
Application Release
Automation with Zero
Touch Deployment™

Eran Sher
Application Delivery

WHITE PAPER: APPLICATION RELEASE AUTOMATION | JUNE 2014

2 | WHITE PAPER: APPLICATION RELEASE AUTOMATION WITH ZERO TOUCH DEPLOYMENT

Challenge
Today’s agile organizations pose operations teams with a tremendous challenge: to deploy new releases to
production immediately after development and testing is completed. To ensure that applications are
deployed successfully, an automatic and transparent process is required. We refer to this process as Zero
Touch Deployment™.

This article reviews two approaches to Zero Touch Deployment—a script-based solution and a release
automation platform. The article discusses how each can solve the key technological and organizational
challenges faced by agile organizations when they set out to implement an automatic deployment system.

The article begins by recounting the business and technological contexts that drive agile organizations to
seek deployment automation solutions.

How to Automate Deployment in an Agile Organization
and Get Results
The highly competitive environment of the enterprise software industry has forced organizations to adopt
software production methodologies that better ensure rapid delivery of new services to production.

In order to meet business objectives, organizations must fulfill customer expectations for constant improvement
and innovation and establish short feedback loops between the market and the development teams.

Development teams discovered that established software development methods were often unfit to cope
with the increasing pressure to innovate and create new functionality. One solution that arose was
designing new software development methodologies around the concept of rapid software releases.

These development frameworks—broadly referred to as “agile” methodologies—set out to shorten the
software development lifecycle by implementing an iterative and incremental approach to the process.

The Agile Iteration: A Micro-Development Lifecycle
The basic principle of iterative and incremental development is that software development moves forward
in small cycles, or iterations. Each iteration is a micro-implementation of the general software development
lifecycle. It starts with planning, continues to development and testing, and ends in deployment. The initial
iterations implement a subset of the software requirements, and the subsequent iterations gradually
enhance the evolving application.

Executive Summary

ca.com

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

This cyclic approach enables organizations to be more receptive to their customer base, as user feedback on
current iterations impacts the development course of future ones. The business value of the application
increases because its functions are constantly being evaluated, modified and perfected. Also, the iterative
approach can have the significant advantage of allowing the application to generate revenue at a much
earlier stage than traditional waterfall-like development methods.

The iterative approach spans the complete development process, from design through development and
testing and finally to deployment. However, this transformation is not easy to accomplish. Faster methods
need to be devised to carry out the testing of the new functionality, its integration into the general build,
and its deployment to pre-production and production environments within the confines of the single iteration.
For the testing and integration stations, a solution comes in the form of Continuous Integration (CI).

Continuous Integration: Extending the Agile Methodology to
Testing and Integration
Continuous integration uses automation to apply testing and integration at the single iteration level.
Whenever a developer commits a new code to the version control system (preferably at least once a day),
the CI server automatically runs a new build and applies a full range of automatic tests, including unit
tests, component tests, integration tests, and functional as well as non-functional acceptance tests. Manual
tests are confined only to those testing aspects that cannot be performed by machines. Problems that are
identified as a result of failed tests can be fixed by the development team before the latter moves on to the
next iteration. This depiction is schematic, of course, but it captures in broad strokes the reality in many
organizations, whose business survival depends on their ability to release to production a constant flow of
new functionality.

However, a software development cycle does not end with the testing and integration stations. To complete
the agile development cycle, organizations have to extend the iteration to include the deployment of the
new functionality to all environments in the application lifecycle. But although deployments are, at least in
theory, a part of the CI framework, it seems that this last phase of the software development lifecycle is
also the last to adapt to the agile ecosystem.

The Bottleneck Simply Shifted to Operations
Nowadays, organizations realize that they cannot adopt an agile methodology for development and testing
and then stop short before extending it to deployment. Even when agile methodology is executed to
perfection and every iteration produces well-working and integrated functionality, it is not effective if it
cannot be deployed in time. An overwhelmed operations team cannot handle the flow of new updates and
the bottleneck that overloaded development and testing simply shifts to operations.

As it is, operations teams are facing complicated challenges without even taking into consideration the
increasing rate of deployment events. Deployment flows have become more complicated, with multiple
tiers and service-oriented architectures. Physical and virtual environments are simultaneously supported
and maintained, and the number of deployed servers has increased exponentially since the introduction of
virtualization and cloud-computing technologies. In the context of this business reality, the adoption of
agile methodologies and continuous integration makes matters worse by adding additional complexity to
an already complex organizational and technological environment.

3 | WHITE PAPER: APPLICATION RELEASE AUTOMATION WITH ZERO TOUCH DEPLOYMENT ca.com

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

4 | WHITE PAPER: APPLICATION RELEASE AUTOMATION WITH ZERO TOUCH DEPLOYMENT

In many organizations, the delayed adaptation to the agile mode of work in operations undermines the
overall objective of an agile and iterative framework. Instead of being deployed in a dedicated release, the
products of single iterations are packaged with products of other iterations. This unfortunate outcome
counteracts the basic tenants of agile methodologies, since new functionality is waiting for deployment
instead of running in production, generating income and being reviewed by customers.

The Objective of Zero Touch Deployment in an
Agile Organization
An agile organization, then, poses one tremendous challenge to operations: the ability to deploy new
releases to production, where they can be reviewed by users and possibly generate revenue, immediately
after successfully completing development and testing. In other words, the deployment process should be
fully automatic and transparent as soon as it is activated. We refer to this integration of the deployment
station to the iterative and incremental approach that characterizes the agile development and testing
stations as Zero Touch Deployment.

In its extreme form, Zero Touch Deployment depicts a process whereby release to production is
automatically triggered by the successful promotion of a new build from the acceptance testing station.
Tailor-made deployment manifests are used to enable Zero Touch Deployment for complex releases.
Manifest deployments separate the dynamic elements of the application release from the fixed processes.
This involves storing all dynamic, changeable elements of a deployment in a manifest, including such
details as which application resources should be taken, their specific location and the version. These details
can be changed quickly and easily per release. The simple fixed processes, directing how the release
process should be executed, are kept separate and can be employed and repeated time and time again.

ca.com

Figure 1:

Consumption of
Manifest in
CA Release
Automation.

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

5 | WHITE PAPER: APPLICATION RELEASE AUTOMATION WITH ZERO TOUCH DEPLOYMENT

The Complexities of Deployment Automation
However, automating the deployment of large-scale data center applications is not a simple task to
achieve, especially if we set out to provide a real and complete answer to the deployment needs of agile
organizations. Whether it is comprised of a collection of deployment scripts or managed by a specialized
application release automation platform, the automatic deployment system has to cope with numerous
complexities on multiple levels.

One complexity arises from the different types of deployment events agile organizations produce. That
means that different automatic deployment processes have to be created and maintained to handle
deployment events ranging from a full installation of the application to a minor update or even a single
configuration file update. An automatic deployment system must be able to simplify application
deployment tasks and mitigate risks, turning complex, manual operations into reliable, repeatable and
error-free processes. This accelerates the time-to-release of individual releases and enables the
simultaneous deployment of multiple applications.

Moreover, each of these deployment events can involve more than one application tier. A minor deployment
event, such as a bug fix, can involve changing a parameter value in the configuration file of a middleware
server as well as applying a patch to a library file in an application server. A major deployment event, such
as installing an application from scratch, usually involves simultaneously deploying the application to a
database server, application server and/or a Web server.

The implications of this on any automatic deployment process are that it must be comprised of separate
deployment flows, one for each application component or tier. Therefore, to enable the deployment of
multi-tier applications, any automation deployment system must be able to capture the tier-based
architecture of the deployed applications. A script-based system would map a separate deployment script
to each tier. A dedicated automatic release platform can employ a graphical approach to enable the user
to visually represent and create the different tier-dedicated flows of the deployed application.

Co-dependent relations between tier-specific deployment flows represent another complicating factor that
the automatic deployment process has to be able to contain. Deployment flows are said to be co-dependent
when one flow can start execution only after another flow has run its course; for example, the website
deployment flow cannot start before the database deployment flow is completed.

An automatic deployment mechanism is expected to be able to coordinate the execution order of
co-dependent tier-specific deployment flows. A script-based system can use a build management tool to
coordinate between the execution of the different tier deployment scripts. An automated release platform
can enable the user to specify the co-dependent relations by drawing connectors between nodes
representing the different tier-dedicated flows.

ca.com

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

6 | WHITE PAPER: APPLICATION RELEASE AUTOMATION WITH ZERO TOUCH DEPLOYMENT ca.com

In addition to the challenges inherent in the multiplicity of deployment events and flows and in their
execution management and coordination, an automatic deployment system has to manage multiple
deployment destinations. The rise of online applications serving a global user base, accompanied by the
spread of virtualization and cloud-based technologies, has increased by tenfold the number of instances
targeted by a single application release. Consequently, an automatic deployment system has to execute
one deployment event to hundreds or thousands of servers residing in multiple data centers.

To be able to manage application deployments to a multitude of servers, each with its own configuration
information, automatic deployment systems must be able to support clean separations between the
deployment process and the configuration information. For each deployment destination, an instance of
the same deployment process is executed with a unique configuration information set.

To support such a separation, a script-based system has to set up a strict configuration management
policy. An automatic release platform, on the other hand, has a dedicated grid that maps and represents
the environment in which the application is deployed. Each physical, virtual or cloud server is represented
graphically in the context of its environment, as well as in its relation to the deployment process. The
configuration information of each server is represented, stored and maintained in the context of this
representation.

Automating deployment along the principles of Zero Touch Deployment can help organizations fulfill
the objective of the deployment station in an agile framework—namely, to deploy new code to production
immediately after it has completed the development and testing stations.

Figure 2:

Multi-Tier
Dependency During
Application
Deployment

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

7 | WHITE PAPER: APPLICATION RELEASE AUTOMATION WITH ZERO TOUCH DEPLOYMENT ca.com

Automatic Deployment: Not Just to Production
However, an automatic deployment system that is comprehensive, adaptive and robust enough to face the
challenges posed by an agile organization must be in a constant process of tuning and perfection. For this
reason, it is imperative not to limit the use of the automatic deployment process to the deployment station
at the end of the iteration. On the contrary, the same automatic process that is used to deploy to production
should be used to deploy to the development and to the testing environments throughout the iteration.
This directive ensures that the deployment process is tried extensively before release day to avoid any
last-minute surprises.

The development team should use the automatic process whenever they need to deploy the application
to their local development station, and the testing team should also use it when they create their testing
environment. This way, any negative impact of the new code on the automatic deployment process is
discovered early, when it is relatively easy to correct.

Because development and testing environments are different from production environments, some
modifications should be implemented to make these environments more production-like. Such
modifications may involve some costs, but these expenses are minimal in comparison to the cost of
unsuccessful release days.

A Deployment Language Common to All
This brings us to the question of who “owns” the automatic deployment system. Deployment used to be
the sole responsibility of operations, but the reality of agile organizations has made deployment the
business of everyone involved in software production. Since developers, testers and operation personnel
alike must use the automatic deployment system in their daily work, they must share the knowledge
regarding the technology, terminology, work practices and release strategies that are involved in everyday
running and maintenance.

Figure 3:

High-level Graphical
Representation of
Application
Deployment Process

http://www.ca.com
https://www.linkedin.com/company/ca-technologies
http://blogs.ca.com/
https://twitter.com/CAInc

The implication of this organization-wide shared ownership on the automatic deployment system is that it
should be accessible to everyone participating in the development lifecycle. In the case of a script-based
system, only personnel with coding skills can develop and maintain the deployment scripts. This limits the
accessibility of the system from the point of view of the organization. However, in the case of a dedicated
release automation platform, a task-specific GUI enables the user to define, configure and maintain the
automatic deployment processes without recourse to script coding. In this context, there is a good chance
for the formation of a common language between development, testing and operations, and the successful
integration of the deployment station in the agile development lifecycle.

For more information, visit ca.com/releaseautomation

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables
them to seize the opportunities of the application economy. Software is at the heart of every business,
in every industry. From planning to development to management and security, CA is working with
companies worldwide to change the way we live, transact and communicate – across mobile, private
and public cloud, distributed and mainframe environments. Learn more at ca.com.

8 | WHITE PAPER: APPLICATION RELEASE AUTOMATION WITH ZERO TOUCH DEPLOYMENT

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. This document is for your
informational purposes only and to the extent permitted by applicable law, CA provides it “as is” without warranty of any kind, including, without limitation, any implied
warranties of merchantability, fitness for a particular purpose, or noninfringement. The information in this document is based upon CA’s experiences with the referenced
software products in a variety of development and customer environments. Past performance of the software products in such development and customer environments is not
indicative of the future performance of such software products in identical, similar or different environments. In no event will CA be liable for any loss or damage, direct or
indirect, from the use of this document, including, without limitation, lost profits, business interruption, goodwill or lost data, even if CA is expressly advised in advance of the
possibility of such damages. CA does not provide legal advice. Neither this document nor any software product referenced herein serves as a substitute for your compliance with
any laws (including but not limited to any act, statute, regulation, rule, directive, standard, policy, administrative order, executive order, and so on (collectively, “Laws”)
referenced herein or any contract obligations with any third parties. You should consult with competent legal counsel regarding any such Laws or contract obligations.
 CS200_87158_0914

Connect with CA Technologies at ca.com

http://www.ca.com/us/devcenter/ca-release-automation.aspx
http://www.ca.com
https://plus.google.com/+CATechnologies/posts
http://www.ca.com
http://www.ca.com
https://www.facebook.com/CATechnologies
https://www.linkedin.com/company/ca-technologies
https://twitter.com/CAInc
https://www.youtube.com/user/catechnologies
http://blogs.ca.com/
http://www.slideshare.net/cainc

