
An Architect’s Guide to
Microservices: Accelerate
Microservices and API
Development with Tools
from Layer7

Solution Brief: An Architect’s Guide to Microservices

Layer7 provides the proven platform
for a scalable, secure microservices
solution for the enterprise.

Challenge

3 | Solution Brief: An Architect’s Guide to Microservices

In the application (app) economy, many enterprises must rebuild
applications that need to quickly adapt to changing needs. The traditional
way of rolling out and supporting large applications is just not sufficient.
Today, enterprise architects and VPs of applications are wondering:

•	 How can I deploy and release modern applications in days or weeks,
not months or years and minimize downtime on app updates?

•	 How can I leverage multiple development teams on different language
platforms to build those modern applications?

•	 How can I scale applications as needs change, while minimizing
infrastructure costs to accommodate that scaling?

ca.com

Opportunity These challenges stem from an increased focus on agility and scale
for building modern applications. Traditional application development
methodology cannot support this environment.

Layer7 has expanded full lifecycle API management to include
microservices, an integration that enables best-of-breed services to
work together. Layer7 enables enterprises to use best practices and
industry leading technology. Layer7 also provides a platform for modern
architectures, and secures an environment for agility and scale. This
combination enables you to accelerate the process of architecture
modernization and to make it more practical.

Benefits Layer7 provides a design, development, deployment, monitoring and
management platform for your microservices architecture.

•	 Live API Creator delivers an easy–to–use solution for designing and
deploying microservices, reducing your time to market for your modern
applications.

•	 Microgateway and API Gateway provide the layered security and
management infrastructure that a microservices architecture demands,
ensuring that your enterprise IP remains secured.

•	 OAuth Toolkit, a component of API Gateway, enables authorization
as well as integration with identity and access management solutions.
OAuthToolkit improves CX for app users, while extending enterprise
security from end to end.

•	 Application Performance Management™ (APM) monitors your
containerized systems, proactively ensuring application availability and
a good CX.

4 | Solution Brief: An Architect’s Guide to Microservices ca.com

Microservices and Digital Transformation
This solution brief describes how microservices can provide the agility
that enterprises need to meet the demands of the app economy. Digital
transformation is not a walk in the park. Indeed, building modern
application architectures can be daunting to set up and implement. To
help you face those challenges, we will answer the following questions:

•	 What are microservices?

•	 Why are they so important?

•	 Do I really need microservices?

•	 How do I enable microservices?

•	 What is the connection between microservices and APIs?

•	 How do I secure microservices?

Solution

What are Microservices?
Monolithic applications are no longer efficient in the digital economy.
Development teams across enterprises are struggling to develop, deploy
and scale large applications. Microservices came about due to the
widespread adoption of the DevOps frameworks and agile methodologies.
Development teams felt the pinch to break down complex application
silos into simpler code blocks, which gave birth to microservices.

Architects devised design patterns to turn complex applications into
simple and fine–grained yet reusable and interoperable processes that
can be modified and deployed independently of each other. These fine–
grained processes are called microservices.

Microservices Components
The API Academy has defined some common characteristics of a
microservices architecture. The industry has adopted the following
standards to characterize a microservice.

•	 Small size

•	 Messaging–enabled

•	 Bounded by contexts

•	 Autonomously developed

•	 Independently deployable

•	 Decentralized

•	 Language–agnostic

•	 Built and released with automated processes

While you may see the terms microservice and microservice architecture
used interchangeably, they are not quite the same. A microservice
architecture is made by engineering highly–automated, evolvable software
systems that contain capability–aligned microservices.

As a rule, these components are deployed in a Docker container. The
Docker container provides a centralized runtime environment, although
you can have many Docker containers. Another benefit of using Docker
containers is that it somewhat eases the management burden.

5 | Solution Brief: An Architect’s Guide to Microservices ca.com

Solution (cont.) Why are Microservices So Important?
Every digital enterprise is trying to thrive in the digital economy. And all
of these enterprised aspire to two things: speed and scale. A company’s
need to get to market faster is critical; and it is equally important to
be able to scale up appropriately to support the increasing customer
demand. The key mantra here is: speed and safety at scale. You can only
succeed when you attain speed and scale without losing safety.

Agile and DevOps models support decentralized and distributed
ownership of software assets and promote faster turnaround of changes
and quick deployment. However, to intelligently break down complex,
monolithic applications into autonomous units, you need a design
strategy, namely, microservices. By breaking your huge application into
microservices, you enable your development team to be more nimble
with updates and autonomous deployments. This removes dependencies
to create large and complex builds. It also eliminates the need for over–
sophisticated architectures to step up the scale to meet volume demands.

Can My Enterprise Benefit from Microservices?
Every enterprise has different needs at different times. There are definitely
times when microservices can provide a solution, and times when a
monolithic application might be more appropriate.

First, we will take a look at the benefits and disadvantages of monolithic
applications. Monolithic applications generally share some positive
characteristics:

•	 They are easier to build, initially.

•	 They are easier to test against, initially.

However, monolithic applications also share some drawbacks:

•	 They are more difficult to manage, compared to microservices, in an
integrated development environment (IDE).

•	 They are difficult to maintain as your codebase grows.

•	 They are slower to iterate as time goes on, due to their growing
codebase.

•	 They are difficult to scale. Infrastructure generally has to scale for the
entire application, even if only one component of the application is
having scalability issues.

•	 They are more difficult to innovate with, because of that codebase at
the root.

•	 They are difficult to train new programmers to work with due to a steep
learning curve.

Monolithic apps can make it very difficult for an organization to be
agile or to scale appropriately. But, if you have an existing monolithic
environment and no need for agility, then a microservices–based solution
might not be a priority for you.

6 | Solution Brief: An Architect’s Guide to Microservices ca.com

Solution (cont.) If I Want to Implement Microservices, What do I Gain, and at What
Cost?

Gains
Implementing a microservices architecture has several advantages in the
app economy. Microservices–based applications are beneficial for the
following reasons:

•	 They provide a better architecture for larger applications. Components
can be built or swapped at will, without impacting the entire
application. If something goes wrong with a component, only that
component is affected.

•	 They are a more agile solution. It is easier to pivot segments of an
application as needed.

•	 They are easier to learn. Each component is small and isolated, so it is
a simpler process to determine what it does, how it does it, and how it
interacts with the application.

•	 They are easier scale. Only the components that need greater scalability
are affected, rather than the entire app. This ability to scale only where
necessary also provides a substantial cost savings to the enterprise.

Costs
However, microservices–based applications also have their fair share of
costs, both financial and otherwise.

•	 They contain more moving parts than a monolithic app; so it is even
more important to monitor them.

•	 They require more modern back–end infrastructure because of their
growing codebase.

•	 They might make it more difficult to test the complete app. But it is far
easier to test individual components that make up the app.

•	 They require more security because of their multiple endpoints.

As a rule, for agile enterprises on a digital transformation journey, the
advantages of microservices far outweigh the disadvantages.

How Do I Enable Microservices within My Enterprise?
The steps below describe one possible path that you might follow to
enable microservices for an enterprise.

•	 Assess the maturity of the agile enterprise. If your organization is agile
and you are thinking of or have adopted DevOps, your enterprise is
quite ready for microservices.

•	 Create smaller groups of developers. Empower smaller teams of
developers to own and work effectively on a smaller set of services
and APIs. This inherently encourages loose coupling and autonomous
deployments.

•	 Adopt a domain–driven design. Break down large applications into
simpler services based on business capabilities or functions. The more
fine–grained the services are, the better they work for this design.

7 | Solution Brief: An Architect’s Guide to Microservices ca.com

Solution (cont.) What is the Connection Between APIs and Microservices?
Microservice components only become valuable when they can
communicate with other components in the system; they each have an
interface or API. Just as we need to achieve a high level of separation,
independence, and modularity for our code, we need to make sure that
our APIs, the component interfaces, are also loosely coupled. Otherwise,
you would not be able to deploy two microservices independently, which
should be one of your primary goals to balance speed and safety.

An API layer in front of microservices can facilitate the support for
client–side applications, such as mobile apps, because it isolates the
fine–grained microservice from an app. This API layer is ideal for doing
microservice orchestration and applying security.

How Do I Secure Microservices?
In virtually all microservice implementations, teams secure API
endpoints, provided by microservices, with an API gateway. Modern
API gateways provide additional, critical features required by
microservices: transformation and orchestration. Finally, in most mature
implementations, API gateways cooperate with service discovery tools to
route requests from microservices clients. A microservice architecture is
one with a significantly high degree of freedom.

In mature microservices organizations where the architecture is
implemented for complex enterprise applications, it is common to deploy
hundreds of microservices. In these cases, security is a very critical factor
to consider. APIs provided by microservices might call each other, might
be called by front–end, public–facing APIs, or might be directly called by
API clients, such as mobile applications, web applications, and partner
systems. The widely recommended approach is to secure invocation of
public–facing API endpoints of the microservices–enabled system using
a capable API gateway coupled with an OAuth provider. An API gateway
is a key component of any microservices architecture and acts as a
common bridge between the service implementation and any consuming
clients. API gateways provide the following benefits:

•	 Centralized security enforcement for authentication, authorization and
threat protection.

•	 Routing and mediation to protected resources across various protocols.

•	 Service level management for enforcing business–level rate limits and
quotas.

•	 Service orchestration for reducing service invocations.

•	 Service interfaces for exposing application-specific interfaces from
monolithic back ends.

8 | Solution Brief: An Architect’s Guide to Microservices ca.com

Tools from Layer7 for Microservices
Microservices architecture has many moving parts and all of those parts
must work together seamlessly. Layer7 views this in a holistic fashion,
and offers full lifecycle API management as the platform that provides a
complete solution.

Live API Creator is an automated, low-code alternative development
solution from CA. Live API Creator creates and exposes domain–driven
microservices and the REST or JSON APIs of apps. These microservices
and APIs provide access to existing data and functionality from both
legacy and modern data sources and apps. The solution enables
developers, using a point–and–click approach, to create new REST
endpoints that join data across diverse data sources. API owners
can extend the API with declarative business rules, JavaScript event
processing,role–based security, and interactive testing.

Live API Creator also enables companies that have embraced API
management to expand the scope of their API lifecycle. You can move
beyond management and enforcement in existing gateway and portal
offerings toward the creation of APIs closer to the data layer. With Live
API Creator, you can rapidly create application back–ends for internal
applications, mobile development projects, data–as–a–service exposure,
Internet of Things (IoT) enablement, and partner integration.

From a microservices perspective, the solution addresses some key
objectives:

•	 Modularity. Use Live API Creator to decompose large applications into
self-contained units called resources. Resources deliver everything
necessary for app delivery, data integration, business logic and a robust
API interaction layer. Resources are message–based, RESTful APIs that
are independent of the underlying schema.

•	 Speed of delivery. Resource definition is point and click, integrating
multiple objects from multiple databases.

•	 Zero deployment. The solution eliminates the delays associated with
deployment. Defined resources are immediately executable as soon as
you click save; there is no need to compile or deploy.

•	 Automated deployment. Alternatively, you can export a microservice
and employ scripts to import it to production.

•	 Cohesion. Dependencies are automated, so deploying one microservice
does not affect others.

•	 Separation of concerns. Live API Creator separates microservice
creation from business logic, which is defined on underlying domain.

Microgateway is a lightweight, containerized gateway, that is designed to
scale within highly decentralized environments. Microgateway supports
common microservices patterns by providing service discovery, routing,
rate limiting, last-mile security, and local aggregation and orchestration.
Microgateway is also easily deployable and configurable by developers at
design time using provided policy templates.

Tools

9 | Solution Brief: An Architect’s Guide to Microservices ca.com

Microgateway integrates with industry-standard DevOps tools for
scripted production deployments and can be extended to support
custom or new use cases by creating new templates and baking them
into new pre-configured containers.

Microgateway enables developers to embrace new patterns as they
emerge within microservices environments and provides the traffic
management and mediation necessary for microservice architectures,
large and small. And lastly, it provides the security and fault tolerance
necessary for regulated industries.

API Gateway, including Essentials, Enterprise, and Layer7 Mobile API
Gateway, delivers industry–leading gateway functionality for enterprise-
class microservices. API Gateway does this by combining policy
management with runtime policy enforcement and by delivering a central
policy enforcement point between the business and the end user, no
matter where they are located.

With API Gateway, enterprises can selectively open their data and
applications to both internal and third–party developers, integrating with
existing identity and access management (IAM) solutions for a plug–and–
play solution. API Gateway deploys in a variety of form factors including
Docker, which is ideal for microservices because it easily scales and can
be deployed in a failover environment for high availability. The solution
also includes protocol-bridging, providing full translation between a
variety of protocols, from legacy to REST and JSON, and from legacy to
mobile, cloud and social.

For a microservices architecture deployment perspective, Microgateway
and API Gateway address some key objectives:

•	 Security. The solution can act as the central policy enforcement point.
It is better to always secure any API or microservice access with an API
gateway, and in most cases, the negligible overhead of introducing an
API gateway in between service calls is well worth the benefits.

•	 Transformation and orchestration. API Gateway allows you to
declaratively, through configuration, create API interfaces. These
API interfaces can orchestrate back–end microservices and hide
their granularity behind a much more developer friendly interface to
eliminate chattiness.

•	 Routing. API Gateway hides the complexities of routing to a
microservice from client apps. The solution can interface with either
HTTP or DNS interfaces of a service discovery system. The solution
routes an API client to the correct service when an external uniform
resource identifier (URI) associated with a microservice is requested.

Microgateway is ideally suited for deployment. The solution scales along
with the microservices it manages, within the same PaaS and container
management environments. Microgateway is often coupled with API
Gateway, deployed at the edge of the application tier or network,
and integrated with existing infrastructure such as OAuth servers and
centralized logging or auditing systems. API Gateway is ideally coupled
with Microgateway in microservice environments, but also applies to
traditional monolithic architectures.

Tools (cont.)

10 | Solution Brief: An Architect’s Guide to Microservices ca.com

OAuth Toolkit runs on top of industry best–of–breed API Gateway. OAuth
Toolkit provides an OAuth provider and token management system to
control access to microservices from web, mobile and other applications.
OAuth Toolkit allows you to deliver these OAuth provider functions by
extending your existing identity infrastructure and is highly scalable. The
solution includes the following features:

–– An OAuth authorization server for issuing access tokens in both two–
and three–legged OAuth flows.

–– An OAuth resource server for API access control and policy
enforcement.

–– Customizable templates for OAuth client and user implementations.

–– Integration with all popular identity and access management (IAM)
and single sign–on (SSO) solutions.

–– The ability to bridge between OAuth and other access control
standards.

–– The ability to choose between token types such as a JSON Web
token (JWT).

–– The ability to implement custom handshakes for tailored user
experiences.

Using the OAuth Toolkit, you can create a distributed authentication
mechanism for microservices, ensuring a secure solution.

Traditional static topology mapping and instrumentation is best suited
for monolithic systems and has less relevance for microservices.
Application Performance Management (APM) provides a unique
architecture to manage dynamic microservices and the ephemeral nature
of containers. APM employs a radical, future–proofing approach to
managing containerized systems. APM includes simplified configuration
and visibility into modern system complexity, especially microservice
interdependencies and communication flows.

APM for microservice architectures is a multifaceted monitoring
solution. As a foundational service, agentless monitoring automates
the discovery of containers and dependencies. Agentless monitoring
immediately surfaces key health indicators, such as CPU saturation, error
rates, and latency. A powerful service in itself, this solution is further
enhanced by the automated capture of container attributes and a
data model that enables microservice performance to be viewed from
multiple perspectives. This approach is well matched to microservices
architectures. Using APM, engineers can quickly and easily distil complex
topologies into service views where performance is automatically
aggregated.

Tools (cont.)

11 | Solution Brief: An Architect’s Guide to Microservices

Broadcom Inc. (NASDAQ: AVGO) is a global technology leader that designs, develops,
and supplies a broad range of semiconductor and infrastructure software solutions.
Broadcom’s category-leading product portfolio serves critical markets including data
center, networking, software, broadband, wireless, storage and industrial. For more
information, go to www.broadcom.com. As of November 2018, CA Technologies was
acquired by Broadcom Inc.

Copyright © 2019 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. Broadcom, the pulse logo, Connecting everything, CA Technologies,
Layer7, Application Performance Management, Microgateway, Live API Creator, API Gateway, and the CA technologies logo are among the trademarks of Broadcom.

ca.com

In many cases, container monitoring will need to be enriched with
application–centric performance indicators. APM supports this by
enabling application instrumentation within containers. Using this
instrumentation, you can access advanced application performance
services in the context of supporting microservice architectures. For
example, you might use statistical techniques to manage performance
baselining and reduce alert noise. Or, you might you use transaction
tracing and assisted triage to gather detailed evidence and build
remediation workflows.

Agentless, container–centric monitoring and deeper application
instrumentation are valuable services in themselves. However, APM goes
further, delivering higher–level insights by combining the information
that these services expose. By automatically correlating application
performance to container health, APM not only provides DevOps
teams with exact root cause indicators for problems but also details
which container–application configurations deliver the best possible
performance.

Today’s DevOps and agile–loving enterprises are striving for fast
changes and quick deployments. To these companies, the microservices
architecture is a boon, but not a silver bullet. Organizations can enable
smaller development teams with more autonomy and agility, and as a
result, the business will notice IT being more in tune with their changing
demands.

IT will need to align its API strategy with the microservices that
developers produce. Securing those microservices should be of the
utmost importance; leveraging API Gateways in this context will benefit IT.
And always remember, that if you are looking for speed and scale, safety
and a strong management component is equally important.

To learn more about microservices, and Layer7 API management, please
download our e–book: Microservice Architecture: Aligning Principles,
Practices, and Culture.

For more product information, please visit ca.com.

Next Steps

