
A Pragmatic Guide to Getting
Started with DevOps

2

Contents
Is DevOps Right for You?				

Dev and Ops on the Wrong Tracks

7 Signs of a Dysfunctional Process			

Conclusion: Where to Start Your DevOps Transformation

Contents 2

3

5

6

24

3

Is DevOps Right for You?
In the application economy, every business is a software business.
This is why DevOps is quickly becoming one of the most valuable
disciplines for your business. It’s focused on improving the quality
and speed of delivering new apps to market. And it’s about tightly
integrating development and operations in order to do so.

This is driving businesses everywhere to take a second look at what
they may have initially thought was just a buzzword – here one day
and gone the next.

Now everyone is starting to wonder, “Can we adopt a DevOps method
ourselves? And will it work for us?”

The average organization adopting DevOps sees a 20 percent
improvement in time-to-market, a 22 percent improvement in software
quality, and a 17 percent improvement in frequency of application
deployments—all leading to 22 percent more customers and a
19 percent increase in revenue.1

So, what can DevOps do for you?

Is DevOps Right for You? 3
 1 TechInsights Report: What Smart Businesses Know About DevOps, September 2013

Next
Section

Contents

4

What Is DevOps?
Before we decide whether we can use DevOps, we must define what
DevOps is, and what it is not.

DevOps is not a product, or even a particular technology. DevOps is
a methodology that unites the often separate functions of software
development (Dev) and production and operations (Ops) into a single,
integrated, and continuous process.

DevOps is about breaking down the barriers between Dev and Ops. It
leverages people, processes, and technology to stimulate collaboration
and innovation across the entire software development and release
process. Dev and Ops must act and feel like they are a single team.

But DevOps is never finished. Like a symphony orchestra learning a
new score, or a sports team that has reached the playoffs, Dev and
Ops have to keep pushing, collaborating in the pursuit of perfection.

Is DevOps Right for You? 4

Next
Section

Contents

5

Dev and Ops on the
Wrong Tracks
Dev is focused on faster innovation and doing new things.
The mandate to Ops is about stability, control, and predictability.
They often don’t even report to the same places in the organization.
It is like they are on two different train tracks. No matter how fast
they go, they never meet.

Left to themselves, Dev and Ops will often struggle to talk to each
other, much less collaborate, and will remain mired in manual
processes. The result is employees who don’t work well together,
software that doesn’t work reliably, and customers that are thinking
about moving to your competitors.

No ifs, ands, or buts about it.

Dev and Ops on the Wrong Tracks 5

Next
Section

Contents

6

7 Signs of a Dysfunctional Process
Dev and Ops on board and heading in the same direction —can be difficult. But first, you have to recognize if your
teams are on different tracks to begin with. Some of the warning signs of a dysfunctional process include:

In the pages that follow, we will review some of the most frequent signs of a dysfunctional process, along with
some pragmatic advice on how to move beyond dysfunction into full DevOps maturity.

1. You don’t discover software defects until late in the lifecycle—or worse, in production.

2. You use Agile to speed development, but any gains evaporate once the app goes into production.

3. Your developers and testers are constantly waiting to access the resources they need, causing delays.

4. You can’t pinpoint problems across development, testing, and production operations.

5. You see simple human errors wreaking havoc during development and deployment.

6. Development views their job as finished once the app is in production.

7. Anytime a problem arises, everyone starts pointing fingers to lay blame on someone else.

7 Signs of a Dysfunctional Process 6

Next
Section

Contents

77 Signs of a Dysfunctional Process

The cost to fix a defect goes up for each step along the classic waterfall
approach to software development lifecycle. It can be one hundred times more
expensive if an end-user finds a major defect in production than if you find it in
development.2

Unfortunately, with the waterfall method, when the development schedule
starts to slip and there is a hard deadline looming, organizations start to run
out of time for testing. This situation is ripe for error, and the pressure to meet
the deadline means that the application suddenly gets thrown over the wall
into production, no matter how complete the testing.

Warning Sign:

Software Defects Aren’t Discovered
Until Late in the Cycle
It is impossible to create complex software without defects.
The trick is to find them early in the process.

Development Regression
Testing

QA Testing Integration
Testing

Performance
Testing

User
Acceptance
Testing

Production

Cost to Fix
Goes Up

For a Defect
Caught in
Production

100x

2 Software Defect Reduction Top 10 List, Computer, January, 2001. http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf

Next
Section

Contents

8

How to Get Back on the Right Track

Do Development and
Testing in Parallel
This is made possible through a new technological approach called service
virtualization that can mimic the real-world behavior of the production
environment. The real infrastructure resources are not available to developers
and testers, so this approach recreates the whole environment in a virtual
environment. The back-end infrastructure, databases, servers, and the rest
of the environment are available as a virtual service, so a large number of
people can test a large number of components all at once without impacting
each other or the production environment. Suddenly, development and
testing can take place in parallel.

Even better, we can build automation of that testing,
making the process even faster.

7 Signs of a Dysfunctional Process

User Acceptance Testing

Development

QA Testing

Performance Testing

Production

Regression Testing

Integration Testing

Next
Section

Contents

9

This ability to mimic the performance of the production
environment is made even more realistic through
collaborative data mining, where the performance
information embedded within the production
environment is “mined” to uncover hidden patterns
and circumstances.

Data mining gives developers and quality engineers
virtual service models that behave even more like
the real world, bringing all the benefits of service
virtualization with performance profiles mimicking
business conditions and scenarios like the ones seen in
production. Now, developers and performance engineers
reduce their constraints and do so with an increasingly
life-like model emulating behavior and the performance
characteristics of real components in real-world
situations as well.

Find the problems earlier, and you build better
software, faster, with less effort.

97 Signs of a Dysfunctional Process

Next
Section

Contents

107 Signs of a Dysfunctional Process

Warning Sign:

The Speed Gains of Agile Evaporate
Once the App Goes into Production
Agile development is a fabulous approach to speeding software development. But building the
software is only one step in getting an app into the hands of the users.

Because of the lack of collaboration between Dev and Ops, apps often aren’t ready for “prime time” when
they arrive in production. Because Ops often hasn’t been involved in development and therefore doesn’t
fully understand how to deploy the application to production, there is a lot of trial and error in moving
into production, wasting time.

Dev alone doesn’t get the app into the hands of the customer. No matter how fast and agile you make
the development process, it is difficult to speed time to market if nothing is done to speed time
to production. Next

Section

Contents

117 Signs of a Dysfunctional Process

How to Get Back on the Right Track

Get Ops Involved Early

Agile is built around an iterative process that responds quickly to
market needs. The idea is to roll out frequent incremental changes
rather than save all the changes up for a big splash. Ops is simply
part of that market need.

Agile shops would never dream of developing an app without paying
close attention to market needs. They should pay similar attention
to the needs of the production environment. Development and
testing should also take place in as life-like (production-ready)
an environment as possible.

Another potential source of trouble is completing steps serially.
Even in the most agile shops, there are times when work is largely
done in stages. Such serial processes can slow both development
and deployment. Teams should be working in parallel as much
as possible, and in places where you can’t break things into parallel
efforts, look for ways to move steps earlier into the process. There
is no reason why Ops should be waiting for Dev to finish before it
starts working on deploying the app; involve Ops early and plan for
deployment during the development process.

Next
Section

Contents

127 Signs of a Dysfunctional Process

Warning Sign:

Schedules Are Constrained as
Teams Wait for Resources
Whenever a complex application is being built—whether it’s a front-end service for a mobile app or
something for the integration layer in the middle of the overall architecture—it is probably making use of
information pulled from other systems and services throughout the enterprise.

Developers and testers often can’t get easy access to these services. It could be that back-end
systems, like the inventory system, are only available for test access once a week for two hours at a time.
Or maybe there’s sensitive data in a production system that either shouldn’t or can’t be touched. All of
those are serious constraints on the process of development and testing an application.

The CTO of one company once remarked,

“I can’t do anything until I have everything, and I never have everything.”
Next
Section

Contents

137 Signs of a Dysfunctional Process

How to Get Back on the Right Track

Service Virtualization
Can Help Address This
Because service virtualization can mimic the real-world
behavior of the production environment it enables a large
number of people to develop and test a large number of
components at once without impacting each other or the
production environment.

This removes the constraints that are holding back app
development and testing in many organizations. Not only is
the testing environment now a much more realistic reflection
of real-world conditions, it also enables testing of different
components to be done simultaneously. Steps that once
had to be done serially can now be done in parallel.
The entire development cycle shifts left as the constraints
and bottlenecks are eliminated.

Next
Section

Contents

147 Signs of a Dysfunctional Process

Warning Sign:

Problems Are Difficult to Pinpoint
Because of Lack of Collaboration Across Development,
Testing, and Production Operations

Teams in Dev, Testing, and Production often work in very different environments and manage their
work on different systems. This can make software defects difficult to correct.

Dev
Test

Prod

Test results not predictive
No opportunity to test under realistic conditions

No sharing of feedback
No communication between

Dev Test Prod

• Systems

• Processes

• People

Next
Section

Contents

157 Signs of a Dysfunctional Process

Because development teams and testing teams often don’t have reliable
access to the production environment, they rely on test environments
that, while they might offer the functionality of the production
environment, lack the full scale of production. These are not realistic
testing environments that duplicate the conditions found in production,
so apps often fail when taken to production because the earlier tests are
not predictive of the app’s real-world behavior.

Next
Section

Contents

167 Signs of a Dysfunctional Process

Second, because Ops, Dev, and Testing all use different
systems to manage their environments, the feedback
loop that should be in place between Ops and Dev
breaks down.

Ops knows there are problems with the app, but unless
someone in Ops bothers to tell Dev about the issue,
Dev will never know about it. Dev cannot monitor the
app in production itself, so it only gets a second-hand
perspective on any problems.

Next
Section

Contents

177 Signs of a Dysfunctional Process 17

How to Get Back on the Right Track

There are Several Ways to
Attack This Dysfunction
First, recognize that Dev and Ops are a single team. Mash them together to
ensure that the people work as a team. Even with this organizational change,
establish a process to gather feedback and then track and share progress on
addressing the issues.

You can take the next step and use technology. It’s all well and good to
address people and process, but if your systems are working at cross-purposes,
it will be that much more difficult.

Technology can take several forms. First, ensure that the systems that
Dev, Test, and Ops use to manage their workflow (and any problems) are
interoperable, so that Dev has visibility into Test and Ops, etc. This can be done
by integrating existing systems, but often it makes more sense to implement
something that is designed purposely to create an integrated workflow across
the entire process of development, test, and release.

It also makes sense to put testing environments in place that duplicate
the conditions to be found in the production environment —such as service
virtualization, backed by the detailed performance scenarios uncovered by data
mining the logs of the production environment.. This ensures that any testing is
more predictive of the app’s real-world performance.

Next
Section

Contents

187 Signs of a Dysfunctional Process

Warning Sign:

Human Errors
Cause Havoc and
Wasted Time During
Deployment
Software release is largely a manual process in many
organizations. Would it surprise you to find that most software
issues are due to configuration errors? That is, there is nothing
wrong with the application itself, but the software fails because
it wasn’t properly configured. When configurations are done
manually, it is inevitable that there will be a mistake somewhere
along the way.

To err is human, but to really foul things up takes a computer.
Errors during deployment are especially damaging because the
error has the potential to be replicated across thousands or even
millions of servers, desktops, and mobile devices. Testing won’t
help, because the configuration needed during testing is
different than the one needed in production.

Next
Section

Contents

197 Signs of a Dysfunctional Process

How to Get Back on the Right Track

Many organizations have attempted to solve this problem by
relying on scripting. While this is certainly better than an entirely
manual process, it suffers from many of the same problems as
a manual process. Because of all the “moving pieces” and the
configuration differences between environments, the scripts end
up being as complicated as the systems they are trying to deploy.

You need more than scripting. You need systems. You need tools
that automate the release of new code into production, which
include documentation internally so that, especially with big
teams, it actually enforces the DevOps mindset of collaboration,
integration, and communication. This release automation enables
you to ensure that a configuration that works properly during
testing will be translated faithfully into something that will work
in production. It eliminates human errors while simultaneously
speeding up the whole software development lifecycle. This
increases your readiness for continuous delivery, where apps are
updated every few minutes, not in days, weeks, or months.

One of the biggest benefits of release automation is rollback,
which allows you to return to a known good state if something
goes wrong during deployment. With manual processes, and even
scripting, rollback is a nightmare.

Next
Section

Contents

207 Signs of a Dysfunctional Process

Warning Sign:

Development’s Job Is Finished
Once the App Is in Production
Traditionally, application development projects were monster efforts that took 18 to
24 months for the planning, coding, and testing. Then the application was turned over
to production, the development team celebrated, and everybody went off to the next
24-month project.

If you are serious about DevOps, there is no better indicator of a
dysfunctional process than having the development team spike the ball
and leave the field.

Next
Section

Contents

217 Signs of a Dysfunctional Process

How to Get Back on the Right Track

Part of what makes DevOps so powerful is that it enables you
to release your applications into production on an almost
continuous basis.

Instead of saving a laundry list of features for a big release,
the new model is to be releasing new features continuously.
The advent of the smartphone app has set expectations that apps
will be refreshed frequently. If an app doesn’t get updated every
few months with one or two new features, people wonder if the
app is being properly maintained.

With continuous release, the Dev team finishes one version and
immediately starts on the next, adding new features based on
user requirements and, ideally, guided also by feedback from Ops
on how this new version is performing. Dev and Ops truly are one
integrated, collaborative group now. Ops knows what is expected
from Dev, and Dev can actually stream its own code into production
using load-based tools with features like rollback and version
control.

Next
Section

Contents

227 Signs of a Dysfunctional Process

Warning Sign:

Anytime a Problem
Arises, People Start
Pointing Fingers
If things go wrong, does this start a round of finger pointing,
where everyone scrambles to show that it was someone
else’s fault?

DevOps is all about collaborating and cooperating as a team,
and finger-pointing is poisonous to a collaborative working
environment.

This is a sign of major dysfunction. You will not be successful
in implementing DevOps unless you eliminate the culture of
finger pointing.

Next
Section

Contents

237 Signs of a Dysfunctional Process

How to Get Back on the Right Track

Finger pointing is a learned behavior. While this can be difficult to eradicate,
there are ways to reduce its effect.

Make it clear that success or failure is a team effort. It takes more than
one person to succeed, and it takes more than one to mess up, too.

Set common goals and objectives for all aspects of the development,
testing, and production process. The goals should make it clear that Dev
cannot be considered a success unless Ops also succeeds, and vice versa.
If everyone—Dev and Ops—has a seat at the table from the outset of
the software development lifecycle, then everyone is “brought in” to the
process and it is easier to anticipate and remediate problems before they
slip into production.

Look at mistakes as an opportunity to learn. You can spend time analyzing
what went wrong, what can be learned, what should be done differently, and
whether this is a symptom of a larger problem that needs to be addressed.
Many so-called mistakes are simply a symptom of a flawed process. Improve
the process, and eliminate the mistakes.

Automate things to eliminate as many potential errors as possible.
This both improves process quality and enables people to focus on high-
value activities that really make a difference to the organization. Automate
everything, and use analytics to track and adjust. Imagine Boeing making
planes that didn’t have a black box. Without automation and analytics,
we are crashing our planes but have no way to reconstruct what went wrong.

Next
Section

Contents

24

Conclusion:

Where to Start Your
DevOps Transformation
Recognizing that you have a problem is the first step to making meaningful change. By seeing
the value that DevOps can bring to your organization, it might now strike you that you have been
mired by dysfunctional processes without realizing it.

So, how do you get out of dysfunction and get on the right track to DevOps?

From our work implementing DevOps at a wide range of different organizations, there are five
things that all organizations will eventually end up doing:

•	 Form application teams that integrate every discipline--from Dev, Testing, and Ops--together

•	 Improve education, communications, and cross-skilling

•	 Re-evaluate and rebuild your service delivery cycle

•	 Evaluate new technology to support DevOps

•	 Pick the right app or the right line of business to start with DevOps

Conclusion 24

Contents

25

It doesn’t really matter in what order that you do these
things; the important thing is to get started.

Pick a critical application that has everyone’s attention
as your starting point with DevOps. The temptation is to
start small—but in DevOps, you will get the biggest payback
from addressing a highly critical, highly visible app that is
already causing problems. This will help alleviate much of the
internal inertia about “doing things differently,” and success
with DevOps will have a big impact on the organization. If
you can do it on something that is big, ugly, and important,
you can replicate that success anywhere in the organization.

Conclusion 25

Contents

To learn more about how you can benefit from
a DevOps methodology visit

ca.com/us/why-ca/devops.html

© 2014 CA. All rights reserved.

CS200-86714

