-
@ BROADCOM’ White Paper

Broadcom® Congestion-Aware Sprayed Traffic Feature

Achieving Congestion-Aware Traffic Distribution Using
Standard RoCEv2

Introduction

Network throughput and latency are significant factors in the performance that can be achieved by the collective operations
commonly used in Al/ML applications. Network performance is impacted by the efficiency at which all the available paths in
the network can be utilized. If one network path is congested, it can create a bottleneck that impacts the overall application
performance.

The Broadcom® Congestion-Aware Sprayed Traffic (CAST) feature dynamically distributes traffic across network paths to
more efficiently use available bandwidth and minimize network congestion. This feature can lower latency and improve
application performance for large Al clusters using leaf and spine fabrics for scale-out traffic.

Figure 1: lllustration of CAST Concept

@ = mm . -mm
I -~ TIIIm
Thor2 Ethernet network Thor2

ACA-STF-WP100
December 5, 2025

Broadcom

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Background

RDMA over Converged Ethernet (RoCE) networks are often used in Al/ML deployments. In RoCE networks, Queue Pairs
are used to provide point-to-point connectivity between two endpoints. The RoCE traffic typically traverses a multi-tier
Ethernet fabric, containing top-of-rack (ToR) and spine switches, that provide the connectivity between endpoints. One
mechanism that is commonly used to distribute the traffic across multiple paths is equal-cost multipath (ECMP) routing.
ECMP is typically performed independently by each switch.

ECMP uses an algorithm to distribute the traffic. Multiple algorithms have been implemented. A popular algorithm, that can
maintain packet order, is to perform a hash on packet header fields, such as the {source IP address, destination IP address,
protocol, source port number, destination port number} 5-tuple, and then use the hash result to select one of the available
paths to forward the packet.

ECMP is effective, but leaves room for improvement. When traffic patterns are composed of a relatively small number of
very high bandwidth flows, even a small number of collisions (mapping multiple flows to a common path) can cause severe
congestion. One improvement that has been implemented by Collective Communication Libraries (CCLs) is to establish
multiple Queue Pairs between two endpoints. The CCL then distributes the point-to-point traffic load across the multiple
Queue Pairs, effectively spreading a large message transfer across multiple network paths.

For example, two mechanisms have been implemented in the NVIDIA CCL (NCCL) and the AMD ROCm CCL (RCCL):
= Round-robin (RR) load balancing — Send the first request over one Queue Pair, send the next request over another
Queue Pair, and so on.

= Striping load balancing — Break the request into equal-sized subchunks and then transmit one subchunk over each
Queue Pair.

Such Queue Pair load balancing provides improvement over ECMP alone, but also leaves room for additional improvement.

Broadcom ACA-STF-WP100
2

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Congestion-Aware Sprayed Traffic Overview

The Broadcom CAST feature improves Queue Pair load balance through the addition of weighted scheduling. The idea is
to use round-trip time (RTT) measurements to schedule more traffic over the Queue Pairs that are experiencing the least

congestion. The RTT measurements are used to calculate weights for a weighted scheduler. CAST can be applied to either
of the CCL load balancing (LB) mechanisms listed above: round robin or striping.

m Queue Pair Striping LB Scheduler = CCL striping load balancing enabled with CAST

= Queue Pair RR LB Scheduler = CCL round-robin load balancing enabled with CAST

First, how this is done in conjunction with Queue Pair Striping is described. Then the concept is extended to the Queue Pair
RR LB mechanism.

A number of metrics are possible based on the measured RTTs; including, but not limited to, the following measurements:
s Raw RTT

(RTT — transmission time of message payload)

(RTT — transmission time of message payload — minimum latency for the network)

m (RTT - transmission time of message payload — minimum latency for the network - transmission time of protocol
headers associated with the message)

For CAST, the following metric was selected: (RTT — transmission time of message payload — minimum latency for the
network)

Once the metric is selected and computed, an estimator function is applied. The estimator function filters the instantaneous
metric values to form a more stable estimate of network congestion that is then used by the Queue Pair scheduler. Anumber
of estimator functions are possible; including, but not limited to, the following functions:
= Average:

— Estimate = (sum of metric values) / (humber of measurements)

— The average history (that is, sum and measurement count) may be reset to zero at a configured interval to increase
responsiveness to changing network conditions

m Weighted average:

— Estimate = (metric value x weight) + (estimate x (1 — weight))

— Weighted average can respond more quickly to metric changes

— TCP previously used a weighted average estimator with a weight of 0.1
m TCP estimator:

— Estimate = estimate + (0.125 x (metric value — estimate))

— The TCP estimator can respond aggressively to metric changes

The current CAST version supports the following estimator functions:
= Average
m Weighted average

Conceptually, the estimates are used to compute scheduler weights as shown in the following text:
for (gp = 0, sum = 0; gp < number of gp’s; gp++) {
new_estimate([gp] = 1.0 / estimate[qgp];
sum += new estimate([gp];
}
sched weight[gp] = new estimate[gp] / sum;

Broadcom ACA-STF-WP100
3

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

However, based on implementation experience, it was determined that the RTT measurements contain considerable jitter
that were adversely impacting CAST effectiveness. The RTT measurement is made by CCL software as follows:

m The RTT measurement begins when a transmission request is submitted to a Queue Pair using the IB Verb API.

m The RTT measurement ends when the associated transmit completion is processed by the CCL software as a result of
a polling operation.

Consequently, in an effort to filter the jitter bias, the following algorithm is used to compute the scheduler weights:
for (gp = 0, min estimate = DBL MAX; gp < number of gp’s; gp++) {
if (estimate[gp] < min estimate) {
min estimate = estimate[qgp];
min metric = min metric[gp];

}

for (gp = 0, sum = 0; gp < number of gp’s; gp++) {
new estimate[gp] = 1.0 / ((estimate[gp] - min estimate) + min metric);
sum += new estimate([qgp];

sched weight[gp] = new estimate[gp] / sum;

The data plane uses the scheduler weights to determine the subchunk size to be sent on the associated Queue Pair. This
changes the distribution of the subchunk size transmitted on the Queue Pairs from an even distribution to a weighted
distribution. The scheduler weights used by the data plane may be refreshed periodically according to a configured update
interval.

Operation of the Queue Pair Stripe LB scheduler is shown in the following figure. In this example, subchunk sizes for QPO,
QP1, and QP2 are rounded down to the next lowest multiple of 128 bytes.

Figure 2: Queue Pair Stripe LB Scheduler

Estimators:
QP 0 = 40 usec
gi ; 3 ;g M Transmit Request
= 20 usec A
AP B = 41 st Chunk Size = 1,048,576 Byles
: QP 0 Sub-Chunk Size = 125,824 Byles
Weights: >
QFO0=0.12 QP QP 0
QP 1 =018 ; QP 1 Sub-Chunk Size = 167 680 Byles
apz=024—| Stripe ar 5
QF" 3=0,48 l_ d . .
o QP 2 Sub-Chunk Si 251,648 Byt DEStlﬁEtan
LIL3- L Za = A a5 .
Balance aOF 7 > Endpoint
Scheduler
QF 3 Sub-Chunk Size = 503,424 Bytes
QP 3 >

Broadcom ACA-STF-WP100
4

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

The Queue Pair Stripe LB scheduler operation can be enhanced by enforcing a threshold that constrains the minimum
subchunk size. Since there are overheads, such as completion processing time, associated with transmitting a subchunk,
there is a point at which further division of the transmit request chunk size into smaller subchunks is not advantageous from
a performance perspective. CAST limits the number of Queue Pairs used by the scheduler according to the following
algorithm:
sub-chunk size = chunk size / number of QPs available;
if (sub-chunk size < sub-chunk threshold)

number of QPs used = 1;
else

number of QPs used = number of QPs available;

As mentioned previously, the estimates can also be used to implement a Queue Pair weighted round-robin (WRR) LB
scheduler. In this case, the weight associated with a Queue Pair indicates the percentage of the transmit requests that should
be sent on the Queue Pair as shown in the following figure.

Figure 3: Queue Pair WRR LB Scheduler

Estimators:
QP 0 = 40 usec
QF 1 = 30 usac
QF 2 =20 usec .
QP 3 = 10 usec Transmit Requests
: 12% of Transmit Requests
Weights: QP >
QPO=0.12 W . ht d QP 0
QP 1=0.16 eighte :
OP2=024 — RDUFId 16% of Transmit Requeslts >
A QF 1
QP 3=048 . . .
Robin T Destination
Load Shisie A ies Endp-::-int
aPz >
Balance
48% of Transmit Requests
Scheduler OP 3 >

When the Queue Pair Stripe LB scheduler falls back to the use of one Queue Pair due to the subchunk threshold, a
configuration parameter controls the use of RR or WRR scheduling.

Broadcom ACA-STF-WP100
5

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper

Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Configuration Parameters

Operation of the CAST feature is controlled by the environment variables described in the following table.

Table 1: CAST Configuration Environment Variables

Environment Variable

Description

NCCL_IB_QP_SCHED_ENABLE

1 => enable the feature, defaults to 0

NCCL_IB_QP_SCHED_RESET_INTERVAL

The interval where the RTT history is reset in units of milliseconds.
m default = 60000
m 0 =>never reset

NCCL_IB_QP_SCHED_UPDATE_INTERVAL

The interval where scheduling weights are refreshed in units of
microseconds, default = 50.

NCCL_IB_QP_SCHED_WEIGHT

0 => use average estimator

Otherwise, use the floating point weight that is applied to the RTT
sample in the weighted average estimator, default = 0.

NCCL_IB_QP_SCHED_SPLIT_DATA_MIN

The minimum amount of data per Queue Pair required to split the
data transmission across multiple Queue Pairs. If the minimum is not
met, the data is transmitted on a single Queue Pair, default = 64K
bytes.

NCCL_IB_QP_SCHED_WRR_ENABLE

1 => enable the feature, defaults to 0

If enabled, weighted RR scheduling is performed instead of the
standard RR scheduling when the
NCCL_IB_QP_SCHED_SPLIT_DATA_MIN condition is not
satisfied.

Broadcom

ACA-STF-WP100
6

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

CAST Test Topology

The CAST concept was tested using the topology shown in the following figure.

Figure 4: Broadcom CAST Test Topology

Tomahawk Spine Switch

32 MB Buffer | Ecwp | 32 MB Buffer
| 8x400G | 8 x 400G
ECMP ECMP
| 32MB Buffer | | 32MB Buffer | | 32MB Buffer | | 32MB Buffer |
Tomahawk TOR Switch Tomahawk TOR Switch
| 8x4006 | | 8x800G
8 x Thor2 NICs 8 x Thor2 NICs
8xGPUs || RoCE 8xGPUs || RoCE
ceL o ceL
Server 1 Benchmark Server N Benchmark

The test topology is designed to emulate the ECMP congestion that would be seen in larger clusters. The ToR switches
forward all upstream traffic to the spine, which promotes ECMP-based congestion at the spine. A single Tomahawk® switch
can be partitioned into multiple virtual ToR switches to minimize the equipment needed to implement the test topology.

Broadcom ACA-STF-WP100
7

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Performance Results

The following figure shows the CAST performance improvement for three collectives when using a 1-GB message size with
four Queue Pairs per connection. The improvement is expressed as the percentage that collective throughput increased
when CAST was enabled. The performance data was collected on a cluster with four server nodes, where each node was
connected to a virtual ToR switch, and each node was equipped with the following components:

= 8 x AMD MI300X GPUs
m 8 x Broadcom Thor2 NICs operating at 400Gb/s

Figure 5: Example of CAST Performance Improvement

CAST Performance Improvement
4 x 8 MIS00X GPUs, 4 QPs, 1GB Message Size

30

25

Percentage Improvement
H
N

10
5
0
All Gather All Reduce Reduce Scatter
Collective Type

Broadcom ACA-STF-WP100
8

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Edgecore Testing

The CAST feature was tested using the topology shown in the following figure. The leaf switches use virtual routers and
Border Gateway Protocol to set up a logical topology that sends all traffic to the spine switches to emulate a larger cluster.

The leaf and spine switches are Edgecore AIS800-640 Tomahawk 5 Ethernet switches. Each node includes eight Thor2
400G Ethernet NICs attached, one-to-one.

Figure 6: Edgecore CAST Test Topology

Hardware Topology

— 800G

Spine-1 (AIS800-640) Spine-2 (AlS800-640)
— 400G EREEES

37|38[39140j4 1}42) 5161718]19]10

¥R PR P P v 5[6[7]8]010) 5) o R e | LR
Leaf-1 (AIS800-640) Leaf-2 (AIS800-640)
I i I 1 I 15 I T I <) I 7 A A1 51 fel [[A P11 Pa Pd
o]1[2]3]4][5]8]7 o[1]2]3[4]5]6]7 o[1]2]3[4]5]6]7 o[1]2]3[4]5]8]7
Node-1 Node-2 Node-3 Node-4

Edgecore Performance Results

The following figures compare the results using RCCL'’s collective benchmark tests for various collective operations. All use
the network topology shown in the previous figure. Results are shown for four iterations per collective operation:
split-no-cast = Queue Pair split LB without CAST

split-cast = Queue Pair split LB scheduler using CAST

wrr-no-cast = Queue Pair round-robin LB without CAST

wrr-cast = Queue Pair round-robin LB scheduler using CAST

The results for the out-of-place option in the benchmark are shown. This indicates the operation reads from an input buffer
and writes the result to a different output buffer. The message size refers to the overall collective. The size of the data
movement on each GPU is scaled based on the total number of GPUs and the type of operation.

Broadcom ACA-STF-WP100
9

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper

Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Figure 7: AlIReduce Performance Using CAST

250

200

150

100

Bus Bandwidth (GB/s)

ALLREDUCE - Out-of-Place Bus Bandwidth

= split-cast = wirr-cast m split-no-cast m wrr-no-cast

45% CAST gain

1MB

2MB

4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1.0GB 2.0GB
Message Size

Figure 8: AllGather Performance Using CAST

400

350

300

250

200

150

100

Bus Bandwidth (GB/s)

50

ALLGATHER - Out-of-Place Bus Bandwidth

= split-cast =wirr-cast m split-no-cast m wiT-no-cast

34% CAST gain

1MB

2MB

4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1.0GB 2.0GB

Message Size

Broadcom

ACA-STF-WP100
10

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Figure 9: AlltoAll Performance Using CAST

ALLTOALL - Out-of-Place Bus Bandwidth
=sgplit-cast =wirr-cast ®msplit-no-cast ®wrr-no-cast

ll

gain

} 15-30% CAST

20

Bus Bandwidth (GB/s)
8

10

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 10GB 2.0GB
Message Size

Figure 10: ReduceScatter Performance Using CAST

REDUCESCATTER - Out-of-Place Bus Bandwidth

=split-cast =wrr-cast ®split-no-cast ®wrr-no-cast

400

350

300

55% CAST gain

250

200

150

Bus Bandwidth (GB/s)

100

50

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1.0GB 2.0GB
Message Size

Broadcom ACA-STF-WP100
1

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Summary of Results

CAST can improve performance on CCL collective operations on Al clusters using a leaf-spine topology. RCCL bus
bandwidth may be increased from 10% to up to 50% for large messages.

Fat tree topologies with two or more tiers of switching may experience ECMP collisions, particularly with traffic patterns using
a relatively small number of high bandwidth flows. CAST distributes data across multiple network paths to more evenly
distribute traffic and thereby optimize network performance. The following figure shows the bandwidth per network path
without CAST and with CAST enabled.

Figure 11: AllIReduce Average Bus Bandwidth with and without CAST

Tx Bits Per Second Tx Bits Per Second

(average bus BW: 101.48Gb/s) (average bus BW: 135.33Gb/s)

Workloads that use larger messages tend to experience more network congestion and therefore benefit more from using
CAST. CAST can be less effective with smaller collective message sizes for multiple reasons:

= Smaller message sizes produce less network congestion.

m Smaller message sizes produce smaller transmit request chunk sizes that must not exceed the CAST subchunk
threshold so that CAST scheduling is not applied.

Performance improvement is seen across all collective operations.

Broadcom ACA-STF-WP100
12

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Implementation Overview

The CAST implementation is based on the CCL Network Plugin capability that enables customization of the network
transport layer. The implementation starts by copying the network transport layer implementation in the src/transport/
net ib.cc file and using it as a base. A high-level overview of the modifications that were made to the base code is
provided in this section with the goal of making it easier to read and understand the code.

The CCL network plugin code is in the ext-net/net ib bnxt directory. The contents of the ext-net/net ib bnxt
directory for NCCL is shown below:

root@hpci5201:/mnt/irvnas/home/sandbox/developer/x86/nccl/nccl v2.26.2-1/ext-net/net ib bnxt# 1s
libnccl-net-bnxt.so Makefile net ib bnxt.cc

The network plugin source codeisinthenet ib bnxt.cc file. Type make to build the code and produce the 1ibnccl-net-
bnxt.so library. On NCCL systems, the 1ibnccl-net-bnxt. so library is then copied tothe ../../build/1lib/
libnccl-net-bnxt. so location.

The contents of the ext-net/net ib bnxt directory for RCCL is similar, but the library name is changed to 1ibrccl-
net-bnxt.so. On RCCL systems, the 1ibrccl-net-bnxt.so library is then copiedtothe ../../build/librccl-

net-bnxt.so location. There is also one additional file in the ext-net/net ib bnxt directory for RCCL,

net plugin tuner api.h. This file defines an API that enables a tuner plugin to dynamically modify CAST parameters
ona {collective type, message size} basis.

The environment variables used to invoke the network plugin are slightly different for NCCL versus RCCL as shown in the
following text:
= NCCL:
— NCCL_NET="IB_BNXT”
— NCCL_NET_PLUGIN=bnxt
= RCCL:
— NCCL_NET="IB_BNXT”
— NCCL_NET_PLUGIN=librccl-net-bnxt.so

The code overview is presented as follows:
New data structures

Modified data structures

New functions

Modified functions

Broadcom ACA-STF-WP100
13

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper

Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

New Data Structures

The new data structures are summarized in the following table.

Table 2: Summary of New Data Structures

Data Structure Name

Description

nccllbQpSchedParms

Parameters derived from the environment variable configuration

nccllbQpTxData

Data about Queue Pair transmission

nccllbRemapWrld

completion time of sends

For remapping work, request an ID so that additional information is available at the

nccllbQpTxStats

Statistics for scheduling Queue Pair transmissions

nccllbQpTxSchedScratchpad Scratchpad for computing scheduler weights

nccllbQpTxSched

Scheduler for Queue Pair transmissions

nccllbRrTokens

Tokens for the weighted RR Queue Pair scheduler

nccllbRrQpTxSched

Scheduler for weighted RR Queue Pair transmissions

nccllbQpSchedDesc

Queue Pair scheduling descriptor

Modified Data Structures

The modifications to existing data structures are summarized in the following table.

Table 3: Summary of Data Structures Modifications

Data Structure Name

Description

Note

nccllbRequest

Added:
B int ctsEvents[NCCL IB MAX DEVS PER NIC];
B struct ncclIbQpSchedDesc desc;

ctsEvents is needed for
enhanced completion processing,
desc needed for fallback to

RR or WRR scheduling

nccllbSendFifo Added: Needed to remove binding between
® uintl6 t rxReqlIndex; posted recvs and the rx req
nccllbNetCommBase |Added: Main data structures for the feature

B struct ncclIbRemapWrId remapWrId[MAX REQUESTS] ;

uint64 t nextQpTxStatsResetNs;

struct ncclIbQpTxSched
gpTxSched [NCCL IB MAX QPS];

struct ncclIbRrQpTxSched rrQpTxSched;

bool gpTxSchedInit;

uint64 t nextQpTxSchedUpdateNs;

int remapHead;

int rxPosts[NCCL IB MAX QPS *
NCCL NET IB MAX RECVS];

struct ncclIbQpTxStats gpTxStats[NCCL IB MAX QPS];

Broadcom

ACA-STF-WP100
14

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

New Functions

The new functions are summarized in the following table.

Table 4: Summary of New Functions

Function Name Description

initQpSchedParms Initialize Queue Pair scheduling parameters based on environment variables
nccllbGetRemap Allocate remap data structure for enhanced completion processing
nccllbFreeRemap Free remap data structure

updateQpTxSched Update scheduler weights

updateQpTxStats Update RTT estimator

getEffectiveTxNgps Determine number of Queue Pairs to used for transmit
ncclTunerPluginNotify Implement tuner plugin API, RCCL only

Modified Functions

The modifications to existing functions are summarized in the following table.

Table 5: Summary of Function Modifications

Function Name Description

nccllbAddEvent Add support for tracking CTS completion events

nccllbMultiSend Add Queue Pair scheduling functionality

nccllblsend Prepare for Queue Pair scheduling

nccllbPostFifo Add support for tracking CTS completion events

nccllblrecv Remove binding between wrap ibv post recvand rx req to support more flexible
completion processing that enables fallback to RR or WRR scheduling

nccllbTest New completion handling that supports fallback to RR or WRR scheduling, and write immediate
contents modified to identify when all rx completions have been received

Example Run-Line Command

The run-line command used to collect the AllGather performance data reported in Figure 5 is shown in the following example:
/root/irvnas_x86/benchmarks build/ubuntu 22.04/openmpi 4.1.6 ucx 1.15.0/install/bin/mpirun --mca
orte base help aggregate 0 -np 32 -host 1.1.10.15:8,1.1.11.15:8,1.1.12.15:8,1.1.13.15:8
-—allow-run-as-root --gmca btl tcp if include eno8303 --gmca oob tcp if include eno8303 --gmca btl
tcp,self -x NCCL IB DISABLE=0 -x

NCCL_IB HCA=bnxt rel:1,bnxt rel:1,bnxt re2:1,bnxt re3:1,bnxt red:1,bnxt re5:1,bnxt re6:1,bnxt re7: 1
-x NCCL_IB TC=104 -x NCCL_IB GID INDEX=3 -x NCCL DEBUG=VERSION -x NCCL IGNORE CPU AFFINITY=1 -x
NCCL IB QP SCHED ENABLE=1 -x NCCL IB SPLIT DATA ON QPS=1 -x NCCL IB QPS PER CONNECTION=4 -x
NCCL_NET="IB BNXT" -x NCCL NET PLUGIN=librccl-net-bnxt.so

/root/irvnas x86/rccl/rccl-tests/build/all gather perf -b IM -e 16G -f 2 -n 20 w5 -gl -c1 -p1l-t1l

ACA-STF-WP100
15

Broadcom

Copyright © 2025 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For
more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

@ BROADCOM

http://www.broadcom.com

	Introduction
	Background
	Congestion-Aware Sprayed Traffic Overview
	Configuration Parameters
	CAST Test Topology
	Performance Results
	Edgecore Testing
	Edgecore Performance Results

	Summary of Results
	Implementation Overview
	New Data Structures
	Modified Data Structures
	New Functions
	Modified Functions
	Example Run-Line Command

