
White Paper

Broadcom ACA-STF-WP100
December 5, 2025

Introduction

Network throughput and latency are significant factors in the performance that can be achieved by the collective operations 
commonly used in AI/ML applications. Network performance is impacted by the efficiency at which all the available paths in 
the network can be utilized. If one network path is congested, it can create a bottleneck that impacts the overall application 
performance.

The Broadcom® Congestion-Aware Sprayed Traffic (CAST) feature dynamically distributes traffic across network paths to 
more efficiently use available bandwidth and minimize network congestion. This feature can lower latency and improve 
application performance for large AI clusters using leaf and spine fabrics for scale-out traffic.

Figure 1:  Illustration of CAST Concept

Broadcom® Congestion-Aware Sprayed Traffic Feature
Achieving Congestion-Aware Traffic Distribution Using 
Standard RoCEv2



Broadcom ACA-STF-WP100
2

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Background

RDMA over Converged Ethernet (RoCE) networks are often used in AI/ML deployments. In RoCE networks, Queue Pairs 
are used to provide point-to-point connectivity between two endpoints. The RoCE traffic typically traverses a multi-tier 
Ethernet fabric, containing top-of-rack (ToR) and spine switches, that provide the connectivity between endpoints. One 
mechanism that is commonly used to distribute the traffic across multiple paths is equal-cost multipath (ECMP) routing. 
ECMP is typically performed independently by each switch.

ECMP uses an algorithm to distribute the traffic. Multiple algorithms have been implemented. A popular algorithm, that can 
maintain packet order, is to perform a hash on packet header fields, such as the {source IP address, destination IP address, 
protocol, source port number, destination port number} 5-tuple, and then use the hash result to select one of the available 
paths to forward the packet.

ECMP is effective, but leaves room for improvement. When traffic patterns are composed of a relatively small number of 
very high bandwidth flows, even a small number of collisions (mapping multiple flows to a common path) can cause severe 
congestion. One improvement that has been implemented by Collective Communication Libraries (CCLs) is to establish 
multiple Queue Pairs between two endpoints. The CCL then distributes the point-to-point traffic load across the multiple 
Queue Pairs, effectively spreading a large message transfer across multiple network paths.

For example, two mechanisms have been implemented in the NVIDIA CCL (NCCL) and the AMD ROCm CCL (RCCL):
 Round-robin (RR) load balancing – Send the first request over one Queue Pair, send the next request over another 

Queue Pair, and so on.
 Striping load balancing – Break the request into equal-sized subchunks and then transmit one subchunk over each 

Queue Pair.

Such Queue Pair load balancing provides improvement over ECMP alone, but also leaves room for additional improvement.



Broadcom ACA-STF-WP100
3

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Congestion-Aware Sprayed Traffic Overview

The Broadcom CAST feature improves Queue Pair load balance through the addition of weighted scheduling. The idea is 
to use round-trip time (RTT) measurements to schedule more traffic over the Queue Pairs that are experiencing the least 
congestion. The RTT measurements are used to calculate weights for a weighted scheduler. CAST can be applied to either 
of the CCL load balancing (LB) mechanisms listed above: round robin or striping.
 Queue Pair Striping LB Scheduler = CCL striping load balancing enabled with CAST
 Queue Pair RR LB Scheduler = CCL round-robin load balancing enabled with CAST

First, how this is done in conjunction with Queue Pair Striping is described. Then the concept is extended to the Queue Pair 
RR LB mechanism.

A number of metrics are possible based on the measured RTTs; including, but not limited to, the following measurements:
 Raw RTT
 (RTT – transmission time of message payload)
 (RTT – transmission time of message payload – minimum latency for the network)
 (RTT – transmission time of message payload – minimum latency for the network - transmission time of protocol 

headers associated with the message)

For CAST, the following metric was selected: (RTT – transmission time of message payload – minimum latency for the 
network)

Once the metric is selected and computed, an estimator function is applied. The estimator function filters the instantaneous 
metric values to form a more stable estimate of network congestion that is then used by the Queue Pair scheduler. A number 
of estimator functions are possible; including, but not limited to, the following functions:
 Average:

– Estimate = (sum of metric values) / (number of measurements)
– The average history (that is, sum and measurement count) may be reset to zero at a configured interval to increase 

responsiveness to changing network conditions
 Weighted average:

– Estimate = (metric value × weight) + (estimate × (1 – weight))
– Weighted average can respond more quickly to metric changes
– TCP previously used a weighted average estimator with a weight of 0.1

 TCP estimator:
– Estimate = estimate + (0.125 × (metric value – estimate))
– The TCP estimator can respond aggressively to metric changes

The current CAST version supports the following estimator functions:
 Average
 Weighted average

Conceptually, the estimates are used to compute scheduler weights as shown in the following text: 
for (qp = 0, sum = 0; qp < number of qp’s; qp++) {

new_estimate[qp] = 1.0 / estimate[qp]; 
sum += new_estimate[qp];

}
sched_weight[qp] = new_estimate[qp] / sum;



Broadcom ACA-STF-WP100
4

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

However, based on implementation experience, it was determined that the RTT measurements contain considerable jitter 
that were adversely impacting CAST effectiveness. The RTT measurement is made by CCL software as follows:
 The RTT measurement begins when a transmission request is submitted to a Queue Pair using the IB Verb API.
 The RTT measurement ends when the associated transmit completion is processed by the CCL software as a result of 

a polling operation.

Consequently, in an effort to filter the jitter bias, the following algorithm is used to compute the scheduler weights:
for (qp = 0, min_estimate = DBL_MAX; qp < number of qp’s; qp++) { 

if (estimate[qp] < min_estimate) {
min_estimate = estimate[qp]; 
min_metric = min_metric[qp];

}
}
for (qp = 0, sum = 0; qp < number of qp’s; qp++) {

new_estimate[qp] = 1.0 / ((estimate[qp] - min_estimate) + min_metric); 
sum += new_estimate[qp];

}
sched_weight[qp] = new_estimate[qp] / sum;

The data plane uses the scheduler weights to determine the subchunk size to be sent on the associated Queue Pair. This 
changes the distribution of the subchunk size transmitted on the Queue Pairs from an even distribution to a weighted 
distribution. The scheduler weights used by the data plane may be refreshed periodically according to a configured update 
interval.

Operation of the Queue Pair Stripe LB scheduler is shown in the following figure. In this example, subchunk sizes for QP0, 
QP1, and QP2 are rounded down to the next lowest multiple of 128 bytes.

Figure 2:  Queue Pair Stripe LB Scheduler



Broadcom ACA-STF-WP100
5

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

The Queue Pair Stripe LB scheduler operation can be enhanced by enforcing a threshold that constrains the minimum 
subchunk size. Since there are overheads, such as completion processing time, associated with transmitting a subchunk, 
there is a point at which further division of the transmit request chunk size into smaller subchunks is not advantageous from 
a performance perspective. CAST limits the number of Queue Pairs used by the scheduler according to the following 
algorithm:
sub-chunk size = chunk size / number of QPs available; 
if (sub-chunk size < sub-chunk threshold)

number of QPs used = 1;
else

number of QPs used = number of QPs available;

As mentioned previously, the estimates can also be used to implement a Queue Pair weighted round-robin (WRR) LB 
scheduler. In this case, the weight associated with a Queue Pair indicates the percentage of the transmit requests that should 
be sent on the Queue Pair as shown in the following figure.

Figure 3:  Queue Pair WRR LB Scheduler

When the Queue Pair Stripe LB scheduler falls back to the use of one Queue Pair due to the subchunk threshold, a 
configuration parameter controls the use of RR or WRR scheduling.



Broadcom ACA-STF-WP100
6

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Configuration Parameters

Operation of the CAST feature is controlled by the environment variables described in the following table.

Table 1:  CAST Configuration Environment Variables

Environment Variable Description
NCCL_IB_QP_SCHED_ENABLE 1 => enable the feature, defaults to 0

NCCL_IB_QP_SCHED_RESET_INTERVAL The interval where the RTT history is reset in units of milliseconds.
 default = 60000
 0 => never reset

NCCL_IB_QP_SCHED_UPDATE_INTERVAL The interval where scheduling weights are refreshed in units of 
microseconds, default = 50.

NCCL_IB_QP_SCHED_WEIGHT 0 => use average estimator
Otherwise, use the floating point weight that is applied to the RTT 
sample in the weighted average estimator, default = 0.

NCCL_IB_QP_SCHED_SPLIT_DATA_MIN The minimum amount of data per Queue Pair required to split the 
data transmission across multiple Queue Pairs. If the minimum is not 
met, the data is transmitted on a single Queue Pair, default = 64K 
bytes.

NCCL_IB_QP_SCHED_WRR_ENABLE 1 => enable the feature, defaults to 0
If enabled, weighted RR scheduling is performed instead of the 
standard RR scheduling when the 
NCCL_IB_QP_SCHED_SPLIT_DATA_MIN condition is not 
satisfied.



Broadcom ACA-STF-WP100
7

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

CAST Test Topology

The CAST concept was tested using the topology shown in the following figure.

Figure 4:  Broadcom CAST Test Topology

The test topology is designed to emulate the ECMP congestion that would be seen in larger clusters. The ToR switches 
forward all upstream traffic to the spine, which promotes ECMP-based congestion at the spine. A single Tomahawk® switch 
can be partitioned into multiple virtual ToR switches to minimize the equipment needed to implement the test topology.



Broadcom ACA-STF-WP100
8

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Performance Results

The following figure shows the CAST performance improvement for three collectives when using a 1-GB message size with 
four Queue Pairs per connection. The improvement is expressed as the percentage that collective throughput increased 
when CAST was enabled. The performance data was collected on a cluster with four server nodes, where each node was 
connected to a virtual ToR switch, and each node was equipped with the following components:
 8 × AMD MI300X GPUs
 8 × Broadcom Thor2 NICs operating at 400Gb/s

Figure 5:  Example of CAST Performance Improvement



Broadcom ACA-STF-WP100
9

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Edgecore Testing

The CAST feature was tested using the topology shown in the following figure. The leaf switches use virtual routers and 
Border Gateway Protocol to set up a logical topology that sends all traffic to the spine switches to emulate a larger cluster.

The leaf and spine switches are Edgecore AIS800-64O Tomahawk 5 Ethernet switches. Each node includes eight Thor2 
400G Ethernet NICs attached, one-to-one.

Figure 6:  Edgecore CAST Test Topology

Edgecore Performance Results
The following figures compare the results using RCCL’s collective benchmark tests for various collective operations. All use 
the network topology shown in the previous figure. Results are shown for four iterations per collective operation:
 split-no-cast = Queue Pair split LB without CAST
 split-cast = Queue Pair split LB scheduler using CAST
 wrr-no-cast = Queue Pair round-robin LB without CAST
 wrr-cast = Queue Pair round-robin LB scheduler using CAST

The results for the out-of-place option in the benchmark are shown. This indicates the operation reads from an input buffer 
and writes the result to a different output buffer. The message size refers to the overall collective. The size of the data 
movement on each GPU is scaled based on the total number of GPUs and the type of operation.



Broadcom ACA-STF-WP100
10

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Figure 7:  AllReduce Performance Using CAST

Figure 8:  AllGather Performance Using CAST



Broadcom ACA-STF-WP100
11

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Figure 9:  AlltoAll Performance Using CAST

Figure 10:  ReduceScatter Performance Using CAST



Broadcom ACA-STF-WP100
12

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Summary of Results

CAST can improve performance on CCL collective operations on AI clusters using a leaf-spine topology. RCCL bus 
bandwidth may be increased from 10% to up to 50% for large messages.

Fat tree topologies with two or more tiers of switching may experience ECMP collisions, particularly with traffic patterns using 
a relatively small number of high bandwidth flows. CAST distributes data across multiple network paths to more evenly 
distribute traffic and thereby optimize network performance. The following figure shows the bandwidth per network path 
without CAST and with CAST enabled.

Figure 11:  AllReduce Average Bus Bandwidth with and without CAST

Workloads that use larger messages tend to experience more network congestion and therefore benefit more from using 
CAST. CAST can be less effective with smaller collective message sizes for multiple reasons:
 Smaller message sizes produce less network congestion.
 Smaller message sizes produce smaller transmit request chunk sizes that must not exceed the CAST subchunk 

threshold so that CAST scheduling is not applied.

Performance improvement is seen across all collective operations.



Broadcom ACA-STF-WP100
13

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

Implementation Overview

The CAST implementation is based on the CCL Network Plugin capability that enables customization of the network 
transport layer. The implementation starts by copying the network transport layer implementation in the src/transport/
net_ib.cc file and using it as a base. A high-level overview of the modifications that were made to the base code is 
provided in this section with the goal of making it easier to read and understand the code.

The CCL network plugin code is in the ext-net/net_ib_bnxt directory. The contents of the ext-net/net_ib_bnxt 
directory for NCCL is shown below:
root@hpci5201:/mnt/irvnas/home/sandbox/developer/x86/nccl/nccl_v2.26.2-1/ext-net/net_ib_bnxt# ls
libnccl-net-bnxt.so Makefile net_ib_bnxt.cc

The network plugin source code is in the net_ib_bnxt.cc file. Type make to build the code and produce the libnccl-net-
bnxt.so library. On NCCL systems, the libnccl-net-bnxt.so library is then copied to the ../../build/lib/
libnccl-net-bnxt.so location.

The contents of the ext-net/net_ib_bnxt directory for RCCL is similar, but the library name is changed to librccl-
net-bnxt.so. On RCCL systems, the librccl-net-bnxt.so library is then copied to the ../../build/librccl-
net-bnxt.so location. There is also one additional file in the ext-net/net_ib_bnxt directory for RCCL, 
net_plugin_tuner_api.h. This file defines an API that enables a tuner plugin to dynamically modify CAST parameters 
on a {collective type, message size} basis.

The environment variables used to invoke the network plugin are slightly different for NCCL versus RCCL as shown in the 
following text:
 NCCL:

– NCCL_NET=”IB_BNXT”
– NCCL_NET_PLUGIN=bnxt

 RCCL:
– NCCL_NET=”IB_BNXT”
– NCCL_NET_PLUGIN=librccl-net-bnxt.so

The code overview is presented as follows:
 New data structures
 Modified data structures
 New functions
 Modified functions



Broadcom ACA-STF-WP100
14

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

New Data Structures
The new data structures are summarized in the following table.

Modified Data Structures
The modifications to existing data structures are summarized in the following table.

Table 2:  Summary of New Data Structures

Data Structure Name Description
ncclIbQpSchedParms Parameters derived from the environment variable configuration

ncclIbQpTxData Data about Queue Pair transmission

ncclIbRemapWrId For remapping work, request an ID so that additional information is available at the 
completion time of sends

ncclIbQpTxStats Statistics for scheduling Queue Pair transmissions

ncclIbQpTxSchedScratchpad Scratchpad for computing scheduler weights

ncclIbQpTxSched Scheduler for Queue Pair transmissions

ncclIbRrTokens Tokens for the weighted RR Queue Pair scheduler

ncclIbRrQpTxSched Scheduler for weighted RR Queue Pair transmissions

ncclIbQpSchedDesc Queue Pair scheduling descriptor

Table 3:  Summary of Data Structures Modifications

Data Structure Name Description Note
ncclIbRequest Added:

 int ctsEvents[NCCL_IB_MAX_DEVS_PER_NIC];
 struct ncclIbQpSchedDesc desc;

ctsEvents is needed for 
enhanced completion processing, 
desc needed for fallback to 
RR or WRR scheduling

ncclIbSendFifo Added:
 uint16_t rxReqIndex;

Needed to remove binding between 
posted recvs and the rx req

ncclIbNetCommBase Added:
 struct ncclIbRemapWrId remapWrId[MAX_REQUESTS];
 struct ncclIbQpTxStats qpTxStats[NCCL_IB_MAX_QPS];
 uint64_t nextQpTxStatsResetNs;
 struct ncclIbQpTxSched

qpTxSched[NCCL_IB_MAX_QPS];
 struct ncclIbRrQpTxSched rrQpTxSched;
 bool qpTxSchedInit;
 uint64_t nextQpTxSchedUpdateNs;
 int remapHead;
 int rxPosts[NCCL_IB_MAX_QPS *

NCCL_NET_IB_MAX_RECVS];

Main data structures for the feature



Broadcom ACA-STF-WP100
15

Broadcom® Congestion-Aware Sprayed Traffic Feature White Paper Achieving Congestion-Aware Traffic Distribution Using Standard RoCEv2

New Functions
The new functions are summarized in the following table.

Modified Functions
The modifications to existing functions are summarized in the following table.

Example Run-Line Command
The run-line command used to collect the AllGather performance data reported in Figure 5 is shown in the following example:
/root/irvnas_x86/benchmarks_build/ubuntu_22.04/openmpi_4.1.6_ucx_1.15.0/install/bin/mpirun --mca 
orte_base_help_aggregate 0 -np 32 -host 1.1.10.15:8,1.1.11.15:8,1.1.12.15:8,1.1.13.15:8
--allow-run-as-root --gmca btl_tcp_if_include eno8303 --gmca oob_tcp_if_include eno8303 --gmca btl 
tcp,self -x NCCL_IB_DISABLE=0 -x 
NCCL_IB_HCA=bnxt_re0:1,bnxt_re1:1,bnxt_re2:1,bnxt_re3:1,bnxt_re4:1,bnxt_re5:1,bnxt_re6:1,bnxt_re7: 1 
-x NCCL_IB_TC=104 -x NCCL_IB_GID_INDEX=3 -x NCCL_DEBUG=VERSION -x NCCL_IGNORE_CPU_AFFINITY=1 -x 
NCCL_IB_QP_SCHED_ENABLE=1 -x NCCL_IB_SPLIT_DATA_ON_QPS=1 -x NCCL_IB_QPS_PER_CONNECTION=4 -x
NCCL_NET="IB_BNXT" -x NCCL_NET_PLUGIN=librccl-net-bnxt.so
/root/irvnas_x86/rccl/rccl-tests/build/all_gather_perf -b 1M -e 16G -f 2 -n 20 -w 5 -g 1 -c 1 -p 1 -t 1

Table 4:  Summary of New Functions

Function Name Description
initQpSchedParms Initialize Queue Pair scheduling parameters based on environment variables

ncclIbGetRemap Allocate remap data structure for enhanced completion processing

ncclIbFreeRemap Free remap data structure

updateQpTxSched Update scheduler weights

updateQpTxStats Update RTT estimator

getEffectiveTxNqps Determine number of Queue Pairs to used for transmit

ncclTunerPluginNotify Implement tuner plugin API, RCCL only

Table 5:  Summary of Function Modifications

Function Name Description
ncclIbAddEvent Add support for tracking CTS completion events

ncclIbMultiSend Add Queue Pair scheduling functionality

ncclIbIsend Prepare for Queue Pair scheduling

ncclIbPostFifo Add support for tracking CTS completion events

ncclIbIrecv Remove binding between wrap_ibv_post_recv and rx req to support more flexible 
completion processing that enables fallback to RR or WRR scheduling

ncclIbTest New completion handling that supports fallback to RR or WRR scheduling, and write immediate 
contents modified to identify when all rx completions have been received



Copyright © 2025 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For 
more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein 
belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, 
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does 
not assume any liability arising out of the application or use of this information, nor the application or use of any product or 
circuit described herein, neither does it convey any license under its patent rights nor the rights of others. 

http://www.broadcom.com

	Introduction
	Background
	Congestion-Aware Sprayed Traffic Overview
	Configuration Parameters
	CAST Test Topology
	Performance Results
	Edgecore Testing
	Edgecore Performance Results

	Summary of Results
	Implementation Overview
	New Data Structures
	Modified Data Structures
	New Functions
	Modified Functions
	Example Run-Line Command


