within the organization, casting new light 
on old problems. Bring in the security people to talk 

How to Fail at DevSecOps  
(and How Not To)
Greg Bledsoe

DEVOPS PERSPECTIVES 6 | HOW TO FAIL AT DEVSECOPS (AND HOW NOT TO)



11

to the business owners and answer some questions 
jointly, suggests Bledsoe. For example, is the data going 
to need to be encrypted when at rest or in transit or 
both? Answer such questions and adapt accordingly.

“The flaws are going to be in the coding,” notes 
Bledsoe. “That’s where they need to be addressed.  
The way we do security traditionally doesn’t work. It 
has to be baked in. Doing nothing is not an option.”

Even if you avoid doing nothing, the next danger is to 
wait too long to do something. Specifically, the danger 
lies in waiting until every i has been dotted and every t 
has been crossed before deciding to take action. That’s 
everything that’s wrong with the traditional waterfall 
approach to development, Bledsoe points out.

“It’s the idea that you don’t do anything until you 
understand every possible impact of every possible 
action,” he says. “That doesn’t work; you can’t know 
all of the things all of the time. You could be getting 
started and learning early on what works and what 
doesn’t. You literally cannot wait around. Wherever  
you are, whatever your position, you need to get 
started. You need to work out what you don’t know,  
at least. But do something. It’s the idea of the journey 
of a thousand miles beginning with a single step.  
You have to take a step!”

The third way to ensure failure is to avoid engaging 
the security people at the project planning stage. The 
temptation might well be to wait until code has been 
written before involving them, but that’s too late.  
Their contribution needs to be considered and factored 
in from the very start, and certainly at the project 
scoping and planning stages.

Fourth up is not paying enough attention to the basics 
and failing there as a result. Bledsoe cites the example 
of making a basic error such as not encrypting data. 
“There’s often a fundamental level of negligence,” 
he cautions. “People don’t do the most basic things 
correctly. So you have situations where there is no 
password policy in place, for example, or people are 
still using 12345 as their password!”

The fifth and final way to fail, according to Bledsoe,  
is to have ineffective or non-existent policies in place. 
This can be caused by going from one extreme to 
another. Clearly you don’t want a situation where there 
is no policy in place. Equally, there’s no point in having 
a security policy that runs to 800 pages, as no one is 
ever likely to read that from cover to cover. 

“There’s a danger of making something too secure, with 
the result that it becomes less secure in the process,” he 
warns. “If you lock things down too much, it can have 
the reverse effect. People will disregard things.”

Getting It Right
With those cautionary notes in mind, Bledsoe offers 
up some positive advice on how to ensure that a 
DevSecOps culture can succeed. It starts from the top, 
he says—the very, very top. “Security has to be built 
in at the top level of an organization and then roll 
down. A recent study found that 60 percent of CEOs 
said that security was someone else’s problem. That 
is the problem right there—if security is not seen to 
be important to the CEO, then it’s not going to be 
important to anyone else.”

So get security on the CEO boardroom agenda.  
Second, make sure that security awareness among  
the development team is built in from day one.  
Where Bledsoe was the VP of operations, new 
developers were trained in secure coding practices 
starting on the first day on the job.

Third, keep policies clear and simple, but forceful. Less 
is more, and is more likely to deliver beneficial results. 
“There has to be a password policy, there has to be 
a device policy, but keep them to a page,” advises 

DEVOPS PERSPECTIVES 6 | HOW TO FAIL AT DEVSECOPS (AND HOW NOT TO)

“ It’s about making 
security everybody’s 
problem. You’re  
re-defining everyone’s 
definition of done.’ 
Nothing is ‘done’  
until is it is secure…  
If something is not  
secure, then nothing  
else matters.”



12

Bledsoe. “It’s important to let people know what the standards are,  
but keep those simple and enforceable. And update and communicate those 
policies regularly.”

Fourth, think about the 80/20 rule. There’s a law of diminishing returns in play 
here. Hit the biggest things first, then address the rest as and when you need to. 

Finally, test everything. Leave nothing off the table. From day one, there needs  
to be testing going on. Also at Bledsoe’s last VP job, internal staffers were trained 
as penetration (or pen) testers, and the company also hired external third parties 
to run their own tests from the outside. “When you know that there’s pen testing 
going on all the time, you focus constantly on thinking about what holes there  
are in the systems and how to address them as you go along,” Bledsoe says. 

So that’s the theory. How it works in practice will obviously vary from organization 
to organization. At the end of the day, this is about a cultural mind-set as much 
as anything else, moving away from traditional ideas about security. But, says 
Bledsoe, “It’s getting there.”

DEVOPS PERSPECTIVES 6 | HOW TO FAIL AT DEVSECOPS (AND HOW NOT TO)

“  The flaws are going to be in the 
coding.”“That’s where they need 
to be addressed. The way we do 
security traditionally doesn’t work. 
It has to be baked in. Doing nothing 
is not an option.”



13

That was the situation that The Guardian newspaper 
found itself in. It was a position made all the 
more difficult by available data being potentially 
compromised by other external factors. As a news 
organization, The Guardian will inevitably see spikes 
in usage that mirror major events in the news cycle. If 
those spikes coincide with a new piece of code being 
deployed, is the increased usage attributable to the 
new software or to the latest pronouncement from 
Donald Trump?

For The Guardian, the answer lay in A/B testing. This 
enables the DevOps team to treat feature releases 
almost as scientific experiments, withholding changes 
from a portion of the audience to understand the 

impact of the new code based on the different 
reactions of the main and the control groups.

It’s an approach that is paying dividends, says Amy 
Hughes, part of the 150-strong team working on 
digital projects at the newspaper. “When I joined 
three years ago, we were already committed to 
continuous delivery, and we were releasing changes 
to code hundreds of times a day,” she says. “That was 
all very well, producing new features, but we needed 
to understand which ones were working. We were 
tracking and analyzing all the data that we had to do 
with the features, but our team really hadn’t been 
optimized to analyze data.”

Here’s the dilemma: As a DevOps team, you’ve moved to continuous delivery, 
and you’re pumping out new features on a fast and furious basis. But there’s one 
problem, and that is, how do you gauge which of these new features is having 
the most impact? And if you don’t understand that, then how can you effectively 
prioritize the next iterations of the code that you should pursue?

Testing Times  
at The Guardian
Amy Hughes

DEVOPS PERSPECTIVES 6 | TESTING TIMES AT THE GUARDIAN



14

The problem The Guardian had can be summed up 
by the project to release a new feature on the main 
website, called The Minute. This was intended to 
encourage people to revisit the site more often—by 
presenting content in an attractive and digestible 
manner—and encourage greater engagement with stories.

“We looked at users who had seen The Minute and 
those who hadn’t and used a metric of frequency 
of visits to judge whether it was working,” explains 
Hughes. “We found that visit frequency had gone 
up, but it was launched to coincide with the U.S. 
presidential election. We couldn’t be sure it wasn’t 
interest in the topic that brought people back rather 
than the new feature itself.”

This was a basic problem for The Guardian. “It’s hard 
as a news site not to be impacted by the news cycle,” 
notes Hughes. “If you released 14 changes on a 
particular day and that day was the ninth of November, 
the day Donald Trump got elected, then that is going 
to have an impact on your traffic for the day.”

The challenge then is, how do you isolate data 
specific to the new features themselves and not have 
the results influenced by macro-events? What The 
Guardian team found, after consulting with their data 
scientists, was that A/B testing was the only method 
that would work and not slow down their continuous 
delivery culture. 

The theory here is simple enough. “When you release 
a new feature, you split your test audience into two 
groups,” says Hughes. “You have a variant who get to 
see the changed code feature, and you have a control 
group who do not. You release the feature, old and new, 
at the same time. Any changes you then see in their 
behavior are most likely down to the feature itself.”

What’s important here is to ensure that the test results 
will have statistical significance. That leads to a three-
stage approach to A/B testing, beginning with the 
creation of the segmented test audience and then the 
collection of data about their behaviors. Finally, look 
for differences in those behaviors and analyze those 
for statistical significance. 

To begin with, The Guardian used an off-the-shelf 
tool, but as the cost of such tools scales according 
to the size of the audience, this became untenable. 
The solution was to develop an in-house A/B testing 
framework.  For the first two stages, this was rapidly 
achieved using open source solutions. But for the third—
and most crucial—stage, it wasn’t as straightforward.

“We tried to do analysis on results manually, but this 
was tricky,” says Hughes. “Statistical significance is 
not a trivial thing to understand. It needs a knowledge 
of statistics that the DevOps team didn’t have. So 
we’d end up serving up the tests to the segmented 
audience, collecting the data and then taking the 
results to Harry, our data scientist.”

Having to be dependent on a third party for analysis, no 
matter how cooperative that party is, inevitably resulted 
in the process hitting blockages. “It would take time to 
come back with results, and that was a bottleneck,” says 
Hughes. “We needed to get things out at speed. So we 
needed to automate the analysis stage.”

“  It’s hard as a news site not to be impacted by the news cycle.  
If you released 14 changes on … the day Donald Trump  
got elected, then that is going to have an impact on your 
traffic for the day.”

DEVOPS PERSPECTIVES 6 | TESTING TIMES AT THE GUARDIAN



DEVOPS PERSPECTIVES 6 | TESTING TIMES AT THE GUARDIAN

That was a nontrivial task, and one that was 
dependent on a team of six developers working in 
tandem with Harry, the data scientist, but the end 
result three months later was a tool called Abacus. 
“Harry was a really large part of the process,” says 
Hughes, even though it might have been suspected 
that the data scientists were being ‘automated’ out  
of their role. “The people who were being asked to  
do this analysis work for us were the ones who were 
most keen on getting it automated.”

Among the learnings that The Guardian gained  
during this process was that features with lots of  
traffic are quickest to test. “We can A/B test our 
headlines. They get a lot of traffic, 10 million visitors  
a day. So we can put one version out and then another, 
and we can see which gets the best click-through in 
about 15 minutes. So we can make decisions without 
slowing us down particularly.”

Other tests aren’t as quick. The Minute is again a  
case in point. The editorial team at The Guardian  
was enthused by this feature and wanted it to be  
used again on other major events, but the DevOps 
team felt there wasn’t enough information to know 
whether it had had the effect on the audience’s 
behavior that it was intended to. 

When an A/B test was run using The Minute as a new 
experience variant and the normal news format as the 
control, the result of the subsequent analysis was that 
there was no statistically significant change in reader 
behavior. It took two or three weeks to reach that 
statistically significant tipping point, but it was time 
well spent. If the DevOps team had committed to doing 
more iterations of The Minute for other events, it would 
have tied up lots of people over a long period of time, at 
some cost but with no particular beneficial impact. 

15

For The Guardian, A/B testing has been an evident 
success. It may not always be applicable for all 
organizations or all features—if a new feature is not 
going to have enough of a user audience or traffic, 
then getting to that statistically significant point  
may well take too long.

But Hughes concludes: “We are at an advantage 
because our products do get a lot of traffic, so A/B 
testing is a pretty easy choice for us.” 



16

Site Reliability Engineering— 
It’s a Kind of Magic
Pete Waterhouse

The best bit from the first Harry Potter movie aptly 
describes how it must feel to be a site reliability 
engineer. And what’s a site reliability engineer (SRE),  
I hear you ask? Well, it’s the IT equivalent of a wizard, 
or as Andrew Widdowson, an SRE at Google, described 
it, “Like being part of the world’s most intense pit 
crew…changing the tires of a race car as it’s going  
100 miles an hour.”

So how is an SRE any different from traditional IT 
operations, and can a discipline originating from the 
world of web-scale, cloud-native unicorns ever apply  
to the steady-as-she-goes state of enterprise IT? 

It can, because the notion of enterprise IT and a 
technology function being confined behind closed 

walls doesn’t exist anymore. Now, the only way to 
create and conduct business at scale is through 
mobile and cloud—meaning the operational focus has 
shifted from keeping the “technology lights on” toward 
engineering reliability at levels never before imagined. 

This is different from traditional IT operations because 
of its emphasis on engineering. Like any feature, 
reliability isn’t something that’s retrofitted after 
deployment; it’s established and enhanced as software 
is developed, tested and released. That means 
establishing a new discipline, which Ben Treynor, 
Google’s original SRE lead, describes as “what happens 
when a software engineer is tasked with what used to 
be called operations.”

A Sobering Reality
It’s easy to throw out yet another three-letter acronym 
and claim it’s a magical elixir for all the problems 
involved with running complex IT systems. In reality, 
engineering reliability into distributed systems with 
thousands of containerized applications and microservices 
is a tough gig. Not least because of all the moving 
parts, but also because any preconceived notions about 
predictable system behavior no longer apply.

Take, for example, keeping watch over a modern 
software application. This might consist of business 
logic written in polyglot languages and linked 
to the legacy enterprise resource planning (ERP) 
system (custom-built, packaged or both). There will 

Hagrid: You’re a wizard, Harry.

Harry Potter: I’m a what?

Hagrid; A wizard. And a thumping good one at that,  
I’d wager…once you train up a little.

DEVOPS PERSPECTIVES 6 | SITE RELIABILITY ENGINEERING—IT’S A KIND OF MAGIC

https://landing.google.com/sre/interview/ben-treynor.html


17

also be a raft of databases (traditional relational 
for transactional support, yes, but more likely a 
smorgasbord of NoSQL data stores), be they in-memory, 
graphing or document—perhaps fronted by recently 
adopted Node.js. Some of this componentry will be 
on-premises; some will be containerized and moved 
to the public cloud. That might mean Docker and 
Kubernetes on Amazon Web Services (AWS), but 
maybe Microsoft® AZURE™ and Mesos—heck, why  
not both, for some hybrid-style resilience?

But like the old Monty Python sketch, “you’ll be lucky” 
if this is all you ever have to manage. Depending on 
the nature of the business, there will also be a glut 
of third-party services, including payment processing 
and reconciliation. That’s not to mention all the new 
Web and mobile apps interacting with core business 
systems through an API gateway, and possibly some 
analytics horsepower delivered by the likes of Hadoop 
and ElasticSearch.

It’ll take a lot of operational wizardry to keep all that 
performing efficiently. 

“ [Being an SRE is] like being part of the world’s most  
intense pit crew…changing the tires of a race car as it’s  
going 100 miles an hour.”

DEVOPS PERSPECTIVES 6 | SITE RELIABILITY ENGINEERING—IT’S A KIND OF MAGIC

https://www.youtube.com/watch?v=Xe1a1wHxTyo


18

Fortune Favors the Bold
In a wonderful talk at SREcon earlier this year, Julia 
Evans of Stripe described the realities of managing 
today’s complex distributed systems. What was 
refreshing about her presentation was the open 
admission that she often finds the work difficult, and 
how there’s always a ton of new stuff to learn. As she 
says in her abstract, maybe just a tad like Harry Potter, 
she doesn’t always feel like a wizard. 

This honesty illustrates what’s exciting about being an 
SRE. With systems like those described above causing 
any number of thorny problems, it’ll be the inquisitive 
and brave that keep business on track. Being an SRE 
isn’t for the faint of heart or those happy with a fire-
fighting status quo. It’s for those within our ranks 
who get bored easily—those super sleuths who keep 
asking reliability questions, crafting improvements and 
learning as they go.

So if we consider a typical business-critical problem 
that could impact our aforementioned omni-channel 

application (let’s say some latency issue is causing an 
increasing number of mobile app users to abandon 
a booking service), how would teams address the 
issue? Problems like this might go unnoticed for 
some time, or there could be a deluge of alarms. Even 
when a problem is identified, where do teams find the 
root cause? Is it a problem with a new code release 
or at the API gateway? Is it a down to some weird 
microservice auto-scaling issue, and was that earlier 
CPU increase we thought was OK actually really bad?

With an SRE-style approach, business critical problems 
are never addressed in knee-jerk fashion. Using modern 
tooling in areas such as application performance 
management and app analytics, SREs can observe 
the real-time behavior of applications, with systems 
collecting and correlating information from all related 
components. Rather than react after the fact, these 
solutions continuously identify anomalous patterns 
(like those mobile app abandonments) and compare 
them to historical trends—meaning SREs are alerted 
well before the business is impacted.

But beyond exposing new normal application 
weirdness and “unknown unknowns,” modern tools 
also encourage and stimulate more of the SRE 
detective work—the real valuable stuff. These tools 
won’t just detect anomalies and then leave teams 
scrambling to find the needle in a haystack of needles. 
No sir: They’ll analytically gather all the evidence and 
lead teams in fact-based fashion toward a solution. 
Like, for example, using an SRE-inspired monitoring 
service to detect a performance anomaly introduced 

with a new software build and then tracing to the 
actual code causing the problem.

Like Potter, operations professionals might have a hard 
time accepting that they’re wizards. But ask yourself 
this: Do you want to remain a silly muggle getting 
burnt out by constant fire-fighting? Of course not; it’s 
career limiting, and it sucks. Time, then, for some SRE 
magic— gaining the skills and tools needed to adopt 
new tech like containers and microservices—becoming 
an essential part of future-proofing your business. 

You’re a wizard, right?

“  Like any feature, reliability isn’t something that’s retrofitted 
after deployment; it’s established and enhanced as software 
is developed, tested and released.”

DEVOPS PERSPECTIVES 6 | SITE RELIABILITY ENGINEERING—IT’S A KIND OF MAGIC

https://www.usenix.org/conference/srecon17americas/program/presentation/evans


Making Delivery 
Continuous
Leena N

That sounds like an objective that every organization 
can get behind, but as with any change of approach, 
introducing continuous delivery to a development 
culture can be a challenge. There are ways to 
overcome resistance to change, says Leena N, 
cofounder and head of engineering at Multunus 
Software. These are often relatively simple practices, 
but ones that can help to introduce continuous 
delivery core elements such as monitoring, build 
automation and test automation gradually.

First up is the need to recognize the problems that 
continuous delivery is intended to address. Leena cites 
the fictitious example of Bob. Bob is an entrepreneur 
with lots of business plans and some big ambitions. To 
deliver on these and build the products that will make 
him successful, Bob hires a group of highly talented 
individuals, who come together at the start of the 
project full of enthusiasm and a spirit of cooperation.

Fast-forward a few months, and they’re fighting like 
cats and dogs. “What’s happened is that they all went 
off into silos to build their own things,” Leena explains. 
“Then they came out and started to try to integrate 
everything and found that bugs started cropping up. 
Those bugs then started breaking other things. Then 
Bob realized that what he asked for and what’s now 
built are very different things. So the team starts 
talking about things not beings bugs, but rather being 
features, because they need to release this somehow. 
But when they do release it, it’s not going to get the 
users it needs to get, because it’s not the product they 
set out to build.”

A large part of the problem here is that the 
development team set out to build the complete 
product all at once. “That’s not a good position to be 
in,” Leena says. “Experimentation is the key to a lean 
start-up, and you need good technical support for that. 

The other problem is finding yourself stuck in  
the last mile. How much time does it take for a  
one-line change in the code? Maybe it’s just a color 
change for a button, for example, but it’s going to 
delay you for days or weeks.”

This is where continuous delivery’s basic premise 
kicks in: being confident that code is releasable to 
production at any time. “You need a development 
pipeline,” says Leena. “You need to know how the  
code travels from developer to production—the  
build, test and deploy stages.”

It’s continuous delivery when all developer working 
copies are merged to a shared mainline several times 
a day. So the DevOps team needs to set up a mainline 
development trunk, or master, against which every 
new build and addition can be tested and compared  
to ensure the changes are OK.

Continuous delivery is built upon the premise of ensuring that code is always in a deployable state, even when you  
have large teams of developers iterating and making changes on a daily basis. The objective is to get changes—from  
new features to bug fixes to configuration adjustments—into the hands of the user quickly and securely, eliminating  
the notion of post-dev-complete integration, testing and hardening phases.

DEVOPS PERSPECTIVES 6 | MAKING DELIVERY CONTINUOUS 19



20

Some features, such as security compliance, for 
example, will need more time and attention than 
others. To avoid these slowing down the overall project 
progress, feature toggles should be introduced as a key 
enabler of continuous delivery. These are small setups in 
the configuration that allow developers to turn on or off 
specific features depending on conditions. They instruct 
the code to do one set of actions if a certain condition is 
true and another set if another condition is true.

There are different types of feature toggles. Release 
toggles allow for the separation of deployment and 
release so that developers can continuously deploy 
without actually releasing code. This allows them  
to quickly roll back on any ticks that emerge.

Experimental toggles are used to test multiple 
versions of the same app or page with different 
implementations or features. “From experimenting 
with different versions, you can learn things and 
implement accordingly,” says Leena. “Certain things 
in certain versions may be better than in others, so 
you can choose which is which and use the best. You 
experiment and see what works the best for  

the user. Because you’re doing a gradual rollout, you 
can see how users are reacting as you go along and 
get feedback on design and architecture. Importantly, 
if there is a problem, you can release again.”

Meanwhile, operations toggles are designed for failure 
scenarios and are short-lived. These are toggles 
created for a certain time and set of circumstances 
that are then deleted. “If you have part of your 
application that is dependent on a third party API and 
there’s a problem with that API, then it will affect your 
application,” notes Leena. “So to implement a circuit 
breaker in this, you use operations toggles. If an API 
then doesn’t complete in time, the application can use 
a cached version, or it can shut off the feature for a 
time. There will be a degraded experience for the user, 
but that’s better than bringing the entire system down. 
It’s a very good way of controlling dependencies that 
are not under your direct control.”

Leena cites a specific example from her own 
experience of a client who needed a system to  
support its custom T-shirt business. To create a design, 
customers would access a library of images. “After a 

certain time, we realized that the library we were using 
didn’t support a certain feature very well. We wanted to 
move on to another implementation, so we introduced 
an abstraction layer. The current library worked well in 
certain conditions for certain features, so sometimes 
the system could use that. Otherwise it would use the 
abstraction layer to ensure that the library choice was 
the correct one for the specific conditions.”

There’s no such thing as a perfect solution,  
though, Leena cautions, and feature toggles do have 
downsides, most notably in terms of introducing  
a degree of complexity. 

But the main benefit lies in creating more business 
impact by delivering secure code and product as 
quickly and cost-effectively as possible. “In my 
opinion, the only way to create a business-supportive 
engineering team is to have continuous delivery in 
place,” Leena says. “You need to deploy continuously, 
so you need that framework in place that is going 
to allow you to make changes as quickly and non-
disruptively as possible.”

“ You need a development pipeline. You need to know how  
the code travels from developer to production—the build,  
test and deploy stages.”

DEVOPS PERSPECTIVES 6 | MAKING DELIVERY CONTINUOUS



DEVOPS PERSPECTIVES 6 | WHY DEVOPS DELIVERS AT OCADO 21

Why DevOps Delivers  
at Ocado
Kevin McCormack and Alex Howard Whittaker

Since its founding in 2000 with three people in a room 
in London, Ocado has become the world’s largest 
online-only grocery store. In the U.K., it boasts a reach 
that covers over 70 percent of households nationwide, 
shipping out more than 230,000 orders per week. 

At the heart of this are Ocado Technology and the 
power of online retail and fulfillment systems that 
have been built for this purpose. As the firm notes 
on its website, “We wanted to start from scratch 
and build a unique online shopping and fulfilment 
solution that would revolutionise the way people buy 
their groceries.

“Nobody had done this successfully before anywhere 
in the world, there was no blueprint to follow and 
off-the-shelf solution we could buy. We had to build 
it ourselves, and that’s why almost all of the software 

that powers Ocado is developed in-house by Ocado 
Technology, including a lot of highly specialised 
systems that you wouldn’t expect us to be using,  
let alone building. From the optimisation algorithms 
that fine tune our daily delivery routes in the  
500 milliseconds of a mouse click, to the machine 
learning techniques that drive our consumer demand 
forecasting, to the real time control systems that 
operate our vast Customer Fulfilment Centres, there’s 
nothing run-of-the-mill or business-as-usual here.”

That’s why Ocado execs talk in terms of the company 
being a grocery operation that has the look, feel and 
culture of a technology start-up. Close to 1,000 employees 
at Ocado are technologists of some description.

“Lots of people will tell you that we are a grocery 
supermarket and talk about the vans and the website 

In the increasingly competitive market for online grocery services, the most 
celebrated example in the U.K. remains Ocado. While offline supermarkets  
such as Tesco and Sainsbury’s have added digital extensions, Ocado was built 
from the ground up as an online retailer, powered by its own technology  
division, Ocado Technology.



22

and so on. But behind the website and the colorful 
brands is a lot of technology that makes everything 
possible,” says Alex Howard Whitaker, a cloud services 
engineer on Ocado’s cloud infrastructure team. “The 
people who create all that technology are Ocado 
Technology. We have about 1,000 developers and 
engineers who are split between several teams, 
handling various parts of the retail process. These 
range from mobile apps and websites up to the 
highly automated warehouses where we process all 
our customer orders, pick the product and pack up 
the deliveries. From the warehouses, we load up the 
vans and send the orders out to the customers. Ocado 
Technology provides everything needed in terms of 
software, whether it’s to control our automation and 
robotics systems or to implement some clever piece  
of machine learning in an area of our business.”

And in the mix is a growing DevOps culture, although 
it’s not always easy to define what that is, says Kevin 
McCormack, team leader CFC (Customer Fulfilment 
Center) DevOps. “I think it’s very hard to define what 
a DevOps culture is,” he says. “My ideas on DevOps 
culture is not having to set up continuous integration 
servers and persuading people to use them. It’s about 
encouraging individual teams to have individual 
responsibility for their own applications and making 
them self-sufficient.

“As a development organization, there’s a lot of interest 
in self-service and autonomy. Continuous delivery is 
part of the culture. There is an interest in exploring 
what the latest tools are around deployment and 
coding practice. There has always been an interest in 
following good development practice. So yes, Ocado 
really ticks a lot of the boxes of DevOps characteristics.”

For his part, Howard Whitaker sees the use of DevOps 
techniques and practices as critical for meeting 
Ocado’s ambitious goals, adding that the adoption 
of DevOps has grown almost organically, rather than 
being a predetermined strategic decision. 

“We started moving toward architecting a 
microservices architecture, rather than from having a 
clear intention of becoming a DevOps organization,” 
he explains. “There was a strong push from within to 
become an independent technology company. A lot of 
DevOps practices came out of necessity, as a result of 
other things that we wanted to pursue, things that we 
found ourselves shifting toward. We had complicated 
and monolithic systems, and we needed to get away 
from that, so we fell into what are now regarded as 
fairly standard DevOps practices.

“On the cloud side, we use Amazon Web Services 
(AWS) for microservices and Google Cloud for data 
analytics,” he adds. “We use Elastic Beanstalk. What 

we commonly try to do is to use a set of internal self-
service tools for developers to use to provision new 
application environments. There are common security 
certifications so that the environments are consistent 
across all the apps. We also use common deployment 
tools across the Amazon APIs. AWS is very flexible 
around what you can do in terms of customization. 
There are lots of people who use the Amazon AWS 
platform, so there’s a lot of good community knowledge 
to be had, and it’s easier to recruit good developers.”

Having built its own systems successfully, one of the 
big projects at Ocado today is to export that expertise 
to third-party retailers in the form of the Ocado 
Smart Platform (OSP). This has involved creating a 
whole new Ocado end-to-end e-commerce solution, 
including cloud-hosted software and swarm robotics-
based hardware. “That takes all the lessons that we’ve 
learned from building our own website and packing 
it into a white-label service that we can offer to other 
retailers around the world,” says Howard Whitaker. 

The development of OSP was helped by the use  
of DevOps practices, including ongoing testing and 
feedback loops as development progressed. This 
wasn’t as straightforward as it might have been. 
“For some time, we didn’t have real retailers to get 
feedback from,” explains Howard Whitaker. “We had  

“  We wanted to start from scratch and build a unique online 
shopping and fulfillment solution that would revolutionize 
the way people buy their groceries.”

DEVOPS PERSPECTIVES 6 | WHY DEVOPS DELIVERS AT OCADO



23

a team internally who were acting in the role of retailers from a product 
ownership point of view. Then we moved on to running an internal shop that 
was doing deliveries to people’s desks. So we had someone acting as the picker, 
someone as retailer, someone as HR manager and so on. It was a way to get a 
feedback loop going.”

The use of DevOps techniques has had another beneficial impact in that it has 
allowed greater transparency within the organization. “A move to continuous 
delivery has allowed the business to observe and manage the pace of change 
better,” says Howard Whitaker. “From an operational perspective, Ocado must 
keep a close eye on the website and the warehouses. They have to keep 
working. Making development changes smaller and more visible is better. Large 
changes can result in large disruptions, and that’s not good. With a move to 
smaller but more frequent changes, the potential for minor disruptions is less.”

As for specific learnings gained in Ocado’s journey, McCormack points to 
the challenges of transitioning. “The main learnings have come from the 
transition from using traditional infrastructure or virtual machines hosted on 
premises to moving to a private cloud or public cloud with containers,” he 
says. “That brought a lot of challenges at an organizational level as some of 
the relationships with the infrastructure side of the business changed. If you’re 
using something like Docker, you’re not limited to what OS or what version of 
Java® the infrastructure team wants you to use because they don’t want to have 
to support 20 versions. This pushes that onto the development team. It has 
been a bigger upheaval than most people imagined.”

Howard Whitaker concurs. “It’s definitely been challenging shifting to the new 
practices. We have to keep the lights on and keep operating at full scale,” he 
says, but adds that it is worth the effort. “DevOps is the only way that could 
scale in terms of the number of people who work in the tech organization. 
When I joined, we had one office in the U.K.”

“ A move to continuous delivery 
has allowed the business to  
observe and manage the pace  
of change better.”

DEVOPS PERSPECTIVES 6 | WHY DEVOPS DELIVERS AT OCADO



 

Hating Agile and  
Other Bad Habits
Allan Kelly

It’s not the most auspicious start to 
an agile development training course 
when you walk in the room and the 
first thing the audience members tell 
you is, “We hate agile!” 
That’s what happened to Allan Kelly of agile 
consultancy Software Strategy. “They didn’t want to 
be in that training course,” he recalls. “Their managers 
had gone off and done a Scrum master class and 
come back with the belief that this was the way to  
go and that was that.”

It’s not an uncommon problem, even if it’s not  
always talked about. It’s also indicative of a shifting 
balance in attitudes, says Kelly. “Go back 10 years and 
it was the developers who were saying they wanted  
to use agile, but their managers wouldn’t let them. 
Now the managers get it but have somehow  
alienated the developers.”

The reasons for this alienation are threefold, Kelly 
reckons. “First, it’s seen as an imposed change, not 

DEVOPS PERSPECTIVES 6 | HATING AGILE AND OTHER BAD HABITS 24



25

something that you as a developer have control over. 
It’s seen as a case of ‘Thou shalt be agile,’ and that 
leads to resentment.”

Then there’s the danger of the technical aspects of 
agile development being overlooked by management 
in pursuit of quicker and quicker coding. “When agile 
is interpreted by non-coders, you can find that the tech 
aspects are either underplayed or ignored altogether,” 
says Kelly. “When you ignore the tech aspects, that just 
makes life harder for the developer. You know, you can 
crank out more stuff in half the time, but if you do, the 
quality is going to go down. You’ve got to keep top-
notch quality a priority.”

Kelly also warns of the associated dangers of building 
up technical liabilities. “The original foundation of 
agile said that you must have a technical element. You 
must keep the team real clean and effective,” he says. 
“But you build up more and more liabilities, robbing 
Peter to pay Paul, and sooner or later Peter gets upset! 
You can run the team faster and faster, but if they 
don’t get the chance to improve quality, then their 

lives are just going to get harder and harder. So you 
can’t blame them for complaining.

“At the heart of agile is the need to keep really high 
levels of agility so that you can respond to change. If 
you have less than two-week iterations, then it should 
be all about highest quality. When agile is imposed on 
people, the technical quality is forgotten.”

Finally, there’s the double-edged sword nature of 
agile as tool of choice, that in the wrong hands it can 
encourage unhelpful behavior. “The one that gets 
the most attention is the idea that agile opens the 
door to a culture of micromanagement,” says Kelly. 
“Agile tools were intended to help teams self-organize 
and to make individuals more responsible and more 
collective. But if you put those same tools into the 
hands of micromanagers, you find that they are 
amazingly good micromanagement tools as well. 

“So you end up with the 9 a.m. team get-together 
meeting to celebrate achievements, talk about what 
you all are doing, make plans for the day, talk about 

what’s making life difficult and so on. If the team is 
cooperating, then that’s brilliant. But if you’ve got a 
micromanager there, then he or she is ticking things off 
as you go. It’s the same tools but the wrong mind-set.”

Agile techniques can also lead to people falling 
back into bad habits. “People in authority have that 
authority because they have had some past perceived 
success,” says Kelly. “So when times get tough, they 
run back and try to do the same sort of stuff that 
made them successful in the first place. Maybe in the 
past, they feel that they succeeded by making people 
work hard.

“In the traditional project environment, the 
assumption is that everyone is lazy and has to be 
whipped into action. But in an agile community, 
where you want to be trying to build community and 
cooperation, those behaviors are the opposite of what 
you want. The micromanagers haven’t learned that 
there are quite different approaches. You won’t get 
far in the DevOps world if you make your team sweat 
bucket loads.”

“ Go back 10 years and it was the developers who were  
saying they wanted to use agile, but their managers wouldn’t 
let them. Now the managers get it but have somehow  
alienated the developers.”

DEVOPS PERSPECTIVES 6 | HATING AGILE AND OTHER BAD HABITS 



26

So with those barriers, the question becomes how to 
overcome them and get buy-in from both developers 
and management. “Start by appealing to self-interest 
and their own sense of professionalism,” suggests 
Kelly. “You’ve got to say to developers that you want 
them to be part of a journey. This should be about 
managers asking how everyone can work better and 
saying, ‘I’ve heard agile might be an answer, and we’re 
prepared to spend money on this, but how do you as  
a team think we can improve?’ ”

And money will have to be spent, says Kelly. “This 
generation of programmers weren’t taught all this at 
college, so you need to invest in training and coaching 
or they can’t be effective with the newest techniques. 
Spending the money on training and coaching does 
two things. It directly trains people in the necessary 
skills, but more importantly, it says to your developers 
that this organization is prepared to invest in them. It 
says that this organization considers enabling you to 
do a good engineering job important, and that it will 
allow you the time and space to do things well.”

It’s also important to remember that you’re all  
on the same side here—or you should be. “None of 
this is malevolent,” says Kelly. “Agile and traditional 
development projects have the same goal in mind, 
which is to deliver the best product to the business.  
Whether you’re working with agile or not, there’s  
still huge pressure to deliver.”

That means both managers and developers need to 
up their game. “When you talk through this, most 
management teams get it,” says Kelly. “You have to 
feel a bit sorry for managers. If they try to impose this, 
they’re micromanagers, and if they don’t, then they’re 
not going to get the benefits of agile. But developers 
also need to put their hands up and say they really 
want to do this. There’s a cynicism on both sides  
that needs to be overcome.”

DEVOPS PERSPECTIVES 6 | HATING AGILE AND OTHER BAD HABITS 

“ When agile is interpreted by  
non-coders, you can find that the tech 
aspects are either underplayed or  
ignored altogether.”



At its most basic, an anomaly is something in a data set that doesn’t  
look like all the other things. Anomaly detection is the process of spotting 
that. It’s a challenge that can scale frighteningly when you’re dealing with 
larger and more complex systems and balancing metrics that may be highly 
fluid in nature. Container and microservices environments are a prime 
example of this. 

Spotting the Future  
of Anomaly Detection
Pieter Buteneers

“You need to be able to detect the unexpected. That’s 
the best definition, I think, for anomalies—they are 
unexpected events,” says Pieter Buteneers, data 
strategist and machine-learning consultant at CoScale. 
“What’s really important is that whatever you detect 
has to be important to the user. If it isn’t, then what 
you detect might not actually be an anomaly, but a 
smaller glitch.

“It’s going to vary from case to case. There is no 
specific definition. What can be anomalous for one 
piece of data may not be anomalous, with that same 
data, for a different user. If Google has an error rate of 
0.0001 percent, that might be really relevant to them, 
but for others it might be too small. It depends on the 
customer and on the type of data involved.

“It’s a matter of perspective. It can be quite difficult 
to figure out what is relevant and what is not. From 
our domain knowledge for container environments, 
we have a general idea, but that doesn’t mean that 
we’re never wrong. We’ll use all the information we 
have around the systems to work out what is normal 
and what isn’t, but the perception might be different 
between business and developers.”

That said, there are four possible outcomes of anomaly 
detection, one of which is a major problem for developers.

The ideal outcome, of course, is a true positive. If 
anomaly detection is working as it’s supposed to, then 
the anomaly has been spotted and can now be dealt 
with in an appropriate manner.

DEVOPS PERSPECTIVES 6 | SPOTTING THE FUTURE OF ANOMALY DETECTION 27



28

Equally valuable is a true negative outcome. Despite 
sounding bad, a true negative’s upside is that you 
haven’t fallen for a false alarm. You don’t have a 
problem, and you’re not about to assign developers to 
fix an issue that doesn’t exist.

A false positive outcome risks doing exactly that—
setting the development team off on a wild goose 
chase for a problem that has been wrongly identified. 
This wastes time and resources and, as a possible side 
effect, may undermine confidence in the monitoring 
tools and techniques, both among the development 
team and across the wider business.

The worst possible outcome is the false negative. In 
this case, you do have a problem, but the anomaly 
detection tools haven’t spotted it, so nothing is done 
to address the issue. Development work continues 
in less-than-blissful ignorance while problems lurk 
further down the track. 

“You can speak about false positives and false 
negatives, those are the ones that people are 
interested in,” says Buteneers. “There can be as many 
positives as there are, and people don’t really care 
about the true negatives. It’s the false positives and 
false negatives that are important. Those are really 
hard to measure.

“Those are the things that we look for. For every false 
positive we find, we would hope to have more true 
positives in the same time period. If you have one 
false positive and 200 true positives in the same time 
period, that’s not too bad. But if you have one false 
positive for every true positive, that’s alarming.”

The technology to track down anomalies will typically 
begin with relatively simple dashboards that are able 
to monitor and report on basic metrics. As system 
development becomes more complex, the need for 
more sophisticated and functionally richer monitoring 
tools grows. Increased automation and machine 
learning capabilities become features of the most 
sophisticated detection systems once the complexity 
of the system precludes human visual detection.

“Detection itself is not that difficult,” says Buteneers. 
“If it is, then it’s because you’re making it difficult! If 
you use the right tools to detect anomalies, then it 
shouldn’t be that hard. Every now and then you read 
about Uber (see box) or Google, who build their own 
tailor-made systems, but there are tools out there. It 
depends on which techniques you’re going to use and 
how much you know about those.”

The challenge is to make sure that the approach to 
anomaly detection and the tools used are appropriate 
to the needs of the end organization. “With smaller 
companies, data is much more noisy. With larger 
companies, the data is a lot more stable,” notes 
Buteneers. “If you look at the anomaly detection field, 
many of the systems out there generate so many false 
alerts that I can see why so many developers don’t 
look at them. It should be up to developers to require 
of their vendors that the anomalies detected are going 
to be valuable.”

“ What’s really  
important is that 
whatever you detect 
has to be important 
to the user. If it isn’t, 
then what you  
detect might not  
actually be an  
anomaly, but a 
smaller glitch. ”

DEVOPS PERSPECTIVES 6 | SPOTTING THE FUTURE OF ANOMALY DETECTION 



29DEVOPS PERSPECTIVES 6 | CONTRIBUTORS

Sarah Wells is currently leading work at the Financial 
Times on building a semantic publishing platform, 
making it easy to discover and access all the Financial 
Times’ published content and metadata in a common 
and flexible format, via APIs. Sarah has been a 
developer for 15 years, working across consultancy, 
financial services and media. She is more dev than 
ops, but definitely shifting. Her recent focus has been 
on Go, microservices, containerization, DevOps and 
how to influence teams to do the right things. 

Amy currently works with the Data Technology  
team providing real-time analytics for the Guardian’s 
digital products.

She has been working at digital at the Guardian for 
three years, and she recently led a project to help 
teams understand whether the code they are writing  
is in fact changing the behavior of their audience.

Amy Hughes 
Software Developer,  
The Guardian

Greg Bledsoe is a managing consultant at Accenture in 
the DevOps architecture practice and regularly advises 
and leads the implementation of DevOps principles 
and practices at the Fortune 100. A regularly published 
author, Greg has spent a career being responsible 
for keeping platforms secure and reliable. He brings 
twenty years of experience building scalable, secure 
and cost effective environments. Greg is a certified 
ethical hacker and certified penetration tester and 
led a talented team with the same certifications at 
Personal, Inc.

Greg has been implementing DevOps principles since 
before the term DevOps existed and was recognized by 
Jax DevOps as the third on its list of the Top 20 Social 
Influencers in DevOps. 

Greg Bledsoe 
Managing Consultant,  
Accenture

Sarah Wells 
Principal Engineer,  
Financial Times

https://devops.jaxlondon.com/


30

Pete has been involved in the development, support 
and marketing of software solutions for more than 
20 years. He has held a number of management, 
consulting, technical sales and strategy positions 
in areas such as cloud computing, DevOps and 
IT business management. Pete blogs on a range 
of disruptive business and technology trends, 
with articles appearing in publications including 
InformationWeek, Wired Insights, DevOps.com and 
App Developer. 

Leena N is a pragmatic and passionate programmer, 
lean thinker and extreme programming evangelist 
hooked into continuous delivery.

With more than 15 years of experience in the industry, 
she has seen many failures in software product 
development either because of the team lacking 
the discipline in delivering software or because of it 
creating something that nobody wants. 

Her journey of building a team at Multunus gave 
her a lot of opportunities to concentrate on the 
first problem: i.e., bringing in sustainability and 
predictability in software delivery using continuous 
delivery and extreme programming practices.

Leena N  
Cofounder and Head of Engineering,  
Multunus Software

Pete Waterhouse  
Senior Director,  
DevOps Strategy and Marketing

Kevin McCormack is a DevOps team leader with a Java 
Development background. Kevin has promoted the use 
of container public/private cloud solutions at Ocado 
Technology using Docker and CoreOS. 

Kevin McCormack  
DevOps Team Leader,  
Ocado Technology

DEVOPS PERSPECTIVES 6 | CONTRIBUTORS



31

Pieter Buteneers started his career in academia, first 
as a PhD student and later as a post-doc, where he 
did research on machine learning, deep learning, 
brain computer interfaces and epilepsy. He won the 
first prize in the biggest Deep Learning competition 
of 2015 together with a team machine learners from 
Ghent University: the National Data Science Bowl 
hosted on kaggle.com. In 2016, he finished his MBA at 
Flanders Business School and now he works as a data 
strategist and machine learning consultant for CoScale 
and other companies.

Pieter Buteneers 
Data Strategist and Machine Learning Consultant, 
CoScale

Allan Kelly makes digital development teams more 
effective and enhances delivery with agile approaches 
to reduce delay and risk while enhancing value. He 
has been called a thought leader but clients have a 
habit of calling him Agile Allan. Once upon a time he 
was a programmer; now he keeps his programming 
hand in but spends most of his time with teams and 
managers, looking at processes and helping decide 
what the right thing is.

Right now he’s probably best known for his work on 
Continuous Digital: The Agile Alternative to Projects—
formerly known as #NoProjects.

He works with a number of companies through his 
company Software Strategy Ltd., providing agile 
training, agile coaching/consultancy and more general 
business advice for digital companies.

Allan Kelly 
Agile Specialist

Alex Howard Whitaker is a Cloud Infrastructure Engineer 
and Python developer working at Ocado Technology. 
When not building Ocado’s AWS environment, his chief 
interests are automating away the boring tasks, creating 
a frictionless platform for developers and building 
software that thrives under volatility.

Alex Howard Whitaker 
Cloud Infrastructure Engineer,  
Ocado Technology

DEVOPS PERSPECTIVES 6 | CONTRIBUTORS



Next Steps
Mainstream adoption of DevOps is here. Is your organization ready to seize all the 
business benefits and opportunities it presents? At CA Technologies, we have built  
a portfolio of products and solutions on our DevOps expertise.

Visit ca.com/devops to learn more about how CA can help you close the gap between 
your developers and your operations—and keep your competitive edge in the 
application economy.

CA Technologies (NASDAQ: CA) creates software that fuels transformation for 
companies and enables them to seize the opportunities of the application economy. 
Software is at the heart of every business, in every industry. From planning to 
development to management and security, CA is working with companies worldwide 
to change the way we live, transact and communicate—across mobile, private and 
public cloud, distributed and mainframe environments.

For more information on DevOps solutions from CA Technologies,  
go to: ca.com/insights/devops 

#modernsoftwarefactory

CS200-289403_0717

Copyright © 2017 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein 

belong to their respective companies. 

http://ca.com/devops
http://ca.com/insights/devops

