
For product information please visit our website at: broadcom.com
Copyright © 2021 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, Symantec, and the Symantec logo, are among the trademarks of
Broadcom. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
BC-XXXXEN August 2021

11 1

API Strategy and Architecture:
A Coordinated Approach

https://www.broadcom.com

2

Introduction
The rise of the application programming interface (API)
represents a business opportunity and a technical challenge.
For business leaders, APIs present the opportunity to open new
revenue streams and maximize customer value. But enterprise
architects are the ones charged with creating the APIs that
make backend systems available for reuse in new Web and
mobile apps.

It is vital that all stakeholders understand that the business
goals and technical challenges of an API program are intimately
related. Program managers must take responsibility for clearly
communicating the key business goals of a proposed API to the
architects who will actually build the interface.

Architects, meanwhile, must take responsibility for maintaining a
clear focus on these goals throughout the process of deploying
an API infrastructure and designing the interface itself. All
technical decisions should contribute to the creation of an
interface that empowers developers to build client apps that
end users will really value.

This eBook outlines best practices for designing results-focused
APIs that will form the cornerstone of your API program’s
success.

3

Part 1: From SOA to API
Enterprise IT in the 21st Century has been characterized by a move towards opening
up previously siloed databases and applications, so that data and functionality can
be accessed across organizational boundaries or reused in new systems. The initial
manifestation of this trend came with service oriented architecture (SOA) and the
most recent has been the explosion of web-oriented APIs.

On one level, the “Web services” central to SOA represent the same thing as Web
APIs. Both are interfaces used to open up backend systems. However, there are some
fundamental differences between the two technologies, which are highly relevant to basic
design decisions:

• The core technical difference is that SOA programs are focused on creating Web services
to facilitate internal, server-to-server integrations, whereas Web APIs exist to speed the
creation of Web and mobile-based apps, often of a customer-facing nature.

• SOA programs are generally driven by IT departments and focused on cost savings, but API
programs more commonly originate with business development organizations and focus on
generating new revenues.

• Most SOA projects are
created by and for enterprise
architects to help them more
easily integrate heterogeneous
systems and deliver new IT
services. API programs, by
contrast, should be focused
on meeting the needs of
application developers.

SOA vs APIs

Internal or
to partners

IT costs

Enterprise
Architects

External, often
to customers

Business
revenues

App
developers

Integration
Goal

Project
Driver

Interface
Consumer

APIsSOA

44

Nevertheless, many API programs are growing out of previous SOA
initiatives. Web services focused on internal or partner integrations
are being opened up to developers—both within and outside the
enterprise. During this process, it is important for API designers to
remember that an API program has drivers and requirements quite
different from the ones that initially led enterprises to open their IT
assets via Web services.

With this in mind, the broad goals of API design in general can be defined as:

• Enabling self-service for app developers and app users alike

• Reducing barriers to accessing valuable enterprise resources

• Prioritizing the needs and preferences of client app developers

• Encouraging collaboration between and among internal and external
resources

• Addressing the security and scaling issues of exposing IT assets to the open
market

Above all, API design must be focused on maximizing the business value of the
interface. In part two, we will take a closer look at how APIs add value to the
business.

Goals of API Design

55

Part 2: The API Value Chain
APIs may have no intrinsic value, but they do bring enormous value to
the business. They do so through their backend data and the application
functionality the interface enables. In this view, the API is simply a facilitator
that allows systems with great organizational value to be reused in
applications more likely to yield direct business value.

While this is a useful perspective, when
looked at more closely, it becomes clear
that a well-designed API is, in fact, a
complex and powerful connector. It joins
a wide variety of business assets—IT

Backend Systems API Providers App Developers Client Apps End Users

The API Value Chain

systems, internal and external personnel,
client applications and customers— in order
to more effectively realize the potential
value of those assets. We can refer to this
state of affairs as “the API value chain.”

It is important to understand that an API
delivers value in this relatively complex
way because it is otherwise quite easy
to lose sight of the fact that APIs exist
to deliver business value, not technical
efficiencies. But while APIs deliver value
more directly than SOA, they do so less
directly than the browser-based Web—
where a site can deliver actual sales
leads or sales. APIs generate revenue in
a more subtle way, by linking the various
assets outlined above.

6

Some Examples of How
APIs Generate Value
Any API will have its own unique value. Broadly speaking though,
enterprises may use an API as a way to:

Generate new revenue directly
An API can be a direct source of revenue if developers are charged for access or if the
interface is used to facilitate the in-house creation of pay-to-play applications or to
enable ecommerce.

Extend customer reach and value
APIs simplify the process of reaching new customers or increasing the value of current
customers by offering existing services via new platforms and devices.

Support sales and marketing activities
An API can also help a company to market its products and services by enabling
the creation of the kind of engaging, immersive functionality associated with online
marketing best practices.

Stimulate business and technical innovation
APIs help organizations develop new systems, offerings and strategies because
they reduce barriers to innovation by making it possible to implement ideas without
changing backend systems.

77

Making Design Decisions
API design decisions should be driven by what precisely the API will link—
what will be on either side of the interface, both inside the organizational
IT infrastructure and outside the enterprise firewall. Specifically, it is vital to
answer these two questions:

• What systems are being exposed and
where (and with whom) do they reside?

• Who are the target developers and what
kind of apps will they build?

“Who are the target developers?” is a
particularly important question and one
that is relevant to the most fundamental
way APIs are categorized—as “private” or

“open.” Private APIs are for use only
within the enterprise or, in some cases,
by partner organizations. Open APIs are
made available to the wider community
of external developers, who are free
to create their own apps using the
enterprise’s backend resources.

Private APIs are closer in spirit to Web
services. Typically, the goal of a private
API will be to help internal developers,
contactors or partners more efficiently
create apps for use internally or
externally. As with web services, cost
savings often represent the key driver
as APIs allow new applications to be
developed in a cost-effective manner.
However, many private APIs are used
to create public-facing Web and mobile
apps that generate new business value
more directly.

Open API programs tend to focus
on adoption. By allowing third-party
developers to access their APIs,
enterprises aim to make their IT assets
available to the widest possible user

base. Therefore, developer adoption is a
key metric for measuring the success of
an open API. While there are fewer open
APIs than private APIs, it is with the open
APIs that both the greatest business
opportunities and the most significant
design challenges/technical risks lie.

In fact, not only do open APIs create
a range of completely new integration
design challenges (for example, how
to open backend systems to external
developers without exposing these
systems to hackers), they also create new
business risks. A poorly conceptualized
open API program can lead an enterprise
to cannibalize its own core business and
potentially expose the enterprise’s critical
business assets to competitors.

Business considerations like these
must drive technical design decisions.
We will discuss how to align business
considerations with technical decisions
further in part three.

8

Part 3: Aligning API Design
with Business Goals
Whereas SOA has historically sought to improve organizational
processes, API programs seek to increase business revenues.
Therefore, API design decisions must focus clearly on the
core strategic business aims of the company’s API program.
Before starting to design an API, you must be clear about what
problems the API program aims to solve, which opportunities
it aims to realize and how it is going to do so. Specifically, it is
important to answer these questions:

• What assets will be made available?

• How should the API make those assets available?

• What kind of applications could be built against the API?

• How can developers be motivated to use the API?

• How will the applications create value for the business?

Communication and collaboration are the keys to designing
an API that addresses these challenges and opportunities.
Throughout the process of designing, deploying and managing
an interface, program managers and API architects must work
closely to ensure they agree on their core strategic goals, what
they will do to achieve these goals and how they will evaluate
the outcomes of their efforts. Specifically, business and technical
roles must be in agreement on:

• The objective and ideal end-state of the program

• The initial tasks that will allow the organization to work towards
these objectives

• The key metrics that will be used to measure success

• The ongoing day-to-day tasks that will allow the program to
keep hitting its targets

9

To ensure business managers and architects stay on the same page, the program must
have a “sponsor” who is able to span the divide that often appears between technical
departments, business managers and app developers. Organizations often make the
mistake of assigning this role to a non-technical marketing manager, but this “API
evangelist” must be able to understand the organization’s architectural constraints
and share the enthusiasms of app developers.

The evangelist’s role is to establish clear communication with all stakeholders, specifically:

• “Selling” the API program to executives and other senior decision makers

• Ensuring API architects understand program managers’ business goals

• Helping program managers understand architects’ technical resources and constraints

• Gathering information on target developers’ preferences and requirements

Once communication has been established, and objectives, tasks and metrics have been
agreed upon, the real work of API design can begin, which is what we shall discuss in part four.

Assigning a Sponsor

API EvangelistAPI Program Manager API Architect

Targets Tasks Metrics

Target DevelopersBusiness Leaders

Technical ResourcesRevenue Opportunities

Aligning API Goals

10

Some Notes on API
Business Strategy
Program managers (or “API owners”)—in collaboration with the
organization’s API evangelist—have to take responsibility for crafting
a clear API business strategy and communicating this strategy to
executive-level decision makers, as well as the architects and developers
who will implement the technical side of the strategy.

The first step is to establish a clear business objective and a vision statement for the
API program that is aligned with the company’s broader vision. An API is not a purely
technical solution and should be treated as a product or business strategy in itself—
albeit one embedded within the overall enterprise business strategy.

With this in mind, the next step should be to build a business model around this vision,
outlining the details of:

Costs, resources and efficiencies
The systems, relationships, activities and other resources the program will leverage
and how the program will empower the enterprise to make better use of these
resources.

Value, revenue and innovation
The customers, markets and channels the program will target and how technical
innovation will make it possible to generate new revenue from these targets.

The core of this business model should be a value proposition that clearly outlines
the real, measureable business value the API program will offer to the business.

11

Part 4: Designing a Usable API
From a purely technical perspective, designing an API is relatively easy. But,
designing one that contributes real value to the business can complicate
matters. Beyond functionality, enterprise architects must also consider business
goals and the end-user experience.

This may be particularly challenging for
anyone who is extending a SOA project
into the API realm. In SOA, it is the
architect’s needs that are central, and
user adoption is assumed. Consequently,
architects with SOA backgrounds will
commonly approach API design decisions
with the assumption that interface and
app users will have the same needs and
biases they have. This almost always
leads to bad design decisions.

With APIs, the design focus should not be
on functionality, but on user experience.

The key question is not “What
functionality do I need to expose?” but
“How will developers use this interface?”

If developers do not want to use your
API, then it has no value.Therefore, design
must be developer-centric and focused
on providing the lowest possible barrier to
entry for the target developer audience.

Whether an API is published privately
or openly, a good developer experience
(DX) will be essential to its success.
DX is significantly harder to quantify

than exposed functionality. While it can
be defined as the sum of interactions
between the API provider and the
developer, the result of this sum is less a
number and more of a feeling: how does
the interface make developers feel?

Obviously, this is a rather nebulous
metric, but there are certainly practical
steps you can take in the real world
to understand how your developers
are likely to feel about the different
approaches you might take to designing
your API. Specifically, you should:

• Create developer profiles

• Prototype and test your API in the field

1212

Developer Profiles
You cannot create a usable API unless you know the needs and
preferences of your target developer. There is a tendency to
assume that developers who build client applications against
APIs are young self-described “hackers,” obsessed with the latest
languages and protocols. But, in many cases—particularly in
private API scenarios—developers of enterprise services are still
loyal to more ingrained ways of doing things.

The point is that every API project will need to address a
particular developer audience in order to be successful. In some
cases, this may be a very homogenous group with shared needs.
In others, you may need to address a wide variety of preferences.
Regardless, you must understand who will be using your API and
how you can define the interface to ensure these developers can
quickly and effectively use your backend resources.

So, the first step is to draw up a persona (or set of personas) to
define the type (or types) of developer you are targeting with
your APIs. This should include information on:

• Who they work for (and in what department) and why they are
developing an app

• Programming skills, technical constraints and language/
protocol preferences

• Personal temperament and in what context they work best

Prototyping
Once you have an understanding of the work goals, technical
requirements and personal preferences of your target developers,
you can start building an interface that addresses these criteria.
However, before creating a production API bound to real data or
backend systems, you should build a lightweight prototype that
can more easily be changed.This prototype will allow you to test the
design assumptions you have made based on your target persona.

One of the advantages of building a lightweight prototype based
on “throwaway” data or functionality is it allows you to apply
minimal security and provide the lowest possible barrier to entry
for developers. This will make it possible to engage your target
developers early on. They will write light apps to test your API
design and provide feedback. Then, you can make changes to
the interface and test again. After a couple of iterations, you
should be on the right track.

Of course, none of this addresses how you will make
fundamental, real-world decisions about interface design. In part
five, we begin to discuss the API design options.

Various online tools exist that
can simplify the process of
building and testing lightweight
API prototypes.

Popular examples include...

A design tool that makes it possible
to quickly build an API prototype,
withoutwriting any code.

Apiary
aplary.lo

API description languages that can
help developers discover and begin
to use your prototype interface.

1
2
3

RAML
 rami.org

SWAGGER

swagger.io

Useful API
Prototyping Tools

1313

Choosing an API style is one of the most important decisions an interface designer can make. Decisions of this type will
inevitably be affected by technical considerations, such as the specific nature of backend resources being exposed or the IT
organization’s constraints. But, other aspects, such as business goals of the API program and the needs and preferences of
the target developer audience must also be considered.

Today’s common API design styles can be categorized as:

Part 5: API Style

Web Service
(aka Tunneling)

Pragmatic REST
(aka URI)

Hypermedia
(aka “True Rest”)

Event-Driven
(aka IoT)

14

Web Service
The Web Service style is a transport-agnostic, operation-based
approach to API design, which uses Web Services Description
Language (WSDL) to describe interfaces. It comes from the
SOA world, where Web Service interfaces were used to integrate
heterogeneous networks. Therefore, this may be a good choice
of style if your program involves extending SOA interfaces. The
large amount of tooling that exists for Web Services also means
that client applications can often be built quickly and easily.

However, there are serious limitations to using this style. First of
all, while this transport-agnostic style can use Hypertext Transfer
Protocol (HTTP), it is very inefficient in this context. Therefore, it is not
the best choice if your services are being extended to the open Web.

Furthermore, it is only practical if your target developers are
familiar with SOA standards like WSDL, Simple Open Access
Protocol (SOAP) and Remote Procedure Call (RPC). For most
client developers, the learning curve is likely to be steep. This
is particularly true in open API scenarios and especially those
focused on mobile. As a rule, app developers don’t like SOAP as
a programming language and the tooling available for building
Web Service clients tends not to support mobile. Practical
considerations aside, there is a problem of perception: using
the Web Service style could make your organization seem like
a slow-moving “dinosaur,” which is bound to decrease adoption
among mobile app developers.

Pragmatic Representational REST
The Pragmatic Representational State Transfer (REST) style is
a simpler, more Web-centric approach to designing integration
interfaces. This style, which uses URI instead of WSDL and is
transport-specific (it exclusively supports HTTP), has largely
taken over from the Web Service style

in enterprise API design. Indeed, the term “Web API” is
commonly used interchangeably with “RESTful API” and
achieving “RESTfulness” is often considered to be a key goal of
any interface design project. In fact, most REST APIs in use today
do not fully meet the REST criteria outlined in Roy Fielding’s
defining Ph.D thesis from 2000. Whereas, REST was defined to
formally describe the kind of dynamic, hyperlinked interactions
that power the Web, most Web APIs deal in the exchange
of static data. Therefore, for the sake of argument, it is more
accurate to refer to this design style as “Pragmatic REST.”

It is easy to see why the Pragmatic REST style has become
so popular. Because URI is intuitive and Web and mobile
developers are mostly familiar with RESTful interfaces, developer
adoption and productivity are likely to be high. Furthermore, the
concentration on HTTP makes Pragmatic REST APIs ideal for
developing today’s Web and mobile applications. Right now, this
is likely to be the go-to style for the majority of projects.

However, the Pragmatic REST style is not perfect for every
context and future developments seem likely to challenge its
dominance. There are definite tradeoffs with this style: it is
limited to four methods, it can be “chatty” and URI design is not
standard. Furthermore, with the Internet of Things (IoT) and Big
Data greatly expanding and altering online networking, there are
likely to be challenges to this specifically web-centric approach.

14

15

Hypermedia
The Hypermedia API design style is a task-based approach that
aims to provide a more sustainable alternative to Pragmatic
REST. Like Pragmatic REST, Hypermedia APIs are focused on
URI, HTTP and RESTful standards generally. But in a sense,
the Hypermedia Style represents a more faithful application of
RESTful architecture, according to Fielding, which describes why
the Web has proven to be so scalable.

As such, the Hypermedia approach is even more Web-centric:
the hyperlinks and forms of the Web are mirrored in the way
a Hypermedia API provides links to navigate workflow and
template input to request information. Just as the RESTful
architecture of the Web has proven to be highly scalable and
evolvable, a well-designed Hypermedia API can continue to
support new applications for years.

While this architectural approach is clearly an attractive option
for enterprises seeking to create scalable APIs that reliably
support Web and mobile applications over the long term, it is
still an emerging design style with a notable lack of associated
tooling. This may impact developer adoption rates and make
it harder for those developers that do adopt the API to quickly
create powerful client apps.

Event-Driven
While HTTP-focused styles like Pragmatic REST and Hypermedia
may be ideal for the Web and mobile apps as we know them,
the arrival of HTML5 and IoT is changing things—creating the
possibility of more dynamic apps, but also demanding more
lightweight interfaces In this context, the Event-Driven style has
appeared as a transportagnostic alternative, ideal for enabling
apps to use WebSocket and other emerging alternatives to HTTP.

This style, which focuses on server- or client-initiated events,
provides a low-overhead option, able to deliver better
performance in scenarios where a large number of small
messages are passing between the backend and the app.
Therefore, it is ideal for IoT and a range of mobile use cases—
especially instant messaging, video chat, multi-player games
and so forth. It is also likely to appeal to the most cutting-edge
developers.

Of course, not all developers are that obsessed with being edgy
and there are plenty of use cases where a conventionally RESTful
approach will be more appropriate. HTTP is still the transport
protocol that powers the Web and it does not accommodate
client-sent events particularly well. Furthermore, the request-
reply model this style is built upon makes building client apps
more complex for developers.

15

1616

Your chosen style will depend on your technical constraints,
business goals and developer preferences. Be careful not to fall
into the trap of adopting a “fashionable” style if it is not appropriate
for your specific context. At the same time, try to pick a style
that will prove scalable and adaptable over the long term, as your

resources change, your user audience grows and the very nature of
online networking evolves.

No matter what style you choose, there are certain architectural
components you will want your API to include. In part six, we will
outline these components and how they will be organized.

Architectural Styles for API Design

SOA-Related Lots of tooling
available Not suitable for
mobile.

Web Service Pragmatic REST Hypermedia Event-Driven
Ideal for Web and mobile app
Familiar to most app dev. May
not be adaptable over time.

Highly web-centric Scalable
and evolvable Not familiar
to many devs.

Appropriate for loT and
devices. Lightweight and
dynamic. Not suitable for
standard scenarios.

1717

The architectural design styles previously outlined should
provide a model for how you design the architectural
framework that enables the unique functionality of your
API implementation. Certain use cases will call for the
implementation of specific design styles. It is also important
to note, however, that there are a number of components
that should be included in any API architecture, no matter
what the use case.

These common architectural components should not be built
into the implementation of any given API. Instead, they should be
deployed into a core API infrastructure that will sit between the
organization’s APIs and the client apps that leverage these APIs.
Abstracting out these components makes it quicker and easier to
design additional APIs, to update a range of APIs in unison and
to ensure the smooth running of APIs, backend systems
and client applications.

For maximum effectiveness, these components should be
architected in a layered manner, so that all data traffic must pass
through each of the layers named to the right, in the specified order.

Part 6: API Architecture

Security Layer

Caching
Layer

Representation
Layer

Orchestration
Layer

Client
Applications

End Users

Backend
Systems

API
Implementation

Architectural Layers

18

The Security Layer
As well as opening up a world of business opportunities, APIs
have the potential to open the enterprise to serious new security
threats, by exposing sensitive backend systems and data to the
outside world. APIs are vulnerable to many of the security threats
that have plagued the Web plus a range of new API-specific
threats. Therefore, it is vital to deploy strong, API-specific
security at the edge of your API architecture.

This need for strong security can conflict with a basic goal of
API design—a well-designed API makes it easy for developers to
create apps that provide seamless access to enterprise resources.
Strong security is likely to impact this ease of access. Deploying
security in a centralized API architecture (rather than in the API
implementation) will help mitigate this impact, as will enabling
the use of flexible access management technologies like OAuth
and OpenID Connect.

The Caching Layer
Interface efficiency will prove essential to providing the
frictionless developer and end-user experiences necessary for
meeting your API program’s adoption and retention goals. One
way to maximize API efficiency is by placing a caching layer near
the edge of the API architecture. This layer should allow cached
responses to be delivered for common requests, reducing
pressure placed on the actual API implementations and backend
resources.

The Representation Layer
Clearly, the presentation of your API should be as developer-
friendly as possible. By abstracting this element away from the
implementation, you can focus on centrally creating a welcoming
way into your APIs, without impacting the APIs or backed
resources themselves. This makes it significantly easier to present
complex backend systems as Web and mobile-centric interfaces
that developers can quickly understand and leverage to make
powerful, user-friendly apps.

The Orchestration Layer
While some apps may be able to deliver value by accessing
a single resource via a single API, the possibilities grow
exponentially when you combine data from multiple APIs
(including ones from other enterprises) and backend resources.
Deploying an orchestration layer next to the interfaces
themselves can enable such combinations, as well as simplify
the process of composing new implementations from multiple
backend resources. The most efficient way to create a centralized
API architecture is by deploying an API Management solution. In
part seven, we will outline key API Management components.

18

1919

Building an infrastructure that centralizes common architectural
components of secure, developer-centric APIs can significantly
simplify the process of implementing APIs that add real value
to your business. But, building such an infrastructure internally can
be a significant challenge. Thankfully, a range of enterprise software
vendors now offer “API Management” solutions that remove the
need to develop this critical infrastructure in-house.

Furthermore, as the name suggests, API Management solutions
also include functionality for managing and optimizing the
performance of APIs over the long term. And the most powerful
solutions also have features for building a Web-based interface
through which developers can discover, learn about and access
APIs— an absolutely vital part of presenting a developer-centric
API, which cannot be built into the implementation itself.

Part 7: API Management

20

API Management Components
An enterprise-level API Management solution will have two key
components:

• API Gateway—Delivers the security, caching and orchestration
functionality needed to deploy a core API architecture

• Developer Portal—Provides a customizable interface, through
which developers access the APIs as well as documentation,
community forums and other useful content

It is important to note that API Management is not simply a
technical requirement. It will inevitably play a role in the business
success of any enterprise API program. Managing the composition,
performance and security of enterprise APIs is essential to
ensuring the organization gets a good return on its investment in
an API program. Likewise, it is vital to actively engage and manage
developers to ensure they build apps that create business value.
For most enterprises, an API Management infrastructure will
prove essential to designing, deploying and maintaining APIs that
developers will use to create truly powerful new apps.

20

Client AppEnd User API Implementation

API Architect

Backend Systems

App

Developer PortalApp Developer

App

API Owner

API Gateway

API Management Components

Discover API Management Essentials with the 5 Pillars of API Management eBook

https://docs.broadcom.com/docs/5-pillars-of-api-management

2121

From an architectural standpoint,
APIs represent an extension of SOA.
Just as SOA created interfaces to
open up legacy systems for reuse
in new services that might span
organizational boundaries, APIs are
used to open the enterprise backend
to developers building applications for
mobile devices and the public Web.
This is a significant extension and the
design requirements for a Web API
are likely to be very different from
those for a SOA Web service.

Conclusion
Whereas, SOA programs are generally driven by the need for IT cost savings, API programs
focus on generating new revenue streams. A Web API connects a range of existing
business assets in order to create value in previously unforeseen ways. Good API design is
always focused on business results. Therefore, API design and architecture practices must
be aligned with the organization’s business strategy, from the ground up.

API owners and architects must communicate to ensure they agree on key goals, how they
aim to achieve these and how they will measure their success. To ensure communication is
effective, an API evangelist who is able to bridge the gap between business and technical
roles should parse the needs of business leaders, API owners, app developers and
enterprise architects in order to negotiate an appropriate set of targets, tasks and metrics.

In practice, designing an API for business success usually means creating an interface
that developers actually want to use. Therefore, before you build anything, it is vital
to systematically research your developer audience in order to understand who your
target developers are and what they want from an API. It can also be helpful to test any
assumptions about developer preferences by offering lightweight prototype APIs.

22

Prerequisites for Good Design

22

Align technical and
business goals

Establish developer
preferences

Choose an API
design style

Deploy API
infrastructure

App

Once you are ready to design your actual API implementation,
you will have to choose the design style that best suits your
project. Web Service APIs will suit internal programs aimed at
developers with experience in SOA. Pragmatic REST APIs are
more suitable for open API projects focused on mobile devices
and the Web. The Hypermedia and Event-Driven styles are
emerging as approaches that might prove more sustainable in
the mobile and IoT-driven future.

Whatever the style, there are certain architectural elements that
all APIs must include—namely security, caching, representation
and orchestration. For maximum efficiency and manageability,
these elements should not be built into the individual API
implementations. Instead, all of the APIs should leverage a
central, layered API architecture that sits between the edge of
the enterprise and the APIs themselves.

The most efficient and effective way to deploy a central API
architecture—and ensure the API program remains successful
over the long term—is to adopt an API Management solution.
There are a variety of solutions on the market, but most include
two common components:

• An API Gateway that provides security functionality and other
key infrastructure

• A Developer Portal that simplifies the process of engaging and
enabling developers

There is a lot at stake in today’s enterprise API projects—huge
business opportunities, significant security risks and much more.
It is vital that you do your preparation before starting to build
an API: align design goals with business goals; establish the
preferences of your target developers; choose an appropriate
implementation style; and deploy an API Management
infrastructure. Then you will be ready to build a truly valuable API.

Only Layer7 API Management enables organizations to integrate systems, simplify app development and monetize data with the
level of API security and protection enterprises need today. LEARN MORE ABOUT LAYER7 API MANAGEMENT

https://www.broadcom.com/products/software/api-management

2323

For product information please visit our website at: broadcom.com
Copyright © 2021 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, Symantec, and the Symantec logo, are among the trademarks of
Broadcom. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
BC-XXXXEN August 2021

About Layer7 API
Management

API Academy

With over 800 API Management customers across sectors as diverse as
communications, financial services, government and retail, Broadcom offers
industry-leading technology and know-how that helps organizations deliver
value through APIs. Layer7 provides a complete API Management solution,
including a full-functioned API Gateway with military-grade security features,
plus a developer portal offered in on-premises and cloud versions. PLEASE
VISIT THE LAYER7 PRODUCT PAGE AT BROADCOM.COM

API Academy is a worldwide team of thought leaders in the API and
microservices space who have been brought together by Broadcom to develop
free resources for the community, API Academy provides organizations with
the education and consulting they need to build better APIs, improve software
delivery, and execute on broader digital strategies, as well as provide the
industry’s only best practices certification program for API Designers, API
Security Architects, and API Product Managers at no charge. To learn how the
API Academy can help your organization with API strategy, architecture, and
design. PLEASE VISIT AT API ACADEMY.

https://www.broadcom.com
https://www.broadcom.com/products/software/api-management
https://apiacademy.co/

