
vol.5

EDITED & CURATED BY ALEX WILLIAMS

MONITORING

MANAGEMENT

CONTAINER

&

The New Stack:
Container Monitoring & Management

Alex Williams, Founder & Editor-in-Chief

Benjamin Ball, Technical Editor & Producer

Gabriel H. Dinh, Creative Director

Lawrence Hecht, Data Research Director

Contributors:
Scott M. Fulton, III, Ebooks Editor

Judy Williams, Copy Editor

Luke Lefler, Audio Engineer
Norris Deajon, Audio Engineer

3Ĵ CONTAINER MONITORING & MANAGEMENT

TABLE OF CONTENTS
Sponsor .. 4

Introduction .. 5

CONTAINER MONITORING & MANAGEMENT

Monitoring Reset for Containers.. 9

Classes of Container Monitoring ...24

CA Technologies: Future-Proof Docker with Modern Monitoring40

Identifying and Collecting Container Data ..41

The Right Tool for the Job: Picking a Monitoring Solution ..55

Managing Intentional Chaos: Succeeding with Containerized Apps62

CONTAINER MONITORING DIRECTORY

Container-Related Monitoring ...70

Components/Classes of Monitoring Systems ..74

Management/Orchestration ...78

Miscellaneous ...80

Disclosures ...83

4Ĵ CONTAINER MONITORING & MANAGEMENT

SPONSOR
We are grateful for the support of CA Technologies.

http://bit.ly/2o3uhkV

5Ĵ CONTAINER MONITORING & MANAGEMENT

INTRODUCTION
In time, containers will be the means by which all workloads are deployed

on server platforms. It makes too much sense. Constructing fake
machines around virtual workloads, just to make them portable across

servers, was not the architecturally rational thing to do. It was the
expedient thing to do, because cloud platforms had not yet evolved to
where they needed to be.

Today, enterprises are leasing dedicated connections to commercial data
center providers, with bandwidths greater than when their servers were
kept in the downstairs broom closet. Storage is becoming so practical to
own and operate that even massive data lakes are years away from

spilling over their borders. Random-access memory has stretched its
boundaries so greatly that the speed of database operations has
catapulted by several orders of magnitude in just a few years’ time.

For us to populate this new reality with countless instances of first
generation virtual machines seems entirely silly. The only reason we’d
want to do that is if we had no other choice but to continue running older
software. And that, as the bard said, is the rub. The software that provides
business logic for a great many organizations is too young to amortize.
Though methods and techniques have changed over the last decade, the
impetus to keep existing software running remains constant. In any data
center we build today, the old and the new software must coexist.

This fact renders any single technique or methodology for maintenance
and monitoring extremely difficult to fathom.

How We Got Here
The very first software was written specifically for the systems it ran on.
The second generation used a machine-independent language, which was

6Ĵ CONTAINER MONITORING & MANAGEMENT

INTRODUCTION

compiled for the systems it would eventually run on. Over time, the
complete history of software evolution, up until today, has boiled down to
the introduction of more and more of these layers of abstraction, all of

which lead inevitably to the same point: machine code for consumption
by processors. Containerization is a very clever way to introduce more
convenience to this consumption chain, by trading off some of the natural
barricade between VMs and their host systems, and with a much simpler

system of namespaces and process separation.

The real problem with containers, as it turns out, deals with containment.

We should be capable of deducing what’s in a container and how it runs,
container architects first told us, simply by looking at the build file for how
the engine constructs it (with Docker, this is the Dockerfile). In practice, it’s
not that simple. Containerized systems are, by design, distributed. Their
distribution takes place over servers whose configurations not only vary
but are individually subject to change without notice. As a result, we
cannot look at any pre-produced manifest for a container image and be
accurately certain about what an active container image will include or
how it will run.

We need to see what’s going on inside the packaging designed
intentionally to obscure what’s going on. It’s a tricky request, because
creating lines of visibility could conceivably create avenues for
vulnerability. And for many organizations, there’s not only a precise
definition of monitoring, but a standard sequence of events that must
take place to remain compliant — a sequence created for the era of virtual
machines and hypervisors.

The objective of monitoring containers is to assess the status and health
of their workloads. By stark contrast, the objective of monitoring virtual
machines is to assess the performance of the virtualized systems within
which workloads are emulated. We can’t just pick up the former art and

http://www.thenewstack.io

7Ĵ CONTAINER MONITORING & MANAGEMENT

INTRODUCTION

move it to the new skill set.

This book presents a snapshot of the emerging approaches to container
monitoring and distributed systems management that engineers and their
customers are building together.

Where Do We Begin?
Containers are designed to be short lived. This raises a few questions,
which are even now largely unresolved: What should we be monitoring in
a containerized environment, specifically? What metrics should we use in
the process? Some vendors have asserted that the final measure of the
value of a cloud-based service is how fast it responds to the user, whether

through a browser or a mobile app framework. If that is indeed the case,
then how can the measurements of response intervals be used to show us

how to improve them?

On the opposite side of the aisle are engineers who assert that each
scaled-out, distributed system becomes so unique that the only reliable
mechanism for monitoring its performance is one created specifically for
it. Theoretically, if the variables that comprise the operating
characteristics of a distributed service can be quantified, then the creation
of such a monitoring system may indeed be automated. After all, a
container engine produces an image from a build file; why can’t a
monitoring engine produce a measurement scheme from a set of
characteristics?

This book presents the different classes of monitoring techniques and
schemes, both in discussion and as a table for direct comparison. You will

see the choices of metrics made by various platforms — choices which

may yield dissimilar, though still revealing, results. We’ll compare
monitoring products you’ve heard of and several that may be completely

http://www.thenewstack.io

8Ĵ CONTAINER MONITORING & MANAGEMENT

INTRODUCTION

new to you. And with the accompanying podcast, you’ll hear a leading
point of view in the container monitoring field, and find out how they
interpret the current state of Docker and container monitoring.

Our sponsor for this ebook is CA Technologies. CA has been a definitive
voice in workload monitoring, management and security, long before the
rise of containers and distributed systems. We appreciate CA’s
commitment in this area, their contributions to the insight we offer here,
and to our efforts in providing a balanced, accurate perspective of how
state of containerization management and monitoring impacts you and
your organization.

Scott M. Fulton, III

Ebooks Editor

The New Stack

http://www.thenewstack.io

9Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR
CONTAINERS
by LAWRENCE HECHT

M
onitoring is not a new concept, but a lot has changed about the
systems that need monitoring and which teams are responsible
for it. In the past, monitoring used to be as simple as checking if

a computer was still running. Cobe Chief Technical Officer (CTO) Dave
Charles remembers monitoring as simple instrumentation that came

alongside a product.

As James Turnbull explains in The Art of Monitoring, most small

organizations didn’t have automated monitoring — they instead focused
on minimizing downtime and managing physical assets. At companies
that actually had IT staff, operations teams used simple tools to check on
disk, central processing unit (CPU) and memory usage, but focused mostly
on dealing with emergencies related to availability. Larger organizations
eventually replaced the manual approach with automated monitoring
systems that utilized dashboards.

Even without the introduction of containers, recent thought leaders have
advocated that monitoring should more proactively look at ways to
improve performance. To get a better view of the monitoring environment,

http://www.thenewstack.io
http://thenewstack.io/author/lawrence-hecht/
https://cobe.io/blog/posts/a-brief-history-of-monitoring-part-1/
https://www.artofmonitoring.com/

10Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

we reviewed a survey James Turnbull conducted in 2015. Although it is a
snapshot of people that are already inclined to care about monitoring, it
provides many relevant insights.

Expectations of time and effort needed for monitoring is changing. With
the current prevalence of automated systems, users often want to reduce
the time needed to setup a monitoring tool and trying to find the problem
in their stack. While monitoring may always been relatively time
consuming, there are approaches that can improve the overall experience.

What’s Different With Containers
To understand how to monitor containers and their related infrastructure,

you need to understand what is different about containers. There are
aspects of containerized environments that change previously established
monitoring practices and the efficiency of traditional monitoring
solutions. Understanding these changes will help explain how vendors are
shifting to create new products to address changing metrics and a new,
varied team of users involved in monitoring. The monitoring changes that
come with containers can be explained in five points:

1. The ephemeral nature of containers.

2. The proliferation of objects, services and metrics to track.

3. Services are the new focal point of monitoring.

4. A more diverse group of monitoring end-users.

5. New mindsets are resulting in new methods.

Ephemerality and Scale of Containers
Cloud-native architectures have risen to present new challenges. The
temporary nature of containers and virtual machine instances presents

http://www.thenewstack.io

11Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

tracking challenges. As containers operate together to provide
microservices, they are in effect a distributed system. While distributed
systems are not necessarily transitory at larger scales, they require
targeting of many moving parts. This requires new methods of
monitoring to make observations about their health. Due to their
ephemeral nature and growing scale, it doesn’t make sense to track the
the health of individual containers; instead, you should track clusters of
containers and services.

Traditional approaches to monitoring are based on introducing data
collectors, agents or remote access hooks into the systems for
monitoring. They do not scale out for containers due to the additional
complexity they introduce to the thin, application-centric encapsulation

of containers. Neither can they catch up to the provisioning and dynamic
scaling speed of containers.

In the past, people would look at a server to make sure it was running.
They would look at its CPU utilization and allocated memory, and track
network bottlenecks with I/O operations. The IT operator would be able
to know where the machine was, and easily be able to do one of two

things. First, they could point an instrument to that specific location and
collect data. In monitoring language, this is called polling a machine.
Alternatively, an agent can be installed on the server, which then pushes
data to a monitoring tool.

This push approach has achieved popularity because the ephemeral

nature of containers and virtual instances makes it difficult to
instrument tools to find and poll them. It also reduces the amount of
intrusion or tainting of applications. This monitoring approach benefits
from the key observability characteristics of containers, and enables

solutions that operate efficiently, seamlessly and without intrusion to
container execution.

http://www.thenewstack.io

12Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

Proliferation of Objects, Services and Metrics
The explosion of data being generated is a well known phenomenon. Ten
years ago, people cared about how to store all that data. More recently,
the focus has been on how to best utilize that data without storing it all.
With the rise of Internet of Things (IoT) sensors and container adoption,
there are now more and more objects than ever to monitor. While there is

an instinct to try to corral all these objects into a monitoring system,
others are attempting to identify new units of measurement that can be
more actionable and easily tracked.

The abundance of data points, metrics and objects that need to be

tracked is a serious problem. Streaming data presents many opportunities
for real-time analytics, but it still has to be processed and stored. There

are technical solutions that can handle the scale, but at significant cost to
both finance and performance. While NoSQL and other next-generation
databases have established their place in the IT ecosystem, they are not

optimized for this use case; time series databases is a potential solution
for storage. However, companies can’t just store their log data indefinitely;
much of the data is never used. Some older log files are never looked at,
motivating users to focus less on log management tools and more on
metrics, which is data collected in aggregate or at regular intervals.

Per Host Metrics Explosion
Component # of Metrics for a

Traditional Stack
for 10 Container Cluster
with 1 Underlying Host

for 100 Container Cluster
with 2 Underlying Hosts

Operating System 100 100 200

Orchestrator n/a 50 50

Container n/a 500 (50 per container) 5,000 (50 per container)

Application 50 500 (50 per container) 5,000 (50 per container)

Total # of Metrics 150 1,150 10,250

TABLE 2: Containers means more metrics than traditional stacks.

http://www.thenewstack.io

13Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

Containers present two problems in terms of data proliferation. Compared

to traditional stacks, there are more containers per host to monitor and

the number of metrics per host has increased. As CoScale CEO Stijn
Polfliet describes it, there would traditionally be 150 metrics to track per
host: 100 about the operating system and 50 about an application. With
containers, you’re adding an additional 50 metrics per container and 50
metrics per orchestrator on the host. Considering a scenario where there
a cluster is running 100 containers on top of two underlying hosts, there
would be over 10,000 metrics to track (Table 2).

With so much potential data to collect, users focus on metrics. As

Honeycomb co-founder and engineer Charity Majors wrote, “Metrics are
usually bucketed by rollups over intervals, which sacrifices precious detail
about individual events in exchange for cheap storage. Most companies
are drowning in metrics, most of which never get looked at again. You
cannot track down complex intersectional root causes without context,

and metrics lack context.” Even though metrics solve many operations
problems, there’s still too many of them, and they’re only useful if they’re
actually utilized.

Services Are the New Focal Point
With a renewed focus on what actually needs to be monitored, there are

three areas of focus: the health of container clusters; microservices; and
applications.

Assessing clusters of containers — rather than single containers — is a
better way for infrastructure managers to understand the impact services
will have. While it’s true that application managers can kill and restart
individual containers, they are more interested in understanding which
clusters are healthy. Having this information means they can deploy the
cluster to a different infrastructure or add additional resources to support
its optimal operation. Container orchestration solutions help by allowing

http://www.thenewstack.io

14Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

for efficient scheduling of containers on clusters of hosts.

Many microservices are composed of multiple containers. A common

example is a microservice composed of five different containers, each
running a different process. If one goes down, another can pop up in its
place. However, if this failure is a consistent pattern in the long-term, there
will be a degradation of the service. Looking at the microservice as a unit
can provide insight into how an entire application is running.

According to CA Technologies SVP Product Management Sushil Kumar, in
an interview with The New Stack on modern application monitoring
considerations, “cross-functional DevOps teams and Site Reliability
Engineers need insight into the services running within and across
containers. An aggregated view of performance across microservices,
apps and containers is key to ensuring a flawless customer experience.

Critical to this is massively scalable metric capture, including API
communication and latency, traffic, errors and utilization as they relate to
specific applications; analytics to remove noise and correlate information
across the highly dynamic container and application fabric; and visually
tracking services and the dependencies between containerized
microservices.”

More Diverse Group of Monitoring End-Users
The focus on monitoring applications instead of just infrastructure is
happening for two reasons. First, a new group of people is involved in
the monitoring. Second, applications are more relevant to overall
business performance.

Monitoring is still generally reactive, despite progress in recent years. It’s
focused on the objectives of the IT team managing the actual
infrastructure. This mindset does a disservice to developers because they

generally receive data secondhand. Developers are increasingly being held

http://www.thenewstack.io

15Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

accountable for applications once they have been put into production. As

Todd DeCapua and Shane Evans’s Effective Performance Engineering

notes, developers are being asked to “deliver the highest quality and
performing product, and provide continuous feedback and optimization
recommendations, so other teams can deliver quickly and in fully
automated ways.”

The DevOps movement has risen, at least in part, as a response to
developers’ desire for increased visibility throughout the full application
life cycle. Now, DevOps roles are often the full stack managers and
operators of applications.

Different roles care about different parts of the monitoring process. Our
analysis of the aforementioned Turnbull survey of IT professionals that

care about monitoring shows that beyond servers, their areas of interest
vary significantly. The data shows a break between the developer and
DevOps roles. Based on the survey, 48 percent of developers monitor
cloud infrastructure, which is significantly below the 65 percent reported
by DevOps roles.

The biggest differences are between DevOps and other IT staff. The
data showed that 72 percent of system admins and IT Ops roles monitor
networking infrastructure, which is about 20 percentage points higher
than the developers and DevOps groups. On the reverse side, 70
percent of developers and 75 percent of DevOps roles monitor
application logic, compared to only 59 percent of the IT operations-
oriented respondents.

DevOps roles care as much about applications as they do infrastructure,
but they care more about performance than availability. As James

Turnbull writes in The Art of Monitoring:

http://www.thenewstack.io
http://www.effectiveperformanceengineering.com/get-the-book/

16Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS
Monitored Environments Differ Per Role

Source: The New Stack Analysis of a 2015 James Turnbull survey. Which of the following best describes your IT job role? What parts of your

environment do you monitor? Please select all the apply. Developers, n=94; DevOps, n=278; Sysadmin/Operations/SRE, n=419.

0 20% 40% 60% 80% 100%

Developer

DevOps

Sysadmin/Operations/SRE

Business Logic

Application Logic

Network Infrastructure

Cloud Infrastructure

Server Infrastructure
87%
89%

94%

48%
65%

53%

50%
56%

72%

70%
75%

59%

38%
38%

27%

FIG 1: DevOps care more about monitoring cloud infrastructure (65 percent) and ap-

plication logic (75 percent) as compared to their IT operations-focused peers.

“Orienting your focus toward availability, rather than quality and

service, treats IT assets as pure capital and operational expenditure.

They aren’t assets that deliver value, they are just assets that need to

be managed. Organizations that view IT as a cost center tend to be

happy to limit or cut budgets, outsource services, and not invest in

new programs because they only see cost and not value.”

Luckily, we’ve seen a trend over the last few years where IT is less of a
cost center and more of a revenue center. Increased focus on

performance pertains to both IT and the business itself. Regarding IT,
utilization of storage or CPU resources is relevant because of their
associated costs. From the perspective of the business itself, IT used to

only care about availability and mean time to resolve (MTTR). While

http://www.thenewstack.io

17Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

availability and resolvability are still critical, new customer-facing metrics
are also important.

Along with DevOps, the practice of site reliability engineering (SRE) will
affect how monitoring tools are used. From this perspective, monitoring
will still largely be managed by an operations team, but responsibility for
ensuring new applications and services are monitored may be delegated
to application developers. Shariq Rizvi, co-founder of Netsil, said in an
interview with The New Stack that SREs and DevOps engineers are
different from software engineers. He believes SRE teams should split up
the management of services, thus creating more specialization. Dan
Turchin, co-founder and chief product officer of Neva, said in an interview
with The New Stack that he believes DevOps positions are replacing
network operations center (NOC) engineers, who were traditionally
looking at things from a data center perspective. If the old-school
networking stats are being displaced by cloud infrastructure metrics,
then this may be true.

The market is responding to this changing landscape. CA Technologies
added the “perspectives” functionality to their solution, which allows

teams to view and administer using any combination of grouping
attributes. A major monitoring benefit of this approach is that it
significantly simplifies and distills the data into views that are
customizable by roles, tasks or services — essentially allowing data to be
presented in context. Another example of role-based monitoring is playing
out in the Kubernetes world, where the project has been redesigning its
dashboard based on the differing needs of application developers,
application operators and cluster operators.

New Mindset, New Methods
Although monitoring is changing to meet the needs of different job roles, it
is also moving to a more holistic approach. As Majors wrote on her blog,

http://www.thenewstack.io
https://communities.ca.com/community/ca-apm/blog

18Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

instead of relying on a fixed set of questions and checks, people should
move towards the “observability” of systems. This has to happen because
those fixed data points will not provide the needed insights alone. New
tools are needed to keep pace and provide the ability to predict what’s
going to break. Many of these tools use machine learning and analytics.

Observability recognizes that testing won’t always identify the problem.
Thus, Majors believes that “instrumentation is just as important as unit
tests. Running complex systems means you can’t model the whole thing
in your head.” Besides changes in instrumentation, she suggests focusing
on making monitoring systems consistently understandable. This means
actually defining what the data represents and using the same definitions
as your peers do both within and outside the organization. Furthermore,
there is a frustration with the need to scroll through multiple, static
dashboards. In response, vendors like CA Technologies are making more
intuitive, interactive dashboards. Companies are even using artificial
intelligence to determine what information displays when for each service.

Approaches to Address the New Reality
Increasing automation and predictive capabilities are common
approaches to address new monitoring challenges.

Increasing automation centers around reducing the amount of time it
takes to deploy and operate a monitoring solution. According to Steven
Acreman, founder and Chief Technical Officer of Dataloop.IO, in an
interview with The New Stack, the larger the organization, the more likely
it will require customized solutions that can collect and integrate data
from all their inputs and applications. Vendors are trying to reduce the
number of steps required in the setup process. This might mean that once
a monitoring agent is installed on a host, you don’t have to think about it.
More likely, it means that the tools have the ability to auto-discover new

http://www.thenewstack.io

19Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

applications or containers.

You also want to automate how you respond to problems. For now, there

is a difference between automating certain tasks and automation that
takes humans entirely out of the equation. Monitoring systems continue
to create automated alerts, but now the alerts are more sophisticated. As

James Turnbull notes, alerting will be annotated with context and
recommendations for escalations. Systems can reduce the amount of

unimportant alerts, which mitigates alert fatigue and increases the
likelihood that the important alerts will be addressed. For now, the focus

is getting the alerts to become even more intelligent. Thus, when
someone gets an alert, systems display actionable information and
workflows needed to quickly pinpoint problems and assist triage efforts.

Automating the container deployment process is also related to how you
monitor it. It is important to be able to track the setting generated by your
configuration management. This is where container orchestrators can
help. Kubernetes, Mesos and Cloud Foundry all enable auto-scaling.

Just as auto-scaling is supposed to save time, so is automating the
recognition of patterns. Big Panda, CA Technologies, CoScale, Dynatrace,

Elastic Prelert, IBM Bluemix, Netsil and SignalFx are just a few of the

companies that use artificial intelligence to identify patterns and detect
anomalies. A common result is that much of the noise created by older

monitoring approaches gets suppressed. In an interview with The New
Stack, Peter Arjis of CoScale says anomaly detection means you don’t
have to watch the dashboards as much. The system is supposed to

provide early warnings by identifying patterns of behavior among how
different services, applications and infrastructure behave.

For example, CA Technologies APM solution uses analytics and machine
learning to detect anomalies, identify the root cause of problems and

http://www.thenewstack.io
https://bigpanda.io/
http://www.ca.com/
http://www.coscale.com/
https://www.dynatrace.com/
http://info.prelert.com/
https://www.ibm.com/cloud-computing/
http://netsil.com/
https://signalfx.com/

20Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

build automated triage workflows. By employing proven statistical
techniques, CA APM dynamically builds performance baselines across
groups of microservices. If a threshold is surpassed or anomaly detected,
then engineers get both alerted and presented with an assisted triage
dashboard. This approach eliminates the traditional practice of manually

predicting acceptable performance baselines — which are unsustainable
in microservice environments and often result in “event storms.”

Finding the Most Relevant Metrics
The number of container-related metrics that can be tracked has increased

dramatically. Since the systems are more complex and decoupled, there is

more to track in order to understand the entire system. This dramatically

changes the approach in monitoring and troubleshooting systems.
Traditionally, availability and utilization of hosts is measured for CPUs,
memory, I/O and network traffic. Although these are still important for
managing IT infrastructure, they do not provide the best frame of
reference for evaluating what metrics to collect.

Although there are many different layers in this IT environment, services
are a key unit of observation. Service health and performance is directly

related to application performance. Services can be defined with
common names, with their health and performance benchmarked over

time. Services, including microservices running in containers, can be
tracked across clusters. Observing clusters of services is similar to looking
at the components of an application.

Google’s book on Site Reliability Engineering claims there are four key

signals to look at when measuring the health and performance of services:
latency, traffic, errors and saturation. Latency describes the time it takes
to service requests. Within a container, it can be helpful to look at how
slowly API calls are handled. Traffic and errors are both commonly

http://www.thenewstack.io
https://www.amazon.com/Site-Reliability-Engineering-Production-Systems/dp/149192912X/

21Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

tracked, and refer to the communicating and networking of services and
the frequency of errors. Saturation describes how “full” the service is and
emphasizes the most constrained resources. It is becoming a more
popular way to measure system utilization because service performance
degrades as they approach high saturation.

Using this viewpoint, we can see what types of metrics are most
important throughout the IT environment. Information about containers
is not an end unto itself. Instead, container activity is relevant to tracking
infrastructure utilization as well as the performance of applications and
infrastructure. Metrics about the saturation and latency of requests
within a container are most relevant. Metrics about the health of

individual containers will continue to be relevant. However, in terms of

managing containers, measuring the health of clusters of containers will
become more important.

It’s important to remember that you’re not just monitoring containers, but
also the hosts they run on. Utilization levels for the host CPU and memory
can help optimize resources.

As Sematext DevOps Evangelist Stephan Thies wrote, “when the resource
usage is optimized, a high CPU utilization might actually be expected and
even desired, and alerts might make sense only for when CPU utilization
drops (service outages) or increases for a longer period over some max
limit (e.g., 85%).”

In the past, it was possible to benchmark host performance based on

the number of applications running on it. If environments weren’t
dynamic, with virtual instances being spun up and down, then it would be
possible to count the number of containers running and compare it to
historical performance. Alas, in dynamic environments, cluster managers
are automatically scheduling workloads, so this approach is not possible.

http://www.thenewstack.io
https://sematext.com/blog/2016/06/28/top-docker-metrics-to-watch/

22Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

Questions to Ask When Deciding What Metrics to Monitor
Questions Sample Metrics

Microservice
In general, there is one
process to track per
container.

Where are new services deployed?

What percentage of time is the
service reachable?

How many requests are enqueued?

Average percentage of time a request-
servicing thread is busy.

Number of enqueued requests.

Percentage of time a service is reachable.

Application
Multiple microservices
running simultaneously
constitute an application.

Do the databases respond quickly?

Are the message queues fast enough?

How does heap memory usage
change over time?

Are my application services responsive?

Query execution frequency, response
time and failure rate.

Response time, failure rate.

Container
Separate from the underlying
process being run within
it, containers are also
monitored.

How responsive are the processes within
the container?

Which images have been deployed?

Are specific containers associated
with over-utilization of hosts?

CPU throttle time.

Container disk I/O.

Memory usage.

Network (volume, dropped packets).

Container Cluster
Multiple containers deployed
to run as a group. Many of
the metrics for individual
containers can also be
summarized.

Are your clusters healthy and
properly sized?

Can applications be effectively run
using fewer nodes?

Percentage of clusters remaining
operational compared to those originally
deployed.

Host
Also called a node, multiple
 hosts can support a cluster
 of containers.

Do changes in utilization
indicate a problem with a process
or application?

Percentage of total memory capacity in use.

Percentage of time CPUs are utilized.

Infrastructure
Broadly speaking, this is
the cloud in which the hosts
are running.

How much does it cost to run each service or
deployment?

What is the ratio of microservices
and/or containers per instance?

Network traffic.

Utilization of databases, storage, and
other shared services.

End User
The end goal of the entire
system is to serve this group.

What is the average web response
time experienced by users per region?

Response time.

Number and percentage of user actions
that failed.

TABLE 3: Saturation and latency related metrics are the most relevant when monitor-

ing microservices-based applications. Instead of looking at individual services and

containers, dashboards and alerts should focus on their operation in aggregate.

http://www.thenewstack.io

23Ĵ CONTAINER MONITORING & MANAGEMENT

MONITORING RESET FOR CONTAINERS

Instead, observing the larger IT environment for anomalies is becoming
a way to detect problems.

The Next Steps
The biggest changes in IT monitoring are the new groups involved and
the new metrics they are using. IT operations still care about availability
and cost optimization. DevOps and application developers focus on
the performance of services. Everyone, especially the chief information

officer, cares about the impact on business operations and customer
interactions.

Of course, there are new metrics that have to be monitored. The
Identifying and Collecting Container Data chapter provides an overview of

how to collect this data. All of these metrics can be collected in different
ways. Classes of Container Monitoring details the different components of
an effective monitoring stack. From collection to logging to visualization,
there are unique technical challenges to monitoring containers and
microservices. Looking at next steps, The Right Tool for the Job: Picking a
Monitoring Solution provides important criteria to think about.

http://www.thenewstack.io

24Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER
MONITORING
by BRIAN BRAZIL

B
efore we talk about container monitoring, we need to talk about
the word “monitoring.” There are a wide array of practices consid-

ered to be monitoring between users, developers and sysadmins
in different industries. Monitoring — in an operational, container and
cloud-based context — has four main use cases:

• Knowing when something is wrong.

• Having the information to debug a problem.

• Trending and reporting.

• Plumbing.

Let’s look at each of these use cases and how each obstacle is best
approached.

Knowing When Something is Wrong
Alerting is one of the most critical parts of monitoring, but an important
question to ask is: What problem is worth waking up an engineer in the
middle of the night to look at? It’s tempting to create alerts for anything

http://www.thenewstack.io
http://thenewstack.io/author/brian-brazil/

25Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

that’s a red flag or even slightly troublesome, but this can quickly lead to
alert fatigue.

Let’s say you’re running a set of user-facing microservices, and you care
about the latency of requests. Would central processing unit (CPU) usage
on each machine be useful to alert on? The alert will likely flag you that
you’re running out of CPU capacity on the machine. It will also have false
positives when background processes take a little longer than usual, and
false negatives for deadlocks or not having enough threads to use all CPUs.

The CPU is the potential cause of the problem, and high latency is the
symptom you are trying to detect. In My Philosophy on Alerting, Rob

Ewaschuk points out that there are many potential causes, and it’s difficult
to enumerate all of them. It’s better to alert on the symptoms instead, as it
results in fewer pages that are more likely to present a real problem worth
waking someone up over. In a dynamic container environment where
machines are merely a computing substrate, alerting on symptoms rather
than causes goes from being a good idea to being essential.

Having the Information to Debug a Problem
Your monitoring system now alerts you to the fact that latency is high.
Now what do you do? You could go login to each of your machines, run
the top command, check syslog and start tailing application logs. That’s
not going to get you anywhere fast though, and it will lose effectiveness as
your traffic and infrastructure grows. What your monitoring needs to
provide is a way for you to approach problems methodically, giving you
the tools you need to narrow down issues.

Microservices can typically be viewed as a tree, with remote procedure

calls (RPCs) flowing from the top to the bottom. A problem of high latency
in a service is usually caused by a delay in that service or one of its

backends. Rather than trying to get inspiration from hundreds of graphs

http://www.thenewstack.io
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://linux.die.net/man/1/top

26Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

FIG 1: Component routing in a microservice.

Database

Authentication
Server

Frontend

HTTP
Routing

Authorization
Library

Business
Logic

Database
Library

Microservice Routing

Source: Brian Brazil

Middleware

on a dashboard, you can go to the dashboard for the root service and
check for signs of overload and delay in its backends. If the delay is in a
backend, you repeat the process until you find the service responsible.

That process can be taken a step further. Just like how your microservices

compose a tree, the subsystems, libraries and middleware inside a single
microservice can also be expressed as a tree. The same symptom

identification technique can then be applied to further narrow down the
issue. To continue debugging from here, you’ll likely use a variety of tools
to dig into the process internals, investigate patterns in request logs and
cross-correlate requests across machines.

Trending and Reporting
Alerting and debugging tend to be on the timescale of minutes to days.
Trending and reporting care about the weeks-to-years timeframe.

http://www.thenewstack.io

27Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

A well-used monitoring system collects all sorts of information, from raw
hardware utilization and counts of API requests to high-level business
metrics. There are the obvious use cases, such as provisioning and
capacity planning to be able to meet future demand, but beyond that
there’s a wide selection of ways that data can help make engineering and
business decisions.

Knowing how similar requests are to each other might point to the benefit
of a cache, or it might help argue for removing a cache for simplicity.
Knowing how each request uses your limited resources can help
determine your pricing model. Cross-service and cross-machine statistics
can help you spend your time on the best potential optimizations. Your
monitoring systems should empower you to make these analyses
possible.

Plumbing
When you have a hammer, everything starts to look like a nail.

Plumbing is different from the other use cases, as it’s about getting data
from system A to system B, rather than directly supporting responsive
decision making. An example might be sending data on the number of
sales made per hour to a business intelligence dashboard. Plumbing is
about facilitating that pipeline, rather than what actions are taken from
the end result. It’s not necessarily monitoring; however, it’s often
convenient to use your monitoring system to move some data around to
where it needs to go.

If building a tailored solution from scratch could take weeks, and it’s
effectively free to use your monitoring system for the same thing, then
why not? When evaluating a monitoring system, don’t just look at its
ability to do graphing and alerting, but also how easy it is to add custom
data sources and extract your captured data later.

http://www.thenewstack.io

28Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

Classes of Monitoring
Now that we’ve established some of what monitoring is about, let’s talk
about the data being inserted into our monitoring systems. At their core,
most monitoring systems work with the same data: events. Events are all
activities that happen between observation points. An event could be an

instruction being executed, a function call being made, a request being
routed, a remote call procedure (RPC) being received or a response being
returned. Events have contextual information, such as what triggered
them and what data they’re working with.

We’re going to look at four different ways to use events; each approach
makes different tradeoffs and gives you a different view of the system. A
complete monitoring system will have aspects of each approach.

Metrics
Metrics, sometimes called time series, are concerned with events

aggregated across time. They count how often each type of event
happens, how long each type of event takes and how much data was
processed by the event type.

Metrics largely don’t care about the context of the event. You can add
context, such as breaking out latency by HTTP endpoint, but then you
need to spend resources on a metric for each endpoint. In this case, the

number of endpoints would need to be relatively small. This limits the

ability to analyze individual occurrences of events; however, in exchange, it
allows for tens of thousands of event types to be tracked inside a single
service. This means that you can gain insight into how code is performing
throughout your application. We’re going to dig a bit deeper into the
constituent parts of metrics-based monitoring. If you’re only used to one
or two systems, you may not be aware of the possibilities and tradeoffs
that can be made.

http://www.thenewstack.io

29Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

FIG 2: The architecture of gathering, storing and visualizing metrics.

VisualizationCollection Ingestion

Processing
and/or

Alerting

Storage

Monitoring Metrics Pipeline

Source: Brian Brazil

PULL

Collection
Collection is the process of converting the system state and events into
metrics, which can later be gathered by the monitoring system. Collection
can happen in several ways:

1. Completely inside one process. The Prometheus and Dropwizard

instrumentation libraries are examples; they keep all state in memory
of the process.

2. By converting data from another process into a usable format.
collectd and Agentless System Crawler do this by pulling data from the
proc filesystem.

3. By two processes working in concert: one to capture the events
and the other to convert them into metrics. StatsD is an example,

where each event is sent from an application over the network to StatsD.

Ingestion
Ingestion takes metrics from collection and feeds them into the monitoring
system. This can be a multi-stage process involving a queueing system,
such as Apache Kafka, or a simple data transfer directly from collection. It’s
at this point that the push versus pull debate must be mentioned. Both

http://www.thenewstack.io
https://prometheus.io/
https://github.com/dropwizard/dropwizard
https://collectd.org/
https://developer.ibm.com/open/agentless-system-crawler/
http://man7.org/linux/man-pages/man5/proc.5.html
https://github.com/etsy/statsd
https://kafka.apache.org/

30Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

approaches have advantages and disadvantages. We can’t cover the extent
of this debate in these pages, but the short version is that both approaches
can be scaled and both can work in a containerized environment.

Storage
Once data is ingested, it’s usually stored. It may be short-term storage of
only the latest results, but it could be any amount of minutes, hours or

days worth of data storage.

Once stored data goes beyond what easily fits in memory on one
machine, there’s operational and reliability tradeoffs to be made, and
again there are pros and cons based on what the organization requires
from their monitoring data. Persisting data beyond the lifetime of a
process on disk implies either a need for backups or a willingness to lose
data on machine failure.

Spreading the data among multiple machines brings with it the
fundamental challenges of distributed systems. It’s not difficult to end up
with a system where existing data is safe, but new data cannot be
ingested and processed.

Processing and Alerting
Data isn’t of much use if you don’t do anything with it. Most metrics
systems offer some way to do math on ingested data, and usually also
offer a way to alert humans of anomalous conditions. This may happen as
the data is ingested or as a separate asynchronous process.

The sophistication of processing between solutions varies greatly. On one
end, Graphite has no native processing or alerting capability without third-
party tools; however, there’s basic aggregation and arithmetic possible
when graphing. On the other end, there are solutions like Prometheus or
Sysdig with not only a fully-fledged processing and alerting systems, but
also an additional aggregation and deduplication system for alerts.

http://www.thenewstack.io
https://graphiteapp.org/

31Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

Visualization
Alerts arriving at your pager is fine, but for debugging, reporting and
analysis you want dashboards to visualize that data.

Visualization tools tend to fall into three categories. At the low end, you
have built-in ways to produce ad-hoc graphs in the monitoring system
itself. In the middle, you have built-in dashboards with limited or no

customization. This is common with systems designed for monitoring only
one class of system, and where someone else has chosen the dashboards

you’re allowed to have. Finally, there’s fully customizable dashboards
where you can create almost anything you like.

How They Fit Together
Now that you have an idea of the components involved in a metrics

monitoring system, let’s look at some concrete examples of the tradeoffs
made by each.

Nagios

The Nagios server usually calls out to scripts on hosts — called checks —

and records if they work according to their exit code. If a check is failing, it
sends out an alert. Visualization is typically offered by a separate built-in
dashboard. It can ingest 1KB of data, including metrics (called “perfdata”),
from the script and pass it on to another monitoring system.

COLLECTION INGESTION ALERTING VISUALIZATION

MultisiteOn-Host
Checks Nagios

Nagios Architecture

Source: Brian Brazil

PULLPULL

ALERT

FIG 3: Metrics handling with Nagios.

http://www.thenewstack.io
https://www.nagios.org/

32Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

Nagios is designed for static setups, which requires a restart to load a new
configuration. Its limited processing, focus on host-based monitoring, and
ability to only handle small amounts of metrics data makes it unsuitable

for monitoring in a container environment. However, it remains useful for
basic blackbox monitoring.

collectd, Graphite and Grafana

Many common monitoring stacks combine several components together.
A collectd, Graphite and Grafana combination is an example of such.

collectd is the collector, pulling data from the kernel and third-party
applications such as MySQL. To collect custom metrics from your own
applications, you’d use the StatsD protocol, which sends user data
protocol (UDP) packets to collectd for individual events. collectd sends
metrics to Carbon, which uses a Whisper database for storage. Finally,
both Graphite and Grafana themselves can be used for visualization.

The StatsD approach to collection is limiting in terms of scale; it’s not
unusual to choose to drop some events in order to gain performance.
The collectd per-machine approach is also limiting in a containerized
environment. For example, if there are MySQL containers dynamically
deployed, then the per-machine collectd needs its configuration
updated each time.

COLLECTION INGESTION STORAGE VISUALIZATION

PULLSTATSD

PROTOCOL

PULL

Carbon-
Relay

Whisper
database

Graphite-
Web GrafanaApp collectd

Example Monitoring Architecture

Source: Brian Brazil

FIG 4: An example monitoring stack composed of collectd, Graphite, Grafana.

http://www.thenewstack.io
https://collectd.org/
https://graphiteapp.org/
http://grafana.org/
https://github.com/graphite-project/carbon
https://github.com/graphite-project/whisper

33Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

As alerting is not included, one approach is to have a Nagios check for
each individual alert you want. The storage for Graphite can also be
challenging to scale, which means your alerting is dependent on your
storage being up.

Prometheus

Prometheus takes a different approach than our previous examples.
Collection happens where possible inside the application. For third-party

applications where that’s not possible, rather than having one collector
per machine, there’s one exporter per application. This approach can be
easier to manage, at the cost of increased resource usage. In containerized
environments like Kubernetes, the exporter would be managed as a
sidecar container of the main container. The Prometheus server handles

ingestion, processing, alerting and storage. However, to avoid tying a
distributed system into critical monitoring, the local Prometheus storage

COLLECTION INGESTION

STORAGE,

PROCESSING &

ALERTING VISUALIZATION

GrafanaApplication Prometheus

Alertmanager

Prometheus Architecture

Source: Brian Brazil

PULL PULL

ALERT

NOTIFICATIONS

TO DEVICES/USERS

FIG 5: Metrics handling in Prometheus.

http://www.thenewstack.io

34Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

is more like a cache. A separate, non-critical distributed storage system
handles longer term storage. This approach offers both monitoring
reliability and durability for long-term data.

While Prometheus decides what alerts to fire, it does not send emails or
pages to users. Alerts are, instead, sent to an Alertmanager, which
deduplicates and aggregates alerts from multiple Prometheus servers,
and sends notifications.

CA Application Performance Management

The previous sections show how some open source solutions are

architected. For a comparison, this section describes the architecture of

CA Application Performance Management (CA APM), a leading commercial
solution. CA APM is tailored to handle the ephemeral nature and telemetry

monitoring challenges associated with next generation container
environments. By combining agentless metric collection at a cluster level
with a Docker flow mapping service, which leverages TCP dump analysis,

CA Application Performance Management Architecture

Source: CA Technologies

COLLECTION INGESTION STORAGE, PROCESSING & ALERTING VISUALIZATION

App
Container

App
Container

Agentless Instrumentation

Host / Kernel

Agent Instrumentation CA Application Performance Management

API

APM Database

CA APM
Team Center
Dashboards

VISUALIZE

ȏ)loZ� DeSendenFies
ȏ MetriFs� $lerts
ȏ 7rDFes
ȏ $nDl\tiFs
ȏ 7rends� 7imelines

FIG 6: Taking a look at CA Technologies’ commercial architecture.

http://www.thenewstack.io

35Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

CA APM surfaces important service-level metrics in the context of dynamic

microservice relationships and container dependencies that typify

distributed application architectures.

In cases where instrumentation is required within containerized
applications, CA APM also provides a comprehensive agent to capture
detailed application-specific metrics and transaction trace information.
By seamlessly working with the agentless service, deeper instrumentation
automatically enriches discovered Docker topology views with granular
information and analytics services, including: differential analysis (for
automated baselining and anomaly detection), assisted triage (automated
root-cause analysis and remediation workflows), and dynamic
visualization using Docker environmental attributes.

Using RESTful APIs, CA APM can ingest monitoring data from other
sources, including, but not limited to, infrastructure and network
monitoring. Additionally, CA APM’s open and flexible data model enables
these data sources to be correlated and presented in context of Docker

application service views and metrics.

CA APM is available on-premise and as a component of CA’s Digital
Experience Insights—a SaaS-based digital experience monitoring and
“cross-tier” analytics solution. It offers an integrated set of mobile and
web end-user (app experience analytics), application performance, and
infrastructure management services to provide a holistic view into user
experience, business transactions, and quality of service across digital
and modern infrastructure, including Docker.

Logs
Logs, sometimes called event logs, are all about the context of individual
events. How many requests went to an endpoint? Which users are using or
calling an endpoint?

http://www.thenewstack.io
https://www.ca.com/us/trials/digital-experience-insights.html
https://www.ca.com/us/trials/digital-experience-insights.html

36Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

Logs make the opposite tradeoff to metrics. They don’t do any
aggregation over time. This limits them to tracking around fifty to a
hundred pieces of information per event before bandwidth and storage
costs tend to become an issue. Even with this limitation, logs usually allow
you to find patterns in individual requests, such as if particular users are
hitting expensive code paths.

It’s important to distinguish the type of logs you are working with, as they
have a variety of different uses and reliability requirements:

• Business and transaction logs: These are logs you must keep safe
at all costs. Anything involved with billing is a good example of a
business or transaction log.

• Request logs: These are logs of every request that comes through
your system. They’re often used in other parts of the system for
optimization and other processing. It’s bad to lose some, but not the
end of the world.

• Application logs: These are logs from the application regarding
general system state. For example, they’ll indicate when garbage
collection or some other background task is completed. Typically,
you’d want only a few of these log messages per minute, as the idea is
that a human will directly read the logs. They’re usually only needed
when debugging.

• Debug logs: These are very detailed logs to be used for debugging. As
these are expensive and only needed in specialized circumstances,
they have lower reliability requirements than application logs.

The next time someone talks to you about logs, think about which type of
logs they’re talking about in order to properly frame the conversation.

http://www.thenewstack.io

37Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

Profiling
Profiling has the same advantages of metrics and logs. It lets you see data
about individual events throughout the entire application. The
disadvantage is that this tends to be very expensive to do, so it can only
be applied tactically.

For example, logs have told you that a user is hitting an expensive code
path, and metrics have let you narrow down which subsystem is the likely

culprit. Your next step is to profile that subsystem and see in which exact
lines of code the CPU is being spent.

There are a variety of Linux profiling tools, including eBPF, gdb, iotop,

strace, tcpdump and top. There are also commercial options, like Sysdig,

which combine functionality of several of these tools into one package.
You can use some of these tools on an ongoing basis, in which case it
would fall under metric or logs.

Distributed Tracing
Let’s say you have a system with a frontend running at 310ms latency in
the 95th percentile. You receive an alert saying the frontend 95th
percentile latency has increased to 510ms! What do you think you’ll see in
the 95th percentile latency of the culprit backend?

The answer is that you might see an increase of the same size as on the
frontend, but you might not. There could be no change, or even a
decrease in latency. It all depends on the correlations of the latencies.

Remember, the 95th percentile is effectively throwing 95 percent of data
away, so you won’t notice changes outside of that 5 percent.

What’s going on here isn’t obvious from the latency graphs, and that’s
where distributed tracing comes in. It’s a form of logging and profiling. It is
particularly useful in environments such as those using containers and

http://www.thenewstack.io
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://man7.org/linux/man-pages/man2/bpf.2.html
https://linux.die.net/man/1/gdb
https://linux.die.net/man/1/iotop
https://linux.die.net/man/1/strace
https://linux.die.net/man/8/tcpdump
https://linux.die.net/man/1/top
https://sysdig.com/

38Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

Backend 1
300ms latency

Backend 2
600ms latency

Frontend
310ms latency

System Latency (at 95th Percentile) Mapping

Source: Brian Brazil

FIG 7: An example system’s latency mapping.

microservices with a lot of inter-service communication.

How it works is that each individual incoming request gets a unique
identifier. As the request passes through different services on different
machines, that information is logged with the identifier. Each request is
then stitched back together from the logs to see exactly where time was
spent for each request. Due to cost of the logging, it’s sometimes only
possible to trace a subset of incoming requests.

The result is a visualization of when each backend in your tree of
services was called, allowing you to see where time is spent, what order
requests are made in and which RPCs are on the critical path. Applied to
the example in Figure 7, you’d notice that all the fast requests only hit
Backend 1, while the slow requests are hitting both backends. This
would tip you off that it’s the logic about communicating with Backend 2
that you need evaluate.

Many vendors are extending the capabilities of their tracing services to
better support distributed application environments. One example is CA
Technologies Precision API Monitoring, which traces transactions
traversing gateways, across all monitored services, with correlation to

http://www.thenewstack.io

39Ĵ CONTAINER MONITORING & MANAGEMENT

CLASSES OF CONTAINER MONITORING

related back-end systems, including containers.

Conclusion
In this article, we’ve covered the use cases for monitoring, which should
help you understand the problems that can be solved with monitoring.
We learned about the four different ways for using events: metrics, logs,
profiling and distributed tracing. In breaking down the metrics-based
approach, we looked at how data is collected, ingested, stored,
processed, alerted and visualized.

Now that you have a better feel for the types of monitoring systems and
the problems they solve, you will be able to thoroughly evaluate many
different solutions. There are many approaches to designing a monitoring
system, and each have their own advantages and disadvantages. When
looking to evaluate a monitoring solution, first assess whether it’s
primarily based on metrics, logs, profiling or distributed tracing. From
there, see what features it has that’ll fit into your overall monitoring
strategy, in terms of alerts requiring intelligent human action, the
information you need to debug, and to integrate with your systems.

Each solution has its pros and cons, and you’ll almost certainly need
more than one tool to create a comprehensive solution for monitoring
containers.

http://www.thenewstack.io

40Ĵ CONTAINER MONITORING & MANAGEMENT 40

FUTURE-PROOF
DOCKER WITH MODERN
MONITORING

Listen on SoundCloud. In this podcast, we

discuss the complexities of monitoring
microservice architectures and applications

deployed to Docker. Sushil describes the

importance of employing an open, flexible monitoring data model
for Docker. Sushil discusses modern monitoring best practices and
techniques, including:

• Correlating agentless Docker monitoring with deep application

instrumentation for richer performance insights.

• Analytics-driven monitoring and machine learning to detect
anomalies, predict problems and prevent alert storms.

• Shift-left monitoring techniques for optimizing performance and
automating feedback loops in high-performance DevOps teams.

Trial Digital Experience Insights free for 30 days and gain access to
full stack monitoring for containers and microservices, including:
App Experience Analytics, Application Performance Management
and Infrastructure Management.

Sushil Kumar is Senior Vice President at CA Technologies responsible

for driving product strategy and business development for CA’s Agile

Operations portfolio. Sushil defines the overall product vision and
roadmap for CA’s end user monitoring, application performance management

(APM), and infrastructure management products.

https://soundcloud.com/thenewstackmakers/ca-technologies-tailored-views-of-performance
https://www.ca.com/us/products/docker-monitoring.html
http://www.ca.com/trydxi
https://soundcloud.com/thenewstackmakers/ca-technologies-tailored-views-of-performance
http://bit.ly/2o3uhkV

41Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND

COLLECTING CONTAINER
DATA
by RUSS MCKENDRICK

W
ith the introduction of containers and microservices, moni-

toring solutions have to handle more ephemeral services and
server instances than ever before. And while the infrastruc-

ture landscape has changed, operations teams still need to monitor the
same information on the central processing unit (CPU), random access
memory (RAM), hard disk drive (HDD), network utilization, and the avail-
ability of application endpoints.

While you can use an older tool or existing monitoring service for
traditional infrastructures, there are newer cloud-based offerings that can
ensure monitoring solutions are as scalable as the services being built
and monitored. Many of these cloud-based and self-hosted tools are

purpose-built for containers. No matter what solution or service you use,

you still need to know how you’re going to collect the metrics you’re
looking to monitor.

There are quite a few options when it comes to collecting metrics from
your containers. This article overviews some of the the services available

for container monitoring. We’ve included a mixture of self-hosted open

http://www.thenewstack.io
http://thenewstack.io/author/russ-mckendrick/

42Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

source solutions and commercial cloud-based services to reflect the
current landscape.

However, it’s important to keep in mind that we’ve included a relatively
small amount of examples compared to the wide variety of solutions

available. These examples are meant to be illustrative of a few different
ways to approach the problem of collecting metrics.

Docker
The Docker engine itself provides access to most of the core metrics we’re
looking to collect as part of its native monitoring functions. Running the
docker stats command will give you access to CPU, memory, network

FIG 1: Running the docker stats command.

and disk utilization for all of the containers running on your host.

The data streams automatically and is useful if you need to get a quick
overview of your containers at any given moment. There are a few flags
you can add, for example:

• The flag --all shows you stopped containers, though you won’t see
any metrics for them.

• The flag --no-stream displays the output of the first run and then
stops the stream of metrics.

There are some disadvantages. For one, the data isn’t stored anywhere
— you can’t go back and review the metrics. It can also be tedious
watching a constantly refreshing terminal with no points of reference. It’s

http://www.thenewstack.io

43Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

hard to spot what’s going on in the data.Luckily, the docker stats

command is actually an interface to the stats API endpoint. The stats API

exposes all of the information in the stats command and more. To view for

yourself, run the following command:

curl --unix-socket /var/run/docker.sock...

http:/containers/container_name/stats

As you’ll be able to see from the output, there is a lot more information
being returned, all wrapped in a JavaScript Object Notation (JSON) array,
which is ready to be ingested by third-party tools.

cAdvisor
cAdvisor is a container monitoring tool from Google with native support
for Docker containers. It is a daemon that collects, aggregates, processes,
and exports information about running containers.

The best way to think of cAdvisor is that it’s a graphical version of what
you get if you were to run the docker stats --all command.

docker run \

 --volume=/:/rootfs:ro \

 --volume=/var/run:/var/run:rw \

 --volume=/sys:/sys:ro \

 --volume=/var/lib/docker/:/var/lib/docker:ro \

 --publish=8080:8080 \

 --detach=true \

 --name=cadvisor \

 google/cadvisor:latest

http://www.thenewstack.io
https://github.com/google/cadvisor

44Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

cAdvisor is easy to get up and running, as it is shipped in a single
container. All you have to do is run the above command to launch a

cAdvisor container and expose the web interface on port 8080.

Once launched, cAdvisor will hook itself into the Docker daemon running
on your host machine and start gathering metrics for all of your running
containers, including the cAdvisor container itself. Opening http://
localhost:8080/ in a browser will take you straight to the web interface.

FIG 2: Accessing the localhost web interface.

As you can see from Figure 2, there is a minute’s worth of data being
streamed in real time; however, you can’t view any metrics further back
with just a standard installation of cAdvisor. Luckily, Google has you covered
by including options to export the data from cAdvisor into time series
databases such as Elasticsearch, InfluxDB, BigQuery and Prometheus.

http://www.thenewstack.io
http://localhost:8080/
http://localhost:8080/
https://www.elastic.co/products
https://www.influxdata.com/
https://cloud.google.com/bigquery/
https://prometheus.io/

45Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

To sum up, cAdvisor is a great tool for getting quick insight into what’s
happening with your running containers. It is simple to install and gives
you more granular metrics than Docker does out of the box. It can also act
as a monitoring agent for other tools in the same way that Zabbix or
Nagios agents were used in the past.

Prometheus
Prometheus is an open source monitoring system and time series
database originally built by SoundCloud. It is currently hosted by the
Cloud Native Computing Foundation (CNCF), alongside other projects
such as Kubernetes and OpenTracing. Upon reading the description of the
service, it may sound like quite a traditional server and agent setup;
however, Prometheus works differently. Rather than having its own agent,
it scrapes data from the data points on hosts, storing it in its own time
series database.

At the end of October 2016, a pull request to expose a metrics endpoint in

the Docker Engine itself was merged. This likely means that an upcoming
release of Docker will have support for Prometheus to scrape your

container metrics out of the box; however, until that release, you need to
use an intermediary service such as cAdvisor. As of 1.13, the Docker engine
supports an optional “/metrics” Prometheus endpoint. It’s important to
note that this currently exposes internal Docker Engine metrics versus
container metrics. There is ongoing discussion about expanding this to
cover container metrics, and possibly replacing the Stats API altogether.

Prometheus’s biggest strength is as a data source. You can front the data
being scraped by Prometheus with Grafana, which has supported

Prometheus since mid-2015, and is now the recommended frontend for

Prometheus. Like most of the tools we are looking at, Grafana can also be
launched as a container.

http://www.thenewstack.io
https://github.com/prometheus/prometheus
https://www.cncf.io/
https://github.com/kubernetes/kubernetes
https://github.com/opentracing
https://github.com/docker/docker/pull/25820
https://github.com/docker/docker/issues/27307
http://grafana.org/

46Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

Once up and running, the only configuration needed is to add your
Prometheus URL as a data source, then import one of the predefined
Prometheus dashboards.

FIG 3: Metrics stored in Prometheus and displayed with Grafana.

The dashboard in Figure 3 displays over an hour of metrics from cAdvisor,
which are stored in Prometheus and rendered in Grafana. As Prometheus

http://www.thenewstack.io
https://grafana.net/dashboards

47Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

is essentially taking snapshots of the current cAdvisor state, it’s are also
recording metrics for containers long since removed.

Prometheus also has alerting capabilities. By using the inbuilt reporting
language, you can create alerts such as the following:

ALERT InstanceDown

 IF up == 0

 FOR 5m

 LABELS { severity = “page” }

 ANNOTATIONS {

 summary = “Instance {{ $labels.instance }} down”,

 description = “{{ $labels.instance }} of job {{

$labels.job }} has been down for more than 5 minutes.”,

 }

Once your alert has been written and deployed on the Prometheus server,
you can use the Prometheus Alertmanager to route your alerts. In the

example above, we have assigned a label of severity = “page”.

Alertmanager will intercept the alert and forward it to a service such as
PagerDuty, OpsGenie, a Slack or HipChat channel, or any number of

different endpoints.

Prometheus is a powerful platform and works brilliantly as a middleman

between different technologies. It is easy to start off with a basic
installation, like the one described above, then expand it, giving a single
pane of glass view of both your container and host instances.

Agentless System Crawler
Agentless System Crawler (ASC) is a cloud monitoring tool from IBM with
support for containers. It collects monitoring information from running

http://www.thenewstack.io
https://prometheus.io/docs/alerting/alertmanager/
https://www.pagerduty.com/
https://www.opsgenie.com/
https://slack.com/
https://www.hipchat.com/
https://prometheus.io/docs/alerting/configuration/
https://github.com/cloudviz/agentless-system-crawler

48Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

containers including metrics, system state and configuration information.
ASC provides deep visibility into containers, beyond just utilization and
performance metrics, for security and configuration analytics. It is
designed as a pipeline for building collection plugins for container
features, function plugins for on-the-fly data aggregation or analysis, and
output plugins for target monitoring and analytics endpoints. Provided
plugins include traditional data collection features such as utilization
metrics, processes running in the container and listening on a port, and
data about the configuration file and application packages.

ASC can be deployed either as a Python package or as a single container
with privileges. For example, ASC operates by interacting with the Docker
daemon, container cgroups and namespaces. Here is how you can launch
ASC as a container:

docker run \

 --privileged \

 --net=host \

 --pid=host \

 -v /cgroup:/cgroup:ro \

 -v /var/lib/docker:/var/lib/docker:ro \

 -v /sys/fs/cgroup:/sys/fs/cgroup:ro \

 -v /var/run/docker.sock:/var/run/docker.sock \

 -it crawler --crawlmode OUTCONTAINER ${CRAWLER_ARGS}

Once running, it subscribes to the Docker daemon for events and
periodically monitors all the containers running in the system. ASC can be
easily extended with plugins for custom data collection, which helps to
collect both container and environment information. Each plugin simply
exports a crawl() method for their specific monitored feature; ASC
iterates over each crawl() function implemented by the collection

http://www.thenewstack.io

49Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

plugins enabled in its deployed configuration. ASC can be currently
configured to emit data to Kafka, Graphite, filesystem and the console as
endpoints, and allows for additional output plugins. Figure 4 shows an
example view from an ASC configuration, emitting container data to a
Graphite/Grafana endpoint.

One use case of ASC monitoring is to gain deeper insight into container
execution. The following example shows the basic output frame of ASC
when configured to collect the process and connection features of a
container in addition to base metrics. Based on this frame, we can see

that this is a container running at 100 percent CPU utilization, with a single
Python process listening on port 5000.

metadata “metadata” {“id”:”ef0fc187dc0a4b85a3cb”, …}

cpu “cpu-0” {… ,”cpu_util”:100.0}

process “python/1” {“cmd”:”python web.py”,

 “python”,”pid”:74, …}

connection “74/127.0.0.1/5000” {“pid”:74,…,”connstatus”:”LISTEN”}

This enables users to couple monitoring with system state for better
understanding of container behavior and to drive additional analytics. For

FIG 4: View of ASC Container Monitoring with Graphite/Grafana Endpoint.

http://www.thenewstack.io

50Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

instance, we can dig deeper into the Python process used in the
container and track the underlying Python packages used by the
application by enabling another feature plugin, “python-package” in this
case, which gives us the additional insight on the used packages and
versions in the application:

python-package “click” {“ver”:”6.6”,”pkgname”:”click”}

python-package “Flask” {“ver”:”0.11.1”,”pkgname”:”Flask”}

python-package “itsdangerous” {“ver”:”0.24”,”pkgname”:”itsdangerous”

python-package “Jinja2” {“ver”:”2.8”,”pkgname”:”Jinja2”}

python-package “pip” {“ver”:”8.1.2”,”pkgname”:”pip”}

python-package “setuptools” {“ver”:”20.8.0”,”pkgname”:”setuptools”

python-package “Werkzeug” {“ver”:”0.11.11”,”pkgname”:”Werkzeug”}

In summary, ASC is a simple tool to set up and use; it’s similar to
cAdvisor for gaining visibility into running containers. In addition to basic
monitoring metrics, ASC puts a lot of emphasis on deep visibility into
container state and configuration to enable monitoring, security and
other analytics solutions. It provides a simple, plugin-based approach for
extensibility of data collection and support for different endpoints.

Open Source Sysdig
Sysdig is an open source solution which installs a kernel module on your

host machine. The service hooks into the host’s kernel, which means it
doesn’t entirely rely on getting metrics from the Docker daemon.

Using Csysdig, the built-in ncurses-based command interface, you can

view all sorts of information on your host. For example, running the
command csysdig -vcontainers gives you the view in Figure 5.

As you can see, this shows all containers running on the host. You can also

http://www.thenewstack.io
http://www.sysdig.org/
https://en.wikipedia.org/wiki/Ncurses

51Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

FIG 5: Using Sysdig’s command interface.

drill down into a container to see what resources individual processes are

consuming. Much like running the docker stats command and using
cAdvisor, the open source version of Sysdig is about getting a real-time
view of your containers; however, you are able to record and replay system
activity using the following:

• The command sysdig -w trace.scap records the system activity

to a trace file.

• The command csysdig -r trace.scap replays the trace file.

The open source version of Sysdig is not your traditional monitoring tool;
it allows you to drill down into your containers, giving access to a wider
range of information. It also allows you to add orchestration context by
hooking directly into your orchestrator, thereby allowing you to
troubleshoot by pod, cluster, namespace, etc.

CA Application Performance Management
Dynamic microservices and the ephemeral nature of containers has

guided the unique architecture of CA Application Performance
Management. Recognizing that traditional static topology mapping and
instrumentation best suited for monolithic systems has less relevance

for microservices, CA APM employs a radical, future-proofing approach

http://www.thenewstack.io

52Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

to managing containerized systems. Fundamental to this approach is
fast, simplified configuration and visibility into modern system
complexity, especially microservice interdependencies and

communication flows.

CA APM for microservice architectures is a multi-faceted monitoring
solution. As a foundational service, agentless monitoring automates the
discovery of containers and dependencies, immediately surfacing key
health indicators, such as CPU saturation, error rates and latency. A
powerful service it itself, this solution is further enhanced by the

automated capture of container attributes and a data model that enables

microservice performance to be viewed from multiple perspectives. This

approach is well matched to microservices architectures, since engineers
can quickly and easily distil complex topologies into service views where
performance is automatically aggregated.

In many cases Docker container monitoring will need to be enriched with
application-centric performance indicators. CA APM supports this by

FIG 6: CA APM dynamic topology map for Docker Containers.

http://www.thenewstack.io

53Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

enabling application instrumentation within containers. This allows
access to advanced application performance services in context of

supporting microservice architectures. For example, statistical techniques
can manage performance baselining and reduce alert noise, while
transaction tracing and assisted triage can gather detailed evidence and
builds remediation workflows.

Agentless container-centric monitoring and deeper application
instrumentation are valuable services in themselves, but CA APM

combines the information they expose to deliver higher level insights. By
automatically correlating application performance to container health,
CA APM not only provides DevOps teams with exact problem root cause
indicators, but also details which container-application configurations
deliver the best possible performance.

Other Tools for Collecting Data
There are services that can collect, collate and report on metrics from

your containers and host instances. Here’s an overview of other tools
available. There are many more in the Container Monitoring Directory.

Other Tools for Collecting Data
Vendor Solution Description

CoScale CoScale is a full-stack monitoring cloud service that monitors the responsiveness of
applications. It combines server and container resource metrics with application-specific performance
metrics. Its lightweight agents have little overhead.

Datadog Datadog is a full-stack cloud-based monitoring and alerting service for IT operations
and development teams. It has containerized agents that can monitor container environments.

Dynatrace Dynatrace has a new suite of monitoring tools, based on its Ruxit technology, for
container monitoring and alerting. Its agent is injected into a container, where it can then auto-
discover new services running on a host and fetch data from the Docker API. Dynatrace is also developing
artificial intelligence technology to help with root cause analysis.

Elastic Beats are single-purpose data shippers that install as lightweight agents and send
data from machines to Logstash or Elasticsearch. Dockbeat is the shipper for Docker
containers.

http://www.thenewstack.io
http://www.coscale.com/docker-monitoring/
http://docs.datadoghq.com/integrations/docker/
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://www.elastic.co/products/beats

54Ĵ CONTAINER MONITORING & MANAGEMENT

IDENTIFYING AND COLLECTING CONTAINER DATA

Conclusion
All of the tools we’ve covered will be able to get you started with container
visibility and monitoring. It’s up to you to decide what combination of
tools is needed to collect the information that will help you monitor and

optimize your applications and systems. We covered the basics that
everyone needs to know, which includes using the native functionality of
Docker’s Stats API and cAdvisor. That will go a long way towards
introducing users to the basic necessities of monitoring containers.

There are many ways to monitor containers, and solution vendors have

opinionated ways of solving these problems. You might see this as a
choice between open source and SaaS solutions, but it has more to do

with finding the combination of solutions that fits your workload. No
matter how you ultimately build your monitoring stack, you still need to
know how to collect the metrics you’re looking to monitor.

TABLE 1: There are a variety of other tools and solutions that can be used for identify-

ing and collecting container data.

Other Tools for Collecting Data
Vendor Solution Description

InfluxData Telegraf is an open source agent that collects metrics with a Docker plugin; it’s part
of the stack that ΖnȵX[DDtD is creating to collect and analyze metrics. The metrics are
sent to InfluxDB or a variety of outputs.

New Relic New Relic has updated its suite of products around their Digital Intelligence Platform
for application and infrastructure performance. Its agent-based approach is particularly good
for troubleshooting code-related application performance issues.

Sematext Sematext has a Docker-native monitoring and log collection agent that collects
and processes Docker metrics, events and logs for all cluster nodes and all auto-
discovered containers. It has its own log management solution as well as performance monitoring
service.

SignalFx SignalFX has a collectd-docker plugin that captures metrics about CPU, memory,
network, and disk using Docker’s stats API. SignalFx has built-in Docker monitoring dashboards,
which let you add dimensions (tags) metadata to aggregate, filter, and group metrics by property.

http://www.thenewstack.io
https://github.com/influxdata/telegraf
https://github.com/influxdata
https://newrelic.com/partner/docker
https://sematext.com/
https://signalfx.com/docker-monitoring/

55Ĵ CONTAINER MONITORING & MANAGEMENT

THE RIGHT TOOL FOR
THE JOB: PICKING A
MONITORING SOLUTION
by BRIAN CHRISTNER

M
onitoring is the hidden hero inside container infrastructure.
Much like driving a car, we don’t think about what’s happening
under the hood until something goes wrong. We want to pivot

away from being reactive with our infrastructure and container problems,
and move to a more proactive state of operation using monitoring insights
to keep us up and running.

Gone are the days of just monitoring physical servers and their resources.
We now need to know which containers are running and where they’re
running, monitor applications and containers, and provide alerting and
metrics information to operations teams. The following sections will assist
you in navigating the business decisions required to find the right
monitoring tool for the job.

Build vs. Buy
When considering new software, the decision to build or buy your
solution should be at the top of the list. This argument is very similar to
building a house from scratch versus buying an existing, finished house.

http://www.thenewstack.io
http://thenewstack.io/author/brian-christner/

56Ĵ CONTAINER MONITORING & MANAGEMENT

THE RIGHT TOOL FOR THE JOB: PICKING A MONITORING SOLUTION

Building a house allows you to make changes and improvements as you
perform the build, compared to buying a house where the decisions have
mostly been made for you. Building is resource intensive, as it requires
testing different components, trial and error experiences and learning
how to handle new tools.

Buying a monitoring solution offers a finished product that’s ready to
run. This approach can save time and money, but there can also be

drawbacks. You need to consider the anticipated growth of your
organization. A rapidly changing environment with many new services
being added can require significant additional time and effort to
calibrate the monitoring solution. If many more people are expected to
need access to the monitoring solution, then difficulties with identity
management could be costly if the vendor charges for seat licenses.

Many monitoring solutions charge per agent. A solution’s pricing model
can be a deal-breaker depending on the size of your current or future
deployment. For example, some systems charge per agent, while we have
seen a few that actually charge per container monitored. Others are usage
pricing based; for example, based on the data ingest rate of the agent.

Whether you are building or buying, vetting is required. While a mature
product will have reduced risk, rapidly changing ones often have the latest
features. An active community of users is important, whether you are

going the vendor route or building something based on open source
projects. The community is often responsible for keeping documentation
and code updated.

Buying an off-the-shelf solution alleviates a lot of these questions, but a
comparison between solutions should be performed to see exactly what

the support provides, what service-level agreements (SLAs) are available
and if professional services can assist with installation and customization.

http://www.thenewstack.io

57Ĵ CONTAINER MONITORING & MANAGEMENT

THE RIGHT TOOL FOR THE JOB: PICKING A MONITORING SOLUTION

Support and SLAs
Support is a critical component to any monitoring system. Self-hosted
solutions require maintenance, but you may not have the in-house
operational capacity to build and manage a monitoring system on your
own. But more to the point: who is responsible for supporting the
monitoring solution? It is also important to ensure your company SLA and
IT governance are adhered to when vetting a monitoring solution.

Flexibility and Customization
Having the ability to customize a monitoring stack exactly to your
requirements is an enormous advantage, but it comes at a price, and that
price is the time required to make these customizations.

The build approach offers more flexibility and customization as you are
working with open source software (OSS) that allows you to make your
own changes. Buying offers some flexibility and customization dependant
on the vendor’s offering, but is relatively more restrictive compared to OSS
alternatives.

Cloud-Based vs Hosted On-Premises
Many monitoring solutions can run either in the cloud or be hosted
on-premises. Each offers their own advantages and disadvantages, as well
as several considerations based on your workload. Cloud generally means
less control of your workload, whereas on-premises offers more fine-
grained control. You should also consider if your monitoring needs have to
adhere to regulatory or data storing requirements.

Generally, on-premises costs more because of the higher operational and
support costs associated with running a datacenter, whereas cloud-based
providers handle this for you when deciding for a cloud solution.

http://www.thenewstack.io

58Ĵ CONTAINER MONITORING & MANAGEMENT

THE RIGHT TOOL FOR THE JOB: PICKING A MONITORING SOLUTION

Cloud
Moving to the cloud from on-premises is a business case in itself. Cloud

offerings enable reduced costs by sharing resources with other cloud
customers. The ability to quickly scale demand and the need for fewer
specialized employees are all benefits related to cloud-based services.
Central management of your infrastructure, including monitoring, is made
easier with cloud vendors like Amazon Web Services (AWS), Google Cloud
Platform (GCP), IBM Bluemix and Microsoft Azure.

Several cloud vendors also offer one-click deployment of monitoring
solutions, which allows you to get quickly up and running with a Software
as a Service (SaaS) or open source solution. However, you must consider
where the cloud is located compared to the your workload. Some users

will want to have their monitoring stack located as close to their container
workload as possible.

Hosted On-Premises
Not everything can run in the cloud for a variety of reasons, including data
privacy, licensing, internet connectivity and performance. On-premises
solutions allow you to be in complete control of your environment. You’re
able to add more bandwidth and use custom hardware configurations.
On-premises is sometimes combined with cloud services to offer hybrid
solutions, which offer the best of both worlds. Additionally, not all SaaS
monitoring solutions offer an on-premises solution, so ask about it when
vetting different vendors.

There are other valid reasons for looking at hosting your own monitoring
solution. The golden rule of going down the self-hosted route is that, if you
are relying on alerting from your monitoring solution to notify you of
critical incidents, then never host it in or on the same infrastructure as

your application. That may seem obvious, but you will be surprised at the

http://www.thenewstack.io
https://en.wikipedia.org/wiki/Operating_expense
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/
https://www.ibm.com/cloud-computing/
https://azure.microsoft.com

59Ĵ CONTAINER MONITORING & MANAGEMENT

THE RIGHT TOOL FOR THE JOB: PICKING A MONITORING SOLUTION

amount of times it happens. If you take the cloud route, then that

shouldn’t be a problem.

The on-premises route offers a lot of flexibility and configuration
possibilities, but will be more challenging to install and configure. The
time it will take to have a monitoring solution up and running will take
considerably more time compared to a SaaS solution that could be

deployed instantly. These are all considerations that should be made

when considering an on-premises solution.

Compliance and Data Protection
Something that is often overlooked when considering a monitoring
solution is the regulatory implications of data handling. Can data be
stored outside of your data center, city, region or country? In some cases,
depending on what industry you are working in, the government may also
have regulations on how the data is handled.

If you install a cloud monitoring agent on a host machine that is shipping
both metrics and information on what processes are running, then data
ownership can become an issue. If your metrics include customer data,

make sure your cloud provider can remove user data from the

transactions it captures.

Integration
It’s important to fully understand what is currently running in your
environment. Based on what you’re running, you can start answering
questions like what programming languages, applications and tools are
currently or planned to run in your containers. This information will help

you build a requirements list. This list will assist you in choosing what
client libraries and integrations are important to your company now and
in the future.

http://www.thenewstack.io

60Ĵ CONTAINER MONITORING & MANAGEMENT

THE RIGHT TOOL FOR THE JOB: PICKING A MONITORING SOLUTION

Orchestrators
It is important to consider how orchestrators are monitored and to what

extent. Consider the discovery of new services as they are brought online
and what configurations are required in order to monitor these new
services. Some monitoring tools will auto-discover new services or
orchestrator nodes as they go online or offline, while other tools require
configuration or integration with each service or node. The more auto-
discovery capabilities available within the monitoring system, the less
operation support required.

Client Libraries and Integrations
Client libraries allow developers to write internal metrics within an

application and expose them directly to a monitoring solution. Monitoring
systems also integrate directly to the more common applications like
databases and proxies. These integrations allow you to easily implement
your monitoring solution and gather application-specific information. For
example, HAProxy can be integrated to pull all the HTTP traffic statistics
and display this information in monitoring dashboards. However, some
integrations require additional agents, containers or sensors to collect
metrics from the different integrations. Depending on the integration, this
could range from easy to very complicated, and may require additional
configuration and testing.

Metric Consolidation
If you are currently using a cloud provider or Platform as a Service (PaaS),
chances are they’re already exposing monitoring metrics. Find out what is
available within your current Containers as a Service (CaaS), PaaS or
Infrastructure as a Service (IaaS) stack that you can leverage. Can you
integrate metrics from the cloud service stack into your monitoring
solution to create a single view of infrastructure and containers? You many
want to centralize metrics into a single solution rather than using many

http://www.thenewstack.io
http://www.haproxy.org/

61Ĵ CONTAINER MONITORING & MANAGEMENT

THE RIGHT TOOL FOR THE JOB: PICKING A MONITORING SOLUTION

different tools without integrations. Be sure to find out which of your
current services can be repurposed into your new monitoring solution.

Conclusion
We have explained the use cases for build versus buy, cloud versus

on-premises, integrations and native functionality for monitoring
solutions. Based on this information, you can start building a matrix of
information and make a comparison between the different monitoring
solutions currently available on the market, both open source and SaaS

solutions. Do your homework and gather information internally first to
understand your requirements. This requirements list will be your key to
choosing the right monitoring tool for the job.

http://www.thenewstack.io

62Ĵ CONTAINER MONITORING & MANAGEMENT

MANAGING

INTENTIONAL CHAOS:
SUCCEEDING WITH

CONTAINERIZED APPS
by VIVEK JUNEJA

W
hile building applications that use containers has become an
established practice, some organizations are facing chal-
lenges with managing containers. It’s no longer rare for engi-

neering teams to have working knowledge of using containers in their
routine development workflow. However, managing containers in produc-

tion environments requires an even greater understanding of container
technology, along with unlearning habits and practices that no longer
work. These practices span across the different life cycle aspects of
container management: logging, monitoring, notifications, remediation
and metrics. Missing out on any one of them could shake a team or orga-

nization’s confidence in containers.

Containerized applications have to be designed with consideration for the
various nonfunctional and container-native patterns that have emerged
over time. For example, the twelve-factor application style has been

widely advocated and adopted by microservices enthusiasts and

developers. The twelve-factor principles requires the application to be
operation-ready, including design for fast startups and graceful

http://www.thenewstack.io
http://thenewstack.io/author/vivek-juneja/
https://12factor.net/

63Ĵ CONTAINER MONITORING & MANAGEMENT

MANAGING INTENTIONAL CHAOS: SUCCEEDING WITH CONTAINERIZED APPS

shutdowns, but it misses out on handling the software entropy that such

container-based systems acquire over time.

Containers Add Complexity to the Overall
System
Adopting containers, especially in a microservices-based architecture,
leads to increased entropy in the system. When we say entropy, what we

mean is the system becomes immensely more complex, and that

complexity needs to be managed. The complexity is due to the increase
in moving parts in a container-based environment. Moreover, the
disposable and immutable nature of containers can encourage some
teams to create more rapid delivery pipelines. This propensity towards

change further fuels the overall system complexity. If not managed, it can
create opportunities for burnout, downtime, and disappointment in

adopted technologies.

Container adoption has led to the development of new practices from

web-scale organizations. The major lesson from public cloud providers —
advocating the need to design for failure and redundancy at all levels — is
finally going mainstream. Another important lesson is to have applications
that are designed to handle the complexity from containers, a lesson that
might remind many of the antifragile movement.

Understanding New Design Goals
In order to address these challenges with containerized applications, there
are ways to create containerized applications in a way that makes them
operation-ready. Making changes to the development process will enable
better monitoring and management of containers in production
environments. These lessons translate into some high-level design goals
for containerized application development.

http://www.thenewstack.io
https://en.wikipedia.org/wiki/Software_entropy
http://developers.redhat.com/blog/2016/07/20/from-fragile-to-antifragile-software/

64Ĵ CONTAINER MONITORING & MANAGEMENT

MANAGING INTENTIONAL CHAOS: SUCCEEDING WITH CONTAINERIZED APPS

1. Applications running as containers should acknowledge that
services could be interrupted at any time.
Interruption could be triggered by a variety of situations. In the case of
Docker, a stop command sends the SIGTERM signal to the application,
indicating the request to shut down. This may require applications to
perform cleaning-up activity before the container dies. Taking a hint
from the twelve-factor principles, the application must gracefully
shutdown. For example, if there is a state that is being manipulated by
the container, that would require being checkpointed. The checkpoint

would be persisted onto external storage, where other container
workers could access it.

2. An application should expose an interface to allow for health
checks that can be used by the container platform.
The accuracy of the health check implementation is critical to the

functioning of this setup. Usually, an application emits health check
information that indicates it can correctly connect to third party or

external interfaces. A failed health check is a good indicator for the
platform to remove the instance from the configuration. Platforms
also use this to decide remediation activities that need to be

performed due to an error in the container. This remediation could

involve launching the same container image on a different host.

3. There should be a mechanism to reliably identify a faulty
instance and its root cause.
Diagnosing application issues in a containerized environment is an
open invitation to chaos. The problem occurs when there is a need to

identify the exact container instance that caused the issue. Using a
common identification artifact that spans across the notification,
monitoring and logging infrastructure is one way to solve this problem.
A common approach is to use a business-specific identity, configured

http://www.thenewstack.io
http://criu.org/Main_Page

65Ĵ CONTAINER MONITORING & MANAGEMENT

MANAGING INTENTIONAL CHAOS: SUCCEEDING WITH CONTAINERIZED APPS

to be emitted as a notification, that can be captured by the logging
system. The log should then provide mapping between the identifier
and the container name that caused the issue.

4. The log format must provide full context to an operator.
Logging remains an important element in the arsenal for debugging
issues in the production environment. With container environments,

the log format must include some context like container ID, container
image and container host. The container runtime injects a HOST
environment variable that can be used by the application in its logs.
Container platforms use metadata in their log stream, which helps
identification and remediation activities.

Making Agile Decisions with Containers
A fast and agile environment provides the ability to make quick decisions
and iterate as needed. One of the cornerstones of the DevOps movement
is the adoption of ideas around the observe, orient, decide and act

(OODA) loop, a widely-used principle to take action in a constantly

changing environment. Mapping the OODA practice to a containerized
production environment would lead to the following inferences:

• Observe: This pertains to alerts and notifications that filter out the
useful signals from the noise. This is possible through tools that
receive events from the monitoring system when something goes
wrong. Having a good signal-to-noise ratio at this stage is critical to the
overall success of the process.

• Orient: Once access to the information is sorted, it is used to identify
the symptoms causing an issue. Getting information from the logging
and monitoring system is the basis of orientation. You must be able to
identify the exact source of information with minimal noise.

http://www.thenewstack.io
https://en.wikipedia.org/wiki/OODA_loop

66Ĵ CONTAINER MONITORING & MANAGEMENT

MANAGING INTENTIONAL CHAOS: SUCCEEDING WITH CONTAINERIZED APPS

• Decide: Based on the symptoms identified during the orientation
phase, you must decide what action to take to resolve the situation. An

example action would be changing the group configuration or
relocating to a new set of hosts. If the issue identified is related to the
application logic, then rolling back to the previous configuration could
be a possible fix.

• Act: The container platform and tools must allow for fast action once

they’re decided upon. Having access and permission to the container
management tools is useful.

Container implementations in the enterprise must allow the OODA loop to
be implemented and have fast transitions. The merit of any container

management and monitoring system is measured by the accuracy of the
information it provides and the speed with which actions can be taken.

Tools for Taming Complexity
The art of managing the chaos in a container-based environment has led
to the creation of new tools and services that embrace the dynamic and

autonomous nature of container management. Tools like StackStorm and

Netflix Winston have inspired implementations to trigger automated
workflows in the case of events, especially events that involve an issue
with the environment. Tying this to your container platform can allow
operation runbooks to execute in case of a fault with a container. This

reduces manual intervention and engineering team burnout, which
increases productivity.

One of the concepts we discussed earlier was to monitor groups of
containers instead of focusing on individual instances. The use of
container labels and environment variables can be used to implement this

practice. A tool like cAdvisor can capture the labels provided to any

http://www.thenewstack.io
https://stackstorm.com/
http://techblog.netflix.com/2016/08/introducing-winston-event-driven.html
https://github.com/google/cadvisor

67Ĵ CONTAINER MONITORING & MANAGEMENT

MANAGING INTENTIONAL CHAOS: SUCCEEDING WITH CONTAINERIZED APPS

container on a host. If environment variables are used, cAdvisor also

allows them to be captured using the --docker-env-metadata-whitelist
runtime parameter.

Tracing calls between self-contained services in an architecture is difficult
with traditional practices. Improving practices around tracing is an
important part of continued success with microservices. Tracing platforms
like OpenTracing will become commonplace in all container based

environments going forward.

The Cloud Native Computing Foundation has adopted OpenTracing as a
hosted project. There are also tools like Zipkin, an open source tracer for

microservices, first developed by Twitter to track web requests as they
bounced around different servers. There’s also Sysdig tracers, which

allows for open source tracing of everything from microservices down to
system resource access time.

Taking actions iteratively in an OODA loop is an important part of
container implementation. Platforms like Vamp allow workflows to be
implemented for making canary release decisions based on containerized
application metrics. Tools like this could act as a method of implementing
the OODA loop and applying it to release and testing practices.

If you are running containers with process isolation, then finding a flagged
process running among a set of containers across hosts is a challenging
feat. Identifying the host that runs the flagged container is one part of the
problem. Usually, this is solved through a host monitoring tool like
Prometheus. Once you identify the host, you can perform process ID
mapping between the host and the container. This requires identifying the
root process ID and correlating it with the running container. Tools like
Sysdig solve this problem and much more with little or no overhead on

the container performance.

http://www.thenewstack.io
http://opentracing.io/
http://zipkin.io/
http://thenewstack.io/meet-zipkin-tracer-debugging-microservices/
http://thenewstack.io/meet-zipkin-tracer-debugging-microservices/
https://github.com/draios/sysdig/wiki/Tracers
http://vamp.io/
https://prometheus.io/
http://www.sysdig.org/

68Ĵ CONTAINER MONITORING & MANAGEMENT

MANAGING INTENTIONAL CHAOS: SUCCEEDING WITH CONTAINERIZED APPS

Cloud Foundry has a unique approach to solving container management
and monitoring difficulties. It provides an abstraction of the containerized
infrastructure in the form of well-designed APIs, a solid development
environment, and by providing logs and metrics for each application.
These features make it easy for developers to adopt agile practices and
leverage visibility into their containerized production applications.

Conclusion
Organizations working in a hybrid setup, involving both containerized
and traditional workloads, will have a hard time embracing this shift. The
challenge is maintaining systems that revolve around different schools of
thoughts. Legacy systems are usually long running and non-disposable;
they demand per instance, granular approaches to monitoring and
management.

Some organizations will want to experiment with a team that is
independent and has few traditional system monitoring needs. However,
the OODA loop is still a valuable approach to containerized applications,
and establishes common ground rules for both traditional and container-
based environments.

Developers need to be more aware of new practices in monitoring,
logging and service management in order to create containerized
applications that will thrive. The changes needed to successfully adopt
containers will result in cloud-native systems that are able to accomplish

the goals of agile IT.

http://www.thenewstack.io
https://www.cloudfoundry.org/

69Ĵ CONTAINER MONITORING & MANAGEMENT

CHAPTER #: CHAPTER TITLE GOES HERE, IF TOO LONG THEN...

CONTAINER
MONITORING DIRECTORY
Although this directory has over a hundred entries, it is not meant to be
comprehensive. Instead, it lists many of the projects and vendor offerings
that are used to monitor containers. Listings are divided into four sections to
make it easier for the reader to quickly review. Since most of the products ac-

tually provide a range of functionality listed, please use the categorization as
a starting point when reviewing solutions you may want to use or consider.

http://www.thenewstack.io

70Ĵ CONTAINER MONITORING & MANAGEMENT

CONTAINER-RELATED
MONITORING

Product/Project (Company or Supporting Org.) Functionality Includes:

 AppDynamics (Cisco) » Performance Monitoring

 Application and business performance software that collects data from agents installed on the host. It provides
an extension to collect data from the Docker API.

 AppFormix (Juniper Networks)

 Cloud infrastructure monitoring and analysis software that runs in any public, private, multi-tenant, or hybrid
environment. It includes ContainerFlow, which utilizes Intel Resource Director technology to enforce isolation
between workloads and deliver better performance for container workloads. The company is focused on
analytics for operators of OpenStack and Kubernetes.

 Bluemix Container Monitoring and Logging (IBM)

 Monitoring and logging is a built-in service for Bluemix Containers, integrated to the cloud offering. Users
receive monitoring information and logging capabilities for any container they deploy on Bluemix without
having to configure or install anything. This service is based on Agentless System Crawler for data collection;
it can utilize Logstash, Graphite, Elasticsearch, Kibana and Grafana for data ingestion, analysis and
visualization.

CA Application Performance Management (CA Technologies)

 Agentless service for monitoring the performance of Docker environments with deep instrumentation of
applications and microservices. Delivers fully automated dependency mapping with an open flexible data
model supporting multiple views based on user requirements and service context. Performance impact of
Docker changes can be viewed across time, with analytics-based alert management, anomaly detection and
problem triage.

Open Source Cabin (Bitnami) » Management/Orchestration

 An iOS application for managing Kubernetes applications. An Android application is being developed.

Open Source cAdvisor (Google)

 cAdvisor (Container Advisor) is a Google-supported project that analyzes resource usage and performance
characteristics of running containers.

This section includes tools that are purpose-built to monitor containers. In addition, it

includes commonly used monitoring tools that have extensions or plugins to collect

and monitor container data.

http://www.thenewstack.io
https://www.appdynamics.com/
http://www.juniper.net/us/en/products-services/network-management/appformix/
https://console.ng.bluemix.net/docs/containers/monitoringandlogging/container_ml_ov.html
https://www.ca.com/us/products/ca-application-performance-management.html
https://itunes.apple.com/fr/app/cabin-manage-kubernetes-applications/id1137054392?l=en&mt=8
https://github.com/google/cadvisor

71Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: CONTAINER-RELATED MONITORING

Product/Project (Company or Supporting Org.) Functionality Includes:

 Cobe.io (Cobe.io)

 Provides a live topology of heterogeneous infrastructure, on top of which model performance metrics and
alerts are overlaid.

 CoScale (CoScale) » Anomaly Detection

 Combines server and container resource metrics with application-specific performance metrics. Its lightweight
agents have little overhead.

Digital Experience Insights from CA (CA Technologies)

A SaaS-based digital experience monitoring and analytics solution, offering an integrated set of app
experience analytics, application performance management and infrastructure management capabilities.
Built on top of a powerful analytics engine that leverages open technologies such as Elasticsearch, Kibana and
Hadoop, Digital Experience Insights provides comprehensive monitoring and analytics across modern cloud
and container stacks. Trial Digital Experience Insights free for 30 days and gain access to full stack monitoring
for containers and microservices, including: App Experience Analytics, Application Performance Management
and Infrastructure Management.

Open Source DC/OS Metrics (Mesosphere)

 An experimental project to make metrics more accessible. It is expected to be incorporated in a future release
of DC/OS 1.10.

Open Source Docker Engine (Docker)
A lightweight runtime and tooling that builds and runs your Docker containers. The Docker Stats API in Docker
Engine is the source of most information collected by tools that monitor containers. CS Docker Engine is the
commercially supported version. Docker Content Trust is a feature that makes it possible to verify the publisher
of Docker images.

 Docker Enterprise Edition (Docker) » Management/Orchestration

 An application-centric platform, Docker EE integrates container management, image management, Docker
Datacenter and security services into an enteprise solution.

 Dynatrace (Dynatrace) » Performance Monitoring

 Dynatrace's new suite of monitoring tools is based on its Ruxit technology. Its agent is injected into a container,
which then autodiscovers new services running on a host and can fetch data from the Docker API. Dynatrace is
also developing artificial intelligence technology to help with root cause analysis.

Open Source Falco (Sysdig) » Anomaly Detection
A behavioral activity monitor designed to detect anomalous activity in your applications. Powered by Sysdig’s
system call capture infrastructure, Falco lets you continuously monitor and detect container, application, host
and network activity.

Open Source Heapster (Cloud Native Computing Foundation)

 Enables analysis of compute resource usage and monitoring of container clusters. Heapster currently supports
Kubernetes and CoreOS natively.

http://www.thenewstack.io
https://cobe.io/
http://www.coscale.com/
https://www.ca.com/us/products/digital-experience-monitoring.html
http://www.ca.com/trydxi
https://github.com/dcos/dcos-metrics
https://github.com/docker/docker
https://www.docker.com/enterprise
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
http://www.sysdig.org/falco
https://github.com/kubernetes/heapster

72Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: CONTAINER-RELATED MONITORING

Product/Project (Company or Supporting Org.) Functionality Includes:

 HPE SiteScope (Hewlett-Packard Enterprise)

 Agentless monitoring software for monitoring the availability and performance of distributed applications
and IT infrastructure. The dynamic Docker monitor of SiteScope monitors the health and performance from
the cluster manager level through the Docker daemon layer to the container level, including the applications
running inside the containers.

Open Source Kubernetes Dashboard (Cloud Native Computing Foundation)

 A general purpose, web-based UI for Kubernetes clusters. It allows users to manage applications running in
the cluster and troubleshoot them, as well as manage the cluster itself.

 Operations Management Suite (Microsoft)

 Created as a management and security tool for hybrid clouds. It also provides a simplified view of containers’
usage and diagnoses issues.

Open Source Prometheus (Cloud Native Computing Foundation) » Time Series Database

 An open source, service monitoring system and time series database.

 Scout (Scout) » Performance Monitoring

 A Docker monitoring partner, Scout provides application and server monitoring, especially for Rails
applications. It has plugins to monitor both Docker and LXC containers.

Open Source Sematext Docker Agent (Sematext)

 It collects and processes Docker metrics, events and logs for all cluster nodes and all auto-discovered
containers. It works with Docker Swarm, Docker Datacenter, Docker Cloud, as well as Amazon EC2, Google
Container Engine, Kubernetes, Mesos, RancherOS and CoreOS.

 SignalFx (SignalFx) » Time Series Database

 Its collectd-docker plugin capture metrics about CPU, memory, network, and disk using Docker’s stats API.
SignalFx has built-in Docker monitoring dashboards, which let you add dimensions (tags) metadata to
aggregate, filter, and group metrics by property.

 SPM Performance Monitoring (Sematext) » Anomaly Detection
» Performance Monitoring

 On-premises performance monitoring, alerting and anomaly detection. An agent is used to monitor Docker
containers and host metrics about CPU, memory, network, disk and events.

Open Source Sysdig (Sysdig)
Linux system exploration and troubleshooting tool with first class support for containers. This is the open
source project that Sysdig Cloud is based on.

Sysdig Cloud (Sysdig)

 Based on open source Sysdig technology, Sysdig Cloud monitors, troubleshoots and alerts on containerized
environments. Sysdig Cloud can be used as a cloud service or deployed as hosted software in your private cloud.

Open Source Weave Cortext (Weaveworks)

 API-compatible Prometheus implementation that natively supports multitenancy and horizontal scale-out
clustering.

http://www.thenewstack.io
https://saas.hpe.com/en-us/software/sitescope
https://github.com/kubernetes/dashboard
https://www.microsoft.com/en-us/cloud-platform/operations-management-suite
http://prometheus.io/
https://scoutapp.com/
https://github.com/sematext/sematext-agent-docker
https://signalfx.com/docker-monitoring/
https://sematext.com/spm/
http://www.sysdig.org
https://sysdig.com/
https://github.com/weaveworks/cortex

73Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: CONTAINER-RELATED MONITORING

Product/Project (Company or Supporting Org.) Functionality Includes:

 Weave Scope (Weaveworks)
Weave Scope offers a real-time monitoring solution for containers.

Open Source Zenoss Control Center (Zenoss)

 Zenoss Control Center is an application management and orchestration system. It works with the Zenoss
platform and other Docker applications. Serviced is a popular repository in this project that provides a PaaS
runtime.

http://www.thenewstack.io
http://weave.works/scope/
https://github.com/control-center

74Ĵ CONTAINER MONITORING & MANAGEMENT

COMPONENTS/CLASSES
OF MONITORING SYSTEMS

Product/Project (Company or Supporting Org.) Functionality Includes:

Open Source Agentless System Crawler (IBM) » Collect/Ingest
A unified cloud monitoring and analytics framework that enables deep visibility into all types of cloud platforms
and runtimes. It is used as the data collection framework for Bluemix Containers and Vulnerability Advisor.

 Beats (Elastic) » Collect/Ingest
 A platform for single-purpose data shippers. They install as lightweight agents and send data from machines

to Logstash or Elasticsearch.

 Bosun (Stack Exchange) » Alerting and Event Processing
 A time series alerting framework developed by Stack Exchange. Scollector, a metric collection agent, is used

with it.

 Circonus (Circonus) » Alerting and Event Processing
» Time Series Database

 Collects any data from any system, and then provides customizable visualization, analysis and alerting tools.

Open Source collectd (N/A) » Collect/Ingest
 A small daemon which periodically collects system information and provides mechanisms to store and monitor

the values in a variety of ways.

Open Source Fluentd (Cloud Native Computing Foundation) » Log Management
 Fluentd is an open source data collector for unified logging layers.

 Google Stackdriver (Google) » Log Management
» Performance Monitoring

 Monitoring, logging and diagnostics for applications on Google Cloud Platform and AWS.

Open Source Grafana (Grafana Labs) » Visualization
 Grafana is a metrics dashboard and graph editor for Graphite, InfluxDB and OpenTSDB.

A full stack monitoring system has many different components. This section includes
tools that collect and ingest, process and store data and metrics. It also includes the

processing of events and the creation of alerts. Other important parts of a monitoring

system are the visualization and tools to help with tracing, error tracking and

debugging.

http://www.thenewstack.io
https://developer.ibm.com/open/agentless-system-crawler/
https://www.elastic.co/products/beats
http://bosun.org/
http://www.circonus.com/
https://collectd.org/
http://www.fluentd.org/
https://cloud.google.com/stackdriver/
http://grafana.org/

75Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: COMPONENTS/CLASSES OF MONITORING SYSTEMS

Product/Project (Company or Supporting Org.) Functionality Includes:

Open Source Graphite Carbon (N/A) » Collect/Ingest
 Component of the Graphite project that is responsible for receiving metrics over the network and writing them

down to disk using a storage backend.

Open Source Graphite-Web (N/A) » Visualization
 Graphite-Web is a Django-based web application that renders real-time graphs and dashboards.

Open Source Graylog (Graylog) » Log Management
 Graylog is a fully integrated platform for collecting, indexing, and analyzing both structured and unstructured

data from almost any source.

Open Source Hawkular (Red Hat) » Performance Monitoring
 Hawkular is a modular systems monitoring suite that consists of several subprojects for storing metrics,

alerting on incoming events and more.

 Honeycomb.io (Honeycomb.io) » Tracing/Error Tracking/Debugging
 Honeycomb is an event-driven observability tool for debugging systems, application code and databases.

Honeycomb uses structured data and real-time query aggregationto support ultra-rich datasets without
indexes or schemas, and a fast, interactive interface.

Open Source ΖnȵX[D% �ΖnȵX[DDtD� » Time Series Database
 An open source database written in Go specifically to handle time series data with high availability and high-

performance requirements. It is one of the more commonly used databases in the stacks used to monitor
containers.

Open Source Kapacitor �ΖnȵX[DDtD� » Alerting and Event Processing
 Open source framework for processing, monitoring, and alerting on time series data.

Open Source Kibana (Elastic) » Visualization
 Kibana is a flexible analytics and visualization platform.

 Librato (SolarWinds) » Alerting and Event Processing
» Time Series Database

 Librato Agent is used to collect Docker metrics. Librato itself manages time series data, alerting and
visualization.

 Lightstep (Lightstep) » Tracing/Error Tracking/Debugging
 A distributed tracing system built on top of the OpenTracing standard. LightStep collects, analyzes and presents

high-fidelity end-to-end traces for the requests having the largest impact on your business, and the user
experience of your system.

 Logentries (Rapid7) » Log Management
 Logentries provides analytics tools to monitor Docker environments.

 Loggly (Loggly) » Log Management
 Loggly collects log data using existing open standards like syslog and HTTP.

http://www.thenewstack.io
https://github.com/graphite-project/carbon
https://github.com/graphite-project/graphite-web
https://www.graylog.org/
http://www.hawkular.org
https://honeycomb.io
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/kapacitor/
https://www.elastic.co/products/kibana
https://www.librato.com/
http://lightstep.com/
https://logentries.com/
https://www.loggly.com

76Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: COMPONENTS/CLASSES OF MONITORING SYSTEMS

Product/Project (Company or Supporting Org.) Functionality Includes:

 Logsense (Sematext) » Log Management
 Logsense replaces Logstash in the ELK stack and is provided as a hosted solution.

Open Source Logspout (Glider Labs) » Log Management
 A log router for Docker containers that runs inside Docker. It attaches to all containers on a host, then routes

their logs wherever you want. It also has an extensible module system. It's a mostly stateless log appliance. It's
not meant for managing log files or looking at history. It is just a means to get your logs out to live somewhere
else, where they belong.

Open Source Logstash (Elastic) » Log Management
 Logstash is a tool for managing events and logs.

 logz.io (logz.io) » Analytics
» Log Management

 Log analytics data with hosted ELK as a service.

 Meros (Meros) » Log Management
 Meros offers a GUI that provides monitoring, management, log aggregation and alerts for Docker.

 Moogsoft AIOps (Moogsoft) » Alerting and Event Processing
 Event management driven by real-time machine learning to detect anomalies across your production stack of

applications, infrastructure and monitoring tools.

 NetViz (BanyanOps) » Visualization
 A platform to discover, visualize and analyze microservices and their interactions. Using lightweight, on-host,

deep packet inspection technology, NetViz autodiscovers services and application resources and provides real-
time network analysis and insights. Operations and security teams use NetViz to improve the performance,
availability and security of their infrastructure.

Open Source OpenTracing API (Cloud Native Computing
Foundation)

» Tracing/Error Tracking/Debugging

 Consistent, expressive, vendor-neutral APIs for distributed tracing and context propagation.

Open Source Riemann (N/A) » Alerting and Event Processing
 A network event stream-processing system in Clojure that aggregates events from servers and applications.

Open Source RRDtool (N/A) » Log Management
» Time Series Database

 A high performance data logging and graphing system for time series data. RRDtool can be easily integrated in
shell scripts, Perl, Python, Ruby, Lua or Tcl applications.

Open Source Sentry (Functional Software, Inc.) » Log Management
» Tracing/Error Tracking/Debugging

 Cross-platform error logging and aggregation.

http://www.thenewstack.io
http://sematext.com/logsene/
https://github.com/gliderlabs/logspout
https://www.elastic.co/products/logstash
http://logz.io/
https://meros.io/
https://www.moogsoft.com/
https://www.banyanops.com/netviz/
http://opentracing.io/
http://riemann.io/
http://oss.oetiker.ch/rrdtool/
https://sentry.io

77Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: COMPONENTS/CLASSES OF MONITORING SYSTEMS

Product/Project (Company or Supporting Org.) Functionality Includes:

Open Source Snap (Intel) » Collect/Ingest
 An open telemetry framework designed to simplify the collection, processing and publishing of system data

through a single API.

 Splunk Enterprise (Splunk) » Log Management
 Simplifies the collection and analysis of data-generated technology infrastructure, security systems and

business applications. Splunk offers a "solution" that focuses on container monitoring and application
delivery. A cloud offering is also available.

 Stackify (Stackify) » Log Management
» Performance Monitoring
» Tracing/Error Tracking/Debugging

 Provides software developer tools that fully integrate error and log management with application performance
monitoring and management for server and developer workstations.

 Sumo Logic App for Docker (Sumo Logic) » Log Management
 The Sumo Logic app for Docker uses a container that includes a collector and a script source to gather

statistics and events from the Docker Remote API on each host. The app wraps events into JSON messages,
then enumerates over all running containers and listens to the event stream. This essentially creates a log for
container events. In addition to configuration information obtained using Docker’s Inspect API, the app collects
host and daemon logs. All this data is integrated into Sumo Logic's monitoring dashboard, which specializes in
handling machine data analytics.

Open Source Telegraf �ΖnȵX[DDtD� » Collect/Ingest
 An agent written in Go for collecting metrics from the system it's running on, or from other services, and

writing them into InfluxDB or other outputs.

Open Source Trace (RisingStack) » Tracing/Error Tracking/Debugging
 A visualized stack-trace platform designed for microservices monitoring.

 Wavefront (Wavefront) » Analytics
» Collect/Ingest

 Uses cAdvisor to collect container metrics, which are analyzed along with metrics from other systems and
applications.

Open Source Whisper (N/A) » Time Series Database
 A file-based time series database format for the Graphite project.

http://www.thenewstack.io
http://snap-telemetry.io
http://www.splunk.com/en_us/products/splunk-enterprise.html
http://stackify.com/
https://www.sumologic.com/application/docker/
https://www.influxdata.com/time-series-platform/telegraf/
http://trace.risingstack.com/
https://www.wavefront.com
https://github.com/graphite-project/whisper

78Ĵ CONTAINER MONITORING & MANAGEMENT

MANAGEMENT/
ORCHESTRATION

Product/Project (Company or Supporting Org.) Functionality Includes:

 Apcera Platform (Apcera) » Management/Orchestration
 Apcera manages access to compute resources across a cluster of servers. By focusing on managing policies

across multiple environments, it aims to secure workloads and containers in enterprise production
environments. It provides cluster monitoring with Zabbix, which is preconfigured for monitoring Apcera
Platform components.

 Azure Container Service (Microsoft) » Management/Orchestration
 Azure Container Service simplifies the creation and configuration of a cluster. The default configuration includes

Docker and Docker Swarm for code portability, and Marathon, Chronos and Apache Mesos to ensure scalability.

 Cloudsoft Application Management Platform (Cloudsoft) » Management/Orchestration
 Cloudsoft's application management platform, based on the open source Apache Brooklyn project,

orchestrates services, platforms and infrastructure, including deployment to containers.

 ContainerShip (ContainerShip) » Management/Orchestration
 ContainerShip is a self-hosted container management platform, capable of running on any cloud, and used to

manage containers from development to production.

Open Source Contiv (Cisco) » Management/Orchestration
Unifies containers, VMs, and bare metal with a single networking fabric, allowing container networks to It is be
addressable from VM and bare-metal networks.

 EC2 Container Service (Amazon Web Services) » Management/Orchestration
 Amazon EC2 Container Service helps companies manage clusters of containers on AWS infrastructure.

 Elastic Cloud (Elastic) » Management/Orchestration
 An Elasticsearch as a Service offering. It can be used by the Docker community for search and discovery.

 Enterprise DC/OS (Mesosphere) » Management/Orchestration
 Mesosphere's DC/OS is a commercial version of the Mesos OS for managing data centers. It supports both

Kubernetes and Docker.

Most container management platforms include dashboards that let operators

monitor at least some metrics, often to enable the intelligent orchestration of services.
This section includes only a sampling of available options.

http://www.thenewstack.io
https://www.apcera.com
https://azure.microsoft.com/en-us/services/container-service/
https://cloudsoft.io/amp
https://containership.io/
http://contiv.github.io/
https://aws.amazon.com/ecs/
https://www.elastic.co/found
https://mesosphere.com/product/

79Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: MANAGEMENT/ORCHESTRATION

Product/Project (Company or Supporting Org.) Functionality Includes:

 Joyent Triton (Joyent) » Management/Orchestration
 A Containers as a Service offering, Triton comes with ContainerPilot, DataCenter and SmartOS functionality

built-in.

Open Source Kubernetes (Cloud Native Computing Foundation) » Management/Orchestration
 Kubernetes is an open source Docker orchestration tool. Google initially developed Kubernetes to help

manage its own LXC containers. Stateful support is done through a new object called Pet Set. In addition, there
are many networking and data volume plugins available.

 Nirmata (Nirmata) » Management/Orchestration
 A cloud-based platform for managing microservices.

 OpenShift Online (Red Hat) » Management/Orchestration
 Red Hat's hosted version of OpenShift, a container application platform that can span across multiple

infrastructure footprints. It is built using Docker and Kubernetes technology.

 Platform9 Managed Kubernetes for Docker (Platform9) » Management/Orchestration
 Kubernetes offered as a managed service. Customers can utilize Platform9's single pane of glass, allowing

users to orchestrate and manage containers alongside virtual machines. In other words, you can orchestrate
VMs using OpenStack and/or Kubernetes.

 StackPointCloud (StackPointCloud) » Management/Orchestration
 Allows users to easily create, scale and manage Kubernetes clusters of any size with the cloud provider of their

choice. Its goal is to be a universal control plane for Kubernetes clouds.

Open Source SwarmKit (Docker) » Management/Orchestration
A toolkit for orchestrating distributed systems at any scale. It includes primitives for node discovery, raft-based
consensus, task scheduling and more.

 Tectonic (CoreOS) » Management/Orchestration
 A commercial distribution of combined Kubernetes and CoreOS stacks. Tectonic is a Kubernetes-based, end-

to-end commercial container orchestration engine for the enterprise, with an added focus on security.

http://www.thenewstack.io
https://www.joyent.com/triton
https://github.com/GoogleCloudPlatform/kubernetes
http://nirmata.com/
https://www.openshift.com
https://platform9.com/managed-kubernetes/
https://stackpoint.io
https://github.com/docker/swarmkit
https://tectonic.com/

80Ĵ CONTAINER MONITORING & MANAGEMENT

MISCELLANEOUS

Product/Project (Company or Supporting Org.) Functionality Includes:

 Amazon CloudWatch (Amazon Web Services) » Performance Monitoring
 A monitoring service for AWS cloud resources and the applications that are run on AWS.

Bluemix App Monitoring and Analytics (IBM) » Analytics
 This component provides health and availability information about applications running in Bluemix. Features

include log analytics, alerting and diagnostics for root cause analysis.

Bluemix Availability Monitoring (IBM) » Performance Monitoring
 Bluemix Availability Monitoring is integrated into the DevOps toolchain. It runs synthetic tests from locations

around the world, around the clock, to proactively detect and fix performance issues before they impact users.

 C$ 8niȴed ΖnIrDstrXFtXre MDnDJement Ior &loXd
Monitoring (CA Technologies)

 CA Unified Infrastructure Management (CA UIM) for cloud monitoring enables you to proactively and efficiently
optimize performance across private or public cloud environments. It’s a comprehensive, unified solution that
provides on-premises infrastructure and cloud monitoring through a single view and backend architecture. For
customers, this translates into faster mean time to repair and cloud adoption as well as the reduced cost and
complexity of managing multiple monitoring tools.

 Datadog (Datadog) » Performance Monitoring
 Datadog is a monitoring and analytics service for IT operations and development teams. It has containerized

agents that can monitor container environments.

 Elasticsearch (Elastic) » Analytics
 Elasticsearch is a search and analytics engine based on Lucene.

Infrastructure Monitoring and Reporting for Bluemix Infrastructure (IBM)

 This is the cloud monitoring solution that previously came with the Softlayer offering. It is based on CA Nimsoft,
which is now called CA Unified Infrastructure Management for Cloud Monitoring.

 Instana (Instana) » Performance Monitoring
 Application performance management to automatically monitor dynamic modern applications.

Many tools are harder to group into a specific category. The majority of the remaining
listings are for performance monitoring of applications and infrastructure.

http://www.thenewstack.io
https://aws.amazon.com/cloudwatch/
https://console.ng.bluemix.net/catalog/services/monitoring-and-analytics/
https://console.ng.bluemix.net/catalog/services/availability-monitoring/
https://www.ca.com/us/products/cloud-monitoring.html
https://www.datadoghq.com/
https://www.elastic.co/products/elasticsearch
https://www.ibm.com/cloud-computing/bluemix/infrastructure-monitoring
https://www.instana.com

81Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: MISCELLANEOUS

Product/Project (Company or Supporting Org.) Functionality Includes:

Open Source Nagios Core (Nagios Enterprises) » Performance Monitoring
 Nagios Core serves as the basic event scheduler, event processor, and alert manager for elements that

are monitored. It features several APIs that are used to extend its capabilities to perform additional tasks,
implemented as a daemon written in C (for performance), and designed to run natively on Linux/*nix systems.

 Netsil (Netsil) » Performance Monitoring
 Netsil's Application Operations Center (AOC) helps site reliability engineers (SREs) and DevOps overcome

complexity and collaboration issues in API and microservices-driven production applications. At the heart of
the AOC is an auto-discovered service topology rendered from live interaction analysis. It allows practitioners
to visualize their service dependencies and operational metrics, and work collaboratively across teams. This
enables effective application monitoring, capacity planning, incident response, and deploy management.

 New Relic APM (New Relic) » Performance Monitoring
 Application performance monitoring is at the heart of New Relic's suite of products, which it starting to call

Digital Intelligence Platform. Its agent-based approach is particularly good for troubleshooting code-related
application performance issues.

 Opsclarity (Lightbend) » Performance Monitoring
 Monitors the health of data frameworks and associated streaming applications.

 Outlyer (Outlyer) » Performance Monitoring
 A systems metrics monitoring service that is meant to be used by both DevOps and operations teams.

 OverOps (OverOps) » Performance Monitoring
 Formerly known at Takipi, OverOps provides monitoring for Java-based applications.

Project Shipped (Cisco)

 Cisco's Project Shipped is a model for deploying microservices to the cloud. To reduce environmental
inconsistencies, Project Shipped also emulates the cloud environment on your development workstation.
Vagrant, Consul and Cisco Microservices Infrastructure are components. It displays metrics such as total
containers versus running containers, CPU and memory utilization, and network activity of Docker containers
and the applications running in them.

Open Source Sensu (Sensu) » Performance Monitoring
 A monitoring framework for self-hosted, centralized metrics services.

 Sensu Enterprise (Sensu) » Performance Monitoring
 Sensu Enterprise is the commercial version of Sensu, a monitoring framework for self-hosted, centralized

metrics services.

Open Source VAMP (Magnetic.io)
 Vamp stands for Very Awesome Microservices Platform. It helps developers build, deploy and manage

microservices. Vamp's core features include a platform-agnostic microservices DSL, powerful A/B testing,
canary releasing, autoscaling and an integrated metrics/event engine.

 X-Pack (Elastic)
 A full stack monitoring solution that adds additional functionality to the Elastic Stack (formerly ELK).

http://www.thenewstack.io
https://www.nagios.org/projects/nagios-core/
http://netsil.com/
http://newrelic.com/application-monitoring
https://www.opsclarity.com
https://www.outlyer.com/
https://www.overops.com/
https://ciscoshipped.io/
https://github.com/sensu
https://sensuapp.org/sensu-enterprise
http://vamp.io/
https://www.elastic.co/products/x-pack

82Ĵ CONTAINER MONITORING & MANAGEMENT

CONT’D: MISCELLANEOUS

Product/Project (Company or Supporting Org.) Functionality Includes:

Open Source Zabbix (Zabbix) » Performance Monitoring
 An open source, enterprise-class monitoring solution.

http://www.thenewstack.io
http://www.zabbix.com/

83Ĵ CONTAINER MONITORING & MANAGEMENT

DISCLOSURES
The following companies mentioned in this ebook are sponsors of The
New Stack: Apcera, Aporeto, Arcadia Data, Bitnami, Cloud Foundry,
CloudMunch, Cloudsoft, CNCF, Codenvy, CoreOS, DigitalOcean, GoDaddy,
HPE, Intel, Iron.io, Macaw, Mesosphere, Nuage Networks, Red Hat
OpenShift, Twistlock and Wercker.

thenewstack.io

http://thenewstack.io

	Managing Intentional Chaos: Succeeding with Containerized Apps
	The Right Tool for the Job: Picking a Monitoring Solution
	Identifying and Collecting Container Data
	Future-Proof Docker with Modern Monitoring
	Classes of Container Monitoring
	Monitoring Reset for Containers
	Introduction
	Sponsor
	container
	monitoring directory
	Container-Related Monitoring
	Components/Classes
of Monitoring Systems
	Management/Orchestration
	Miscellaneous
	Disclosures

