
W
hite P

aper

White Paper by Bloor
Author Philip Howard
Publish date September 2015

Automated testing:
coping with change

“The truth is that
you can skimp on

automated testing and
deploy manual testers

because you think
it is cheaper (it isn’t)

or because it is easier
to get operational
rather than capital
budget, but this is

simply short-sighted.

”
Author Philip Howard

3 A Bloor White Paper

56%
OF DEFECTS STEM FROM

AMBIGUOUS REQUIREMENTS
Bender RBT, 2009

OVER 60%
OF IT PROJECTS FAIL

Standish Group’s Chaos Manifesto 2013

$46bn
SPENT ANNUALLY

FIXING DEFECTS
IIBA, 2013

ONLY 69%
OF FUNCTIONALITY

IS DELIVERED
Standish Group’s Chaos Manifesto 2013

CAUSING 80%
OF DEFECT COSTS

Bender RBT, 2009

70%
OF ALL TESTING
STILL MANUAL
Bloor Research, 2014

UP TO 50%
OF TIME SPENT

LOOKING FOR TEST DATA
Grid-Tools’ (acquired by CA Technologies)

experience working on site

100%
COVERAGE FROM

12 TEST CASES GENERATED
Audit at a large financial services company

WHAT DIFFERENCE HAS
CA AGILE REQUIREMENTS

DESIGNER MADE?

30%
REDUCTION

IN TEST CYCLES
Grid-Tools’ (acquired by CA Technologies)

experience working on site /
performing audits of test cases

95%
REDUCTION
IN DEFECTS

Grid-Tools’ (acquired by CA Technologies)
 Press Release

hange is a constant in both
development and testing. In
development environments

this has, over the years, resulted in
the use of agile approaches and, more
recently, what has come to be known as
“cloud first”. That is, the idea that you
aim to have multiple small releases and
enhancements to your applications rather
than larger, more occasional releases.
Actually, we would argue that this really
originated with open source projects but,
in any case, it is a subset of “continuous
delivery”. Whatever it is called, the
idea is that by focusing on incremental
improvements to an application you
are less at the mercy of changes to
requirements. Of course, this is not a
panacea: it only applies to upgrades
and improvements, not to green-field
developments, though agile development
can reasonably be regarded as supporting
continuous delivery.

There is a distinction between “cloud
first” and “continuous delivery” in that
the former emphasises development
whereas the latter refers to the whole
software development lifecycle, including
testing, provisioning, and so on, as well
as development. And not forgetting
that there are a myriad of tools that you
might want to use that need to be linked
automatically and without the need for
manually scripted integration. However,
while this is the broader context, in
this paper we are going to discuss the
impact of change on testing within the
context of continuous delivery. This is an
issue that has not historically been well
addressed.

Much testing continues to be manual
and Figure 1 illustrates some of the costs
associated with that practice. Moreover,
it should be obvious that manual
processes are going to be equally
deficient when it comes to managing
change. Nevertheless, there are
automated testing frameworks available
on the market and here we want to
discuss how these cope with new and

amended requirements. In fact, one of
the arguments against using automated
testing frameworks has historically been
precisely that they haven’t been good at
managing change. We are going to argue
that, with the right tools, it is actually
possible to automate the change process
as a part of the testing environment and
thus to enable continuous delivery.

In practice there are various issues to
consider:

• The need for test automation
frameworks to be able to respond to
constant user demands. We can call
this “responsive automation”.

• Reusability. By building up a library
of reusable test assets functionality
can be tested more rapidly by
selecting components from this
library.

• Traceability. In order to automate
change you need all the data,
expected results and test scripts to
be automatically updated through
traceability back to requirements.

• Impact analysis. Simply implementing
a change is one thing, but you need to
understand how this might impact on
other parts of the system, because the
former can break the latter.

• Speed of delivery. To keep up with
the competition, companies need to
get new applications and upgrades
to market faster. Testing cannot be a
roadblock on this path.

We will discuss each of these issues
in turn.

Automated testing:
coping with change

C

Figure 1:
The Price of Failure

© 2015 Bloor 4

Responsive automation
All testing environments have to be
able to react to changing user demands.
Moreover, it is typical that change
requests are both frequent and never
ending. The issue arises as to how you
react to these requests in a timely and
efficient manner. The short answer is
that you need to reduce manual testing,
increase automation and do so in a way
that allows you to be more responsive
to change. However, it is easy to say this,
much more difficult to realise in practice.
The question is: how can automation
enable responsiveness?

To turn this around: what are you
actually looking to achieve? From a
testing perspective on application change
requests, what you would like in an ideal
world is automated derivation of all the
test cases you need to ensure adequate
coverage, generation of the relevant test
scripts, and the automated provision of
appropriate data to run against those
tests. In fact, if we really want to be
idealistic, you would like this to be a one-
click process. And this isn’t entirely blue
sky thinking. It is not difficult to imagine
artificial intelligence and machine
learning capabilities being built into
test automation frameworks that start to
move testing in this direction.

However, we are not there yet and,
in the meantime, at least some degree
of manual intervention is going to be
required. The question is, therefore, how
to minimise this requirement? And the
first part of any answer to this conundrum
must be that requests for change, and the
details thereof, are captured in some sort
of formal manner. There are actually two
(perhaps three) considerations here. Firstly,
the definition of the change requirements
should be directly usable at the start of the
automation process. Secondly, the process
of capturing these requirements needs to
be understandable not just to developers
and testers, but also to the business users
that are commissioning the changes. If
this is not the case then there is too
great a risk that what the developers are
creating will be different from what the
user wants. Thirdly, preferably, this whole
process should be easy to use and not
require detailed training.

The key is the first point: changes are
formally captured. Software should then
identify what test cases are required to
validate a change made to an application
and search the existing library of test
cases to see if suitable test cases already
exist and, if not, to generate new test
cases to be stored in the library for future
use. Notice that this implies some sort
of test case management software. If
suitable existing test cases exist then
they should have test scripts already
associated with them, along with profiles
of the data required to run those tests
and links to where that data resides. If
those test cases don’t exist, then you
want the software to generate the test
scripts and data profiles at the same time
as you generate the test scripts.

Put all that together and you
genuinely have the ability to be
responsive to change.

Automating reusability
Testing is all too frequently treated as a
series of unrelated processes: you have
some code to test, you design test cases,
write test scripts, define the profile of the
data needed for your tests, identify where
that data is, and describe the expected
results. If the data is not easily available
you may have to use the facilities of a
service virtualisation tool in order to
capture and/or simulate appropriate data.

In any case, these steps are typically
considered as a part of a single process
that is isolated from other such
processes. Needless to say, test cases
and their associated test components
are typically stored for potential reuse
but how much reuse really goes on?
Of course, this has been a bugbear
in development circles for decades:
everyone recognises the theoretical
benefits of reuse but making it happen
is another matter entirely. However, it is
potentially easier to implement in testing
than it is in development. This is because
test cases can be generated directly from
requirements whilst that is not generally
the case for application software.

The key point to supporting
reusability in a testing environment is
software that will identify what test cases
(along with the scripts, data and expected

Responsive automation

“The short answer
is that you need
to reduce manual
testing, increase
automation and
do so in a way that
allows you to be more
responsive to change.
However, it is easy to
say this, much more
difficult to realise
in practice. The
question is: how can
automation enable
responsiveness?

”

5 A Bloor White Paper

results) are relevant to the particular
software being developed and which can
scan an existing library of test cases to
identify if a test case already exists and,
if not, will create and store it for future
use. In other words, reusability needs to
be automated: simply creating a library of
potentially reusable test components will
not be sufficient because we know that
human nature means that it will not be
properly utilised. Worse, you end up with
more and more test cases, which makes
the identification of reusable components
even more difficult, meaning less and less
reuse. So, test case management needs
to be automated.

However, it isn’t simply a question
of reusability for new test components;
you also need to cater to the fact
that there will typically be (tens of)
thousands of existing assets. These will
need to be scanned by the test case
management software so that you can
identify both duplicates and out-of-date
test components that are no longer
valid. It would probably be sensible
if you could identify where test cases
were simply versions of an underlying,
more fundamental test case. In any case
you need software to help you perform
governance against your existing test
assets. If you were running this in
stand-alone mode you would then want
the ability to compare any new test case
with what already exists. However, in a
truly automated environment you would
want the software that captured your
requirements to automatically look for
relevant test cases in your repository, only
generating new test components if these
were not already available.

In practice, the total automation
described is not available, but this is
the direction in which the market is, and
should be (in our opinion), moving.

Traceability
Change is a constant and that creates
problems for testing environments. In
particular, there is a problem with test
components and particularly test scripts,
especially if these are written and
maintained manually. This is because the
cost of manually maintaining scripts can be
prohibitive. In fact, and we can generalise
here – not just to testing but to any sort
of development process – maintenance,
especially manual maintenance, is to be

avoided if at all possible. For example,
we spoke not so long ago with a company
that had so many ETL (extract, transform
and load) scripts – tens of thousands – that
the department literally had no time to
do anything other than to maintain those
scripts.

The question is therefore how to
avoid manual maintenance or, at least,
to minimise it (even in an automated
environment you will need some sort of
manual oversight)? The short answer,
beyond saying simply “automation”, is that
you need traceability from requirements,
through test cases and test scripts, to
the data and your expected results. And
it is only if you have this traceability
right through the environment that you
can successfully expect to implement
automation that will take away many of
those expensive manual processes.

What does that mean in practice?
It means that when a requirement is
changed then relevant amendments are
automatically generated (or retrieved if
you have appropriate test cases in your
library) for all the subsequent steps in the
testing process: the test cases, the scripts,
the data that needs to be run through
the tests, and the results that you expect
from those tests.

Achieving this is not as simple as
stating it. In reality you are going to need
an integrated suite of tools that starts
with requirements capture and test case
and test script generation, combined with
test data capabilities. In this latter case
you will want test data management
for in-house data but will need to
integrate with service virtualisation for
third party data or other data that is not
easily accessible. This suggests that
point products will not be suitable as
these will only resolve, at best, a part of
the problem. As an aside, and taking a
broader perspective – from requirements
through development to testing and
provisioning – then we are talking about
an integrated suite of products that
combine to provide continuous delivery.

Going back to the testing
environment, if we are assuming that
traceability is implemented throughout,
then everything depends on the original
requirements, or changes thereto. This in
turn means that requirements need to be
captured in a formal manner in some sort
of model (where the word “model” is used

“Change is a constant
and that creates

problems for testing
environments.

In particular, there
is a problem with

test components and
particularly test scripts,

especially if these
are written and

maintained manually.

”

© 2015 Bloor 6

here in its most abstract sense) so that
when you make a change to the model
then everything else is automatically
updated by virtue of the traceability back
to the model. Note that this doesn’t
necessarily mean generating new test
cases, it may mean recognising that there
is an existing test case that can be reused
to support the current scenario.

What is required is joined-up thinking
or, more accurately, joined-up product
suites. This should include test case
management (managing reusable testing
assets) as well as the other capabilities
discussed.

Impact analysis
Supporting changes through a test
automation framework is one thing but
it’s not the whole story. Changes in
themselves can have implications beyond
their obvious scope. It is entirely easy
to make what seems like an innocuous
little change only to find that the whole
application breaks. The risk of this
happening tends to be proportional to
the complexity of the application you
are changing – the more complex the
application, the more likely it is to collapse
– the last straw on the camel’s back.

This is one good reason to adopt a
style of application upgrades that focuses
on incremental upgrades rather than
major releases: fewer, smaller changes
are less likely to disrupt an existing
system. However, regardless of the
approach taken you would like to be
able to know what impact any particular
change might have on the rest of the
application.

In principle, the knock-on effects of
making a change should be captured
and handled by the developers of the
application in question but, in practice,
this will often be left to testers. However,
how do testers know what impact any
particular change might have elsewhere?
In practice, the simple answer is that
they don’t. In reality, it is more or
less impossible to catch unintended
consequences if you are using manual
testing methods because you won’t
be able to see linkages across the
application. There are many documented
cases of companies implementing new
systems where these have failed precisely
because of unforeseen consequences.
The most well-known are those that

bring down company web sites for days
or weeks, costing not just revenues but
loss of prestige and, in some cases, fines.

Conversely, an automated test
framework should be able to identify any
implications of a change, provided that
it has been used to capture the entire
application with all of its requirements.
Then, when a change is made to those
requirements you should be able to
perform impact and dependency analyses
to see how these changes will impact on
the rest of the system. If you are going to
assess these manually then ideally they
should be available in graphical format
(we would recommend actually using
a graph) as well as in a more tabular
manner, to suit different users’ preferences.
However, better yet, what you would like
the software to do is to identify all the
relationships and dependencies that are
altered because of this change, and then
generate (or retrieve from a library) all
relevant test cases, scripts and so on.
This should mean that not just the direct
effects of a change are tested but also its
indirect effects.

Of course there is a coverage issue
here. Typically not everything gets
tested. But this is because of the time
and manpower required for testing,
especially manual testing. Automation
offers the promise of exhaustive testing.
If you test everything then you’ll know
that everything works. Test less than
everything and you won’t.

Speed of delivery
Consider Uber. Its service is challenging
traditional markets for taxis all over the
world. Love it or hate it, it is disruptive.
And similar things are happening across
industry sectors. In particular, customer
facing applications are rapidly evolving,
with companies adopting cloud-first
(or, more broadly, continuous delivery)
development cycles whereby new releases
come out every quarter. They don’t have
lots of new features in each release –
they are incremental – but they rapidly
accumulate new features and functionality.
This is the world you live in and the old
“we’ll outsource development because it
is cheap” model no longer works except
perhaps for some back-office applications.
Thus, for many applications, time to market
and speed of delivery is crucial. However,
that can’t be at the expense of bugs and

“…fewer, smaller
changes are less likely
to disrupt an existing
system. However,
regardless of the
approach taken you
would like to be able
to know what impact
any particular change
might have on the rest
of the application.

”

7 A Bloor White Paper

functions that don’t work so proper testing
still needs to be done, but it needs to be
done in such a way that does not slow
down release cycles.

How do you achieve this? One
answer would be to hire more testers.
A lot more. An alternative would be to
make existing testers more productive.
We recommend the latter but how is this
to be accomplished? This isn’t a complex
question – the answer to making workers
more productive has been the same for
more than 200 years – you make workers
more productive by giving them tools
that help them work more efficiently.
Specifically, it is tools that help to
automate some or all manual processes
– whether it’s the Spinning Jenny or the
production line – that enable improved
productivity. In the case of testing: test
automation frameworks.

In effect, testers should be the
operators of test automation tools:
leaving the routine tasks of identifying
what test cases need to be run, the
generation of the relevant test scripts
and so forth, to be handled by the
automation software. Testers then
become like DBAs: they are managing

the testing environment, resolving any
issues that arise, focusing on high level
problems where genuine expertise is
required, liaising with developers and
users, and so on. This is how we envision
the future, but we are not there yet.
While test automation framework vendors
are now truly attempting to grasp the
automation nettle in a holistic way, fully
functional, fully integrated product suites
are not available yet so there will be a
gradual evolution for testers, which will
give them time to adapt and to learn new
skills. We do, however, believe that the
day of the traditional tester is numbered:
not just because the technology is
emerging that can automate many testing
tasks but because the market requires
application delivery in timescales that
simply can’t be met through traditional
manual testing.

“…the answer to making
workers more productive

has been the same for more
than 200 years – you make

workers more productive by
giving them tools that help
them work more efficiently.
Specifically, it is tools that
help to automate some or

all manual processes.

”

© 2015 Bloor 8

utomated testing frameworks
are not what they were even
a couple of years ago. Then

we were looking at disparate, poorly
integrated point solutions that addressed
a bit of the testing environment but
were not in any sense holistic. In that
environment you could see some sense
in the argument that maybe a manual
approach, at least in some areas, had
benefits over adopting automation. In
our opinion that point of view is no
longer valid and, within three to five
years, it will be completely discredited.
We expect to see a considerable leap
forward as more and more testing
becomes automated.

The truth is that you can skimp on
automated testing and deploy manual
testers because you think it is cheaper
(it isn’t) or because it is easier to get
operational than capital budget, but this
is simply short-sighted. You might get
lucky and never have the sort of outages
that some organisations are infamous for,
but you probably won’t. Your competitors
that adopt automated testing frameworks
will get to market faster than you can
and with applications of higher quality.
The truth is that you need to get that
competitive advantage before they do.

Conclusion

A

FURTHER INFORMATION

Further information about this subject is available from
www.bloorresearch.com/update/2289

http://www.bloorresearch.com/update/2289

9 A Bloor White Paper

In addition to the numerous reports
Philip has written on behalf of Bloor
Research, Philip also contributes regularly
to IT-Director.com and IT- Analysis.com
and was previously editor of both
Application Development News and
Operating System News on behalf of
Cambridge Market Intelligence (CMI).
He has also contributed to various
magazines and written a number of
reports published by companies such as
CMI and The Financial Times.
Philip speaks regularly at conferences
and other events throughout Europe and
North America.

Away from work, Philip’s primary
leisure activities are canal boats, skiing,
playing Bridge (at which he is a Life
Master), dining out and foreign travel.

hilip started in the computer
industry way back in 1973
and has variously worked as

a systems analyst, programmer and
salesperson, as well as in marketing and
product management, for a variety of
companies including GEC Marconi, GPT,
Philips Data Systems, Raytheon and NCR.

After a quarter of a century of not
being his own boss Philip set up his own
company in 1992 and his first client was
Bloor Research (then ButlerBloor), with
Philip working for the company as an
associate analyst. His relationship with
Bloor Research has continued since that
time and he is now Research Director
focused on Data Management.

Data management refers to the
management, movement, governance
and storage of data and involves
diverse technologies that include (but
are not limited to) databases and data
warehousing, data integration (including
ETL, data migration and data federation),
data quality, master data management,
metadata management and log and
event management. Philip also tracks
spreadsheet management and complex
event processing.

P

About the author
PHILIP HOWARD
Research Director / Information Management

© 2015 Bloor 10

Bloor overview
Bloor Research is one of Europe’s
leading IT research, analysis and
consultancy organisations, and in 2014
celebrated its 25th anniversary. We
explain how to bring greater Agility
to corporate IT systems through the
effective governance, management and
leverage of Information. We have built
a reputation for ‘telling the right story’
with independent, intelligent, well-
articulated communications content and
publications on all aspects of the ICT
industry. We believe the objective of
telling the right story is to:

• Describe the technology in context to
its business value and the other systems
and processes it interacts with.

• Understand how new and innovative
technologies fit in with existing ICT
investments.

• Look at the whole market and explain
all the solutions available and how they
can be more effectively evaluated.

• Filter ‘noise’ and make it easier to find
the additional information or news
that supports both investment and
implementation.

• Ensure all our content is available
through the most appropriate channels.

Founded in 1989, we have spent 25
years distributing research and analysis
to IT user and vendor organisations
throughout the world via online
subscriptions, tailored research services,
events and consultancy projects. We are
committed to turning our knowledge into
business value for you.

11 A Bloor White Paper

Copyright and disclaimer
This document is copyright © 2016 Bloor. No part of this publication may be
reproduced by any method whatsoever without the prior consent of Bloor Research.
Due to the nature of this material, numerous hardware and software products have been
mentioned by name. In the majority, if not all, of the cases, these product names are
claimed as trademarks by the companies that manufacture the products. It is not Bloor
Research’s intent to claim these names or trademarks as our own. Likewise, company
logos, graphics or screen shots have been reproduced with the consent of the owner and
are subject to that owner’s copyright.

Whilst every care has been taken in the preparation of this document to ensure that the
information is correct, the publishers cannot accept responsibility for any errors or omissions.

2nd Floor
145–157 St John Street

LONDON EC1V 4PY
United Kingdom

Tel: +44 (0)207 043 9750
Web: www.BloorResearch.com

email: info@BloorResearch.com

mailto:info%40bloorresearch.com?subject=

