
Broadcom AFBR-S50-MULTISEN-AN100
December 14, 2023

AFBR-S50-MULTISEN
Integration of Multiple AFBR-S50 Sensors

Application Note

Copyright © 2023 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For
more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

AFBR-S50-MULTISEN Application Note Integration of Multiple AFBR-S50 Sensors

Broadcom AFBR-S50-MULTISEN-AN100
2

http://www.broadcom.com

Broadcom AFBR-S50-MULTISEN-AN100
3

AFBR-S50-MULTISEN Application Note Integration of Multiple AFBR-S50 Sensors

Chapter 1: Overview

The purpose of this application note is to facilitate the implementation of multiple AFBR-S50 sensors in a system. Beside a
standard single-sensor configuration, Figure 1 shows the several multi-sensor connection options:

 Option 1 – Dedicated MCU and dedicated SPI bus

 Option 2 – Shared MCU and shared SPI bus

 Option 3 – Shared MCU and dedicated SPI bus

Figure 1: Single vs Multiple Sensor Options

Although options 1 to 3 aim to increase the field of view (FoV), all have their pros and cons, which are indicated in Table 1.

Table 1: Comparison of Options

While all options yield an extended FoV, option 1 has a clear advantage in terms of MCU occupancy due to a dedicated MCU
per sensor. On the other hand, the least PCB occupancy is given with option 2, which is using only a single SPI bus and a
single MCU for all system communication. The modularity strongly depends on the implementation but can be more
convenient with separated couples of MCU+sensor, which gives option 1 an advantage. Eventually, the BOM costs benefit
from the shared MCU possibility of options 2 and 3.

Single-Sensor
Configuration

Multi-Sensor Configurations

Dedicated MCU,
Dedicated SPI

Shared MCU,
Shared SPI

Shared MCU,
Dedicated SPI

Option 1 Option 2 Option 3

S2PI := CS, CLK, MOSI, MISO, & IRQ (see https://broadcom.github.io/AFBR-S50-API/porting_guide.html#pg_s2pi)

MCU

S2PI
...

MCU
S2PI

...

MCU
S2PI

...

MCU
S2PI

...

MCU

MCU...

MCU

C
LK

,M
O

SI
,M

IS
O

CS1, IRQ1

CS2, IRQ2

CS3, IRQ3

......

MCU

MCU...

MCU

S2PI-1

...

S2PI-2

S2PI-3

Scenario Extended
FoV

MCU
Occupancy

PCB Area
Occupancy Modularity BOM

Costs

Option 1

Option 2

Option 3

Broadcom AFBR-S50-MULTISEN-AN100
4

AFBR-S50-MULTISEN Application Note Integration of Multiple AFBR-S50 Sensors

Chapter 2: Hardware

The PCB design of multiple sensors and a single MCU requires a dedicated chip select (CS) and an IRQ (interrupt) line for
each sensor.

Figure 2: Schematic – Multi-sensor Wiring to a Controller Unit (Option 2)

NOTE: The pull-up resistors R2 to R9 in Figure 2 only indicate the native low-active implementation of CS and IRQ and
are usually configured from within the MCU.

FB1

BLM18HE152SN1D

100nF

C1

10uF

C3

1
0
0
n
F

C4

GND

1
0
0
n
F

C7

GND

GND

VDDL
6

VDD
8

VDD
13

GNDL
5

GND
7

GND
9

GND
14

CLK-
11

CLK+
10

IRQ
4

CS_SPI
15

CLK_SPI
1

MOSI_SPI
2

MISO_SPI
3

TEST
12

U1

AFBR-S50

1
0
u
F

C6

GND

10uF

C2

GND

+5V

SPI_CLK
1

SPI_MOSI
2

SPI_MISO
3

IRQ1
4

SPI_CS1
0

SPI_CS2
5

SPI_CS3
6

SPI_CS4
7

IRQ2
8

IRQ3
9

IRQ4
10

Controller

R3R2

+3.3V

FB2 (FB?)

BLM18HE152SN1D

100nF

C9 (C?)

10uF

C8 (C?)

1
0
0
n
F

C10 (C?)

GND

1
0
0
n
F

C12 (C?)

GND

GND

VDDL
6

VDD
8

VDD
13

GNDL
5

GND
7

GND
9

GND
14

CLK-
11

CLK+
10

IRQ
4

CS_SPI
15

CLK_SPI
1

MOSI_SPI
2

MISO_SPI
3

TEST
12

U2

AFBR-S50

1
0
u
F

C11 (C?)

GND

10uF

C5 (C?)

GND

FB3 (FB?)

BLM18HE152SN1D

100nF

C15 (C?)

10uF

C14 (C?)

1
0
0
n
F

C16 (C?)

GND

1
0
0
n
F

C18 (C?)

GND

GND

VDDL
6

VDD
8

VDD
13

GNDL
5

GND
7

GND
9

GND
14

CLK-
11

CLK+
10

IRQ
4

CS_SPI
15

CLK_SPI
1

MOSI_SPI
2

MISO_SPI
3

TEST
12

U3

AFBR-S50

1
0
u
F

C17 (C?)

GND

10uF

C13 (C?)

GND

FB4 (FB?)

BLM18HE152SN1D

100nF

C21 (C?)

10uF

C20 (C?)

1
0
0
n
F

C22 (C?)

1
0
0
n
F

C24 (C?)

GND

VDDL
6

VDD
8

VDD
13

GNDL
5

GND
7

GND
9

GND
14

CLK-
11

CLK+
10

IRQ
4

CS_SPI
15

CLK_SPI
1

MOSI_SPI
2

MISO_SPI
3

TEST
12

U4

AFBR-S50

1
0
u
F

C23 (C?)

10uF

C19 (C?)

GND

R5R4 R7R6 R9R8

Broadcom AFBR-S50-MULTISEN-AN100
5

AFBR-S50-MULTISEN Application Note Integration of Multiple AFBR-S50 Sensors

Chapter 3: Software

The AFBR-S50 GitHub repository or software development kit (SDK) offers an example of a multi-sensor implementation
in C. The following C-code configurations must be carried out before you can run the example. Keep in mind that up to four
sensors are natively supported as of revision v1.4.4. If you need to connect more sensors, see Which code changes are
required when using more than four sensors on a single MCU?

NOTE: Make sure to always use the latest example code from our GitHub repository under
https://github.com/Broadcom/AFBR-S50-API.

Steps:

1. Open the Example.h header file, and change the API_EXAMPLE definition to 4.

2. Change number of devices according to your target count in the 04_multi_device_example.c source file.

3. Open a terminal application to view the streamed data.

The example provides distance plus monitoring data for each sensor indicated with the sensor number on the left side.

NOTE: See https://broadcom.github.io/AFBR-S50-API/stm32cubeide.html#autotoc_md24 for more information on how to
establish a connection via UART and a PC.

https://github.com/Broadcom/AFBR-S50-API
https://broadcom.github.io/AFBR-S50-API/stm32cubeide.html#autotoc_md24

Broadcom AFBR-S50-MULTISEN-AN100
6

AFBR-S50-MULTISEN Application Note Integration of Multiple AFBR-S50 Sensors

Chapter 4: FAQs

This section provides an overview of the most frequently asked questions about implementing multiple sensors in a system.

How much MCU memory is required when controlling multiple sensors?

Single Sensor:

 RAM: 4-KB Heap + 4-KB Stack

 ROM/Flash: 128 KB

n Sensors on a Single MCU:

 RAM: n × 4-KB Heap + 4-KB Stack

 ROM/Flash: 128 KB

What is the frame-rate trade-off when using more sensors on a single MCU and a
single SPI bus?

The reference to achieve the maximum frame rate of 3 kHz is tested with MCU clock = 100 MHz and SPI clock = 21 MHz
with a single sensor. The maximum frame rate downscales in accordance with the number of connected sensors.

Why do I receive memory faults when using more sensors?

Check for the correct heap memory size in the linker script (for instance, STM32F401RETX_FLASH.ld in the case of an
STM MCU). Make sure to allocate a minimum heap size of 4 KB per sensor.

NOTE: The provided project via GitHub already uses 16 KB (0x4000), which is sufficient for four sensors. If you merge the
AFBR-S50 API into an existing project, you might need to double-check the memory allocation.

Which code changes are required when using more than four sensors on a single
MCU?

Several API implementations must be added or changed:

1. Amend GPIO definitions including assignments to additional IRQ and CS signals.

See the board_config.h header file.

2. Extend all functions with SPI slave usage accordingly.

See the s2pi.c source file.

NOTE: As of AFBR-S50 API release v4.4, the precompiled library can support up to 16 sensors connected to a single
MCU. If your implementation requires a higher number, contact support.tof@broadcom.com.

Number of Sensors 1 2 3 4 ...

Maximum Frame Rate 3 kHz 1.5 kHz 1 kHz 750 Hz ...

mailto:support.tof@broadcom.com

	Chapter 1: Overview
	Chapter 2: Hardware
	Chapter 3: Software
	Chapter 4: FAQs
	How much MCU memory is required when controlling multiple sensors?
	What is the frame-rate trade-off when using more sensors on a single MCU and a single SPI bus?
	Why do I receive memory faults when using more sensors?
	Which code changes are required when using more than four sensors on a single MCU?

