

USB 3380-AA/AB PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller Data Book

Version 1.3

 July
 2012

 Website
 www.plxtech.com

 Technical Support
 www.plxtech.com/support

 Phone
 800 759-3735

 408 774-9060
 FAX

Copyright @ 2012 by PLX Technology, Inc. All Rights Reserved – v1.3 July, 2012

Revision History

Version	Date	Description of Changes
1.0	January, 2012	Production release, Silicon Revision AA.
1.2	March, 2012	Production update, Silicon Revision AA. Corrected function of pin 34 to be VAUX_IO. Previous versions of this data book incorrectly labeled this pin as VDD_IO. Designs that power VAUX_IO and VDD_IO supplies separately are impacted by this change. Designs that connect VAUX_IO and VDD_IO supplies together are not affected. Added note to USB_VBUS pin regarding possible leakage current. Applied miscellaneous corrections throughout the data book.
1.3	July, 2012	 Production release, Silicon Revision AB. Production update, Silicon Revision AA. Cleaned up PM D-state references. Significantly updated Chapter 8, "USB Controller Functional Description." Changed register offset 31Ch to <i>reserved</i>. Corrected the SETUPDW0 register Setup Byte 0 field (USB Controller, offset 98h[7:0]). Applied miscellaneous corrections and enhancements throughout the data book.

Copyright Information

Copyright © 2012 PLX Technology, Inc. All Rights Reserved. The information in this document is proprietary and confidential to PLX Technology. No part of this document may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from PLX Technology.

PLX Technology provides this documentation without warranty, term or condition of any kind, either express or implied, including, but not limited to, express and implied warranties of merchantability, fitness for a particular purpose, and non-infringement. While the information contained herein is believed to be accurate, such information is preliminary, and no representations or warranties of accuracy or completeness are made. In no event will PLX Technology be liable for damages arising directly or indirectly from any use of or reliance upon the information contained in this document. PLX Technology may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time.

PLX Technology retains the right to make changes to this product at any time, without notice. Products may have minor variations to this publication, known as errata. PLX Technology assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of PLX Technology products.

PLX Technology, USB Duet, and the PLX logo are registered trademarks and NETCHIP is a trademark of PLX Technology, Inc.

PCI Express is a trademark of the PCI Special Interest Group (PCI-SIG).

All product names are trademarks, registered trademarks, or service marks of their respective owners.

Document Number: 3380-AA/AB-SIL-DB-P1-1.3

Preface

The information in this data book is subject to change without notice. This PLX data book to be updated periodically as new information is made available.

Audience

This data book provides functional details of PLX Technology's USB 3380-AA/AB PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller, for hardware designers and software/firmware engineers. The information provided pertains to both Silicon Revisions (AA and AB), unless specified otherwise.

Supplemental Documentation

This data book assumes that the reader is familiar with the following documents:

• PLX Technology, Inc., <u>www.plxtech.com</u>

The <u>PLX USB 3380 Toolbox</u> includes this data book and other supporting documentation, *such as* errata, and design and application notes.

- Intel Corporation, <u>www.intel.com</u>
 - <u>– PHY Interface for the PCI Express Architecture, Version 2.00</u>
- PCI Special Interest Group (PCI-SIG), <u>www.pcisig.com</u>
 - PCI Local Bus Specification, Revision 3.0
 - PCI Bus Power Management Interface Specification, Revision 1.2
 - PCI Code and ID Assignment Specification, Revision 1.2
 - PCI to PCI Bridge Architecture Specification, Revision 1.2
 - PCI Express Base Specification, Revision 1.1
 - PCI Express Base Specification, Revision 2.0
 - PCI Express Base Specification, Revision 2.0 Errata
 - PCI Express Base Specification, Revision 2.1
 - PCI Express Card Electromechanical Specification, Revision 2.0
 - PCI Express Mini Card Electromechanical Specification, Revision 1.1
 - PCI Express Architecture PCI Express Jitter and BER White Paper, Revision 1.0
- · Personal Computer Memory Card International Association (PCMCIA), www.pcmcia.org
 - ExpressCard Standard Release 1.0
- PXI System Alliance (PXI), <u>www.pxisa.org</u>
 - PXI-5 PXI Express Hardware Specification, Revision 1.0
- USB Implementers Forum, <u>www.usb.org</u>
 - Universal Serial Bus Specification Revision 2.0
 - Universal Serial Bus Specification Revision 3.0

Abbreviation	Document
PCI r3.0	PCI Local Bus Specification, Revision 3.0
PCI Power Mgmt. r1.2	PCI Bus Power Management Interface Specification, Revision 1.2
PCI-to-PCI Bridge r1.2	PCI to PCI Bridge Architecture Specification, Revision 1.2
PCI Express Base r1.0a	PCI Express Base Specification, Revision 1.0a
PCI Express Base r1.1	PCI Express Base Specification, Revision 1.1
PCI Express Base r2.0	PCI Express Base Specification, Revision 2.0
PCI Express Base r2.1	PCI Express Base Specification, Revision 2.1
PCI ExpressCard CEM r2.0	PCI Express Card Electromechanical Specification, Revision 2.0
PCI ExpressCard Mini CEM r1.1	PCI Express Mini Card Electromechanical Specification, Revision 1.1
USB r2.0	Universal Serial Bus Specification r2.0
USB r3.0	Universal Serial Bus Specification r3.0

Note: In this data book, shortened titles are associated with the previously listed documents. *The following table lists these abbreviations.*

Terms and Abbreviations

The following tables list common terms and abbreviations used in this data book. Most terms and abbreviations defined in the *PCI Express Base r2.1* and/or *USB r3.0* are generally not included in this table.

Terms and Abbreviations	Definitions
8b/10b	Data-encoding scheme used on data transferred across a Link that is operating at either Gen 1 or Gen 2 Link speed (2.5 or 5.0 GT/s, respectively).
ACK	Acknowledge Control Packet. A Control packet used by a destination to acknowledge Data packet receipt. A signal that acknowledges signal receipt.
AEC	Auto-Enumerate Controller.
Agent	Entity that operates on the PCI Express interface.
ARI	Alternative Routing-ID Interpretation.
ARP	Address Resolution Protocol.
BAR	Base Address register.
Big Endian	Most significant byte in a scalar is located at Address 0.
BER	Bit error rate.
BIST	Built-In Self Test.
CDR	Clock/Data Recovery circuit.
Clock cycle	One period of the PCI Express interface clock.
Configurable Endpoint	Available for general Data transfers between the USB Host and PCI Express interface.
Control Transfer	Support configuration/command/status type communication to Endpoint 0 (EP 0) CSR Handler, Interrupts, Messages, and Serial EEPROM Handler.
CRC	Cyclic Redundancy Check.
CSR	Configuration Space register.
Dedicated Endpoint	Used for a pre-defined task within the USB 3380.
Device Endpoint	A uniquely addressable portion of a USB device that is the source or sink of information in a communication flow between the Host and USB 3380. The USB 3380 has six Dedicated endpoints, and up to eight general-purpose endpoints.
DLL	Data Link Layer.
DMA	Direct Memory Access.
Downstream	The direction of data flow that moves away from the Host. The USB 3380 always connects to a downstream Port.
Downstream Device	Device that is connected to a downstream Port.
Downstream Port	Port that is used to communicate with a device below it in the system hierarchy. A bridge can have one or more downstream Ports.

Terms and Abbreviations	Definitions
ECC	Error-Correcting Code.
EIES	Electrical Idle Exit Sequence.
EIOS	Electrical Idle Ordered-Set.
Electrical Idle	Transmitter is in a High-Impedance state (+ and - are both at common mode voltage).
EOP	End of Packet.
EP	Endpoint.
FC	Flow Control.
Field	Multiple register bits that are combined for a single function.
Frame	1-µs timebase established on Full-Speed Buses.
FTS	Fast Training Sequence.
Function	USB device that provides a capability to the Host.
Gbps	Gigabits per second.
Gen 1	PCI Express Base r1.1 and below. Link transfer rate of 2.5 GT/s.
Gen 2	PCI Express Base r2.0 and PCI Express Base r2.1. Link transfer rate of 5.0 GT/s.
GPIO	General-Purpose Input/Output.
GT/s	Giga-Transfers per second.
Handshake Packet	Packet that acknowledges or rejects a specific condition.
High Bandwidth Endpoint	High-Speed device endpoint that transfers more than 1,024 bytes and less than 3,073 bytes, per microframe.
Host	The Host computer system in which the USB Host Controller is installed. This includes the Host hardware platform and operating system in use.
HCSL	High-Speed Current Steering Logic.
HCSLOUT	HCSL Output clocks.
INCH	Ingress Credit Handler.
InitFC	Initialization Flow Control.
IRAM	Internal Random Access Memory (IRAM).
Isochronous Data	A stream of data whose timing is implied by its delivery rate.
Isochronous Transfer	Provide periodic continuous communication between Host and device.
Lane	Bidirectional pair of differential PCI Express I/O signals.
LC	Inductor Capacitor.
LCRC	Link Cyclic Redundancy Check.
Link	Active connection between two Ports or devices.
Little Endian	Least significant byte in a scalar is located at Address 0.
Local	Reference to PCI Express attributes (<i>such as</i> credits) that belong to the PCI Express Link logic.
LTSSM	Link Training and Status State Machine.
LVDS	Low-Voltage Differential Signaling.
LVPECL	Low-Voltage Positive Emitter-Coupled Logic.

Terms and Abbreviations	Definitions
Mbps	Megabits per second.
MBps	Megabytes per second.
MCU	Micro-Controller Unit (8051).
Message Pipe	Bidirectional pipe that transfers data using a request/data/status paradigm. The data has an imposed structure that allows Requests to be reliably identified and communicated.
Microframe	125-µs time base established on High-Speed USB Buses.
MIPs	Million instructions per second.
MPS	Maximum Payload Size.
NAK	Negative Acknowledge.
N_FTS	Number (quantity) of Fast Training Sequences field in Training Sets.
NOP	No Operation.
NRDY	Not Ready.
OS	Ordered-Set.
Packet	Bundle of data organized in a group for transmission. Packets typically contain control information, data, and error detection/correction bits.
Packed ID (PID)	Field in a USB packet that indicates the type of packet, and by inference, the format of the packet and type of error detection applied to the packet.
PEC	Packet Error Code.
PEX	PCI Express.
РНҮ	Physical Layer.
PIPE	PHY Interface for PCI Express architecture.
Pipe	A logical abstraction representing the association between an endpoint on a USB device and software on the Host.
PLL	Phase-Locked Loop.
PM	Power Management.
PME	Power Management Event.
PN	Port Number.
Port	Interface to a group of SerDes and supporting logic that is capable of creating a Link, for communication with another Port.
Port ID	Number, assigned in hardware, that associates a SerDes with a Port.
PRBS	Pseudo-Random Bit Sequence.
QoS	Quality of Service.
RAS	Reliability, Availability, and Serviceability.
RoHS	Restrictions on the use of certain Hazardous Substances (RoHS) Directive.
Root Port	Downstream Port on a Root hub.
Rx	Receiver.

Terms and Abbreviations	Definitions
Sample	Smallest unit of data upon which an endpoint operates.
Scalar	Multi-byte data element.
SE0	Single-ended zero.
SerDes	Serializer/De-Serializer. A high-speed differential-signaling parallel-to-serial and serial-to-parallel conversion logic attached to Lane pads.
SN	SerDes Number.
SPI	Serial Peripheral Interface.
SSC	Spread-Spectrum Clock.
Start of Frame (SOF)	First transaction in each USB (micro)frame. An SOF allows endpoints to identify the start of the (micro)frame and synchronize internal endpoint clocks to the Host.
Sticky Bits	Register bits in which the current values are unchanged by a Hot Reset, Link Down event or a Secondary Bus Reset, while the USB 3380 is powered. Sticky bits are reset to default values by a Fundamental Reset. HwInit, ROS, RW1CS, and RWS CSR types. (Refer to Table 14-6, "Register Types, Grouped by User Accessibility," and Table 15-1, "Access Attributes," for CSR type definitions.)
Sticky State	Condition that causes a state machine to be stuck in a particular state, unable to make forward progress.
TC	Traffic Class.
ТСВ	Training Control Bits field in Training Sets.
TL	Transaction Layer.
TLC	Transaction Layer Control. The module performing PCI Express Transaction Layer functions.
TLP	Transaction Layer Packet. PCI Express packet formation and organization.
Token Packet	Type of packet that identifies what transaction is to be performed on the bus.
Transaction	Delivery of service to an endpoint. Consists of a Token packet, optional Data packet, and optional Handshake packet. Specific packets are allowed/required, based upon the transaction type.
Transfer	One or more Bus transactions to move information between a software client and its function
TS1	Type 1 Training Sequence Ordered-Set.
TS2	Type 2 Training Sequence Ordered-Set.
Turnaround Time	Length of time a device must wait before starting to transmit a packet, after a packet is received, to prevent collisions on the USB.
Tx	Transceiver.
UDID	Unique Device Identifier.
UI	Unit Interval – 400 ps at 2.5 GT/s, 200 ps at 5.0 GT/s.
Upstream	Direction of data flow toward the Host.
Upstream Device	Device that is connected to Port 0.
Upstream Port	Port 0, used to communicate with a device above it in the system hierarchy. Electrically closest to the Host. Receives downstream data traffic.
USB	Universal Serial Bus.
UTP	User Test Pattern.

Terms and Abbreviations	Definitions
VC	Virtual Channel. The USB 3380 supports one Virtual Channel, VC0.
Vector	Address and data.
ZLP	Zero-length packet.

Data Book Notations and Conventions

Notation / Convention	Description
Blue text	Indicates that the text is hyperlinked to its description elsewhere in the data book. Left-click the blue text to learn more about the hyperlinked information. This format is often used for register names, register bit and field names, register offsets, chapter and section titles, figures, and tables.
PEX_XXXn PEX_XXXp	The lowercase "n" (negative) or "p" (positive) suffix indicates the differential pair of signals, which are always used together.
# = Active-Low signals	Unless specified otherwise, Active-Low signals are identified by a "#" appended to the term (<i>for example</i> , PEX_PERST#).
Program/code samples	Monospace font (<i>program or code samples</i>) is used to identify code samples or programming references. These code samples are case-sensitive, unless specified otherwise.
Command/Status	Register names.
Parity Error Detected	Register parameter [bit or field] or control function.
Upper Base Address[31:16]	Specific Function in 32-bit register bounded by bits [31:16].
Number multipliers	$ k = 1,000 \ (10^3) \ \text{is generally used with frequency response.} $ $ K = 1,024 \ (2^{10}) \ \text{is used for Memory size references.} $ $ KB = 1,024 \ \text{bytes.} $ $ M = \text{meg.} $ $ = 1,000,000 \ \text{when referring to frequency (decimal notation)} $ $ = 1,048,576 \ \text{when referring to Memory sizes (binary notation)} $
255d	d = Suffix that identifies decimal values.
1Fh	h = Suffix that identifies hex values. Each prefix term is equivalent to a 4-bit binary value (Nibble). Legal prefix terms are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
1010b	b = suffix which identifies binary notation (<i>for example</i> , 01b, 010b, 1010b, and so forth). Not used with single-digit values of 0 nor 1.
0 through 9	Decimal numbers, or single binary numbers.
byte	Eight bits – abbreviated to "B" (for example, $4B = 4$ bytes).
LSB	Least-Significant Byte.
lsb	Least-significant bit.
MSB	Most-Significant Byte.
msb	Most-significant bit.
DWord or DW	Double-Word (32 bits) is the primary register size in these devices.
QWord	Quad-Word (64 bits).
Reserved	Do not modify <i>reserved</i> register bits and fields. Unless specified otherwise, these bits read as 0 and must be written as 0.
word	16 bits.

Contents

Chapter 1	Introduction 1.1 Overview 1.2 Features	1
Chapter 2	Signal Pin Descriptions2.1Introduction2.2Pin Description Abbreviations2.3Internal Pull-Up/Pull-Down Resistors2.4Signal Pin Descriptions2.4.1PCI Express Signals2.4.2USB Interface Signals2.4.3Serial EEPROM Signals2.4.4Strapping Signals2.4.5Device-Specific Signals2.4.6Power and Ground Signals2.5Physical Layout	5 5 6 6 7 8 9 10 12 14
Chapter 3	Functional Overview 3.1 Introduction 3.1.1 Data Path 3.1.2 DMA Controller 3.1.3 8051 Micro-Controller Unit 3.1.4 General-Purpose Input/Output 3.1.5 Reference Clock Outputs	17 18 18 19 19
Chapter 4	Reset and Initialization 4.1 Overview 4.2 PEX_PERST# Input 4.3 PWRON_RST# Input 4.4 USB Host Reset 4.4.1 USB r2.0 Operating Mode 4.4.2 USB r3.0 Operating Mode 4.5 PCI Express Reset 4.5.1 PCI Express Hot Reset 4.5.2 PCI Express Upstream Link Down 4.5.3 Bridge Control Register Reset 4.5.3.1 Enhanced Adapter Mode 4.5.3.2 Root Complex Mode 4.6.4 Various Sources of Device-Specific Resets 4.6.2 USB Soft Reset 4.6.3 PCI Express Soft Reset 4.6.4 Configuration Soft Reset 4.6.5 FIFO Soft Reset 4.6.6 Reset Table 4.7 Reset and Clock Initialization Timing 4.8 Initialization Procedure	

	 4.9 Serial EEPROM Load upon Reset	31 32 33 33
Chapter 5	Serial EEPROM Controller 5.1 Overview 5.2 Features 5.3 Serial EEPROM Data Format 5.4 Serial EEPROM Initialization 5.5 PCI Express Configuration, Control, and Status Registers 5.6 Serial EEPROM Registers 5.7 Serial EEPROM Random Read/Write Access 5.7.1 Serial EEPROM Opcodes 5.7.2 Serial EEPROM Low-Level Access Routines 5.7.3 Serial EEPROM Read Status Routine 5.7.4 Serial EEPROM Write Data Routine 5.7.5 Serial EEPROM Read Data Routine	35 36 38 38 38 39 39 39 40 40
Chapter 6	8051 Micro-Controller Unit 6.1 Overview 6.2 8051 Memory Map 6.2.1 Program and Data Space (64 KB) 6.2.2 IRAM (256 Bytes) 6.2.2.1 Special Function Registers 6.3 Device-Specific Special Function Registers 6.3.1 Configuration Register Access Special Function Registers 6.3.2 Interrupt Status Special Function Registers 6.3.3 PCI Express Accesses 6.4 8051 Interrupts	41 41 42 43 45 45 47 48
Chapter 7	PCI Express Interface 7.1 Overview 7.2 Legacy Adapter Mode 7.3 Enhanced Adapter Mode 7.3.1 PCI Express Adapter (Endpoint) 7.4 Root Complex Mode 7.4.1 PCI Express Root Complex 7.4.1.1 PCI Master Control Registers 7.4.1.2 PCI Express Root Port Registers 7.4.1.3 Root Complex Event Collector Registers 7.4.2 Support for Messages Sent to Root Complex 7.4.3 Power Management Messages 7.5 PCI Express Accesses to On-Chip RAM 7.5.1 Legacy Adapter Mode 7.5.2 Enhanced Adapter Mode	 49 49 50 50 51 52 52 53 54 55 55

Chapter 8	USB Controller Functional Description	57
	8.1 Introduction	57
	8.2 Modes of Operation	57
	8.2.1 Legacy Adapter Mode	
	8.2.1.1 Endpoint FIFO Configuration	
	8.2.2 Enhanced Adapter Mode	
	8.3 Auto-Enumerate Controller	
	8.3.1 Configuration Register Setup	
	8.3.2 Supported Standard Requests	
	8.3.3 Control Transfer Detection	
	8.3.3.1 Standard Control Write Requests	
	8.3.3.2 Standard Control Read Requests	
	8.4 USB OUT FIFO Controller	
	8.4.1 OUT FIFO Writes	
	8.4.2 OUT FIFO Reads	
	8.4.3 OUT FIFO Flush	
	8.4.4 OUT Endpoint Halt Conditions	
	8.5 USB IN FIFO Controller	
	8.5.1 IN FIFO Writes	
	8.5.1.1 PCI Express Credits	
	8.5.2 FIFO Reads from USB r2.0 or USB r3.0 Core	
	8.5.3 IN FIFO (Write Target) Packet Validation	
	8.5.4 IN FIFO Flush	
	8.5.5 PCI Express Credit Timeout	
	8.5.6 IN Endpoint Halt Conditions	
	8.6 Dedicated Endpoints 8.6.1 CSROUT Dedicated Endpoint	
	8.6.1.1 CSR Cursor Register Write	
	8.6.1.2 CSROUT STALL Conditions	
	8.6.1.3 CSROUT Latency	
	8.6.1.4 CSROUT Flow Control	
	8.6.2 CSRIN Endpoint	
	8.6.2.1 CSRIN Latency	
	8.6.3 PCIOUT Endpoint	
	8.6.3.1 PCIOUT USB Handshake Responses	
	8.6.3.2 Non-Contiguous Byte Enables	
	8.6.3.3 Configuration Address Format	
	8.6.3.4 Message Format	
	8.6.3.5 Non-Posted Writes	
	8.6.3.6 PCI Master Control Cursor Register Write	
	8.6.3.7 PCI Express Message Generation	80
	8.6.3.8 PCIOUT Flow Control	82
	8.6.3.9 Message Broadcast	
	8.6.3.10 PCIOUT/PCIIN Timeout	
	8.6.3.11 PCIOUT Latency	
	8.6.3.12 PCIOUT STALL Conditions	
	8.6.4 PCIIN Endpoint	
	8.6.5 STATIN Endpoint – Root Complex Mode	
	8.6.6 RCIN Endpoint – Root Complex Mode	

Chapter 9	USB r2.0 and USB r3.0 Functional Description.		
	9.1 Introduction	87	
	9.2 USB r2.0 Functional Description	87	
	9.2.1 USB Protocol	88	
	9.2.1.1 Tokens	88	
	9.2.1.2 Packets	88	
	9.2.1.3 Transactions	88	
	9.2.1.4 Transfers	88	
	9.2.2 Automatic Retries	89	
	9.2.2.1 OUT Transactions	89	
	9.2.2.2 IN Transactions	89	
	9.2.3 PING Flow Control	90	
	9.2.4 Packet Sizes	90	
	9.2.5 USB Endpoints	91	
	9.2.5.1 Control Endpoint (EP 0)	91	
	9.2.5.2 Isochronous Endpoints	96	
	9.2.5.3 Bulk Endpoints	. 100	
	9.2.5.4 Interrupt Endpoints	. 102	
	9.2.6 USB Test Modes	. 103	
	9.3 USB r3.0 Functional Description	. 104	
	9.3.1 USB Interface	. 104	
	9.3.2 USB Protocol	. 104	
	9.3.2.1 Link Management Packet	. 104	
	9.3.2.2 Transaction Packet		
	9.3.2.3 Data Packet	. 105	
	9.3.2.4 Isochronous Timestamp Packet	. 105	
	9.3.3 Transactions and Transfer	. 106	
	9.3.4 Automatic Retries	. 106	
	9.3.4.1 OUT Transactions	. 106	
	9.3.4.2 IN Transactions	. 106	
	9.3.5 USB r3.0 Flow Control	. 107	
	9.3.6 Packet Sizes	. 107	
Chapter 10	DMA Controller	100	
Chapter 10	DMA Controller 10.1 Overview		
	10.2 Single Transfer Mode		
	10.2.1 OUT Endpoints		
	10.2.2 IN Endpoints		
	10.3 Scatter/Gather Mode		
	10.3.1 Valid Bit		
	10.3.2 <i>Clear Count Enable</i> Bit		
	10.3.3 <i>Direction</i> Bit		
	10.3.4 <i>Done Interrupt Enable</i> Bit		
	10.3.5 <i>End of Chain</i> Bit		
	10.3.6 DMA Scatter/Gather FIFO Validate Bit		
	10.3.7 DMA ISO Extra Transaction Opportunity Field		
	10.3.8 DMA OUT Continue Bit		
	10.3.9 <i>DMA Byte Count</i> Field		
	10.4 DMA OUT Transfer Completion		
	10.5 DMA Scatter/Gather OUT Transfer Calculations		

	10.6DMA Abort10.7DMA Pause10.7.1Graceful Pause Mode10.7.2Immediate Pause Mode10.8PCI Unaligned Write Transfers10.9PCI Unaligned Read Transfers	115 115 115 116
Chapter 11	GPIO Controller Functional Description11.1GPIO Interface11.2GPIO Control/Status Registers	117
Chapter 12	Interrupt and Status Register Operation12.112.2MSI Capability and Interrupt Request Status Registers12.3Endpoint Response Registers12.4Endpoint Status Registers12.5Message Signaled Interrupt Support on PCI Express Side	119 120 120 121
Chapter 13	Power Management13.1Overview13.2USB Power Configurations13.2.1Self-Powered Devices13.3.1USB Interface Low-Power States13.3.1USB Iz:0-Compliant Power States13.3.1.1USB Iz:0-Compliant Power States13.3.1.2USB Suspend State or L2 Link PM State13.3.2.1USB r:0-Compliant Link States13.3.2.2U2 Link State13.3.2.3U3 Link State13.3.2.4U2 Link State13.3.2.3U3 Link State (USB Suspend State)13.4PCI Express Power Management13.4.1Conventional PCI Device Power Management States13.4.2PCI Express Link Power Management States13.4.2.1ASPM L0s Link Power Management State13.4.2.2ASPM L1 Link Power Management State13.4.2.3L1 PCI Express Link Power Management State13.4.2.4L2/L3 Ready PCI Express Link Power Management State13.4.2.5L2 or L3 PCI Express Link Power Management State13.5.1Suspend/Resume Sequences – Adapter Mode13.5.2Host-Initiated Wakeup with 8051 Held in Reset13.5.3Suspend Sequence with 8051 Operating13.6USB Suspend/Resume – Root Complex Mode13.6.1Suspend Sequence13.6.2USB Host-Initiated Wakeup13.6.3Device-Remote Wakeup13.6.4Resume Interrupt13.6.4Resume Interrupt13.6.4Resume Interrupt13.7USB Low-Power Suspend State	123 124 125 125 125 125 125 125 125 125 126 126 126 126 126 126 126 126 126 126 134 134 136 137 138 138 139 140 141 141

Chapter 14	PCI Configuration Registers
	14.1 Introduction
	14.2 PCI Configuration Register Map 146
	14.3 Register Configuration and Map 148
	14.4 Register Access
	14.4.1 PCI r3.0-Compatible Configuration Mechanism
	14.4.2 PCI Express Enhanced Configuration Access Mechanism
	14.4.3 Device-Specific Memory-Mapped Configuration Mechanism
	14.5 Register Descriptions
	14.6 PCI-Compatible Type 1 Configuration Header
	Registers (Offsets 00h – 3Ch) 154
	14.7 PCI-Compatible Type 0 Configuration Header
	Registers (Offsets 00h – 3Ch) 170
	14.8 PCI Power Management Capability Registers
	(Offsets 40h – 44h) 181
	14.9 MSI Capability Registers
	(Offsets 48h – 64h)
	14.10 PCI Express Capability Registers
	(Offsets 68h – A0h) 190
	14.11 Device Serial Number Extended Capability Registers
	(Offsets 100h – 134h) 203
	14.12 Power Budget Extended Capability Registers
	(Offsets 138h – 144h)
	14.13 Virtual Channel Extended Capability Registers
	(Offsets 148h – 1BCh)
	14.14 Device-Specific Registers
	(Offsets 1C0h – 444h)
	14.14.1 Device-Specific Registers – Error Checking and Debug
	(Offsets 1C0h – 1FCh)
	14.14.2 Device-Specific Registers – Physical Layer
	(Offsets 200h – 25Ch)
	14.14.3 Device-Specific Registers – Serial EEPROM
	(Offsets 260h – 26Ch)
	14.15 Device-Specific Registers
	(Offsets 530h – B88h)
	14.15.1 Device-Specific Registers – Port Configuration
	(Offset 574h)
	14.15.2 Device-Specific Registers – Negotiated Link Width
	(Offsets 660h – 67Ch) 257 14.15.3 Device-Specific Registers – Vendor-Specific Extended
	Capability 2 (Offsets 950h – 95Ch)
	14.15.4 Device-Specific Registers – Ingress Credit Handler Control
	and Status (Offsets 9F0h – 9FCh)
	14.15.5 Device-Specific Registers – Ingress Credit Handler Threshold
	(Offsets A00h – A2Ch) 263 14.15.6 Device-Specific Registers – Physical Layer
	14.15.6 Device-Specific Registers – Physical Layer (Offsets B80h – B88h)
	, ,
	Registers (Offsets FB4h – FE8h)

Chapter 15	USB Configuration Registers	. 279
•	15.1 Introduction	
	15.2 Access Attributes	. 280
	15.3 Register Summary	. 281
	15.4 Preserved Registers during Suspend	. 281
	15.5 USB Controller Device-Specific Registers	. 282
	15.6 USB Interface Control Registers	. 316
	15.7 PCI Express/Configuration Cursor Registers	. 333
	15.8 DMA Registers	. 338
	15.9 Dedicated Endpoint Registers	. 347
	15.10 EP 0 and GPEPx Registers	. 349
	15.11 FIFO Registers	. 366
	15.11.1 FIFO Size and Base Address Defaults – Adapter Mode	. 368
	15.11.2 FIFO Size and Base Address Defaults – Root Complex Mode	. 369
	15.12 USB Power Management Registers	. 370
	15.13 Indexed Registers	
	15.13.1 Maximum Packet Size – GPEPx Index Registers	. 379
	15.13.2 Maximum Packet Size – Non-GPEPx Endpoints	. 382
Ohenster 40	Test and Debug	202
Chapter 16	Test and Debug	
	16.1 Introduction	
	16.2 Physical Layer Loopback Operation	
	16.2.1 Overview	
	16.2.2 Analog Loopback Master Mode	
	16.2.2.1 Initiating Far-End Analog Operations in USB 3380 Master Devices	
	16.2.3 Digital Loopback Master Mode	
	16.2.4 Digital Loopback Slave Mode	
	16.3 User Test Pattern	
	16.4 Pseudo-Random Bit Sequence	
	16.5 Using the SerDes Diagnostic Data Register16.6 PHY Testability Features	
	•	
	16.7 Lane Good Status LED	. 394
Chapter 17	Electrical Specifications	. 395
	17.1 Introduction	
	17.2 Power-Up/Power-Down Sequence	
	17.3 Absolute Maximum Ratings	
	17.4 Power Characteristics	
	17.5 Power Consumption Estimates	
	17.6 I/O Interface Signal Groupings	
	17.7 USB Electrical Specifications	
	17.7.1 USB Full- and High-Speed AC/DC Specifications	
	17.7.1.1 USB High/Full Speed AC/DC Specification Notes	
	17.7.2 USB Full-Speed Port AC Waveforms	
	17.7.3 SuperSpeed USB Interface Specifications	

Chapter 18	Thermal and Mechanical Specifications	419
	18.1 Thermal Characteristics	419
	18.2 General Package Specifications	419
	18.3 Mechanical Dimensions	420
Appendix A	General Information	421
Appendix A	General Information	
Appendix A		421

Registers

PCI Configuration Registers

PCI-Compatible Type 1 Configuration Header	
Registers (Offsets 00h – 3Ch)	
14-1. 00h PCI Configuration ID	
14-2. 04h PCI Command/Status	
14-3. 08h PCI Class Code and Revision ID	
14-4. 0Ch Miscellaneous Control.	
14-5. 10h Base Address 0	
14-6. 14h Base Address 1	
14-7. 18h Bus Number	
14-8. 1Ch Secondary Status, I/O Limit, and I/O Base	
14-9. 20h Memory Base and Limit.	
14-10. 24h Prefetchable Memory Base and Limit	
14-11. 28h Prefetchable Memory Upper Base Address	
14-12. 2Ch Prefetchable Memory Upper Limit Address	
14-13. 30h I/O Upper Base and Limit Address	
14-14. 34h Capability Pointer	
14-15. 38h Expansion ROM Base Address	
14-16. 3Ch Bridge Control and PCI Interrupt Signal	
PCI-Compatible Type 0 Configuration Header	
Registers (Offsets 00h – 3Ch)	170
14-17. 00h PCI Configuration ID	
14-18. 04h PCI Command/Status	
14-19. 08h PCI Class Code and Revision ID.	
14-20. 0Ch Miscellaneous Control.	
14-21. 10h Base Address 0	
14-22. 14h Base Address 1	
14-23. 18h Base Address 2	
14-24. 1Ch Base Address 3	
14-25. 20h Base Address 4	
14-26. 24h Base Address 5	
14-27. 2Ch Subsystem ID and Subsystem Vendor ID	
14-28. 34h Capability Pointer.	
14-29. 3Ch Bridge Control and PCI Interrupt Signal	
PCI Power Management Capability Registers (Offsets 40h – 44h)	191
14-30. 40h PCI Power Management Capability 14-31. 44h PCI Power Management Status and Control	
MSI Capability Registers	
(Offsets 48h - 64h)	
14-32. 48h MSI Capability	
14-33. 4Ch MSI Address	
14-34. 50h MSI Upper Address	
14-35. 54h MSI Data	
14-35. 54h MSI Data	

PCI Express Capability Registers

(Offsets 68h – A0h)	190
14-38. 68h List and Capability	
14-39. 6Ch Device Capability	
14-40. 70h Device Status and Control	193
14-41. 74h Link Capability	195
14-42. 78h Link Status and Control	
14-43. 84h Root Capability and Control	200
14-44. 88h Root Status	
14-45. 8Ch Device Capability 2	
14-46. 90h Device Status and Control 2	
14-47. 98h Link Status and Control 2	202
Device Serial Number Extended Capability Registers	
(Offsets 100h – 134h)	
14-48. 100h Device Serial Number Extended Capability Header	
14-49. 104h Serial Number (Lower DW)	
14-50. 108h Serial Number (Upper DW)	204
Power Budget Extended Capability Registers	
(Offsets 138h – 144h)	
14-51. 138h Power Budget Extended Capability Header	205
14-52. 13Ch Data Select	
14-53. 140h Power Budget Data	
14-54. 144h Power Budget Capability	207
Virtual Channel Extended Capability Registers	
(Offsets 148h – 1BCh)	208
14-55. 148h Virtual Channel Extended Capability Header	208
14-56. 14Ch Port VC Capability 1	209
14-57. 150h Port VC Capability 2	209
14-58. 154h Port VC Status and Control	
14-59. 158h VC0 Resource Capability	
14-60. 15Ch VC0 Resource Control	
14-61. 160h VC0 Resource Status	211
Device-Specific Registers	
(Offsets 1C0h – 444h)	212
Device-Specific Registers – Error Checking and Debug	
(Offsets 1C0h – 1FCh)	213
14-62. 1C8h ECC Error Check Disable	213
14-63. 1D8h Clock Enable	
14-64. 1DCh Debug Control	215
14-65. 1E0h Power Management Hot Plug User Configuration	217
14-66. 1E4h Egress Control and Status	
14-67. 1E8h Bad TLP Counter	220
14-68. 1ECh Bad DLLP Counter	
14-69. 1F4h Software Lane Status	
14-70. 1F8h ACK Transmission Latency Limit	221
Device-Specific Registers – Physical Layer	
(Offsets 200h – 25Ch)	222
14-71. 200h Physical Layer Receiver Detect Status/Electrical Idle for Compliance Mask	
14-72. 204h Physical Layer Electrical Idle Detect/Receiver Detect Mask.	
14-73. 210h Physical Layer User Test Pattern, Bytes 0 through 3	226
14-74. 214h Physical Layer User Test Pattern, Bytes 4 through 7	
14-75. 218h Physical Layer User Test Pattern, Bytes 8 through 11	
14-76. 21Ch Physical Layer User Test Pattern, Bytes 12 through 15	227

USB 3380-AA/AB PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller Data Book, v1.3 Copyright © 2012 by PLX Technology, Inc. All Rights Reserved

	4-77. 220h Physical Layer Command and Status	
	4-78. 224h Physical Layer Function Control	
	4-79. 228h Physical Layer Test	
	4-80. 230h Physical Layer Port/SuperSpeed USB Command	
	4-81. 234h SKIP Ordered-Set Interval, Port and SuperSpeed USB Control	
	4-82. 238h SerDes Diagnostic Data	
	4-33. 246h Polit Receiver End Counters	
	4-64. 254h PRBS Control/Status	
		273
	pecific Registers – Serial EEPROM	
(Offsets)	260h – 26Ch)	230
	4-86. 260h Serial EEPROM Status and Control	
	4-87. 264h Serial EEPROM Buller	
	4-89. 26Ch Serial EEPROM 3 rd Address Byte	
		204
	pecific Registers	
(Offsets a	530h – B88h)	255
Device-S	pecific Registers – Port Configuration	
	74h)	256
	4-90. 574h Port Configuration	
		200
	pecific Registers – Negotiated Link Width	
	660h – 67Ch)	
1.	4-91. 66Ch Negotiated Link Width for Ports 0 and 2 and SuperSpeed USB	257
Device-S	pecific Registers – Vendor-Specific Extended	
	y 2 (Offsets 950h – 95Ch)	258
	4-92. 950h Vendor-Specific Extended Capability 2	
	4-93. 954h Vendor-Specific Header 2	
	4-94. 958h PLX Hardwired Configuration ID	
	4-95. 95Ch PLX Hardwired Revision ID.	
	pecific Registers – Ingress Credit Handler Control	
	us (Offsets 9F0h – 9FCh)	
	4-96. 9F0h INCH Status Control for Port 0	
	4-97. 9F4h INCH Status Read for Port 0	
	4-98. 9F8h INCH Status Control for Port 2 and SuperSpeed USB	
14	4-99. 9FCh INCH Status Read for Port 2 and SuperSpeed USB	262
Device-S	pecific Registers – Ingress Credit Handler Threshold	
		263
	4-100. A00h, A18h, A24h INCH Threshold Port <i>x</i> and SuperSpeed USB	
	VC0 Posted	263
14	4-101. A04h, A1Ch, A28h INCH Threshold Port x and SuperSpeed USB	
	VC0 Non-Posted	264
14	4-102. A08h, A20h, A2Ch INCH Threshold Port x and SuperSpeed USB	
	VC0 Completion	264
.		
	pecific Registers – Physical Layer	
	B80h – B88h)	
	4-103. B84h Advertised N_FTS	

Advanced Error Reporting Extended Capability

Registers (Offsets F	B4h – FE8h)	268
14-105. FB4h	Advanced Error Reporting Extended Capability Header	268
14-106. FB8h	Uncorrectable Error Status	269
14-107. FBCh	Uncorrectable Error Mask	270
14-108. FC0h	Uncorrectable Error Severity	271
14-109. FC4h	Correctable Error Status	272
14-110. FC8h	Correctable Error Mask	273
14-111. FCCh	Advanced Error Capabilities and Control	274
14-112. FD0h	Header Log 0	275
14-113. FD4h	Header Log 1	275
14-114. FD8h	Header Log 2	275
14-115. FDCh	Header Log 3	275
14-116. FE0h	Root Error Command.	276
14-117. FE4h	Root Error Status	276
14-118. FE8h	Error Source ID	277

USB Configuration Registers

USB Controller Device-Specific Registers	282
15-1. 00h DEVINIT Device Initialization	
15-2. 0Ch PCICTL PCI Control.	284
15-3. 10h PCIIRQENB0 PCI Express Interrupt Request Enable 0	285
15-4. 14h PCIIRQENB1 PCI Express Interrupt Request Enable 1	287
15-5. 18h CPUIRQENB0 8051 Interrupt Request Enable 0	289
15-6. 1Ch CPUIRQENB1 8051 Interrupt Request Enable 1	290
15-7. 20h USBIRQENB0 STATIN Interrupt Request Enable 0	293
15-8. 24h USBIRQENB1 STATIN Interrupt Request Enable 1	
15-9. 28h IRQSTAT0 Interrupt Request Status 0	
15-10. 2Ch IRQSTAT1 Interrupt Request Status 1	300
15-11. 30h IDXADDR Indexed Register Address	303
15-12. 34h IDXDATA Indexed Register Data	
15-13. 38h FIFOCTL FIFO Control	
15-14. 3Ch BAR2CTL BAR2 Enhanced Control	
15-15. 40h BAR3CTL BAR3 Enhanced Control	
15-16. 50h GPIOCTRL GPIO Control	
15-17. 54h GPIOSTAT GPIO Status	
15-18. 58h PWMV GPIO PWM Value	
15-19. 5Ch PWMRC GPIO PWM Ramp Control	
15-20. 60h PWMFREQ GPIO PWM Clock Frequency	315
15-21. 78h Root Message Dispatch Root Message Dispatch 0/1 – RCIN/8051 FIFO	315
15-22. 7Ch HUC Cursor Data HUC Cursor Data	315
USB Interface Control Registers	316
15-23. 80h STDRSP Standard Response Control	
15-24. 84h PRODVENDID Product and Vendor IDs.	
15-25. 88h RELNUM Device Release Number.	
15-26. 8Ch USBCTL USB Control	
15-27. 90h USBSTAT USB Status	
15-28. 94h XCVRDIAG USB Transceiver Diagnostic Control.	
15-29. 98h SETUPDW0 Setup DWord 0	
15-30. 9Ch SETUPDW1 Setup DWord 1	
15-31. A4h OURADDR Our USB Address	
15-32. A8h OURCONFIG Our USB Configuration	
15-33. B4h USB_CLASS USB Class, Sub-Class, Protocol	327
15-34. B8h SS_SEL SuperSpeed System Exit Latency	
15-35. BCh SS_DEL SuperSpeed Device Exit Latency	
15-36. C0h USB2LPM USB2 Link Power Management	328
15-37. C4h USB3BELT USB3 Best Effort Latency Tolerance	329
15-38. C8h USBCTL2 USB Control 2	330
15-39. CCh IN_TIMEOUT IN Endpoint Credit Timeout	331
15-40. D0h ISODELAY Isochronous Delay	332
PCI Express/Configuration Cursor Registers	222
15-41. 100h PCIMSTCTL PCI Master Control	
15-42. 104h PCIMSTADDR PCI Master Address	
15-43. 108h PCIMSTDATA PCI Master Data	
15-44. 10Ch PCIMSTSTAT PCI Express Master Status	
15-45. 110h CSRC1L CSR Control	
15-46. 114h CSRDATA CSR Data	
15-47. 118h SEMAPHORE General Semaphore	
10-40. FICH FOINDTNIOG FOI MASIEI MESSAYE	

DMA Registers	338
15-49. 180h, 1A0h, 1C0h, 1E0h DMACTL DMA Control	339
15-50. 184h, 1A4h, 1C4h, 1E4h DMASTAT DMA Status	
15-51. 190h, 1B0h, 1D0h, 1F0h DMACOUNT DMA Transfer Length	343
15-52. 194h, 1B4h, 1D4h, 1F4h DMAADDR DMA Address	344
15-53. 198h, 1B8h, 1D8h, 1F8h DMADESC DMA Descriptor	344
15-54. 680h, 690h, 6A0h, 6B0h DMACOUNTP DMA Transfer Length (Prefetch)	345
15-55. 684h, 694h, 6A4h, 6B4h DMAADDRP DMA Address (Prefetch)	346
15-56. 688h, 698h, 6A8h, 6B8h DMADESCP DMA Descriptor (Prefetch)	346
Dedicated Endnaint Desistary	247
Dedicated Endpoint Registers.	347
15-57. 200h, 210h, 220h, 230h, 240h, 250h DEP_CFG Dedicated Endpoint Configuration	0.47
for CSROUT, CSRIN, PCIOUT, PCIIN, STATIN, and RCIN	347
15-58. 204h, 214h, 224h, 234h, 244h, 254h DEP_RSP Dedicated Endpoint Response	240
for CSROUT, CSRIN, PCIOUT, PCIIN, STATIN, and RCIN	340
EP 0 and GPEPx Registers	349
15-59. 300h EP_CFG Endpoint Configuration for EP 0	
15-60. 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h EP_RSP	
Endpoint Response for EP 0 and GPEPx	352
15-61. 308h, 328h/3E8h, 348h/408h, 368h/428h, 388h/448h EP_IRQENB	
Endpoint Interrupt Enable for EP 0 and GPEPx.	355
15-62. 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch EP_STAT	
Endpoint Status for EP 0 and GPEPx	356
15-63. 310h, 330h/3F0h, 350h/410h, 370h/430h, 390h/450h EP_AVAIL	
Endpoint Available Count for EP 0 and GPEPx	360
15-64. 314h, 334h/3F4h, 354h/414h, 374h/434h, 394h/454h EP_DATA	
Endpoint Data for EP 0 and GPEPx	360
15-65. 318h, 338h/3F8h, 358h/418h, 378h/438h, 398h/458h EP_DATA1	
Endpoint Data1 for EP 0 and GPEPx	361
15-66. 33Ch, 35Ch, 37Ch, 39Ch EP_VAL Endpoint Validate for GPEPx	361
15-67. 320h, 340h, 360h, 380h EP_CFG Endpoint Configuration for GPEPx Endpoints	362
	200
FIFO Registers	366
15-68. 500h, 520h, 540h, 560h, 580h, 5E0h, 600h EP_FIFO_SIZE_BASE	
EP 0, GPEP0, GPEP1, GPEP2, GPEP3, PCIOUT/PCIIN, and RCIN	0.07
FIFO Size and Base Address	367
USB Power Management Registers	370
15-69. 6C0h USBPM Control USB Power Management Control	
15-70. 6C4h USBPM Status USB Power Management Status Register	
Indexed Registers	
15-71. Index 00h DIAG Diagnostic Control	
15-72. Index 01h PKTLEN Packet Length	
15-73. Index 02h FRAME Frame Counter	
15-74. Index 03h CHIPREV Chip Revision	
15-75. Index 04h UFRAME Micro Frame Counter	
15-76. Index 05h FRAME_COUNT Frame Down Counter	
15-77. Index 06h HS_MAXPOWER High-Speed Maximum Power	
15-78. Index 07h FS_MAXPOWER Full-Speed Maximum Power	
15-79. Index 08h HS_INTPOLL_RATE High-Speed Interrupt Polling Rate	
15-80. Index 09h FS_INTPOLL_RATE Full-Speed Interrupt Polling Rate	
15-81. Index 0Ah HS_NAK_RATE High-Speed NAK Rate	
15-82. Index 0Bh SCRATCH Scratchpad	378

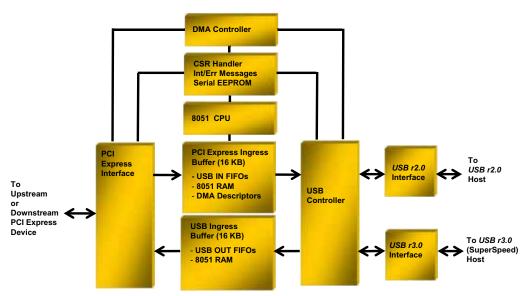
Maximum Packet Size – GPEPx Index Registers	379
15-83. Index 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h GPEP[3:0/Out/In]_HS_MAXPKT	
High-Speed Maximum Packet Size	379
15-84. Index 21h, 31h, 41h, 51h, 61h, 71h, 81h, 91h GPEP[3:0/Out/In]_FS_MAXPKT	
Full-Speed Maximum Packet Size	380
15-85. Index 22h, 32h, 42h, 52h, 62h, 72h, 82h, 92h GPEP[3:0/Out/In]_SS_MAXPKT	
SuperSpeed Maximum Packet Size	380
15-86. Index 84h STATIN_HS_INTPOLL_RATE High-Speed Interrupt Polling Rate for STATIN	
15-87. Index 85h STATIN_FS_INTPOLL_RATE Full-Speed Interrupt Polling Rate for STATIN	381
15-88. Index 86h SS_MAXPOWER SuperSpeed Maximum Power	381

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 1 Introduction

1.1 Overview

This data book describes PLX Technology's USB 3380 PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller. The USB 3380 features one PCI Express x1 Gen 2 Port and one *USB r3.0* SuperSpeed client Port.


The USB 3380 provides a matching bandwidth at 5 Gbps between the PCI Express Gen 2 interface and *USB r3.0* SuperSpeed Bus. The USB 3380 can easily add a SuperSpeed USB client Port to an existing PCI Express system, as well as convert existing PCI Express functions (endpoints) to a SuperSpeed USB product.

The USB 3380 can configure its PCI Express Port into either one x1 upstream Port (Root Complex mode) or one x1 downstream Port (Endpoint mode). The flexibility allows different system configurations to achieve the maximum performance of the product.

As the successor of the gold standard PLX NETCHIP[™] NET 2282 PCI to High-Speed USB 2.0 Controller, the USB 3380 can be used with existing NET 2282 software, with no or minimal change. Driver stacks are already available in common Operating Systems/Environments, *such as* Microsoft Windows (XP, Vista, 7, and CE), Linux, and VxWorks. PLX's USB Duet[®] software provides a PC interconnect at 400 MBps, with just a simple USB cable.

Target applications for the USB 3380 as a PCI Express Adapter (endpoint) include PCs, servers, PCI Express Adapter (endpoint) docking stations, printers, and PCI Express embedded systems. The main applications for the USB 3380 as a PCI Express Root Complex include WLAN dongles, graphics/video dongles, and HDTV tuners/codecs.

A functional block diagram of the USB 3380 is shown in Figure 1-1.

Figure 1-1. USB 3380 Block Diagram

1.2 Features

The USB 3380 supports the following features:

- One pair of buffered, 100-MHz HCSL output clocks for a downstream PCI Express device (Root Complex mode)
- Bridges between a PCI Express interface and USB Host
- One PCI Express x1 Gen 2 Port
 - Operates as a PCI Express Root Complex or Endpoint
- One USB r3.0 SuperSpeed peripheral Port
- Four-channel DMA Scatter/Gather Controller
- Integrated 8051 Micro-Controller Unit (MCU) (referred to herein, as 8051) with 32-KB SRAM Program/Data memory
- USB SuperSpeed (5 Gbps), High-Speed (480 Mbps), and Full-Speed (12 Mbps) modes
- USB Auto-Enumerate modes
- Automatic Retry of failed packets
- Maximum Payload Size 2,048 bytes
- Quality of Service (QoS) support
 - All Ports support one, full-featured Virtual Channel (VC0)
 - All Ports support eight Traffic Class (TC[7:0]) mapping, independently of the other Ports
- 4 General-Purpose Input/Output (GPIO) pins with Pulse Width Modulation (PWM)
- Other PCI Express Capabilities
 - Transaction Layer Packet (TLP) Digest support for Poison bit
 - Polarity reversal
 - Conventional PCI-compatible Link Power Management states
 - L0, L0s, L1, L2, and L2/L3 Ready
 - L3 (with Vaux supported)
 - Conventional PCI-compatible Device Power Management states
 - D0, D1, D2, and D3hot
 - D3cold (with Vaux supported)
 - Active State Power Management (ASPM)
 - Dynamic Link speed (2.5 or 5.0 GT/s) negotiation
- Out-of-Band Serial EEPROM Initialization option
- Serial EEPROM interface for initializing Configuration registers and 8051 firmware
- 12-MHz oscillator with internal Phase-Locked Loop (PLL) multiplier
- 1.0V and 3.3V operating voltages
- 15 physical USB endpoints
 - Endpoint 0 (EP 0) for device control and status
 - Six Dedicated endpoints for register and PCI Express accesses CSROUT, CSRIN, PCIOUT, PCIIN, STATIN, and RCIN
 - Up to eight Configurable endpoints GPEP[3:0], which can operate as *Isochronous*, *Bulk*, or *Interrupt* endpoint types

- Diagnostic register allows forced USB errors
- Software-controlled disconnect allows re-enumeration
- Atomic operation to Set and Clear Status bits simplifies software
- Lead-Free and RoHS (Reduction of Hazardous Substances)-compliant
- 10 x 10 mm², 88-pin QFN package
- Typical power 646 mW
- Compliant to the following specifications:
 - PCI Local Bus Specification, Revision 3.0 (PCI r3.0)
 - PCI Bus Power Management Interface Specification, Revision 1.2 (PCI Power Mgmt. r1.2)
 - PCI Code and ID Assignment Specification, Revision 1.2
 - PCI to PCI Bridge Architecture Specification, Revision 1.2 (P-to-P Bridge r1.1)
 - PCI Express Base Specification, Revision 1.1 (PCI Express Base r1.1)
 - PCI Express Base Specification, Revision 2.0 (PCI Express Base r2.0)
 - PCI Express Base Specification, Revision 2.0 Errata
 - PCI Express Base Specification, Revision 2.1 (PCI Express Base r2.1)
 - PCI Express Card Electromechanical Specification, Revision 2.0 (PCI ExpressCard CEM r2.0)
 - PCI Express Mini Card Electromechanical Specification, Revision 1.1 (PCI ExpressCard Mini CEM r1.1)
 - Universal Serial Bus Specification Revision 2.0 (USB r2.0)
 - Universal Serial Bus Specification Revision 3.0 (USB r3.0)

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 2 Signal Pin Descriptions

2.1 Introduction

This chapter provides descriptions of the 88 USB 3380 signal pins and center Ground pad, which include the signal name, type, location, and a brief description. A map of the USB 3380's physical pin locations is also provided.

2.2 Pin Description Abbreviations

The following abbreviations are used in the signal pin tables provided in this chapter.

Abbreviation	Description
#	Active-Low signal
А	Analog Input signal
APWR	3.3V Power for SerDes Analog circuits
CMLCLKn ^a	Differential low-voltage, high-speed, CML negative Clock inputs
CMLCLKp	Differential low-voltage, high-speed, CML positive Clock inputs
CMLRn	Differential low-voltage, high-speed, CML negative Receiver inputs
CMLRp	Differential low-voltage, high-speed, CML positive Receiver inputs
CMLTn	Differential low-voltage, high-speed, CML negative Transmitter outputs
CMLTp	Differential low-voltage, high-speed, CML positive Transmitter outputs
CPWR	1.0V Power for low-voltage Core circuits
DPWR	1.0V Power for SerDes Digital circuits
GND	Common Ground for all circuits
HCSLOUT	High-Speed Current Steering Logic (HCSL) Output clocks
Ι	Input
I/O	Bidirectional (Input or Output)
I/OPWR	3.3V Power for Input and Output interfaces
N/C	No Connect, these signals must not be connected to board electrical paths
0	Output
OD	Open Drain output
PLLPWR	1.0V Power pins for Phase-Locked Loop (PLL) circuits
PD	Weak internal pull-down resistor
PU	Weak internal pull-up resistor
PWR	3.3V power for the USB interface
SerDes	Serializer/De-Serializer differential low-voltage, high-speed, I/O signal pairs (negative and positive)
STRAP	Input signals used for USB 3380 configuration, operational mode Setting, and <i>Factory Test</i> ; these signals generally are not toggled at runtime

Table 2-1. Pin Assignment Abbreviations

a. For REFCLK input, CML source is recommended; however, LVDS source is supported.

2.3 Internal Pull-Up/Pull-Down Resistors

The USB 3380 contains I/O buffers that have weak internal pull-up or pull-down resistors, indicated in this chapter by PU or PD, respectively, in the signal pin tables (**Type** column). If a signal with this notation is used and no board trace is connected to the pin, the internal resistor is usually sufficient to keep the signal from toggling. However, if a signal with this notation is not used, but is connected to a board trace and is not used nor driven by an external source at all times, the internal resistors might not be sufficiently strong, to hold the signal in the Inactive state. In cases such as these, it is recommended that the signal be pulled High to VDD_IO or Low to Ground, as appropriate, through a $3K\Omega$ to $10K\Omega$ resistor.

Table 2-2 lists the internal pull-up and pull-down resistor values.

Internal Resistor	Minimum	Typical	Maximum	Units
PU	33.6K	50K	69.3K	Ω
PD	33.5K	50K	69.4K	Ω

Table 2-2. Internal Resistor Values

2.4 Signal Pin Descriptions

Note: If there is more than one pin per signal name (such as VDD_IO), the locations are listed in ascending alphanumeric order.

The USB 3380 signals are divided into the following groups:

- PCI Express Signals
- USB Interface Signals
- Serial EEPROM Signals
- Strapping Signals
- Device-Specific Signals
- Power and Ground Signals

2.4.1 PCI Express Signals

Table 2-3 defines the PCI Express SerDes and Control signals.

Signal Name	Туре	Location	Description
PEX_PERn	CMLRn	10	Negative Half of PCI Express Receiver Differential Signal Pairs
PEX_PERp	CMLRp	9	Positive Half of PCI Express Receiver Differential Signal Pairs
PEX_PERST#	I PU	24	PCI Express ResetWhen asserted, causes a full-device (Fundamental) reset.Must be asserted for 100 ms after power and clocks are stable.When operating in systems that do not implement theD3cold state, PEX_PERST# should be driven togetherwith PWRON_RST# input.(Refer to Chapter 4, "Reset and Initialization," for details.)
PEX_PETn	CMLTn	14	Negative Half of PCI Express Transmitter Differential Signal Pairs
PEX_PETp	CMLTp	13	Positive Half of PCI Express Transmitter Differential Signal Pairs
PEX_REFCLKn	CMLCLKn	37	Negative Half of 100-MHz PCI Express Reference Clock Input Signal Pair PEX_REFCLKn/p do not require AC coupling capacitors, when driven from an HCSL source. Use with other Clock driver types (such as LVDS or Low-Voltage Positive Emitter- Coupled Logic (LVPECL)) has not been characterized.
PEX_REFCLKp	CMLCLKp	36	Positive Half of 100-MHz PCI Express Reference Clock Input Signal Pair PEX_REFCLKn/p do not require AC coupling capacitors, when driven from an HCSL source. Use with other Clock driver types (such as LVDS or LVPECL) has not been characterized.
PEX_REFCLK_OUT_BIAS	А	33	Optional Bias Voltage Input Can be left unconnected for typical applications. Suggest routing this pin to a test point.
PEX_REFCLK_OUTn1	HCSLOUT	31	Negative Half of Reference Clock Output for Pair 1 Reference Clock output is enabled, by default, and can be disabled by Clearing the Clock Enable register REFCLK 1 Enable bit (Port 0, offset 1D8h[8]). Note: A termination resistor network is not required for the REFCLK output pair.
PEX_REFCLK_OUTp1	HCSLOUT	30	Positive Half of Reference Clock Output for Pair 1 Reference Clock output is enabled, by default, and can be disabled by Clearing the Clock Enable register REFCLK 1 Enable bit (Port 0, offset 1D8h[8]). Note: A termination resistor network is not required for the REFCLK output pair.
PEX_REFCLK_OUT_RREF	А	35	External Reference Resistor Connect to Ground through a 2.00K Ω , 1% resistor. Place the resistor close to this pin.

Table 2-3. PCI Express Signals – 11 Pins

2.4.2 **USB Interface Signals**

The USB 3380 includes signals for interfacing to a USB Host, defined in Table 2-4. For information regarding USB Interface use, refer to Chapter 8, "USB Controller Functional Description."

Description

Signal Name	Туре	Location	
USB_DM	I/O	5	High-Speed USB Negative
USB_DP	I/O	7	High-Speed USB Positive
			External Reference Resist

Table 2-4. USB Interface Signals – 8 Pins

USB_DM	I/O	5	High-Speed USB Negative Data Port
USB_DP	I/O	7	High-Speed USB Positive Data Port
USB_RREF	А	2	External Reference Resistor Connect USB_RREF to USB_AVSS through a $1.6K\Omega \pm 1\%$ resistor. Place the resistor close to the signal pad. Keep traces as short as possible.
USB_RXM	CMLRn	80	SuperSpeed USB Receive Differential Data, Negative Half
USB_RXP	CMLRp	81	SuperSpeed USB Receive Differential Data, Positive Half
USB_TXM	CMLTn	76	SuperSpeed USB Transmit Differential Data, Negative Half
USB_TXP	CMLTp	77	SuperSpeed USB Transmit Differential Data, Positive Half
USB_VBUS	Ι	88	VBUS Presence Detect USB_VBUS is used to sense when a USB Host is connected. Connect to the VBUS pin of the USB cable receptacle, through a $27K\Omega$ resistor. Also, connect to Ground through a $47K\Omega$ resistor. The resistor network divides the 5V at the USB receptacle's VBUS pin, so that it is in the 3V range at the USB 3380's USB_VBUS input. <i>Note:</i> When the USB 3380 is not powered (VDD_IO = 0V), the
			USB_VBUS pin presents a leakage path to Ground when an external USB Host is connected with the connector VBUS pin at 5V. This leakage current is limited by the external $27K\Omega$ resistor to approximately 150 μ A. For designs that require zero leakage when the USB 3380 is not powered, an external FET is recommended.

2.4.3 Serial EEPROM Signals

The USB 3380 includes four signals for interfacing to a serial EEPROM, defined in Table 2-5. For information regarding serial EEPROM use, refer to Chapter 5, "Serial EEPROM Controller."

Table 2-5. Serial EEPROM Signals – 4 Pins

Signal Name	Туре	Location	Description
EE CS#	I/O	53	Active-Low Serial EEPROM Chip Select Output
	PU		<i>Note:</i> Although this is an I/O signal, its logical operation is output.
EE WRDATA/EE DI	0	51	USB 3380 Output to Serial EEPROM Data Input
			Used for writing Serial data when programming the serial EEPROM.
EE_RDDATA/EE_DO	I/O PU	55	USB 3380 Input from Serial EEPROM Data Output Inputs data from the serial EEPROM during Read operations. Should be pulled High to VDD_IO.
			<i>Note:</i> Although this is an I/O signal, its logical operation is input.
EE_CLK/EE_SK	I/O PU	54	 Serial EEPROM Clock Frequency Output Programmable, by way of the Serial EEPROM Clock Frequency register <i>EepFreq[2:0]</i> field (Port 0, offset 268h[2:0]), to the following: 1 MHz (default) 1.98 MHz 5 MHz 9.62 MHz 12.5 MHz 15.6 MHz 17.86 MHz
			Note: Although this is an I/O signal, its logical operation is output.

2.4.4 Strapping Signals

The USB 3380 Strapping inputs, defined in Table 2-6, Set the configuration of Link width, Spread-Spectrum clocking, and various setup and test modes. These inputs must be pulled High to VDD_IO or Low to Ground, or left unconnected, as indicated in the table.

After a Fundamental Reset, the **Link Capability** (All Ports, offset 74h), and **Debug Control** and **Port Configuration** registers (Port 0, offsets 1DCh and 574h, respectively) capture pin status. Strapping input Configuration data can be changed, by writing new data to these registers from the serial EEPROM.

Signal Name	Туре	Location	Description
STRAP_DEBUG_SEL#	I PU	22	<i>Factory Test Only</i> STRAP_DEBUG_SEL# can be left unconnected in standard applications. If this input is connected to a board circuit trace, it must be externally pulled High to VDD_IO.
STRAP_LEGACY	I PU	66	USB Legacy Mode Select When STRAP_LEGACY is pulled High to VDD_IO, the USB 3380's USB endpoints and register set are backward-compatible for applications that run on the NET 2282 USB device Controller. When STRAP_LEGACY is pulled or tied to Ground, the USB 3380 operates with advanced registers and endpoints. (Refer to Chapter 7, "PCI Express Interface," and Chapter 8, "USB Controller Functional Description," for further details.)
STRAP_PLL_BYPASS#	I PU	65	<i>Factory Test Only</i> STRAP_PLL_BYPASS# can be left unconnected in standard applications. If this input is connected to a board circuit trace, it must be externally pulled High to VDD_IO.
STRAP_PORTCFG	I PD	58	<i>Factory Test Only</i> Do not connect this pin to board electrical paths.
STRAP_PROBE_MODE#	I PU	19	<i>Factory Test Only</i> STRAP_PROBE_MODE# can be left unconnected in standard applications. If this input is connected to a board circuit trace, it must be externally pulled High to VDD_IO.
			Root Complex Mode Enable
STRAP_RC_MODE	I PD	57	 Root Complex Mode When STRAP_RC_MODE is pulled High to VDD_IO, the USB 3380 operates as a PCI Express Root Complex. In this mode, PCI Express Lane 0 functions as a downstream Port. (Refer to Chapter 7, "PCI Express Interface," for further details.) Adapter Mode When STRAP_RC_MODE is pulled or tied Low to Ground, the USB 3380 operates as a PCI Express Adapter (endpoint). In this mode, the PCI Express interface functions as an upstream Port. (Refer to Chapter 7, "PCI Express Interface," and Chapter 8, "USB Controller Functional Description," for further details.)

Table 2-6.Strapping Signals – 12 Pins

Table 2-6. Strapping Signals – 12 Pins (Cont.)

Signal Name	Туре	Location	Description
STRAP_SERDES_MODE_EN#	I PU	56	<i>Factory Test Only</i> STRAP_SERDES_MODE_EN# can be left unconnected in standard applications. If this input is connected to a board circuit trace, it must be externally pulled High to VDD_IO.
STRAP_SSC_CENTER#	I PU	64	SuperSpeed USB Center-Spread Clock When STRAP_SSC_CENTER# is pulled or tied Low to VSS (Ground), the USB 3380's USB interface can support a USB Host or hub that uses a Center-Spread Reference Clock. Otherwise, this signal can be left unconnected.
STRAP_TESTMODE[3:0]	[3, 1]: I PU [2, 0]: I PD	47, 46, 45, 44	 Factory Test Only (4 Pins) STRAP_TESTMODE[3:0] select the USB 3380 clocking configuration. Supported strapping combinations are as follows: Dual Clocks configuration = HLLL PCI Express interface is clocked from PEX_REFCLKn/p input (100 MHz) PEX_REFCLK_OUTnx/px (100 MHz) are buffered from PEX_REFCLKn/p input USB interface is clocked from XTAL_IN input (30 MHz) 30 MHz Only configuration = HLLH USB and PCI Express interfaces are both clocked from XTAL_IN (30 MHz) PEX_REFCLK_OUTnx/px signals (100 MHz) are generated from XTAL_IN (30 MHz) All other strapping combinations are <i>Factory Test Only</i>: H = Pull High to VDD_IO L = Pull or tie Low to VSS (Ground)
STRAP_UPCFG_TIMER_EN#	I PU	38	 Link Upconfigure Timer Enable STRAP_UPCFG_TIMER_EN# maps to the Debug Control register STRAP_UPCFG_TIMER_EN# Pin State bit (Port 0, offset 1DCh[4]). This input and its corresponding register bit must not be toggled at runtime. When STRAP_UPCFG_TIMER_EN# is pulled High, the Data Rate Identifier symbol in the TS Ordered-Sets always advertises support for both the 5.0 GT/s (Gen 2) data rate and Autonomous Change. When STRAP_UPCFG_TIMER_EN# is pulled or tied Low, if this Link training sequence fails during the Configuration state, the next time the LTSSM exits the Detect state, TS Ordered-Sets advertise only the 2.5 GT/s (Gen 1) data rate and no Autonomous Change support. If Link training continues to fail when the LTSSM is in the Configuration state, the LTSSM continues to alternate between Gen 1 and Gen 2 advertisement every time it exits the Detect state. Note: This feature should only be enabled if a non-compliant device will not linkup when these Data Rate Identifier bits are Set.

2.4.5 Device-Specific Signals

Table 2-7 defines the Device-Specific signals – signals that are unique to the USB 3380.

Signal Name	Туре	Location	Description
CPU_RXD	Ι	60	8051 Serial Port Receive Data Input
CPU_TXD	0	61	8051 Serial Port Transmit Data Output
GPIO[3:1]	I/O PU	27, 83, 20	General-Purpose I/O (3 Pins) General-Purpose input/output (I/O) signals providing input, output, or pulse-width-modulated (PWM) output functions for specific applications. (Refer to Chapter 11, "GPIO Controller Functional Description," for further details.)
LANE_GOOD#	I/O PU	28	General-Purpose I/O (Default) or Active-Low PCI Express Lane Status Indicator Output Default function for this pin is GPIO0, as determined by the Debug Control register LANE_GOOD#/GPIOx Pin Function Select bit (Port 0, offset 1DCh[22], is Cleared). GPIO0 provides input, output, and/or pulse-width-modulated (PWM) output functions for specific applications. Alternately, LANE_GOOD# can be programmed to indicate PCI Express Link status for the PCI Express Port, and can directly drive the common-anode LED module. LED behavior when connected to LANE_GOOD#: • Solid Off – Lane is disabled • Solid On – Lane is enabled, 5.0 GT/s • 0.5 seconds On, 0.5 seconds Off – Lane is enabled, 2.5 GT/s (Refer to Chapter 11, "GPIO Controller Functional Description," and Section 16.7, "Lane Good Status LED," for further details.)
MFG_AMC	I PD	23	<i>Factory Test Only</i> Do not connect this pin to board electrical paths.
MFG_TAPEN	I PD	26	<i>Factory Test Only</i> Do not connect this pin to board electrical paths.
MFG_TMC1	I PD	84	<i>Factory Test Only</i> Do not connect this pin to board electrical paths.
MFG_TMC2	I PD	87	<i>Factory Test Only</i> Do not connect this pin to board electrical paths.
PROCMON	0	68	<i>Factory Test Only</i> Do not connect this pin to board electrical paths.
PWRON_RST#	I PU	21	Power-On Reset When operating in systems in which remote Wakeup, using WAKE# or beacon signaling from the D3cold state, must be forwarded, PWRON_RST# must be held High when the USB 3380 is in the D3cold state. When operating in systems that do not implement the D3cold state, PWRON_RST# should be driven together with PEX_PERST#. (Refer to Chapter 4, "Reset and Initialization," for details.)

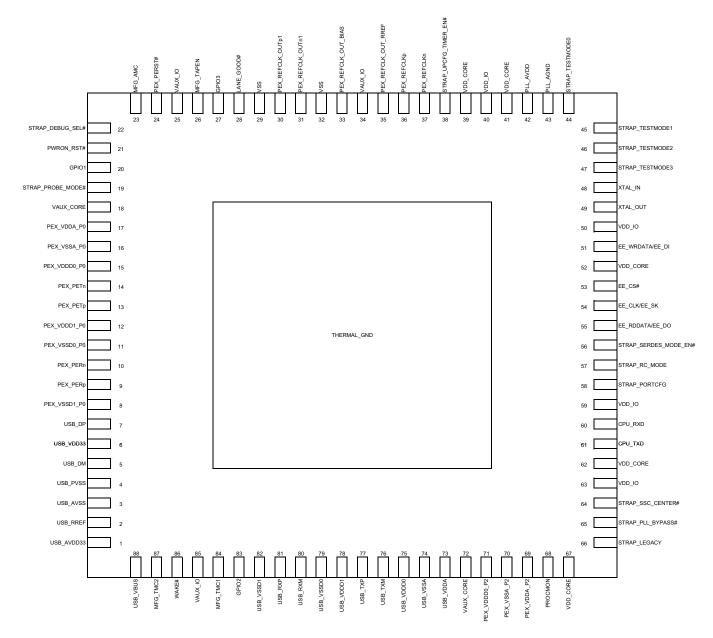
Table 2-7. Device-Specific Signals – 14 Pins

Signal Name	Туре	Location	Description
WAKE#	OD	86	 PCI Express WAKE# Bidirectional signal used in systems that implement the remote Wakeup function. When the USB 3380 is in the D3cold state: USB 3380 asserts WAKE# Low, if a PCI Express beacon is received by a downstream Port If another device asserts WAKE# Low, the USB 3380 drives PCI Express beacon signaling toward the Root Complex When operating in systems that do not implement the D3cold state, PWRON_RST# should be driven together with PEX_PERST#. WAKE# should be externally pulled High to VAUX_IO.
XTAL_IN	I/O PU	48	 External Crystal/Oscillator Input Connect to a 30-MHz external crystal resonator circuit or a CMOS oscillator. (Refer to the USB 3380 RDK reference schematic for an example.) When selecting a crystal, specify as follows: Nominal Frequency – 30.000 MHz Cut – AT Fundamental Frequency Tolerance – ±100 ppm Stability over Temperature – ±100 ppm Load Capacitance – 16 to 18 pF Note: Although this is an I/O signal, its logical operation is input.
XTAL_OUT	Ο	49	External Crystal Output If a crystal resonator circuit is used, connect this output to the crystal. If an external oscillator is used to drive XTAL_IN, leave this output unconnected.

Table 2-7. Device-Specific Signals – 14 Pins (Cont.)

2.4.6 **Power and Ground Signals**

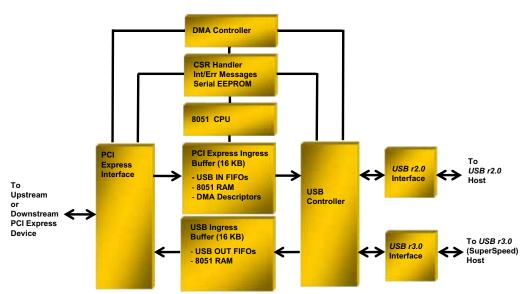

Signal Name	Туре	Location	Description
PEX_VDDA_P2 PEX_VDDA_P0	APWR	69 17	 3.3V SerDes Analog Power Supply for PCI Express Interface (2 Pins) Must be the same voltage as VDD_IO. Note: If stand-by power is implemented, power for these pins should be derived from the Vaux supply.
PEX_VDDD0_P2 PEX_VDDD0_P0	DPWR	71 15	1.0V SerDes Digital Power Supply for PCI Express Interface (2 Pins)Note:If stand-by power is implemented, power for these pins should be derived from the Vaux supply.
PEX_VDDD1_P0	DPWR	12	1.0V SerDes Digital Power Supply for PCI Express InterfaceNote:If stand-by power is implemented, power for these pins should be derived from the Vaux supply.
PEX_VSSA_P2 PEX_VSSA_P0	GND	70 16	SerDes Analog Ground for PCI Express Interface (2 Pins) Connect to VSS (Ground).
PEX_VSSD0_P0	GND	11	SerDes Digital Ground for PCI Express Interface Connect to VSS (Ground).
PEX_VSSD1_P0	GND	8	SerDes Digital Ground for PCI Express Interface Connect to VSS (Ground).
PLL_AGND	GND	43	PLL Analog Ground Connect to VSS (Ground).
PLL_AVDD	PLLPWR	42	1.0V Analog Power for PLL Circuits Connect to the main 1.0V supply (VDD_CORE) through an Inductor Capacitor (LC) filter circuit.
THERMAL_GND	GND	CENTER PAD	Ground
USB_AVDD33	APWR	1	3.3V Analog Power for USB Interface <i>Note:</i> If stand-by power is implemented, power for these pins should be derived from the Vaux supply.
USB_AVSS	GND	3	Connect to Ground (VSS) Analog Ground for USB interface.
USB_PVSS	GND	4	Connect to Ground (VSS) Digital Ground for USB interface.

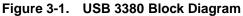

 Table 2-8.
 Power and Ground Signals – 37 Pins and Center Pad

Signal Name	Туре	Location	Description
			3.3V Digital Power for USB Interface
USB_VDD33	PWR	6	<i>Note:</i> If standby power is implemented, power for this pin should be derived from the Vaux supply.
			3.3V SerDes Analog Power Supply for USB Interface
USB_VDDA	APWR	VR 73	Must be the same voltage as VDD_IO.
			<i>Note:</i> If standby power is implemented, power for this pin should be derived from the Vaux supply.
		75	1.0V SerDes Digital Power Supply for USB Interface
USB_VDDD0	DPWR	75	<i>Note:</i> If standby power is implemented, power for this pin should be derived from the Vaux supply.
			1.0V SerDes Digital Power Supply for USB Interface
USB_VDDD1 DF	DPWR	78	<i>Note:</i> If standby power is implemented, power for this pin should be derived from the Vaux supply.
USB_VSSA	GND	74	SerDes Analog Ground for USB Interface Connect to VSS (Ground).
USB_VSSD0	GND	79	SerDes Digital Ground (VSS) for USB Interface Connect to VSS (Ground).
USB_VSSD1	GND	82	SerDes Digital Ground (VSS) for USB Interface Connect to VSS (Ground).
VAUX_CORE	CPWR	18, 72	Auxiliary Core Voltage (2 Pins)1.0V, derived from Vaux.If standby power is not implemented, connectto VDD_CORE.
VAUX_IO	I/OPWR	25, 34, 85	Auxiliary I/O Power (3 Pins) 3.3V, derived from Vaux. If standby power is not implemented, connect to VDD_IO.
VDD_CORE	CPWR	39, 41, 52, 62, 67	Core Logic Supply Voltage (5 Pins) 0.95 to 1.10V.
VDD_IO	I/OPWR	40, 50, 59, 63	I/O Supply Voltage (4 Pins) 3.3V.
VSS	GND	29, 32	Ground (2 Pins)

Table 2-8. Power and Ground Signals – 37 Pins and Center Pad (Cont.)

2.5 Physical Layout


Note: Drawing not to scale.


Chapter 3 Functional Overview

3.1 Introduction

A functional block diagram of the USB 3380 is shown in Figure 3-1.

3.1.1 Data Path

The data path for the bridge consists of three main parts:

- PCI Express interface
- USB Controller and USB r2.0, USB r3.0 line interfaces
- Central RAM

From the PCI Express side, the USB 3380 provides one Lane (Port 0), capable of operating at Gen 2 (5 GT/s) data rates. The external Port 0 is part of a 2-Port PCI Express switch, the other side of which (internal Port 2) connects to the central RAM and USB Controller. When Port 0 is configured as an upstream Port, the USB 3380 can exist as a device in a PCI Express hierarchy. When Port 0 is configured as a downstream Port, the USB 3380 functions as a PCI Express Root Complex, sitting at the top of a PCI Express hierarchy.

Note: Port 2 is an internal virtual PCI-to-PCI bridge that connects the USB Controller to the PCI Express fabric.

From the USB side, the USB 3380 presents a *USB r3.0* (SuperSpeed USB) client Port. The USB line interface consists of two different PHY blocks, one for *USB r2.0* (Full-Speed and High-Speed) signaling, and the other for *USB r3.0* (SuperSpeed) signaling. The USB Controller block connects the *USB r2.0*, *USB r3.0* blocks to the central RAM, as shown.

Central RAM provides a way-point for data moving from PCI Express to USB, and vice-versa. The PCI Express Ingress buffer receives data from the PCI Express interface. This includes data bound for USB IN endpoints, downstream PCI Express devices, and internal registers. The USB Ingress buffer receives data from the USB Controller received by way of an OUT endpoint. The central RAM also provides space for storing DMA Descriptors, as well as code and Data space for the integrated 8051 Micro-Controller.

PCI Express functions are described in Chapter 7, "PCI Express Interface." The USB Controller is described in Chapter 8, "USB Controller Functional Description." The USB r2.0 and USB r3.0 interfaces are described in Chapter 9, "USB r2.0 and USB r3.0 Functional Description."

3.1.2 DMA Controller

While the flow of data between the USB Controller and endpoint FIFOs in the central RAM is largely driven by the USB Host, the flow of data between the central RAM and PCI Express must either be explicitly handled by direct CPU accesses (by way of the PCI Express interface) or DMA transfers. The USB 3380 DMA Controller automates the flow of data between endpoint FIFOs in the central RAM and PCI Express interface, and relieves the local CPU of the task of moving bulk data.

The DMA Controller provides four independent channels – DMA Channels 0, 1, 2, and 3. Each DMA channel is associated with one pair of IN/OUT endpoints. For the IN endpoints, the DMA Controller issues Read Requests to the PCI Express interface. Completions from the PCI Express interface Reads are then written directly to the designated IN endpoint FIFO area within the PCI Ingress RAM. For an OUT endpoint, the DMA Controller reads Packet data from an OUT endpoint FIFO area within the USB Ingress RAM, and generates Memory Write TLPs to the PCI Express interface.

The DMA Controller can perform single transfers (Block mode), or it can execute a series of block transfers based upon a Descriptor list (Scatter Gather mode). For faster access, DMA Descriptors can be stored on-chip within the central RAM.

DMA Controller functions are described in Chapter 10, "DMA Controller."

3.1.3 8051 Micro-Controller Unit

The 8051 Micro Controller Unit (MCU), when used, enables the USB 3380 to function as a stand-alone System-on-Chip (SOC) processor. Use of the 8051 is mainly limited to special applications in which the USB 3380 is configured as a PCI Express Root Complex. In this mode, the 8051 can run from serial EEPROM-based firmware. This firmware can perform enumeration of downstream PCI Express devices, handle USB endpoints, interrupts, and service the DMA channels.

The 8051 is described in Chapter 6, "8051 Micro-Controller Unit."

3.1.4 General-Purpose Input/Output

The USB 3380 provides four General-Purpose Input/Output (GPIO) pins (signals). As inputs, GPIO pins can sense external signals and generate interrupts on High or Low transitions. As outputs, GPIO pins can output a constant value (High or Low), or they can output a programmable pulse-width-modulated (PWM) output.

GPIO functions are described in Chapter 11, "GPIO Controller Functional Description."

3.1.5 Reference Clock Outputs

The USB 3380 provides one pair of PCI Express-compliant, buffered, 100-MHz, HCSL output clocks, PEX_REFCLK_OUTnx/px. Clock outputs are buffered versions of the input Reference Clock pair, PEX_REFCLKn/p.

When operating as a PCI Express Root Complex (STRAP_RC_MODE=H), this reference clock output pair can be used to drive a clock to a downstream PCI Express device. When operating as an adapter (STRAP_RC_MODE=L), the USB 3380 inputs a 100 MHz Reference Clock, by way of the PEX_REFCLKn/p inputs.

The clock output pair can be disabled by software or serial EEPROM when not in use, for additional power savings, by Clearing the **Clock Enable** register *REFCLK 1 Enable* bit (Port 0, offset 1D8h[8]).

It is recommended that system designs that make use of PEX_REFCLK_OUT outputs limit their total PC board trace lengths to approximately 10 inches or less, with one connector.

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 4 Reset and Initialization

4.1 Overview

The USB 3380 initialization sequence consists of the following:

- 1. The USB 3380 PEX_PERST# and PWRON_RST# inputs are asserted and de-asserted.
- **2.** Serial EEPROM content is loaded into the Configuration registers and, optionally, the 8051 Program RAM.
- **3.** If the USB 3380 is configured as an Adapter (STRAP_RC_MODE=L), the PCI Express interface (Port 0) is enabled for enumeration by the PCI Express system. Otherwise, if the USB 3380 is configured as a Root Complex (STRAP_RC_MODE=H), the SuperSpeed USB is enabled for enumeration on the USB Host.
- 4. The 8051/USB Host or PCI Express Host initializes other USB and PCI Configuration registers.

4.2 PEX_PERST# Input

When asserted Low, the PEX_PERST# input resets all USB 3380 logic to its default state. This reset is referred to as *Fundamental Reset*. (Refer to Section 4.8 for further details.)

PEX_PERST# is typically connected to a power-on reset circuit. At power-on time, PEX_PERST# should remain asserted, for a minimum of 100 ms after all power supplies and clocks have stabilized. When PEX_PERST# is de-asserted, the USB 3380 reads the configuration information on its strapping inputs, and configures itself accordingly. If a serial EEPROM is present, the serial EEPROM contents are loaded into internal registers and/or 8051 Program memory. When Adapter mode is selected (STRAP_RC_MODE=L), the PCI Express interface is enabled for enumeration. The USB interface is not enabled until software enables the USB Port from the PCI Express interface. When Root Complex mode is selected (STRAP_RC_MODE=H), the USB interface is enabled for enumeration, and connected PCI Express Adapter (endpoint) devices attempt to linkup after PEX_PERST# input is de-asserted and after the serial EEPROM load is complete.

Note: Throughout this data book, "Adapter mode" refers to both Legacy and Enhanced Adapter modes, unless specified otherwise.

4.3 PWRON_RST# Input

The USB 3380 implements a Power-On Reset input, which is mainly used to reset the auxiliary power-operated circuit within the USB 3380. The USB 3380 has the option of entering a low-power-consumed Suspended state when the USB interface enters a Suspended state in Root Complex mode, or when the PCI Express Root Complex system enters the D3cold state in Adapter mode. In this PM state (Device Suspend state), most of the logic portion of the USB 3380 is powered down, except the circuitry that detects the USB Host wakeup from Suspend or Remote Wakeup from PCI Express Adapter (endpoint) devices. This reset must be held High when in the USB suspend state, or when the connected PCI Express system is in the D3cold state, depending upon the application. In such cases, PWRON_RST# input is derived from the Vaux supply on the PCI Express connector for Adapter mode operation, or from the USB_VBUS input in USB interface-powered Adapter and Root Complex mode applications. In systems that do not need to support this low-power state, PWRON_RST# input can be tied to the PEX_PERST# input. In such systems, the maximum allowed skew between the PEX_PERST# and PWRON_RST# inputs to the USB 3380 is 50 ns.

4.4 USB Host Reset

This section describes the causes of a USB Host Reset within the USB 3380.

4.4.1 USB r2.0 Operating Mode

If the USB 3380 detects a single-ended zeros (SE0s) condition on the USB interface for more than $2.5 \,\mu$ s, the SE0 is interpreted as a Root Port Reset (USB Host Reset). This type of reset is recognized only when the following conditions exist:

- USB_VBUS input is High, and
- USBCTL register USB Detect Enable bit (USB Controller, offset 8Ch[3]) is Set

The following resources are reset:

- **OURADDR** register (USB Controller, offset A4h) and configuration
- Device Remote Wakeup enable and status

Root Port Reset does not affect the remainder of the Configuration registers. The **IRQSTAT1** register *Root Port Reset Interrupt Status* bit (USB Controller, offset 2Ch[4]) is Set when a Root Port Reset is detected. The CPU (8051 or PCI Express Host) takes appropriate action when this interrupt occurs.

According to the USB r2.0, the USB reset width is minimally 10 ms and can be longer, depending upon the upstream Host or hub. There is no specified maximum USB reset width.

When a *USB r2.0* Host Reset is received, Data packets that are sitting in the OUT FIFO are not flushed. However, packets that are sitting in the IN FIFO are flushed, and the IN FIFO pointers are reset to their defaults.

4.4.2 USB r3.0 Operating Mode

There are two sources of USB Host Reset:

- Hot Reset received from the USB Host, with the *Reset* bit Set in the TS2 Ordered-Sets
- Warm Reset detected when Low-Frequency Periodic Signaling (LFPS) is received that meets the reset timing requirements, when not in the *SS.Disabled* substate

USB r2.0 and *USB r3.0* Hot Resets are treated the same in the USB 3380. Both cause a USB interface Reset when operating in their respective speed modes. When a USB Interface Reset is received, a device-specific **IRQSTAT1** register *Root Port Reset Interrupt Status* bit (USB Controller, offset 2Ch[4]) is Set, and the USB 3380 generates an interrupt to the 8051 or PCI Express Root Complex.

The following resources are reset:

- **OURADDR** register (USB Controller, offset A4h) and configuration
- Device remote wakeup enable and status
- U1, U2 enables
- U2 Inactivity timeout
- Function suspend
- Latency Tolerance Message (LTM) enables
- Isochronous delay (for further details, refer to the USB r3.0, Section 9.4.11)
- U1SEL, U2SEL, U1PEL, and U2PEL values (for further details, refer to the *USB r3.0*, Section 9.4.12)
- USB Link Error Counters
- Port Configuration (Enhanced Adapter and Root Complex modes)

When a USB r3.0 Host Warm/Hot Reset is received, the USB 3380 USB r3.0 Link Training and Status State Machine (LTSSM) enters the U0 state after the reset handshake successfully finishes. Additionally, when a Warm Reset is received, the USB 3380 USB r3.0 LTSSM enters the Rx Detect state.

When a *USB r3.0* Hot/Warm Reset is received, Data packets that as sitting in the OUT FIFO are not flushed. However, packets that are sitting in the IN FIFO are flushed, and the IN FIFO pointers are reset to their defaults.

In addition to the above USB Host-initiated resets, the following all cause the same effect as the USB r3.0 Warm Reset:

- Cable detach (USB cable's VBUS pin is disconnected, sensed by the USB_VBUS input)
- USB r3.0 SS.Inactive substate entry
- USB r3.0 LTSSM U0-to-Disabled state transition
- USBCTL register USB Detect Enable bit (USB Controller, offset 8Ch[3]) is Cleared

4.5 PCI Express Reset

4.5.1 PCI Express Hot Reset

Note: Applicable only in Adapter mode.

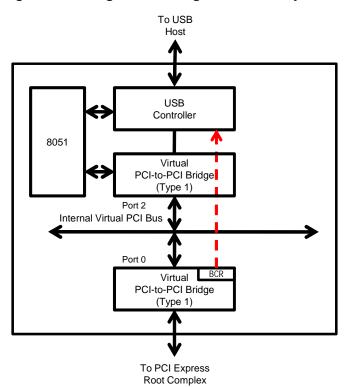
PCI Express Hot Reset is an in-band Reset received on the upstream PCI Express interface, that uses *Control* bits that are Set in the TS2 training sequences. All *PCI Express Base r2.1*-related registers implemented in the USB 3380 are reset on Ports 0 and 2. The USB OUT FIFO contents are flushed, and all pointers are reset to their default values. The serial EEPROM is loaded, by default, when this reset occurs.

4.5.2 PCI Express Upstream Link Down

Note: Applicable only in Adapter mode.

PCI Express Upstream Link Down and Link Disabled events received on Port 0 cause the USB 3380 to reset. This has the same effect as a PCI Express Hot Reset. The serial EEPROM is loaded, by default, when this reset occurs.

4.5.3 Bridge Control Register Reset


Note: Applicable only in Enhanced Adapter and Root Complex modes. Not applicable in Legacy Adapter mode, because there are no bridges in that mode.

The Bridge Control Register (BCR) Reset is issued by software, by writing 1 to the **Bridge Control** register *Secondary Bus Reset* bit (All Ports, offset 3Ch[22]). This reset resets the bridges and endpoints below where the *Secondary Bus Reset* bit is Set. When the *Secondary Bus Reset* bit of a virtual bridge is Set, all bridges and endpoint devices on the virtual bridge's secondary side are reset. Only PCI Express logic and related registers are affected. In the USB 3380, this works differently for Enhanced Adapter and Root Complex modes, as described in the sections that follow.

4.5.3.1 Enhanced Adapter Mode

Reset Caused by Setting the Port 0 Bridge Control Reset Register

In the USB 3380, in Enhanced Adapter mode, reset can be performed by Setting Port 0's **Bridge Control** register *Secondary Bus Reset* bit (Port 0, offset 3Ch[22]). This causes the Port 2 PCI-to-PCI registers as well as the USB Controller registers to be reset. In Figure 4-1, the blocks intersected by the dashed red line are reset. Port 0 is not initialized by Setting this bit; however, its queues (to/from the affected Port(s)) are drained. The USB OUT FIFO contents are not flushed at this time. All RW and RW1C attribute registers in Port 2 and the USB Controller are Cleared.

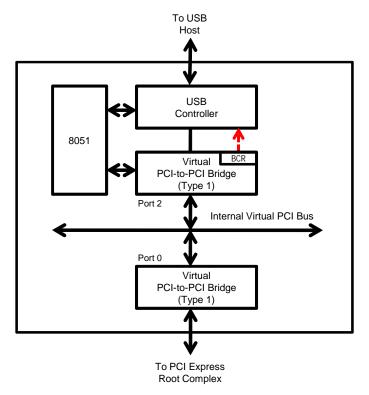
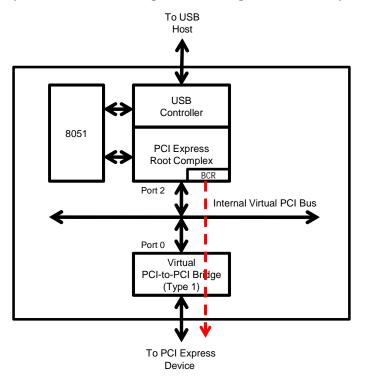


Figure 4-1. Enhanced Adapter Mode Bridge Control Reset, by Setting Port 0's Bridge Control Register Secondary Bus Reset Bit

Reset Caused by Setting Port 2 Bridge Control Reset Register

In the USB 3380, in Enhanced Adapter mode, reset can also be performed by Setting Port 2's **Bridge Control** register *Secondary Bus Reset* bit (Port 2, offset 3Ch[22]). This causes all USB Controller registers that have RW and RW1C attributes to be reset. In Figure 4-2, the blocks intersected by the dashed red line are reset. The PCI-to-PCI bridges are not initialized by this reset; however, their queues [to/from the affected Port(s)] are drained. The USB OUT FIFO contents are flushed and pointers reset, after the *Secondary Bus Reset* bit is Cleared.

Figure 4-2. Reset Caused by Setting Port 2's Bridge Control Register Secondary Bus Reset Bit


4.5.3.2 Root Complex Mode

Note: Port 2 is an internal virtual PCI-to-PCI bridge that connects the USB Controller to the PCI Express fabric.

In Root Complex mode (STRAP_RC_MODE=H), BCR Reset can occur when the USB Host/8051 Sets Port 2's **Bridge Control** register *Secondary Bus Reset* bit (Port 2, offset 3Ch[22]). This causes the Port 0 virtual bridge logic, as well as all Port 0 PCI Express-related registers with RW attributes, to be reset. The downstream Port propagates an in-band Hot Reset onto its downstream Link. In addition, registers belonging to the downstream Port are initialized to their default values. In Figure 4-3, the blocks intersected by the dashed red line are reset.

The downstream Port, Port 0, is held in the Reset state, until software removes the condition by Clearing Port 2's *Secondary Bus Reset* bit. Transaction Layer (TL) draining of non-empty queues to/from the affected Port is handled similar to the case of that Port going to the *DL_Down* state, as defined in *PCI Express Base r2.1*, Section 2.9. After the BCR Reset is released, the PCI Express PHY goes into the *Detect* state, and starts the training sequence. The serial EEPROM is not re-loaded. Another scenario here is Setting Port 0's **Bridge Control** register *Secondary Bus Reset* bit (Port 0, offset 3Ch[22]). This causes a Hot Reset to be propagated to the bridge endpoint, and the Link eventually goes into the *DL_Down* state. This does not reset any USB 3380 registers; however, packets meant to go out on Port 0, in the *DL_Down* state, are drained.

Figure 4-3. Root Complex Mode Port 2 Bridge Control Register Secondary Bus Reset Propagation

4.6 Various Sources of Device-Specific Resets

Other than the reset sources explained in the previous sections, the USB 3380 also implements Configuration registers that can be Set by PCI Express Host software or the USB Host, to generate resets to various device functions. These reset sources, called *Soft Resets*, are software-generated by way of **DEVINIT** register bits (USB Controller, offset 00h[4:0]) register bits, and are explained, in detail, in the sections that follow.

4.6.1 8051 Soft Reset

An 8051 Soft Reset is performed by Setting the **DEVINIT** register 8051 Reset bit (USB Controller, offset 00h[0]). This resets the 8051, and the 8051 is held in reset as long as the 8051 Reset bit remains Set.

4.6.2 USB Soft Reset

A USB Soft Reset is performed by Setting the **DEVINIT** register *USB Soft Reset* bit (USB Controller, offset 00h[1]), which resets all USB-related logic and USB FIFOs within the USB 3380. This performs the same function as a USB Host Reset. (Refer to Section 4.4 for further details.)

4.6.3 PCI Express Soft Reset

A PCI Express Soft Reset is performed by Setting the **DEVINIT** register *PCI Soft Reset* bit (USB Controller, offset 00h[2]). This performs the same function as a PCI Express Hot Reset. (Refer to Section 4.5 for further details.)

4.6.4 Configuration Soft Reset

A Configuration Soft Reset is performed by Setting the **DEVINIT** register *Configuration Soft Reset* bit (USB Controller, offset 00h[3]), which Clears all Configuration registers within the USB 3380 and resets the registers to their default Fundamental Reset value.

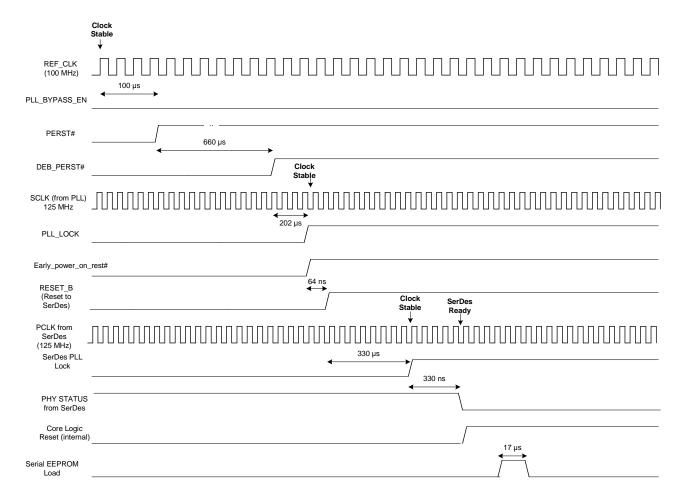
4.6.5 FIFO Soft Reset

A FIFO Soft Reset is performed by Setting the **DEVINIT** register *FIFO Soft Reset* bit (USB Controller, offset 00h[4]), which resets the endpoint's FIFO controls and pointers, and flushes the endpoint's FIFO contents.

4.6.6 Reset Table

Table 4-1 summarizes the USB 3380 USB mode reset functionality.

Table 4-1. USB Mode Reset Table


				Dev	ice Resou	rces			
Reset Source	8051	USB PHY, LTSSM, and USB Port Configuration	USB r2.0 or USB r3.0 Core and Flags/CSRs Explained in Section 4.4	PCI Express Modules and PCI Express CSRs	Serial EEPROM Load	USB Interface CSRs	USB EP IN FIFOS	USB EP OUT FIFOS	Aux Power-Operated Logic
PEX_PERST# Input	~	~	~	~	~	~	~	~	
PWRON_RST# Input									~
USB Root Port Reset (USB r2.0) –or– Hot Reset (USB r3.0)			v				~		
Warm Reset (USB r3.0)		~	~				~		
PCI Express Hot Reset/ Link disable/Upstream <i>DL_Down/</i> Link L2/L3 Ready Link PM state to detect transition (Adapter mode only)				v	V			v	
PCI Express Bridge Control Reset (Adapter mode)						(USB Controller (Type 0) CSRs)		۷	
8051 Soft Reset	~								
USB Soft Reset			~				~		
PCI Express Soft Reset				~				~	
Configuration Soft Reset						V			
FIFO Soft Reset							~	~	

4.7 Reset and Clock Initialization Timing

Table 4-2.	Reset and Clock Initialization Timing
------------	---------------------------------------

Symbol	Description	Typical Delay
td1	REFCLK stable to PEX_Reset release time	100 µs
td2	PEX_Reset release to Reset de-bounce	660 µs
td3	Reset de-bounce to Phase-Locked Loop (PLL) Lock	202 µs
td4	Reset de-bounce to Core Reset release	331 µs
td5	Serial EEPROM load time with no serial EEPROM present	17 μs

4.8 Initialization Procedure

Upon exit from a Fundamental Reset, the USB 3380 initialization process executes, in the following sequence:

- 1. The USB 3380 samples the Strapping pin states, and configures hardware and register defaults accordingly.
- **2.** If a serial EEPROM is present, serial EEPROM data is downloaded to the USB 3380 Configuration registers.

Configuration, including Port Configuration (Port 0, offset 574h[0]), can be changed by serial EEPROM re-load. Changes take effect upon subsequent Hot Reset.

- **3.** After configuration from the serial EEPROM is complete, the Physical Layer (PHY) of the configured PCI Express Port attempts to bring up the PCI Express Links. After both components on a Link enter the initial Link Training state, the components proceed through PHY Link initialization and then through Flow Control initialization for VC0, preparing the DLL and TL to use the Link. Following Flow Control initialization for VC0, it is possible for VC0 TLPs and DLL Packets (DLLPs) to be transmitted across the Link.
- **4.** Root Complex mode only Additionally, after configuration is complete, the USB/SuperSpeed USB also attempts to train at this point.

4.9 Serial EEPROM Load upon Reset

By default, the USB 3380 starts loading serial EEPROM data after PEX_PERST# input is de-asserted. In Adapter mode, the USB 3380 also loads the serial EEPROM after the PCI Express Hot Reset sequence is performed or the Port 0 Link goes into the *DL_Down* state.

In Adapter mode, the USB 3380 also provides an additional *Control* bit to load the serial EEPROM upon PCI Express reset conditions. In this mode, other than Fundamental Reset, serial EEPROM load can be disabled or enabled by the **Debug Control** register *Disable Serial EEPROM Load on Hot Reset* bit (Port 0, offset 1DCh[17]).

When coming out of a Fundamental Reset, the 8051 is held in reset. After the serial EEPROM load starts and the serial EEPROM module detects a Program memory for the 8051, the reset module releases reset to the 8051 after the Program memory load is complete.

4.9.1 Initialization Summary when Using Serial EEPROM

Table 4-3 describes the USB 3380 initialization sequence, when using the optional serial EEPROM.

Status	Sequence	
	 If a blank/no serial EEPROM is detected -or- a serial EEPROM with an invalid signature (valid signature is the first byte, value of 5Ah) is detected, serial EEPROM loading is <i>not</i> enabled. In Adapter mode, do not automatically enable the USB interface - wait for the PCI Express Host to enumerate the PCI Express interface. 	
No Serial EEPROM, –or– Blank Serial EEPROM, –or– Invalid Serial EEPROM	 The PCI Express Host enumerates the USB interface, configures the PCI Express interface (Port CSRs), and enumerates downstream PCI Express devices, by Setting the USBCTL register USB Detect Enable bit (USB Controller, offset 8Ch[3]). When operating in Root Complex mode, enable the USB interface, using default register values. Wait for the USB Host to enumerate the USB interface, configure the PCI Express interface (Port CSRs), and enumerate downstream PCI Express devices. Hold the 8051 in reset. 	
Valid Serial EEPROM with Configuration Register Data Only	 When operating in Root Complex mode, wait for the USB Host to program the PCI Express registers and enumerate PCI Express Adapter (endpoint) devices. Enable the USB interface, using the register values loaded from the serial EEPROM (USBCTL register USB Detect Enable bit (USB Controller, offset 8Ch[3])). Optionally, when operating in Adapter mode, wait for the PCI Express Host to configure the USB Configuration registers. Hold the 8051 in reset. 	
Valid Serial EEPROM with 8051 Program Memory Only	Start the 8051 and allow it to configure and enable the PCI Express device enumeration and USB interface register programming.	
Valid Serial EEPROM with Configuration Register Data and 8051 Program Memory	 Enable the USB interface, using the register values loaded from the serial EEPROM, or wait for the 8051 to configure the USB registers and handle the enumeration. Start the 8051 and allow it to configure the PCI Express and/or USB interfaces. 	

Table 4-3. Initialization Sequences

4.10 Default Port and SuperSpeed USB Configuration

Table 4-4 lists the Port/SuperSpeed USB configuration.

Table 4-4. Port/SuperSpeed Configuration

Port 0	Port 2 ^a	SuperSpeed USB
x1 Lane 0	x1 Virtual Link	x1

a. Port 2 is an internal virtual PCI-to-PCI bridge that connects the USB Controller to the PCI Express fabric.

4.11 Default Register Initialization

Each USB 3380 Port/SuperSpeed USB defined in the Port/SuperSpeed USB Configuration process has its own set of assigned registers that control Port/SuperSpeed USB activities and status during standard operation. These registers are programmed to default/initial values, as detailed in:

- Chapter 14, "PCI Configuration Registers"
- Chapter 15, "USB Configuration Registers"

Following a Fundamental Reset, the basic PCI Express Support registers are initially programmed to the values specified in the *PCI Express Base r2.1*. The Device-Specific registers are programmed to the values specified in their register description tables. These registers can be changed by loading new data with the attached serial EEPROM and/or by CSR accesses using Configuration or Memory Writes; however, registers identified as RO *cannot* be modified by Configuration nor Memory Write Requests.

In Adapter mode, a valid serial EEPROM/8051 and/or the PCI Express Host can be used to program the registers.

In Root Complex mode, serial EEPROM and/or the 8051 can also be used to program the registers. Alternatively after the USB Link is operational and the USB 3380 is configured, the USB Host can re-program the registers.

The USB 3380 supports the following mechanisms for accessing registers by way of the TL, as described in:

- Section 14.4.1, "PCI r3.0-Compatible Configuration Mechanism"
- Section 14.4.2, "PCI Express Enhanced Configuration Access Mechanism"
- Section 14.4.3, "Device-Specific Memory-Mapped Configuration Mechanism"

4.12 Device-Specific Registers

The PCI Configuration Device-Specific registers, detailed in the sections listed below, are unique to the USB 3380, and are not referenced in the *PCI Express Base r2.1*:

- Section 14.14, "Device-Specific Registers (Offsets 1C0h 444h)"
- Section 14.15, "Device-Specific Registers (Offsets 530h B88h)"

4.13 Serial EEPROM Load Time

Serial EEPROM initialization loads only the Configuration register data that is specifically programmed into the serial EEPROM. Registers that are not included in the serial EEPROM data are initialized to default register values.

Each register entry in the serial EEPROM consists of two Address bytes and four Data bytes (refer to Section 5.3, "Serial EEPROM Data Format"); therefore, each register entry (6 bytes, or 48 bits) requires 48 serial EEPROM clocks to download. Thus, at the serial EEPROM clock default frequency of 1 MHz, after initial overhead to read the **Serial EEPROM Status** register (Port 0, offset 260h) (16 serial EEPROM clocks, or 16 μ s), plus another 40 serial EEPROM clocks (40 μ s) to begin reading the register data, each register entry in the serial EEPROM requires 48 μ s to download. A serial EEPROM containing 50 register entries (typical configuration, assuming the serial EEPROM is programmed only with non-default register values) and clocked at 1 MHz, takes approximately 2.5 ms to load (16 + 40 + (48 x 50 μ s)) = 2,456 μ s).

To reduce the serial EEPROM initialization time, the first register entry in the serial EEPROM can increase the clock frequency, by programming the **Serial EEPROM Clock Frequency** register (Port 0, offset 268h) to a value of 2h (5 MHz), or 3h (9.62 MHz), if the serial EEPROM supports the higher frequency at the serial EEPROM supply voltage (typically 3.3V). At 5-MHz clocking, the serial EEPROM load time for 50 register entries can be reduced to approximately 575 μ s. Because the *PCI Express Base r2.1* allows a 20-ms budget for system hardware initialization, the default 1-MHz serial EEPROM clock is often sufficient when the quantity of Ports and registers programmed by serial EEPROM is relatively small.

For further details, refer to Chapter 5, "Serial EEPROM Controller."

Chapter 5 Serial EEPROM Controller

5.1 Overview

The USB 3380 provides an interface to Serial Peripheral Interface (SPI)-compatible serial EEPROMs. The interface consists of a Chip Select, Clock and Write Data outputs, and a Read Data input, and operates at a programmable frequency of up to 17.86 MHz. Compatible 8 x 8 KB serial EEPROMs are the Atmel AT25640A, ON Semiconductor CAT25640, or equivalent. The USB 3380 supports up to a 16-Mbit serial EEPROM, that uses 1-, 2-, or 3-byte addressing (2-byte addressing is recommended); the USB 3380 automatically determines the appropriate addressing mode.

5.2 Features

- Detection of whether a serial EEPROM is present/not present
- Supports high-speed serial EEPROMs with Serial Peripheral Interface (SPI) interface
- Non-volatile storage for register default values loaded during Power-On Reset
- 4-byte Read/Write access to the serial EEPROM, through Port 0
- Serial EEPROM data format allows for loading registers by Port/Address location
- Required serial EEPROM size is dependent upon the number of registers being changed
- Automatic support for 1-, 2-, or 3-byte-addressable serial EEPROMs
- Manual override for quantity of serial EEPROM Address bytes
- Programmable serial EEPROM clock frequency
- Programmable serial EEPROM clock-to-chip select timings
- No Cyclic Redundancy Check (CRC), single Valid byte at the start of serial EEPROM memory

5.3 Serial EEPROM Data Format

The data in the serial EEPROM is stored in the format defined in Table 5-1. The serial EEPROM Format Byte at Serial EEPROM address 1h is organized as listed in Table 5-2.

The format of the REGADDR bytes, as defined in Table 5-1, is described in Table 5-3. This field selects which block of registers within the USB 3380 to be accessed, and the DWord offset to the specific register within that register block.

Location	Value	Description
Oh	5Ah	Validation Signature
1h	Refer to Table 5-2	Serial EEPROM Format Byte
2h	REG_BYTE_COUNT (LSB)	Configuration register Byte Count (LSB)
3h	REG_BYTE_COUNT (MSB)	Configuration register Byte Count (MSB)
4h	REGADDR (LSB)	1 st Configuration Register Address (LSB)
5h	REGADDR (MSB)	1 st Configuration Register Address (MSB)
6h	REGDATA (Byte 0)	1 st Configuration Register Data (Byte 0)
7h	REGDATA (Byte 1)	1 st Configuration Register Data (Byte 1)
8h	REGDATA (Byte 2)	1 st Configuration Register Data (Byte 2)
9h	REGDATA (Byte 3)	1 st Configuration Register Data (Byte 3)
Ah	REGADDR (LSB)	2 nd Configuration Register Address (LSB)
Bh	REGADDR (MSB)	2 nd Configuration Register Address (MSB)
Ch	REGDATA (Byte 0)	2 nd Configuration Register Data (Byte 0)
Dh	REGDATA (Byte 1)	2 nd Configuration Register Data (Byte 1)
Eh	REGDATA (Byte 2)	2 nd Configuration Register Data (Byte 2)
Fh	REGDATA (Byte 3)	2 nd Configuration Register Data (Byte 3)
REG BYTE COUNT + 4	BYTE COUNT (LSB)	8051 Program Memory Byte Count (LSB)
REG BYTE COUNT + 5	BYTE COUNT (MSB)	8051 Program Memory Byte Count (MSB)
REG BYTE COUNT + 6	MEM (Byte 0)	First Byte of 8051 Program Memory
REG BYTE COUNT + 7	MEM (Byte 1)	Second Byte of 8051 Program Memory
FFFFh	MEM (Byte <i>n</i>)	Last Byte of 8051 Program Memory

Table 5-1. Serial EEPROM Data Format

Bit(s)	Description
0	Configuration Register Load 0 = Serial EEPROM locations 2h and 3h are read, to determine the quantity of 32-bit Configuration registers to be loaded 1 = Configuration register load is disabled
1	Memory Load 1 = 8051 program memory is loaded from the serial EEPROM, starting at location REG BYTE COUNT + 6. The quantity of bytes to load is determined by the value in serial EEPROM locations REG BYTE COUNT + 4 and REG BYTE COUNT + 5.
2	Start Enable 1 = 8051 Reset is de-asserted after its Program memory is loaded from the serial EEPROM. Valid only when bit 1 (<i>Memory Load</i>) is Set.
7:3	Reserved

Table 5-2. Serial EEPROM Format Byte

Table 5-3. REGADDR[15:0] Address Format

Bit(s)	Description		
	Register Address Bits [11:2]		
9:0	Register Address field specifies the DWord offset to the specific register of the selected register block.		
	Port Selector Bits [2:0]		
	Selects the register block to be accessed.		
	000b = Port 0 (Enhanced Adapter mode) / USB Controller PCI Configuration registers (Type 0) (Legacy Adapter mode)		
12:10	010b = Port 2 (Enhanced Adapter mode)		
	011b = USB Controller PCI Configuration registers (Type 0) (Enhanced Adapter mode)		
	100b = USB Controller Configuration registers		
	All other encodings are <i>reserved</i> .		
15:13	Reserved		
13:15	Should be Cleared.		

5.4 Serial EEPROM Initialization

After PEX_PERST# is de-asserted, the USB 3380 attempts to detect and load content from an external serial EEPROM. A pull-down resistor on the EE_RDDATA/EE_DO output produces a value of 00h if a serial EEPROM is not installed. If a serial EEPROM is detected, the first byte (validation signature) is read. If a value of 5Ah is read, it is assumed that the EEPROM is programmed for the USB 3380. The serial EEPROM address width is determined while this first byte is being read. If the first byte is not 5Ah, the serial EEPROM is blank or programmed with invalid data. In this case, the 8051 is held in reset, and either the USB or PCI Express interface is enabled for enumeration, depending upon whether STRAP_RC_MODE is pulled High to VDD_IO or pulled or tied Low to Ground, respectively. Also, the Serial EEPROM Status register *EepAddrWidth* field (Port 0, offset 260h[23:22]) reports a value of 00b (undetermined width).

If the serial EEPROM contains valid data, the second byte (Serial EEPROM Format byte) is read to determine which serial EEPROM sections should be loaded into the USB 3380 Configuration registers and memory. If bit 0 is Set, Bytes 2 and 3 determine the quantity of serial EEPROM locations that contain Configuration register addresses and data. Each Configuration register entry consists of two bytes of register address (bit 10 Low selects the PCI Configuration registers, and bit 10 High selects the Memory-Mapped Configuration registers) and four bytes of register Write data. If bit 1 of the Serial EEPROM Format byte is Set, locations REG BYTE COUNT + 4 and REG BYTE COUNT + 5 are read, to determine the byte quantity to transfer from the serial EEPROM into the 8051 Program RAM. After this transfer completes, and if bit 2 in the Serial EEPROM Format byte is Set, the 8051 reset is de-asserted, allowing the 8051 to execute the firmware.

The EE_CLK/EE_SK output clock frequency is determined by the **Serial EEPROM Clock Frequency** register *EepFreq[2:0]* field (Port 0, offset 268h[2:0]). The default clock frequency is 1 MHz. At this clock rate, it takes approximately 48 µs per DWORD during Configuration register initialization. For faster loading of large serial EEPROMs that support a faster clock, the first Configuration register load from the serial EEPROM could be to the **Serial EEPROM Clock Frequency** register.

5.5 PCI Express Configuration, Control, and Status Registers

The PCI Express Configuration, Control, and Status registers that can be initialized are detailed in Chapter 14, "PCI Configuration Registers."

5.6 Serial EEPROM Registers

The Serial EEPROM register (Port 0, offsets 260h through 26Ch) parameters defined in Section 14.14.3, "Device-Specific Registers – Serial EEPROM (Offsets 260h – 26Ch)," can be changed, using the serial EEPROM. At the last serial EEPROM entry, the **Serial EEPROM Status and Control** register (Port 0, offset 260h) can be programmed to issue a Write Status (WRSR) command, to enable the write protection feature(s) within the serial EEPROM data, if needed.

5.7 Serial EEPROM Random Read/Write Access

A USB Host, the 8051, or a Master device on the PCI Express interface can use the **Serial EEPROM Control** register (Port 0, offset 260h) to access the serial EEPROM. This register contains 8-bit Read and Write Data fields, Read and Write Start signals, and related Status bits.

The following "C" routines demonstrate the firmware protocol required to access the serial EEPROM by way of the **Serial EEPROM Control** register. An interrupt is generated when the register's *Serial EEPROM Busy* bit changes from True to False.

Note: In the "C" routines that follow, the Serial EEPROM Control register is referred to as "EECTL".

5.7.1 Serial EEPROM Opcodes

```
READ_STATUS_EE_OPCODE = 5
WREN_EE_OPCODE = 6
WRITE_EE_OPCODE = 2
READ_EE_OPCODE = 3
```

5.7.2 Serial EEPROM Low-Level Access Routines

```
int EE_WaitIdle()
{
   int eeCtl, ii;
   for (ii = 0; ii < 100; ii++)
   {
        USB 3380Read(EECTL, eeCtl);
                                                /* read current value in EECTL */
        if ((eeCtl & (1 << EEPROM_BUSY)) == 0) /* loop until idle */
        return(eeCtl);
    }
    PANIC("EEPROM Busy timeout!\n");
}
void EE_Off()
{
    EE_WaitIdle();
                                                 /* ensure EEPROM is idle */
    USB 3380Write(EECTL, 0);
                                                 /* turn off everything
                                                 (especially EEPROM_CS_ENABLE) */
}
int EE_ReadByte()
{
    int eeCtl = EE_WaitIdle();
                                                  /* ensure EEPROM is idle */
    eeCtl |= (1 << EEPROM_CS_ENABLE) |</pre>
             (1 << EEPROM_BYTE_READ_START);</pre>
    USB 3380Write(EECTL, eeCtl);
                                                 /* start reading */
    eeCtl = EE_WaitIdle();
                                                 /* wait until read is done */
    return((eeCtl >> EEPROM_READ_DATA) & FFh); /* extract read data from EECTL */
}
void EE_WriteByte(int val)
{
    int eeCtl = EE_WaitIdle();
                                                 /* ensure EEPROM is idle */
    eeCtl &= ~(FFh << EEPROM_WRITE_DATA);</pre>
                                                 /* clear current WRITE value */
    eeCtl |= (1 << EEPROM_CS_ENABLE) |</pre>
             (1 << EEPROM_BYTE_WRITE_START) |
             ((val & FFh) << EEPROM_WRITE_DATA);
    USB 3380Write(EECTL, eeCtl);
}
```

5.7.3 Serial EEPROM Read Status Routine

```
EE_WriteByte(READ_STATUS_EE_OPCODE);
status = EE_ReadByte();
EE_Off();
...
```

```
/* read status opcode */
/* get EEPROM status */
/* turn off EEPROM */
```

5.7.4 Serial EEPROM Write Data Routine

```
EE_WriteByte(WREN_EE_OPCODE);
EE_Off();
EE_WriteByte(WRITE_EE_OPCODE);
#ifdef THREE_BYTE_ADDRESS_EEPROM
*/
    EE_WriteByte(addr >> 16);
#endif
EE_WriteByte(addr >> 8);
EE_WriteByte(addr);
for (ii = 0; ii < n; ii++)
{
    EE_WriteByte(buffer[ii]);
}
EE_Off();
....
```

```
/* must first write-enable */
/* turn off EEPROM */
/* opcode to write bytes */
/* three-byte addressing EEPROM?
/* send high byte of address */
/* send next byte of address */
/* send low byte of address */
/* send data to be written */
/* turn off EEPROM */
```

5.7.5 Serial EEPROM Read Data Routine

```
• • •
EE_WriteByte(READ_EE_OPCODE);
                                               /* opcode to write bytes */
#ifdef THREE_BYTE_ADDRESS_EEPROM
                                               /* three-byte addressing EEPROM?
*/
  EE_WriteByte(addr >> 16);
                                               /* send high byte of address */
#endif
                                               /* send next byte of address */
EE_WriteByte(addr >> 8);
EE_WriteByte(addr);
                                               /* send low byte of address */
for (ii = 0; ii < n; ii++)
{
  buffer[ii] = EE_ReadByte(buffer[ii]); /* store read data in buffer */
1
                                               /* turn off EEPROM */
EE_Off();
```

Chapter 6 8051 Micro-Controller Unit

6.1 Overview

The embedded 8051 Micro-Controller Unit (MCU) allows the USB 3380 to operate as a stand-alone system-on-chip (SOC) processor for enumerating and servicing PCI Express devices, as well as handling USB endpoints, DMA, and interrupt events. The 8051 controls 32 KB of on-chip RAM that is shared between program and data. It also controls 256 bytes of internal RAM (IRAM) space for MCU registers, Stack, and Scratchpad space. A debug Port is used for 8051 firmware development. The MCU executes machine cycles in an average of 2.39 clock periods and operates at 125 MHz, thus providing over 50 MIPs.

6.2 8051 Memory Map

The 8051 has access to 32 KB of memory, to be shared between the Program and Data space.

6.2.1 Program and Data Space (64 KB)

The program memory consists of 32 KB of RAM, which can be written to by the serial EEPROM, USB, and/or PCI Express interface.

Table 6-1. Program and Data Space (64 KB)

Address	Device
0000h – 7FFFh	Program RAM (32 KB, shared with external Data space)
8000h – FFFFh	Not used

6.2.2 IRAM (256 Bytes)

IRAM is 8-bit wide memory that is directly accessible to 8051 instructions (CPU register space), and divided into two 128-byte regions – Low and High (refer to Table 6-2):

- Low IRAM region (Addresses 0000h through 007Fh) Can be accessed using direct (MOV A, direct) or indirect (MOV A, @Ri) addressing. (Refer to Table 6-3.)
- High IRAM region (Addresses 0080h through 00FFh) When accessed using direct addressing, the region accesses a block of Cursor registers (Special Function registers (SFRs); refer to Section 6.2.2.1), the 8051 can access the 32-KB Code/Data memory, Port, and USB Controller registers, USB endpoint FIFOs, and the PCI Express interface.

When accessed using indirect addressing, the region accesses 128 bytes of general-purpose RAM. In this way, two 128-byte blocks occupy the same Address range.

Table 6-2. IRAM (256 Bytes)

Address	Device	
0000h - 007Fh	Low RAM region (128 bytes, direct or indirect addressed)	
0080h - 00FFh	High RAM region, Special Function registers (128 bytes, direct addressed)	
000011 - 001111	High RAM region, general-purpose RAM (128 bytes, indirect addressed)	

Table 6-3. Low IRAM Region (128 Bytes, Direct or Indirect Addressing)

Address	Device
00h - 1Fh	CPU Register set
20h – 2Fh	16 Bytes General-Purpose RAM (Bit addressable)
30h – 7Fh	80 bytes general-purpose RAM (Stack and Scratchpad)

6.2.2.1 Special Function Registers

These Special Function registers (SFRs) are internal to the 8051, and are listed here, in Table 6-4, for reference only.

Address	Register	Description	USB 3380 Unique	Bit Addressable
80h	PO	Port 0		v
81h	SP	Stack Pointer		
82h	DPL	Data Pointer Low Byte		
83h	DPH	Data Pointer High Byte		
84h	DPL1	Data Pointer 1 Low Byte		
85h	DPH1	Data Pointer 1 High Byte		
86h	DPS	Data Pointer Select		
87h	PCON	Power Control		
88h	TCON	Timer/Counter Control		~
89h	TMOD	Timer/Counter Mode Control		
8Ah	TL0	Timer/Counter 0 Low Byte		
8Bh	TL1	Timer/Counter 1 Low Byte		
8Ch	TH0	Timer/Counter 0 High Byte		
8Dh	TH1	Timer/Counter 1 High Byte		
8Eh	CKCON	Clock Control		
98h	SCON	Debug Port Control		v
99h	SBUF	Debug Port Data Buffer		
A0h	P2	Port 2 (Virtual PCI-to-PCI bridge)		v
A8h	IE	Interrupt Enable Control		v
A9h	SADDR	Debug Port Target Address		
B0h	P3	USB Controller (PCI Express endpoint)		~
B8h	IP	Interrupt Priority Control		~
B9h	SADEN	Debug Port Automatic Address Recognition Enable		
C4h	PMR	Power Management		
C7h	TA	Timed Access		
C8h	T2CON	Timer/Counter 2 Control		~
C9h	T2MOD	Timer/Counter 2 Mode Control		
CAh	RCAP2L	Timer/Counter 2 Capture (LSB)		
CBh	RCAP2H	Timer/Counter 2 Capture (MSB)		
CCh	TL2	Timer/Counter 2 Low Byte		
CDh	TH2	Timer/Counter 2 High Byte		

 Table 6-4.
 Special Function Registers (High IRAM Region, Direct Addressed)

Address	Register	Description	USB 3380 Unique	Bit Addressable
D0h	PSW	Program Status Word		~
E0h	ACC	Accumulator		~
E8h	IRQ0A	IRQA Status (GPEP - IN; LSB)	~	~
E9h	IRQ0C	IRQC Status (GPEP – OUT; MSB)	~	~
F0h	В	B Register		~
F2h	CFGCTL0	Configuration Register Control Byte 0	~	
F3h	IFSTAT	Interface Status		
F4h	CFGADDR0	Configuration Register Address Byte 0 (LSB)	~	
F5h	CFGADDR1	Configuration Register Address Byte 1 (MSB)	~	
F8h	IRQ0B	IRQB Status	~	~
F9h	CFGDATA0	Configuration Register Data Byte 0 (LSB)	~	
FAh	CFGDATA1	Configuration Register Data Byte 1	~	
FBh	CFGDATA2	Configuration Register Data Byte 2	~	
FCh	CFGDATA3	Configuration Register Data Byte 3 (MSB)	~	

Table 6-4. Special Function Registers (High IRAM Region, Direct Addressed) (Cont.)

6.3 Device-Specific Special Function Registers

6.3.1 Configuration Register Access Special Function Registers

A set of eight Special Function registers (SFRs; refer to Table 6-5) allows the 8051 to access the USB 3380 Configuration registers, USB endpoints, and external PCI Express devices (by way of the PCI Master registers (USB Controller, offsets 100h through 10Ch, and 11Ch)). For a Configuration register access, the 8051 first sets up the register Address and Data (for a Write, at IRAM addresses F4h and F5h, and F9h through FCh, respectively). Then, the Control byte is written, with the *Start* bit Set. The remaining fields in the Control byte are formatted, as listed in Table 6-5.

The *Start* bit is automatically Cleared when the transaction is complete. The *Read/Write* bit determines the value returned in the **CFGDATA***x* registers, as listed in Table 6-5.

Configuration or *PCI Express Access Busy* bits can also be monitored in the bit-addressable **IRQ0B** SFR (8051, Address F8h).

IRAM	Register				
Address	Bit(s)	Description	Attribute	Default	
	CFGCTL0 (Configuration Register Control Byte 0)				
F2h	3:0	Byte EnablesSelects which of the four bytes are written.	RW	Oh	
	5:4	Space Select00b = PCI Configuration registers01b = Memory-Mapped Configuration registers	RW	00b	
		All other encodings are <i>reserved</i> .			
	6	Start Automatically Cleared.	RW	0	
	7	Read/Write 0 = Write 1 = Read	RW	0	
	IFSTAT (In	terface Status)			
	0	Error Status 1 = PCI Express or USB cycle started by the 8051 has received an error. If the error is a UR, the Data registers are programmed to FFFF_FFFh.	RW	0	
F3h		Write 1 to Clear.			
	1	CPL Data Valid 1 = Completion data is in the Data registers. F9h through FCh.	RW	0	
		Write 1 to Clear.			
	7:2	Reserved	R	0-0h	
F4h	7:0	CFGADDR0 (Configuration Register Address Byte 0 (LSB))			
F5h	7:0	CFGADDR1 (Configuration Register Address Byte 1 (MSB))			
F9h	7:0	CFGDATA0 (Configuration Register Data Byte 0 (LSB)) 0 = Write data 1 = Read data returned from Configuration Read transaction			
FAh	7:0	CFGDATA1 (Configuration Register Data Byte 1) 0 = Write data 1 = Read data returned from Configuration Read transaction			
FBh	7:0	CFGDATA2 (Configuration Register Data Byte 2) 0 = Write data 1 = Read data returned from Configuration Read transaction			
FCh	7:0	CFGDATA3 (Configuration Register Data Byte 3 (MSB)) 0 = Write data 1 = Read data returned from Configuration Read transaction			

Table 6-5.	Configuration Register	Access Special	Function Registers
------------	-------------------------------	----------------	---------------------------

6.3.2 Interrupt Status Special Function Registers

A set of three, bit-addressable SFRs allows the 8051 to read the USB 3380 **IRQSTAT0** register (USB Controller, offset 28h) *Interrupt Status* bits. Also, the Busy status of a Configuration register or PCI Master access is monitored. Usually, these transactions are completed before the 8051 tests these bits.

Table 6-6.	Interrupt Status Special Function Registers
------------	---

IRAM Address	Register Name		
E8h	IRQ0A (IRQA Status (GPEP – IN; LSB))		
E9h	IRQ0C (IRQC Status (GPEP – OUT; MSB))		
F8h	IRQ0B (IRQB Status)		

6.3.3 PCI Express Accesses

The 8051 can initiate accesses to PCI Express space. PCI Express accesses must be indirectly performed through the USB 3380 **PCI Master Control** registers. The **PCIMSTADDR** register (USB Controller, offset 104h) determines the base PCI address of these accesses, and data is read or written through the **PCIMSTDATA** register (USB Controller, offset 108h). Bits in the **PCIMSTCTL** register (USB Controller, offset 100h) determine the transaction direction, start the transaction, and detect when the transaction is complete. The **PCIMSTADDR** register determines the PCI address when performing Type 0 or Type 1 Configuration cycles.

The **PCIMSTADDR**, **PCIMSTDATA**, and **PCIMSTCTL** registers are also used by the USB interface, to access the PCI Express interface. The PCIOUT and PCIIN Dedicated endpoints allow these registers to be accessed with one USB transaction. There is no Configuration register resource locking during PCI Master cycles; therefore, the USB Host and 8051 are required to negotiate PCI Express interface control.

For further details, refer to Section 7.4.1.1, "PCI Master Control Registers," and Section 15.7, "PCI Express/Configuration Cursor Registers."

6.4 8051 Interrupts

The 8051 can service interrupts from internal resources, or USB or PCI Express sources. Individual interrupts are enabled to the 8051, using the USB 3380 **CPUIRQENB0** and **CPUIRQENB1** registers (USB Controller, offsets 18h and 1Ch, respectively). Interrupts from the USB 3380 **IRQSTAT0** register (USB Controller, offset 28h) are routed to the 8051's Interrupt Input 0, while interrupts from the USB 3380 **IRQSTAT1** register (USB Controller, offset 28h) are routed to the 8051's Interrupt Input 1.

Chapter 7 PCI Express Interface

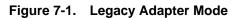
7.1 Overview

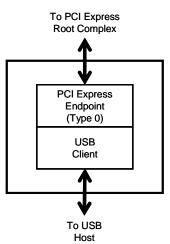
This chapter describes the USB 3380's PCI Express functions. With respect to PCI Express functions, the USB 3380 provides three modes of operation – Legacy Adapter, Enhanced Adapter, and Root Complex. The combined STRAP_LEGACY and STRAP_RC_MODE input states determine the mode of operation, as listed in Table 7-1. Each mode is described in the sections that follow.

In addition to the modes of operation, PCI Express Accesses to On-Chip RAM are also discussed.

Note: Throughout this data book, "Adapter mode" refers to both Legacy and Enhanced Adapter modes, unless specified otherwise.

Mode	STRAP_LEGACY Input State	STRAP_RC_MODE Input State	
Legacy Adapter Mode	Н	L	
Enhanced Adapter Mode	L	L	
Root Complex Mode	L	Н	

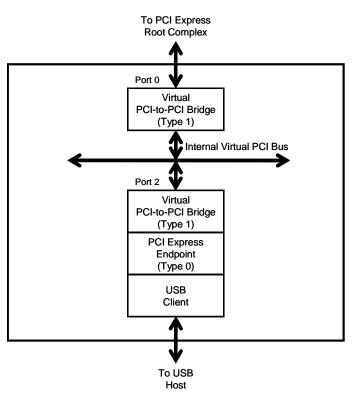

 Table 7-1.
 Modes of Operation and Related Strapping Input States


7.2 Legacy Adapter Mode

The USB 3380 is configured in Legacy Adapter mode when the following conditions exist:

- STRAP_LEGACY input is pulled High to VDD_IO, and
- STRAP_RC_MODE input is pulled or tied Low to Ground

In this mode, the USB 3380 appears as a PCI Express Adapter (endpoint), presenting a Type 0 PCI device Header to the system, as illustrated in Figure 7-1. When in Legacy Adapter mode, the USB 3380 presents a register set that is compatible with PLX's NETCHIP NET 2282 PCI to High-Speed USB 2.0 Controller. In this way, application programs that were originally written for use with the NET 2282 can be migrated to USB 3380 designs, with little or no modification.



7.3 Enhanced Adapter Mode

The USB 3380 is configured in Enhanced Adapter mode when the STRAP_LEGACY and STRAP_RC_MODE inputs are both pulled or tied Low to Ground. In this mode, the USB 3380 appears to the PCI Express Root Complex as a PCI Express switch with a USB Controller (PCI Express endpoint) attached to downstream Port 2 of the switch, as illustrated in Figure 7-2.

Note: Port 2 is an internal virtual PCI-to-PCI bridge that connects the USB Controller to the PCI Express fabric.

When in Enhanced Adapter mode, the USB Controller presents an extended set of registers and functions that support operation at SuperSpeed *USB r3.0* data rates. These functions are described in Chapter 8, "USB Controller Functional Description."

Figure 7-2. Enhanced Adapter Mode

7.3.1 PCI Express Adapter (Endpoint)

The USB Controller presents a Type 0 Configuration Header to the system, providing Base Address registers (BARs) that allow the PCI Express Root Complex CPU to access internal registers, internal RAM (DMA Descriptor space), and USB endpoint FIFOs. In Enhanced Adapter mode, the USB Controller resides behind a series of virtual PCI-to-PCI bridges, as illustrated in Figure 7-2.

7.4 Root Complex Mode

The USB 3380 is configured in Root Complex mode when the following conditions exist:

- STRAP_LEGACY input is pulled or tied Low to Ground, and
- STRAP_RC_MODE input is pulled High to VDD_IO

In this mode, the USB 3380 is configured as a PCI Express Root Complex, as illustrated in Figure 7-3. When the USB 3380 is configured as a Root Complex, either the 8051 or USB Host CPU performs the task of enumerating the PCI Express Port and all PCI Express devices attached to the downstream Port.

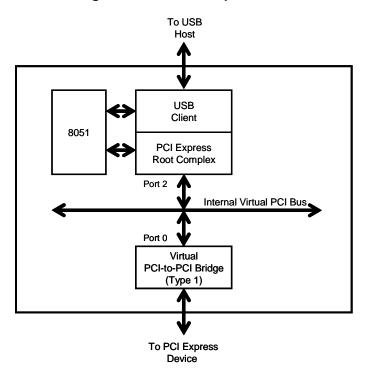


Figure 7-3. Root Complex Mode

7.4.1 PCI Express Root Complex

The PCI Express Root Complex connects either the 8051 or USB Host CPU to the PCI Express subsystem. Functions in this block include:

- PCI Master Control Registers
- PCI Express Root Port Registers
- Root Complex Event Collector Registers

Each is described in the sections that follow.

7.4.1.1 PCI Master Control Registers

The PCI Master Control registers listed in Table 7-2 are a set of special Cursor registers and associated logic, located in the USB Controller, that allows either the 8051 or USB Host CPU to access PCI Express Space.

Offset	Register	Function		
100h	PCIMSTCTL	Specifies access type and direction (Read/Write)		
104h	PCIMSTADDR	Contains the PCI Express address to be accessed		
108h	PCIMSTDATA	Contains data to be written or data returned from a Read		

a. The PCI Master Control register set also includes one Status and one Message register.

Through the PCI Master Control registers, the 8051 or USB Host CPU can generate the following types of accesses into PCI Express space:

- Configuration Read
- Configuration Write
- Memory Read
- Memory Write
- I/O Read
- I/O Write
- PCI Express Messages

PCI Master Control registers are detailed in Section 15.7, "PCI Express/Configuration Cursor Registers."

Because the 8051 is an 8-bit processor, 8051 accesses to PCI Express Space require a two-step process to transfer up to 32 bits, per transaction. First, the 8051 must use its own set of Cursor registers, located in its dedicated 256-byte Internal Random Access Memory (IRAM) Space, to access the PCI Master Control registers in CSR Space. Then, using the PCI Master Control registers, the 8051 can access PCI Express Space. The 8051 Cursor registers are located at IRAM Addresses F2h through FCh. (Refer to Section 6.3.1, "Configuration Register Access Special Function Registers," for details.)

USB accesses to PCI Master Control registers are performed by way of the PCIOUT and PCIIN Dedicated endpoints. These endpoints provide direct access from the USB interface to the **PCIMSTCTL** and **PCIMSTADDR** registers. Unlike 8051 accesses into PCI Express Space, which are limited to 32 bits using the **PCIMSTDATA** register, the PCIOUT and PCIIN Dedicated endpoints support Data Payloads up to the programmed PCI Express Maximum Payload Size, either 128 or 256 bytes. Refer to Section 8.6.3, "PCIOUT Endpoint," and Section 8.6.4, "PCIIN Endpoint," for details.

7.4.1.2 PCI Express Root Port Registers

A Root Port is a virtual PCI-to-PCI bridge that connects the Root Complex CPU to the PCI Express hierarchy. Table 7-3 lists the USB Controller registers specific to Root Port support. The PCI Express Root Port registers are detailed in Section 14.10, "PCI Express Capability Registers (Offsets 68h – A0h)."

Table 7-3. PCI Express Root Port Registers

Offset	Register
84h	Root Capability and Control
88h	Root Status

7.4.1.3 Root Complex Event Collector Registers

The PCI Express Root Port implements the Advanced Error Reporting (AER) Capability structure, as defined in the *PCI Express Base r2.1*, Section 7.10. As a Root Port, the AER structure includes additional Root Complex Event Collector registers, located in the USB Controller, as listed in Table 7-4. The PCI Express Root Port Event Collector registers are detailed in Section 14.16, "Advanced Error Reporting Extended Capability Registers (Offsets FB4h – FE8h)."

Table 7-4. PCI Express Root Complex Event Collector Registers

Offset	Register
FE0h	Root Error Command
FE4h	Root Error Status
FE8h	Error Source ID

7.4.2 Support for Messages Sent to Root Complex

The Root Complex is the destination for Conventional PCI INT*x*, Error, and PM_PME Messages, as well as MSI/MSI*x* TLPs generated by downstream PCI Express devices. When the Messages and TLPs reach the Root Complex, they are handled in one of two ways:

- If the Messages are for the USB Host CPU, the Message is written to the RCIN FIFO, and an *Interrupt* bit is Set in the STATIN Dedicated endpoint, to notify the USB Host of the Message receipt
- If the Messages are for the 8051, the Message is written to the 8051 Message FIFO, and a Hardware interrupt is generated to the 8051

7.4.3 Power Management Messages

The Root Complex CPU must be able to generate a PME_Turn_Off Message TLP in response to a received PM_PME Message TLP. In the USB 3380, the PCI Master Control registers are used to generate a PME_Turn_Off Message TLP.

7.5 PCI Express Accesses to On-Chip RAM

7.5.1 Legacy Adapter Mode

A PCI Express agent can write to/read from any location in 8051 and/or DMA memory, by sending a Request to an address within the range defined by the **Base Address 1** register *Base Address 1* bit (**BAR1**; USB Controller, offset 14h[31:16]). **BAR1** exposes a 64-KB window to the PCI Express port, but only the lower 32 KB are used to access the 32-KB 8051 and/or DMA memory. PCI Express addresses are mapped into the appropriate 8051 and/or DMA locations within the USB Ingress RAM and PCI Express Ingress RAM, where the 8051 and/or DMA memory is located. Any access outside the 8051 and/or DMA memory range results in an Unsupported Request Response. PCI Express Read Requests to 8051 and/or DMA memory are limited to the PCI Express Maximum Read Request Size, and cannot cross a 4-KB Address Boundary space. PCI Express Write Requests to 8051 and/or DMA memory are limited by the PCI Express Maximum Packet Size.

7.5.2 Enhanced Adapter Mode

A PCI Express agent can write to/read from any location within the 32-KB USB Ingress RAM or 32-KB PCI Express Ingress RAM, by sending a Request to an address within the range defined by the **Base Address 1** register *Base Address 1* bit (**BAR1**; USB Controller, offset 14h[31:16]). **BAR1** exposes a 64-KB window to the PCI Express port. The lower 32 KB access the USB Ingress RAM, and the upper 32 KB access the PCI Express Ingress RAM. PCI Express Read Requests to 8051 and/or DMA memory are limited to the PCI Express Maximum Read Request Size, and cannot cross a 4-KB Address Boundary space. PCI Express Write Requests to 8051 and/or DMA memory are limited by the PCI Express Maximum Packet Size.

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 8 USB Controller Functional Description

8.1 Introduction

The USB Controller joins the *USB r2.0* or *USB r3.0* core to the PCI Express interface. The USB Controller provides the following functions, which are described herein:

- Auto-Enumeration Controller
- FIFO Read/Write pointers
- FIFO Queue Depth monitors
- USB Dedicated Endpoint Controller

8.2 Modes of Operation

Note: The STRAP_LEGACY input determines whether the USB 3380 operates in Legacy or Enhanced Adapter mode. When STRAP_LEGACY is pulled or tied High to VDD_IO, the USB 3380 operates in Legacy Adapter mode; otherwise, the USB 3380 operates in Enhanced Adapter mode. In both modes, STRAP_RC_MODE input must be pulled or tied Low to Ground.

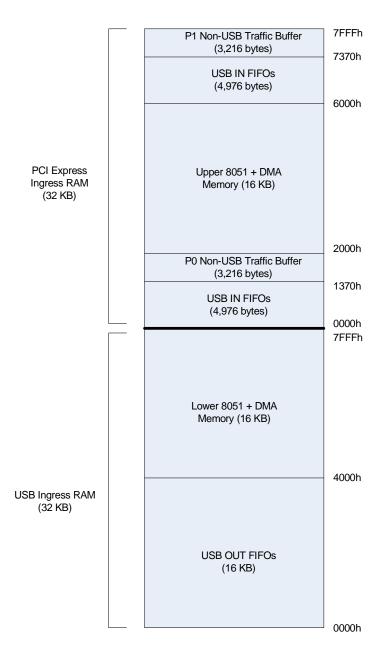
8.2.1 Legacy Adapter Mode

In Legacy Adapter mode, the USB 3380 presents a register set, USB endpoints, and FIFO memory that is similar to the PLX NET 2282 PCI to High-Speed USB 2.0 Controller, allowing programs that were written for that platform to be run on the USB 3380, with minimal modification. Legacy Adapter mode fully supports operation at *USB r3.0* data rates.

There are four general-purpose endpoints, which can be either IN or OUT. Each endpoint's direction is controlled by its **EP_CFG** register *Endpoint Direction* bit(s) (USB Controller, offset(s) 300h[7] and 320h, 340h, 360h, 380h[7]). Each endpoint also has its own set of Configuration and Status registers:

- **EP_CFG** register(s) (USB Controller, Legacy Adapter mode, offset(s) 300h, 320h, 340h, 360h, 380h)
- **EP_STAT** register(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch) registers

The endpoint FIFO configuration is determined by the new set of endpoint FIFO registers (not in the NET 2282), as well as the **FIFOCTL** register (USB Controller, offset 38h; included in the NET 2282).


8.2.1.1 Endpoint FIFO Configuration

Each USB endpoint has a FIFO associated with it. The IN endpoint FIFOs are located in the PCI Express Ingress RAM. The OUT endpoint FIFOs are located in the USB Ingress RAM.

The USB Ingress RAM provides a total of 16-KB RAM for all OUT endpoints that require FIFO space – EP 0, GPEP[3:0], and PCIOUT. The size of each of these six FIFOs is determined by their respective **EP_FIFO_SIZE_BASE** register *OUT FIFO Size* field(s) (USB Controller, offset(s) 500h, 520h, 540h, 560h, 580h, 5E0h, 600h[2:0]). The size for each FIFO can range from 64 to 4,096 bytes; however, the combined size of the six FIFOs must be less than 16,384 bytes. Each FIFO can be located on any 64-byte RAM boundary. The Base address of each OUT FIFO is determined by the register's *OUT FIFO Base Address* field(s) (field [14:6]), and is relative to the start of the USB Ingress RAM. The Base address resolution is 64 bytes. (For further details regarding OUT FIFOs, refer to Section 8.4.)

The IN FIFOs are placed into two 4,976-byte RAM segments. The following endpoints require an IN FIFO – EP 0, GPEP[3:0], PCIIN, and RCIN. The size of each of these seven FIFOs is determined by their respective **EP_FIFO_SIZE_BASE** register *IN FIFO Size* field(s) (USB Controller, offset(s) 500h, 520h, 540h, 560h, 580h, 5E0h, 600h[18:16]). The size for each FIFO can range from 64 to 4,096 bytes; however, the combined size of the seven FIFOs must be less than 9,952 bytes. There must be 64 bytes of unused memory after each IN FIFO. Each FIFO can be located on any 64-byte boundary, and must fit entirely within one of the two RAM segments. The Base address of each IN FIFO is determined by the register's *IN FIFO Base Address* field(s) (field [30:22]), and is relative to the start of the PCI Express Ingress RAM. The Base address resolution is 64 bytes. (For further details regarding IN FIFOs, refer to Section 8.5.)

Figure 8-1 illustrates the internal RAM layout.

Figure 8-1. Internal RAM Layout

Notes: The Base Address 1 register Base Address 1 bit (BAR1; USB Controller, offset 14h[31:16]) maps Lower 8051/ DMA Memory and Upper 8051+DMA Memory as a single 32-KB block. Other regions of the internal RAM are not accessible from BAR1.

PCI Express Ingress RAM addresses from 2000h through 5FFFh (Upper 8051+DMA Memory) are not available for use as IN FIFO, even when the 8051 and DMA channels are idle.

Typical Endpoint Configurations

Table 8-1 lists typical programmed endpoint FIFO sizes for various endpoints.

Table 8-1.	Typical	Endpoint	Configurations
------------	---------	----------	----------------

Туре	Endpoint ^a	Adapter/Internal DMA Channel	Root Complex/ External DMA Channel	FIFO Size (in Bytes)	Endpoint Number
	CSROUT	Not used	OUT	No FIFO	Dh
	CSRIN	Not used	IN	No FIFO	Dh
	PCIOUT	Not used	OUT	256	Eh
Dedicated	PCIIN	Not used	IN	256	Eh
	STATIN	Not used	IN	No FIFO	Fh
	RCIN	Not used	IN	512	Ch
	EP 0	IN	IN	512	0
	EP 0	OUT	OUT	512	0
	GPEP0 (OUT)	DMA Channel 0 Write	DMA Channel 0 Read Completion	4K	2
(IN) GPEP1 ¹ (OUT)	GPEP0 (IN)	DMA Channel 0 Read	DMA Channel 0 Write Target	2K	2
	GPEP1 ^b (OUT)	DMA Channel 1 Write	DMA Channel 0 Descriptor Read Completion	4K (Adapter mode) 256 (Root Complex mode)	4
	GPEP1 ^b (IN)	DMA Channel 1 Read	DMA Channel 0 Done Message	2K (Adapter mode) 256 (Root Complex mode)	4
	GPEP2 (OUT)	DMA Channel 2 Write	DMA Channel 1 Read Completion	2K	6
	GPEP2 (IN)	DMA Channel 2 Read	DMA Channel 1 Write Target	2K	6
	GPEP3 ^b (OUT)	DMA Channel 3 Write	DMA Channel 1 Descriptor Read Completion	2K (Adapter mode) 256 (Root Complex mode)	8
	GPEP3 ^b (IN)	DMA Channel 3 Read	DMA Channel 1 Done Message	2K (Adapter mode) 256 (Root Complex mode)	8

a. In Legacy Adapter mode, only one direction (OUT or IN) is available for each GPEP endpoint pair. In Enhanced Adapter and Root Complex modes, both directions (OUT and IN) are available for each GPEP endpoint pair.

b. In Root Complex mode, if endpoints GPEP1 or GPEP3 are to be used for traffic that uses USB packets larger than 256 bytes, the default FIFO sizes for these endpoints must be increased.

8.2.2 Enhanced Adapter Mode

In Enhanced Adapter mode, the USB 3380 presents an extended set of USB endpoints designed to operate at SuperSpeed data rates. In this mode, the USB Controller provides four pairs (8 endpoints total) of general-purpose endpoints – GPEP[3:0]. Each GPEPx endpoint pair has one OUT and one IN endpoint associated with it. Additionally, each GPEPx endpoint pair has one enhanced Endpoint Configuration register and two Response/Status registers associated with it:

- EP_CFG register(s) (USB Controller, offset(s) 320h, 340h, 360h, 380h)
- **EP_RSP** register(s) (USB Controller, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h)
- **EP_STAT** register(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch)

The direction of each general-purpose endpoint is fixed, and the **EP_CFG** register *Endpoint Direction* bit(s) (USB Controller, offset(s) 320h, 340h, 360h, 380h[7]) is ignored. The endpoint FIFO configuration is determined by an enhanced set of endpoint FIFO registers.

8.3 Auto-Enumerate Controller

Auto-Enumerate mode, which makes use of the Auto-Enumerate Controller (AEC), relieves the CPU from servicing Standard Read and Write Requests from the USB Host. Each type of Standard Read or Write Request has an associated register bit that determines how the Request is serviced:

- When the bit is Cleared, the Request is passed to the CPU through the Setup registers
- When the bit is Set, the request is serviced without CPU support

The values returned to the Host in Auto-Enumerate mode are determined by the values in other registers, which are discussed in the next section.

8.3.1 Configuration Register Setup

The Configuration registers listed in Table 8-2, located in the USB Controller, determine the auto-enumeration response to USB Standard Requests from EP 0. The default values can be used, or the optional serial EEPROM can load custom values before the enumeration process starts.

Table 8-2. Configuration Registers for Auto-Enumeration Response

Location(s)	Register	Description		
Offset 80h	STDRSP	Standard Response Control		
Offset 84h	PRODVENDID	Product and Vendor IDs		
Offset 88h	RELNUM	Device Release Number		
Offset 8Ch	USBCTL	USB Control		
Offset B4h	USB_CLASS	USB Class, Sub-Class, Protocol		
Offset B8h	SS_SEL	SuperSpeed System Exit Latency		
Offset 300h	EP_CFG (EP 0 only)	Endpoint Configuration for EP 0		
Offsets 304h, 324h/3E4h, 344h/ 404h, 364h/424h, 384h/444h	EP_RSP	Endpoint Response for EP 0 and GPEPx		
Offsets 320h, 340h, 360h, 380h	EP_CFG (GPEP <i>x</i> endpoints only)	Endpoint Configuration for GPEPx Endpoints		
Index 06h	HS_MAXPOWER	High-Speed Maximum Power		
Index 07h	FS_MAXPOWER	Full-Speed Maximum Power		
Index 08h	HS_INTPOLL_RATE	High-Speed Interrupt Polling Rate		
Index 09h	FS_INTPOLL_RATE	Full-Speed Interrupt Polling Rate		
Index 0Ah	HS_NAK_RATE	High-Speed NAK Rate		
Index 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h	GPEP[3:0/Out/ In]_HS_MAXPKT	High-Speed Maximum Packet Size		
Index 21h, 31h, 41h, 51h, 61h, 71h, 81h, 91h	GPEP[3:0/Out/ In]_FS_MAXPKT	Full-Speed Maximum Packet Size		
Index 22h, 32h, 42h, 52h, 62h, 72h, 82h, 92h	GPEP[3:0/Out/ In]_SS_MAXPKT	SuperSpeed Maximum Packet Size		
Index 84h	STATIN_HS_INTPOLL_RATE	ATE High-Speed interrupt polling rate for STATIN		
Index 85h	STATIN_FS_INTPOLL_RATE	Full-Speed interrupt polling rate for STATIN		
Index 86h	SS_MAXPOWER	SuperSpeed Maximum Power		

8.3.2 Supported Standard Requests

Table 8-3 lists the Standard Requests supported by the AEC.

Table 8-3. AEC-Supported Standard Requests

Oten devid De more t	Desinient	Read/Write	
Standard Request	Recipient	USB r2.0	USB r3.0
GetStatus(DEVICE)	Device	Read	Read
GetStatus(ENDPOINT)	Endpoint	Read	Read
GetStatus(INTERFACE)	Interface	Read	Read
SetFeature(ENDPOINT_HALT) ClearFeature(ENDPOINT_HALT)	Endpoint	Write	Write
SetFeature(TEST) ClearFeature(TEST)	Device	Write	-
SetFeature(DEVICE_REMOTE_WAKEUP) ClearFeature(DEVICE_REMOTE_WAKEUP)	Device	Write	-
SetFeature(FUNCTION_SUSPEND) ClearFeature(FUNCTION_SUSPEND)	Interface	-	Write
SetFeature(U1_ENABLE) ClearFeature(U1_ENABLE)	Device	-	Write
SetFeature(U2_ENABLE) ClearFeature(U2_ENABLE)	Device	-	Write
SetFeature(LTM_ENABLE) ClearFeature(LTM_ENABLE)	Device	_	Write
GetDescriptor(DEVICE)	Device	Read	Read
GetDescriptor(CONFIGURATION) (includes Interfaces, Endpoints)	Device	Read	Read
GetDescriptor(SUPERSPEED_USB_ENDPOINT_ COMPANION) (provided only at USB r3.0 SuperSpeed)	Device	-	Read
GetDescriptor(LANGID) (String0)	Device	Read	Read
GetDescriptor(MANUFACTURER) (String1)	Device	Read	Read
GetDescriptor(PRODUCT) (String2)	Device	Read	Read
GetDescriptor(SERIAL_NUMBER) (String3)	Device	Read	Read
GetDescriptor(DEVICE_QUALIFIER) (supported only at USB r2.0 speeds)	Device	Read	_
GetDescriptor(OTHER_SPEED_CONFIGURATION) (supported only at USB r2.0 speeds)	Device	Read	-
GetDescriptor(BOS) (<i>USB r2.0</i> Extension; SuperSpeed Device Capability; provided at all USB speeds)	Device	Read	Read
SetAddress	Device	Write	Write
SetConfiguration	Device	Write	Write

Standard Paguast	Provinient	Read/Write	
Standard Request	Recipient	USB r2.0	USB r3.0
GetConfiguration	Device	Read	Read
SetInterface (Supports only Interface 0)	Interface	Write	Write
GetInterface	Interface	Read	Read
SetSel (System Exit Latency)	Device	_	Write
SetIsochDelay (Isochronous Delay)	Device	-	Write

Table 8-3. AEC-Supported Standard Requests (Cont.)

8.3.3 Control Transfer Detection

The AEC monitors the *USB r2.0* or *USB r3.0* core for the arrival of a valid Setup packet. Byte 0 of the 8-byte Setup packet is the *bmRequestType*, which determines the transfer characteristics, as listed in Table 8-4. The remaining seven bytes of the Setup packet are described in Table 8-5.

The AEC supports only Control transfers of type Standard. All other types – Class and Vendor – must be handled by the local CPU.

Bit(s)	Characteristic	
4:0	Recipient00h = Device01h = Interface02h = Endpoint03h = OtherAll other encodings are <i>reserved</i> .	
6:5	Type 00b = Standard 01b = Class 10b = Vendor 11b = Reserved	
7	Data Transfer Direction0 = Host to device (Control Write)1 = Device to Host (Control Read)	

Table 8-4. Setup Packet, Byte 0 – bmRequestType

Table 8-5. Standard Request Setup Packet, Bytes 1 through 7

Byte	Setup Packet	Function
1	bRequest	Type of Standard Request
2, 3	wValue	Request-specific parameter
4, 5	wIndex	Request-specific parameter
6, 7	wLength	Length of Data stage

USB 3380-AA/AB PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller Data Book, v1.3 Copyright © 2012 by PLX Technology, Inc. All Rights Reserved

8.3.3.1 Standard Control Write Requests

When a Standard Control Write is detected, the *bmRequestType* and *bRequest* bytes (Bytes 0 and 1, respectively) are examined to determine the type of Control Write. Each Standard Control Write type has an *AEC Enable* bit. The AEC begins processing an action for a Control Write, if the corresponding *AEC Enable* bit is Set. For each Request, a Write Request is made to the appropriate register. The Write Data Bus is based upon data from the Setup packet. When the Write is complete, the Request is removed, and the Control Write Status stage is ACKed.

The AEC supports the Standard Control Write Requests listed in Table 8-6.

Standard Write Request	Recipient	bRequest	wValue	wIndex	wLength
SetFeature(ENDPOINT_HALT) ClearFeature(ENDPOINT_HALT)	Endpoint	SET_FEATURE/ CLEAR_FEATURE	Feature Selector 0	Endpoint Number	0
SetFeature(DEVICE_REMOTE_WAK EUP) ClearFeature(DEVICE_REMOTE_WA KEUP)	Device	SET_FEATURE/ CLEAR_FEATURE	Feature Selector 1	0	0
SetFeature(TEST) ClearFeature(TEST)	Device	SET_FEATURE/ CLEAR_FEATURE	Feature Selector 2	Test Selector	0
SetFeature(FUNCTION_SUSPEND) ClearFeature(FUNCTION_SUSPEND)	Interface	SET_FEATURE/ CLEAR_FEATURE	Feature Selector 0	{Suspend Option, Interface Number}	0
SetFeature(U1_ENABLE) ClearFeature(U1_ENABLE)	Device	SET_FEATURE/ CLEAR_FEATURE	Feature Selector 48	0	0
SetFeature(U2_ENABLE) ClearFeature(U2_ENABLE)	Device	SET_FEATURE/ CLEAR_FEATURE	Feature Selector 49	0	0
SetFeature(LTM_ENABLE) ClearFeature(LTM_ENABLE)	Device	SET_FEATURE/ CLEAR_FEATURE	Feature Selector 50	0	0
SetAddress	Device	SET_ADDRESS	Device Address	0	0
SetConfiguration	Device	SET_CONFIGURATION	Configuration Value	0	0
SetInterface	Interface	SET_INTERFACE	Alternate Setting	Interface	0
SetSel (System Exit Latency)	Device	SET_SEL	0	0	0
SetIsochDelay (Isochronous Delay)	Device	SET_ISOCH_DELAY	Delay Value	0	0

 Table 8-6.
 AEC-Supported Standard Control Write Requests

8.3.3.2 Standard Control Read Requests

When a Standard Control Read is detected, the *bmRequestType* and *bRequest* bytes (Bytes 0 and 1, respectively) are examined to determine the type of Control Read. Each Standard Control Read type has an *AEC Enable* bit. The AEC begins processing a Control Read, if the corresponding *AEC Enable* bit is Set. For each Request, a response is written to the EP 0 IN FIFO, using the low-priority PCI Express Ingress RAM Bus. The response packet is returned to the Host, during the Control Read Data stage.

For Descriptors, the upper byte of *wValue* (Byte 3) is the Descriptor type, and the lower byte (Byte 2) is the index. The index is used only for Configuration and String Descriptors.

The Configuration Descriptor size is based upon the quantity of enabled endpoints and Link speed. A state machine determines the quantity of bytes to be written, then writes them to the EP 0 FIFO.

The AEC supports the Standard Control Read Requests listed in Table 8-7.

Standard Read Request	Recipient	bRequest	wValue ^a	wIndex	wLength
GetStatus(DEVICE)	Device	GET_STATUS	0	0	2
GetStatus(INTERFACE)	Interface	GET_STATUS	0	Interface	2
GetStatus(ENDPOINT)	Endpoint	GET_STATUS	0	Endpoint	2
GetDescriptor(DEVICE)	Device	GET_DESCRIPTOR	{1,0}	0	18
GetDescriptor(CONFIGURATION) (includes Interfaces, Endpoints)	Device	GET_DESCRIPTOR	{2,0}	0	Varies
GetDescriptor(SUPERSPEED_USB_ ENDPOINT_COMPANION) (provided only at USB r3.0 SuperSpeed)	Device	GET_DESCRIPTOR	{48,0}	0	6
GetDescriptor(LANGID) (String0)	Device	GET_DESCRIPTOR	{3,0}	LangID	4
GetDescriptor(MANUFACTURER) (String1)	Device	GET_DESCRIPTOR	{3,1}	LangID	42
GetDescriptor(PRODUCT) (String2)	Device	GET_DESCRIPTOR	{3,2}	LangID	Varies
GetDescriptor(SERIAL_NUMBER) (String3)	Device	GET_DESCRIPTOR	{3,3}	LangID	22
GetDescriptor(DEVICE_QUALIFIER) (supported only at USB r2.0 speeds)	Device	GET_DESCRIPTOR	{6,0}	0	10
GetDescriptor(OTHER_SPEED_ CONFIGURATION) (supported only at USB r2.0 speeds)	Device	GET_DESCRIPTOR	{7,0}	0	9
GetDescriptor(BOS) (USB r2.0 Extension; SuperSpeed Device Capability; provided at all USB speeds)	Device	GET_DESCRIPTOR	{15,0}	0	22
GetConfiguration	Device	GET_CONFIGURATION	0	0	1
GetInterface	Interface	GET_INTERFACE	0	Interface	1

Table 8-7. AEC-Supported Standard Control Read Requests

a. The upper byte of wValue (Byte 3) is the Descriptor type. The lower byte (Byte 2) is the index.

8.4 USB OUT FIFO Controller

The USB OUT FIFO Controller manages the flow of data between the USB r2.0 or USB r3.0 core and the USB endpoint FIFO areas within the USB Ingress RAM.

8.4.1 OUT FIFO Writes

The USB OUT FIFO Controller accepts packets received by the USB r2.0 or USB r3.0 core, then writes the data received to the appropriate endpoint FIFO space within the USB Ingress RAM. Each OUT endpoint is assigned a region of memory, based upon the **EP_FIFO_SIZE_BASE** register *IN FIFO Base Address, OUT FIFO Base Address, IN FIFO Size*, and *OUT FIFO Size* fields (USB Controller, offset(s) 500h, 520h, 540h, 560h, 580h, 5E0h, 600h[30:22, 14:6, 18:16, and 2:0], respectively). OUT packets for EP 0 and GPEP[3:0] are stored in their respective OUT FIFOs. OUT packets to CSROUT are intercepted and stored in internal Configuration registers, rather than written to a FIFO. The first 2 DWords of OUT packets to the PCIOUT endpoint FIFO are stored in the PCIMSTCTL and PCIMSTADDR registers, and the remainder are written to the PCI Express interface.

When receiving data, the USB 3380 NAKs the Host (indicating that the USB 3380 cannot accept the data) when one of the following conditions is met:

- Endpoint's FIFO is full, -or-
- Endpoint's **EP_RSP** register *NAK OUT Packets Mode* and *NAK Packets* bits are Set (USB Controller, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h)

If the packets received are of maximum size, then additional packets are received, independent of the *NAK OUT Packets Mode* bit state. This bit causes additional OUT packets to be NAKed if the last packet received was a short packet. If the *NAK OUT Packets Mode* bit is Set (Blocking mode), USB OUT transfers can overlap with the CPU (8051 or PCI Express Host), unloading the data in the following sequence:

- CPU responds to the EP_STAT register *Data Packet Received Interrupt* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[3]), then reads the EP_AVAIL register *Endpoint Available Counter* field(s) (USB Controller, offset(s) 310h, 330h/3F0h, 350h/410h, 370h/430h, 390h/450h[13:0]) to determine the quantity of bytes in the current packet.
- 2. CPU Clears the *Data Packet Received Interrupt* and *NAK Packets* bits, allowing the next packet to be received.
- 3. CPU can now unload data from the FIFO during the next USB OUT transaction.

If the *NAK OUT Packets Mode* bit is Cleared (Non-Blocking mode), the USB 3380 accepts packets as long as there is sufficient space for the complete packet in the FIFO. There are no indications of packet boundaries when the FIFO consists of multiple packets.

8.4.2 OUT FIFO Reads

Data can be read from the OUT endpoint FIFOs, using any of the following methods:

- PCI Express Memory Read Request targeting the endpoint FIFOs, by way of the endpoint's **EP_FIFO_SIZE_BASE** register(s) (USB Controller, offset(s) 500h, 520h, 540h, 560h, 580h, 5E0h, 600h)
- DMA channels can be used to read data from the OUT endpoint FIFOs, and write that data to PCI Express (this is the preferred method for High-Speed transfer between USB FIFOs and PCI Express)
- Register accesses to the **EP_DATA** and **EP_DATA1** registers (USB Controller, offset(s) 314h, 334h/3F4h, 354h/414h, 374h/434h, 394h/454h and 318h, 338h/3F8h, 358h/418h, 378h/438h, 398h/458h, respectively)
- AEC reads Standard Write data

8.4.3 OUT FIFO Flush

The following events result in an OUT FIFO flush:

- Write to the endpoint's **EP_STAT** register *FIFO Flush* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[9])
- PCI Express interface is reset
- Setup packet is ACKed (EP 0 only)
- Incorrect packet length (PCIOUT endpoint only)

8.4.4 OUT Endpoint Halt Conditions

OUT endpoints can be halted as a result of the following conditions:

- Write to the endpoint's **EP_RSP** register *Endpoint Halt Set* bit(s) (USB Controller, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h[8]), to explicitly Set the bit
- SetFeature(ENDPOINT_HALT) Request that is handled by the Auto-Enumerate Controller
- ECC error was detected during an Endpoint FIFO Read

8.5 USB IN FIFO Controller

The USB IN FIFO Controller manages the flow of data between USB endpoint FIFOs in the PCI Express Ingress RAM and the USB r2.0 or USB r3.0 core for IN endpoints.

8.5.1 IN FIFO Writes

Data bound for the USB Bus can arrive at the USB IN FIFOs, by way of the following methods:

- DMA Reads, from the PCI Express interface (preferred method for high-bandwidth transfers)
- Memory Writes, from the PCI Express interface, targeting the BAR2 and/or BAR3 IN FIFO (EP_FIFO_SIZE_BASE register(s) (USB Controller, offset(s) 500h, 520h, 540h, 560h, 580h, 5E0h, 600h))
- Register accesses (Writes), to the **EP_DATA** register(s) (USB Controller, offset(s) 314h, 334h/ 3F4h, 354h/414h, 374h/434h, 394h/454h)
- AEC Auto-Enumerate Response data

Note: BAR3 is available only in Enhanced Adapter mode.

In Legacy Adapter mode, the **FIFOCTL** register *PCI BAR2 Select* bit (USB Controller, offset 38h[2]) determines how **BAR2** is mapped to the GPEPx FIFOs:

- PCI BAR2 Select bit is Cleared
 - BAR2 Quadrant 0 = Writes to/reads from GPEP0 (writes for IN endpoint, reads from OUT endpoint)
 - BAR2 Quadrant 1 = Writes to/reads from GPEP1 (writes for IN endpoint, reads from OUT endpoint)
 - BAR2 Quadrant 2 = Writes to/reads from GPEP2 (writes for IN endpoint, reads from OUT endpoint)
 - BAR2 Quadrant 3 = Writes to/reads from GPEP3 (writes for IN endpoint, reads from OUT endpoint)
- PCI BAR2 Select bit is Set
 - **BAR2** first half = Writes to GPEP0
 - **BAR2** first half = Reads from GPEP1
 - **BAR2** second half = Writes to GPEP2
 - **BAR2** second half = Reads from GPEP3

In Enhanced Adapter mode, the **BAR2CTL** and **BAR2CTL** registers (USB Controller, offsets 3Ch and 40h, respectively) determines how **BAR2** and **BAR3** are mapped to the GPEPx FIFOs:

- **BAR2CTL** register allows any GPEP*x* FIFO to be mapped into any one of the four quadrants of the **BAR2** space
- **BAR3CTL** register allows any GPEP*x* FIFO to be mapped into any one of the four quadrants of the **BAR3** space

8.5.1.1 PCI Express Credits

The **INCH Status Control for Port 0** register *INCH FIFO OFF* field (Port 0, offset 9F0h[31:28]) applies to the four GPEP IN endpoints when they are written through **BAR2** or **BAR3** from the PCI Express interface:

- When one of the bits is Cleared, its corresponding GPEP IN FIFO is included in the PCI Express credit advertisement calculations
- When one of the bits is Set, its corresponding GPEP IN FIFO is *not* included in the PCI Express credit advertisement calculations

The quantity of credits advertised is determined by the FIFO with the least amount of available space. A GPEP IN endpoint is typically excluded from credit calculations when its corresponding FIFO is small. If this small FIFO were included, very few Posted credits could be advertised, and the larger endpoints would suffer a performance penalty. Setting one or more of the bits in the *INCH FIFO OFF* field resolves this problem.

In Root Complex mode, the GPEP1 and GPEP3 IN FIFOs default to the smallest FIFO size (256 bytes). Therefore, by default, the GPEP1 and GPEP3 endpoints are not included in the credit calculations for Root Complex mode.

Note: BAR3 is available only in Enhanced Adapter mode.

8.5.2 FIFO Reads from USB r2.0 or USB r3.0 Core

The USB Controller reads data from the IN FIFOs, then writes data to the USB r2.0 or USB r3.0 core for transmission to the USB Host. When an IN token arrives and the corresponding IN FIFO has a validated packet, the USB r2.0 or USB r3.0 core starts issuing Read Requests.

The FIFO Read pointers are initialized to the FIFO Base Address. USB packets are always aligned on 2-DWord boundaries; therefore, the pointers represent a 2-DWord address, rather than a Byte address.

8.5.3 IN FIFO (Write Target) Packet Validation

If an IN FIFO does not have validated data, the USB 3380 responds with a NAK/NRDY to the USB Host. There are several methods for validating the IN FIFO data:

• For large amounts of data, the PCI Express agent can write data to the IN FIFO, as long as FIFO space is available. When there is at least the specified quantity of **EP**_*n*_**MAXPKT** bytes in the FIFO, the USB 3380 responds to an IN token with a Data packet. If the entire Data transfer is a multiple of the specified quantity of **EP**_*n*_**MAXPKT** bytes, no other action is required to validate the FIFO data. If a zero-length packet (ZLP) must be sent to the Host, the CPU can Clear the endpoint's **EP_CFG** register *EP FIFO Byte Count* field(s) (USB Controller, offset(s) 300h[18:16] and 320h, 340h, 360h, 380h[18:16]), then write to the **EP_DATA** register(s) (USB Controller, offset(s) 314h, 334h/3F4h, 354h/414h, 374h/434h, 394h/454h).

This feature is enabled only if the endpoint's **EP_CFG** register *Byte Packing Enable* bit(s) (USB Controller, offset(s) 300h[11] and 320h, 340h, 360h, 380h[11]) is not Set.

- When using the internal DMA Controller, the DMA Byte Count is used. This Counter is initialized to the total Transfer Byte Count, before data is written to the IN FIFO. The Counter decrements as data is written to the FIFO. When the Counter reaches 0, the remaining data in the FIFO is validated. Excess bytes in the last word are automatically ignored. If the last packet of a transfer has the specified quantity of **EP_n_MAXPKT** bytes (quantity indicated by the register value), the USB 3380 responds to the next IN token with a ZLP.
- If the upper bits of the PCI Express packet Byte Enables are not Set, this is considered a non-contiguous Write, and results in a short packet validation if the **EP_CFG** register *Byte Packing Enable* bit(s) is not Set.
- The **EP_STAT** register *FIFO Validate* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/ 40Ch, 36Ch/42Ch, 38Ch/44Ch[8]) validates data in the IN FIFO:
 - If the last word written to the FIFO did not contain contiguous Byte Enables that are Set, or if the *EP FIFO Byte Count* field(s) is not a value of 4 (partial Byte Enables), writing to the *FIFO Validate* bit(s) has no effect. Writing to the *FIFO Validate* bit(s) a second time causes a ZLP to be placed into the FIFO.
 - If the last word written to the FIFO has all the Byte Enables Set, writing to the *FIFO* Validate bit(s) validates the data if the Byte Count is less than the programmed Maximum Packet Size, or causes a ZLP to be written if there is an even multiple of Maximum Packet Size bytes in the FIFO (*that is*, no short packet).

USB protocol requires that a ZLP to be appended when all packets within the transfer are of Maximum Packet Size. The FIFO Validate function takes this into account.

• Writing any data value to the GPEP*x* **EP_VAL** register(s) (USB Controller, offset(s) 33Ch, 35Ch, 37Ch, 39Ch) performs the same function as the *FIFO Validate* bit(s) described in the previous bullet.

8.5.4 IN FIFO Flush

The following events result in an IN FIFO flush:

- Write to the endpoint's **EP_STAT** register *FIFO Flush* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[9])
- Endpoint is halted
- USB Host is reset
- IN endpoint PCI Express credit timeout
- Setup packet is ACKed (EP 0 only)
 - New OUT packet sent to PCIOUT, -or-
 - Malformed Completion TLP is received, -or-
 - Completion timeout for PCI Express read (PCIIN endpoint only)

8.5.5 PCI Express Credit Timeout

A deadlock can occur when a GPEP IN FIFO has filled up and no USB forward progress is being made. This can occur if there is a problem with the USB Host. In this situation, the USB 3380 is no longer able to update PCI Express credits, thus preventing the PCI Express Host from performing Write transactions to the device. To prevent such occurrences, there is a programmable Timer for each GPEP that runs when either of the following conditions are met:

- Corresponding IN FIFO is full
- · PCI Express Port is unable to update credits

When the timer times out, the corresponding GPEP IN FIFO is flushed, a *Status* bit is set, and an interrupt is generated. The **IN_TIMEOUT** register (USB Controller, offset CCh) supports this feature.

8.5.6 IN Endpoint Halt Conditions

IN endpoints can be halted as a result of the following conditions:

- Firmware writes to the endpoint's **EP_RSP** register *Endpoint Halt Set* bit(s) (USB Controller, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h[8]), to explicitly Set the bit
- SetFeature(ENDPOINT_HALT) Request that is handled by the Auto-Enumerate Controller
- ECC error is detected during an Endpoint FIFO Read
- PCI Express error incurred during a PCI Express write to the BAR2 and/or BAR3 IN FIFO
 - TLP has a malformed Header
 - TLP EP (Poison) bit is Set
 - TLP has an invalid Virtual Channel specified
 - Destination is an OUT GPEP (wrong direction)
 - Device is placed into the PCI Express PCI-PM D3hot state
 - USB Controller or in-line internal Port (PCI-to-PCI bridge) has the PCI Command register Memory Access Enable bit (USB Controller, offset 04h[1]) or PCI Command register Memory Access Enable bit (All Ports, offset 04h[1]) Cleared
 - Enhanced Adapter Mode Only
 - In-line internal Port (PCI-to-PCI bridge) **Bridge Control** register *Secondary Bus Reset* bit (All Ports, offset 3Ch[22]) is Set
 - Access Control Services (ACS) error
- DMA Controller Aborts during Read from the PCI Express interface
 - Completion has a malformed Header
 - Completion has the wrong payload length
 - Completion EP (Poison) bit is Set
 - Read Completion timeout

8.6 Dedicated Endpoints

The USB 3380 supports the six Dedicated endpoints listed in Table 8-8. Each is discussed in the sections that follow.

Note: The Cursor registers (refer to Section 15.7, "PCI Express/Configuration Cursor Registers") used by the Dedicated Endpoints are also used by the internal 8051. No hardware locking is provided between 8051 and USB accesses to these Cursor registers; therefore, firmware must provide this function if these two devices are attempting simultaneous accesses. The **SEMAPHORE** register Semaphore bit (USB Controller, offset 118h[0]) can be used for this resource locking. The Requester reads the Semaphore bit until it receives a value of 0. The Semaphore bit is automatically Set, and the Requester is granted permission to access the Cursor registers. When the Requester finishes accessing the Cursor registers, it writes a 0, to Clear the Semaphore bit.

Endpoint	Туре	Description
CSROUT		Initiates register Write and Read Requests
CSRIN	Bulk	Collects register Read Completions
PCIOUT	DUIK	Initiates PCI Express Write and Read Requests
PCIIN		Collects PCI Express Read Completions
STATIN (Root Complex mode only)	Bulk or Interrupt	Provides interrupt status to the USB Host
RCIN (Root Complex mode only)	Interrupt	Provides MSI and Power Management Messages to the USB Host

Table 8-8. Dedicated Endpoints

8.6.1 CSROUT Dedicated Endpoint

CSROUT is a Bulk endpoint that allows a USB Host to access the on-chip registers. The endpoint is used to initiate both Reads and Writes. Packets sent to this endpoint consist of the format listed in Table 8-9.

The 16-bit Register/Memory Address field selects one of the internal registers, or a location within the 8051 Program RAM. Because the registers are DWord-aligned, the two least significant bits of the address are not used for register accesses. The **CSRCTL** register *CSR Space Select* field (USB Controller, offset 110h[5:4]) determines whether the PCI Express Configuration registers (offsets 00h to FFh), Memory-Mapped Configuration registers (offsets 000h to 7FFh), or 8051/DMA Descriptor RAM are accessed, as listed in Table 8-10. The Byte Enables determine which of the four bytes within the selected register are accessed (Byte Enable 0 corresponds to bits [7:0], and so forth).

Dute Index	Destination Register Bytes		
Byte Index	Register	Bits	
0		[7:0]	
1	CSRCTL register	[15:8]	
2	(USB Controller, offset 110h)	[23:16]	
3		[31:24]	
4		[7:0]	
5	CSRDATA register	[15:8]	
6	(USB Controller, offset 114h)	[23:16]	
7		[31:24]	

Table 8-9. CSROUT Endpoint Packet Format

Table 8-10. CSROUT Address Space Selects

CSRCTL Register CSR Space Select Field Value	Resource		
	PCI Express Configuration registers (Enhanced Adapter mode only)		
	Address	Description	
00b	0XXXh	Port 0 Type 1 Configuration registers	
	2XXXh	Port 2 Type 1 Configuration registers	
	3XXXh	USB Controller Type 0 Configuration registers	
01b	USB Controller Configuration registers		
10b	8051/DMA Descriptor RAM		
11b	Reserved		

8.6.1.1 CSR Cursor Register Write

When the CSROUT Dedicated endpoint receives a valid OUT packet, the Payload data containing Control, Address, and optional Write data is written to the **CSRCTL** and **CSRDATA** Cursor registers (for Writes), as listed in Table 8-9. From the Cursor registers, the appropriate Write or Read operation to/from the designated register follows.

If the CSROUT packet is received without an error, the 2 DWords are directly written to the Configuration Cursor registers. Subsequent OUT packets to this endpoint are NAKed/NRDYed, until the Write or Read completes.

For a Configuration Register Read, CSROUT bytes past the fourth byte are ignored. For a Configuration Register Write, CSROUT bytes past the eighth byte are ignored.

8.6.1.2 CSROUT STALL Conditions

OUT packets to the CSROUT Dedicated endpoint result in a STALL and endpoint Halt, for the following conditions:

- USB packet size < 4 bytes
- USB packet size < 8 bytes for a Write
- USB packet size is not a multiple of 4 bytes

8.6.1.3 CSROUT Latency

In USB High-Speed mode, the delay from the beginning of the OUT token until the register Write transaction finishes and the OUT packet is ACKed is approximately 900 ns. In USB Full-Speed mode, the delay is approximately 14.5 μ s. Taking into account the Host latencies on a typical PC platform, the average time to perform a Write is approximately 250 μ s in High-Speed mode and 8.5 ms in Full-Speed mode.

8.6.1.4 CSROUT Flow Control

For USB r2.0, a NYET handshake is returned to the Host for each CSROUT packet, indicating that the packet was accepted, but to not send any more packets. The Host pings the CSROUT Dedicated endpoint. When the CSR transaction completes, an ACK is returned in response to a PING. The Host can then send a new packet to CSROUT.

For USB r3.0, an ACK with NumP=0 is returned to the Host for each CSROUT packet, indicating that the packet was accepted, but to not send any more packets. The CSROUT endpoint is now in the Flow Control state. When the CSR transaction completes, an ERDY packet is sent to the Host, taking the CSROUT Dedicated endpoint out of the Flow Control state. The Host can then send a new packet to CSROUT.

8.6.2 CSRIN Endpoint

CSRIN is a Bulk endpoint that provides CSR Read data to a USB Host. Packets read from this endpoint consist of four bytes, formatted as listed in Table 8-11.

This endpoint returns the current value of the **CSRDATA** Cursor register (USB Controller, offset 114h), in response to an IN token. The **CSRDATA** register is valid if a previous CSROUT packet initiated a CSR Read. When the IN packet is ACKed, the value in the **CSRDATA** register is invalidated. The CSRIN endpoint returns a NAK/NRDY handshake if there is no valid data in the **CSRDATA** register.

Table 8-11. CSRIN Endpoint Packet Format

Byte Index	Description	
0	Register Read Data 0 (LSB)	
1	Register Read Data 1	
2	Register Read Data 2	
3	Register Read Data 3 (MSB)	

8.6.2.1 CSRIN Latency

In USB High-Speed mode, the delay from the beginning of the OUT token (for the OUT packet that Sets the CSR Read address) until the Data IN packet (containing the CSR Read data) is ACKed is approximately $2.5 \ \mu$ s. In USB Full-Speed mode, the delay is approximately $28 \ \mu$ s.

Taking into account the Host latencies on a typical PC platform, the average time to perform a CSR Read in High-Speed mode is approximately 500 μ s (250 μ s to Set the address, and 250 μ s to read the data). In Full-Speed mode, the average time to perform a CSR Read is approximately 17 ms (8.5 ms to Set the address, and 8.5 ms to read the data).

8.6.3 PCIOUT Endpoint

PCIOUT is a Bulk endpoint that allows the USB Host to initiate Read and Write Requests to PCI Express Space, using the PCI Master Control Cursor registers. Packets sent to this endpoint consist of the format listed in Table 8-12.

There can be from 0 to 64 Payload DWords, requiring USB packet sizes from 8 to 264 bytes.

Puto Indov	Destination Register Bytes			
Byte Index	Register	Bits		
0		[7:0]		
1	PCIMSTCTL register	[15:8]		
2	(USB Controller, offset 100h)	[23:16]		
3		[31:24]		
4		[7:0]		
5	PCIMSTADDR register	[15:8]		
6	(USB Controller, offset 104h)	[23:16]		
7		[31:24]		
8 through 11	_	Payload DW0 (LSB first; to PCIOUT FIFO)		
12 through 15	_	Payload DW1 (LSB first; to PCIOUT FIFO)		
	_	And so forth		

 Table 8-12.
 PCIOUT Packet Format

8.6.3.1 PCIOUT USB Handshake Responses

 Table 8-13 lists the PCIOUT endpoint responses in Full-Speed, High-Speed, and SuperSpeed modes.

Table 8-13. PCIOUT USB Handshake Responses

PCI Express Request Type	Full-Speed Mode	High-Speed Mode	SuperSpeed Mode	
Memory Write	ACK packets until request length is fulfilled, then NAK subsequent packets until a PCI Express ACK is received and the OUT FIFO is empty	NYET packet, NAK PINGs until a PCI Express ACK is received and the OUT FIFO is empty, then ACK the PING	ACK with <i>NumP</i> =0, send ERDY when a PCI Express ACK is received and the OUT FIFO is empty	
Memory Read				
I/O Read	ACK packet, then NAK subsequent packets until a PCI Express	NYET packet, NAK PINGs until a PCI Express Completion is	ACK with <i>NumP</i> =0, send ERDY when a PCI Express Completion	
Configuration Read	Completion is received	received, then ACK the PING	is received	
I/O Write	NAK packet, but capture payload;	NAK packet, but capture payload;	ACK with <i>NumP</i> =0, send ERDY	
Configuration Write	continue to NAK until a PCI Express Completion is received, then ACK and discard the packet	continue to NAK until a PCI Express Completion is received, then ACK and discard the packet	when a PCI Express Completion is received and the Reader has de-allocated the PCI Express Write	

8.6.3.2 Non-Contiguous Byte Enables

Non-contiguous first Byte Enables are allowed only for 1-DWord Payloads. Multiple DWord Payloads must have contiguous first Byte Enables. Contiguous Byte Enables do not have any Cleared Byte Enables after the first active Byte Enable. *For example*, 1101b is non-contiguous, but 1110b is contiguous.

For a 1-DWord Read with non-contiguous Byte Enables, the first valid byte and all other most significant bytes are returned to the Host. *For example*, if the Byte Enables are 1010b, Bytes 1, 2, and 3 are returned. For a multiple-DWord Read, the Byte Enables must be contiguous.

For the first DWord, the first valid byte and all other most significant bytes are returned to the Host. *For example*, if the Byte Enables are 1100b, Bytes 2 and 3 are returned to the Host, followed by data from subsequent DWords.

8.6.3.3 Configuration Address Format

Table 8-14 lists the **PCIMSTADDR** register (USB Controller, offset 104h) format for PCI Express Configuration transactions.

Bit(s)	Description	
7:0	Bus Number	
10:8	Function Number	
15:11	Device Number	
19:16	Extended Register Number	
23:20	Reserved	
	Configuration Transaction Type	
24	0 = Type 0	
	1 = Type 1	
25	Reserved	
31:26	Register Number	

Table 8-14. PCIMSTADDR Register Format for PCI Express Configuration Transactions

8.6.3.4 Message Format

Table 8-15 lists the **PCIMSTADDR** register (USB Controller, offset 104h) format for PCI Express Messages.

The Bus Number, Function Number, and Device Number are used only for Messages that are routed by ID. The Vendor ID is used for all types of Vendor-Defined Messages.

Table 8-15. PCIMSTADDR Register Format for PCI Express Messages

Bit(s)	Description
7:0	Bus Number
10:8	Function Number
15:11	Device Number
23:16	Vendor ID[15:8]
31:24	Vendor ID[7:0]

8.6.3.5 Non-Posted Writes

For I/O and Configuration Writes, the PCIOUT Dedicated endpoint NAKs subsequent Requests until a Completion is received on the PCI Express interface. The Completion does not cause any data to be stored in the PCIIN endpoint FIFO.

8.6.3.6 PCI Master Control Cursor Register Write

When the PCI Master Control Cursor registers are written and the **PCIMSTCTL** register *PCI Express Master Start* bit (USB Controller, offset 100h[6]) is Set, a PCI Express Request TLP is generated to PCI Express Space. For PCI Express Reads initiated from USB by way of the PCIOUT Dedicated endpoint, the Completions are returned to the PCIIN Dedicated endpoint. For PCI Express Reads initiated by the on-chip 8051 MCU (using the **PCIMSTCTL** register), the 1-DWord Completions are always returned to the **PCIMSTDATA** register (USB Controller, offset 108h).

8.6.3.7 PCI Express Message Generation

All PCI Express Messages, except Vendor-Defined or Set_Slot_Power_Limit Messages, use the Msg Header type, which is always 4 DWords. For this type, 1 DWord of value 0000_0000h is included in the PCIOUT USB packet as Payload, and the **PCIMSTCTL** register (USB Controller, offset 100h) length is equal to 0 DWords. (Refer to Table 8-16.)

The Set_Slot_Power_Limit Message uses the MsgD Header type. A 5-DWord TLP is sent on the PCI Express Port (4-DWord Header and 1-DWord Payload). For this type, there is a 2-DWord Payload in the PCIOUT endpoint FIFO, and the **PCIMSTCTL** register length is 1 DWord. The first DWord of the USB Payload is the fourth DWord of the Message Header. The second DWord of the USB Payload is the Payload DWord of the Set_Slot_Power_Limit Message. (Refer to Table 8-17.)

Vendor-Defined Messages can be either Msg or MsgD. For Msg, there is no Payload, so this is treated the same as a standard Message with a 4-DWord PCI Express TLP. The Vendor-Defined MsgD is treated the same as the Set_Slot_Power_Limit Message, except that the Message Payload can vary from 1 to 63 DWords. The maximum Message Payload is 63 DWords, because the EP 0 OUT FIFO has space for 64 DWords, and 1 DWord is needed for the fourth DWord of the PCI Express Message Header DWord. (Refer to Table 8-18.)

Table 8-16. PCIOUT Packet Format for PCI Express Message Generation – All PCI Express Messages Except Set_Slot_Power_Limit and Vendor-Defined Messages

PCIOUT USB Packet DWord	Description
0	PCIMSTCTL register (USB Controller, offset 100h) contents
1	PCIMSTADDR register (USB Controller, offset 104h) contents
2	PCIMSTMSG register (USB Controller, offset 11Ch) contents

Table 8-17. PCIOUT Packet Format for PCI Express Message Generation – Set_Slot_Power_Limit Messages

PCIOUT USB Packet DWord	Description
0	PCIMSTCTL register (USB Controller, offset 100h) contents
1	PCIMSTADDR register (USB Controller, offset 104h) contents
2	PCIMSTMSG register (USB Controller, offset 11Ch) contents
3	Message Payload

Table 8-18. PCIOUT Packet Format for PCI Express Message Generation – Vendor-Defined Messages

PCIOUT USB Packet DWord	Description
0	PCIMSTCTL register (USB Controller, offset 100h) contents
1	PCIMSTADDR register (USB Controller, offset 104h) contents
2	PCIMSTMSG register (USB Controller, offset 11Ch) contents
3	Message Payload DWord 0
4	Message Payload DWord 1
65	Message Payload DWord 62

8.6.3.8 PCIOUT Flow Control

For *USB r2.0*, a NYET handshake is returned to the Host for each PCIOUT packet, indicating that the packet was accepted, but to not send any more packets. The Host pings PCIOUT. When the PCI Express transaction completes, an ACK is returned in response to a PING. The Host can then send a new packet to PCIOUT.

For *USB r3.0*, an ACK with *NumP*=0 is returned to the Host for each PCIOUT packet, indicating that the packet was accepted, but to not send any more packets. The PCIOUT endpoint is now in the Flow Control state. When the PCI Express transaction completes, an ERDY packet is sent to the Host, taking the PCIOUT endpoint out of the Flow Control state. The Host can then send a new packet to PCIOUT.

8.6.3.9 Message Broadcast

Broadcast routing for Messages is not supported.

8.6.3.10 PCIOUT/PCIIN Timeout

When PCI Express Non-Posted Requests are sent to the PCI Express egress Port, a Completion Timeout timer is started. The length of time allocated to the Timer is derived from the **Device Control 2** register *Completion Timeout Value* bit (All Ports and USB Controller, offset 90h[3:0]). Programmable timeout values include:

- 00h = 20 ms
- $01h = 128 \ \mu s$
- 02h = 2 ms
- 05h = 30 ms
- 06h = 200 ms
- 09h = 400 ms
- 10h = 2s
- 13h = 8s (default)
- 14h = 20s

If a Completion Timeout occurs on the PCI Express egress Port, the corresponding Port's **PCIMSTCTL** register *PCI Express Master Start* bit (USB Controller, offset 100h[6]) is Cleared. Additionally, the Port's **Uncorrectable Error Status** register *Completion Timeout Status* bit (Port 0, offset FB8h[14]) is Set. When the timeout occurs, the PCIOUT endpoint returns an ERDY to the Host, then waits for the next packet before starting another transfer. A typical Completion timeout and Recovery sequence is as follows:

- **1.** The USB Host sends a packet to the PCIOUT endpoint, requesting a Non-Posted transaction on the PCI Express interface (*such as* a MemRd or Configuration access).
- **2.** The USB 3380 generates the PCI Express Non-Posted Request on the PCI Express interface, then starts the Timeout Timer.
- 3. The PCI Express target does not respond with a Completion TLP before the Timer times out.
- **4.** Upon timeout, the PCIOUT endpoint returns an ERDY to the USB Host. For PCI Express Read transactions, PCIIN responds to ACKs with an NRDY.
- **5.** The Port's **Uncorrectable Error Status** register *Completion Timeout Status* bit (Port 0, offset FB8h[14]) is Set.

- 6. The Port's PCIMSTCTL register PCI Express Master Start bit (USB Controller, offset 100h[6]) is Cleared.
- 7. The USB Host detects the timeout, by polling the Port's *Completion Timeout Status* bit, by way of the CSROUT/IN endpoints.
- 8. The USB Host issues a new Request to PCIOUT endpoint.

8.6.3.11 PCIOUT Latency

In USB High-Speed mode, the delay from the beginning of the OUT token until the PCI Express Write transaction is complete (assuming that there are no PCI Express Target wait states) is approximately 1.5 μ s. In USB Full-Speed mode, the delay is approximately 16.5 μ s. Taking into account the Host latencies on a typical PC platform, the average time to perform a PCI Express Memory Write is approximately 250 μ s in High-Speed mode, and 8.5 ms in Full-Speed mode.

8.6.3.12 PCIOUT STALL Conditions

OUT packets sent to the PCIOUT endpoint result in a STALL response and endpoint Halt, for the following conditions:

- USB packet size < 8 bytes
- USB packet size is not a multiple of 4 bytes
- PCI Express DWord Length (PCIMSTCTL[30:24] > 40h (3Fh for Messages)
- PCI Express DWord Length (**PCIMSTCTL**[30:24] > 1h and first Byte Enables are non-contiguous
- PCI Express DWord Length (PCIMSTCTL[30:24] > 1h and Command type is I/O or Configuration
- PCI Express DWord Length (PCIMSTCTL[30:24] > PCIIN FIFO size for Reads
- PCI Express DWord Length (**PCIMSTCTL**[30:24] > PCIOUT USB Maximum Packet Size 8 (- 12 for Messages), for Writes
- USB packet size > PCI Express MPS + 8 (+ 12 for Messages)
- USB packet size > 264 (268 for Messages)
- USB packet size is not equal to (4 x PCI Express DWord Length + 8 (+ 12 for Messages)), for Writes
- PCI Express Port is disabled

Subsequent OUT packets to this endpoint are NAKed/NRDYed, until the PCI Express Read or Write transaction completes. Write Data Payloads are stored in the PCIOUT FIFO. For a PCI Express Write, the Reader sends an ACK signal when the transaction completes. If the selected PCI Express Link goes down, the endpoint is halted. If a malformed Completion, poisoned Completion, or Completion timeout occurs during a Non-Posted Write, a Stall handshake is returned and the endpoint is halted. The USB Controller Sets the **PCIOUT** register *Halt* bit in the *USB r2.0* or *USB r3.0* core.

8.6.4 PCIIN Endpoint

PCIIN is a Bulk endpoint that provides the PCI Express Read Completion resulting from the PCIOUT Read Request to the USB Host. Packets read from this endpoint consist of several DWords, formatted as listed in Table 8-19.

An IN token to this endpoint causes PCI Express Read data to be returned. The PCI Express Read transaction was previously initiated by a Write to the PCIOUT Dedicated endpoint. The first byte stored into the PCIIN endpoint FIFO is determined by the First Byte Enables that were written to the PCIOUT endpoint when the Read was initiated. *For example*, if the First Byte Enables value is 1100b, then Byte 2 from the PCI Express Completion is written into the PCIIN FIFO first, followed by Byte 3, and the remainder of the DWords.

If the PCI Express Read completes before the USB Data packet is provided, the endpoint ACKs. Otherwise, the endpoint NAKs/NRDYs until the Read data becomes valid. If a new OUT packet to the PCIOUT endpoint occurs after the Read data becomes valid, but before the USB Host sends the IN token to collect the data, the Read data is invalidated. An IN token that returns valid data invalidates the current Read data so that the next IN token received causes a new PCI Express Read. If the PCI Express Read transaction terminates with a Completer Abort or Unsupported Request (CA or UR, respectively), a value of FFFF_FFF is returned, and an optional interrupt can be generated to the CPU (8051 or PCI Express Host).

For PCIOUT-initiated Reads, FFFF_FFFF is written to the PCIIN FIFO by the USB Controller. For 8051-initiated Reads, FFFF_FFFF is written to the **PCIMSTDATA** register (USB Controller, offset 108h). In both cases, the **PCIIN** register *Valid* bit is Set.

For malformed Completions, bad Byte Counts, or Completion timeouts, a STALL handshake is returned and the endpoint is halted, and the USB Controller Sets the PCIIN endpoint's **DEP_RSP** register *Endpoint Halt Set* bit (USB Controller, offset 224h[8]) in the USB r2.0 or USB r3.0 core.

For PCI Express Configuration transactions that terminate with a Configuration Retry Status, a value of FFFF_0001h is returned to the USB Host.

For PCI Express Reads with zero length, the PCI Express Adapter (endpoint) returns a 1-DWord Payload that is placed into the PCIIN FIFO. The USB Host must either send an IN token to retrieve this DWord, or flush the PCIIN FIFO.

Byte Index	Function
0 through 3	First DWord Payload (LSB first)
4 through 7	Second DWord Payload (LSB first)
	And so forth

Table 8-19. PCIIN Endpoint Packet Format

8.6.5 STATIN Endpoint – Root Complex Mode

The STATIN endpoint is configured as a Bulk or Interrupt endpoint that reports a change in the **IRQSTAT1** or **IRQSTAT0** status registers (USB Controller, offsets 2Ch or 28h, respectively), if the corresponding *Interrupt Enable* bit(s) are Set. When configured as an Interrupt endpoint, the maximum packet size is 8. The interrupt polling rate of this endpoint is determined by the **DEP_CFG**, **STATIN_HS_INTPOLL_RATE**, or **STATIN_FS_INTPOLL_RATE** registers (USB Controller, offset 240h, Index 84h, or Index 85h, respectively). Packets read from this endpoint are formatted as listed in Table 8-20.

For testing purposes, firmware can Set the **DIAG** register *Force USB Interrupt* bit (Index 06h[9]), which causes the STAT_IN endpoint to be validated. The *Force USB Interrupt* bit state is then reflected in the packet returned to the USB Host.

For INTERRUPT mode, if an IN token is received, and the interrupt status has not changed since the last IN token was received, then a NAK/NRDY handshake is returned to the Host. For BULK mode, the status is always returned, regardless of whether the interrupt status has changed. All interrupt sources are monitored, and if a change is detected, a *Response Enable* bit is Set. This bit enables a packet to be returned when an IN token arrives, after which, the bit is Cleared.

Byte Index	Descri	ption
Byte index	Register	Bit(s)
0		7:0
1		15:8
2	IKQSIAIT	23:16
3		31:24
4	IDOSTATO	7:0
	Register IRQSTAT1 IRQSTAT0 DIAG Reserved (0)	13:8
5	Register IRQSTAT1 IRQSTAT0 DIAG Reserved (0)	9 ^a
	Reserved (0)	15
6	B acamod (0000h)	7:0
7	Keserved (0000n)	15:8

Table 8-20. STATIN Endpoint Packet Format

a. Reflects the **DIAG** register Force USB Interrupt bit (Index 06h[9]) state.

8.6.6 RCIN Endpoint – Root Complex Mode

RCIN is an Interrupt endpoint that enables an external PCI Express Adapter (endpoint) device to send Messages upstream, to the USB Host. The external device writes the Message to **BAR5**, which points to the RCIN endpoint FIFO. When an IN token arrives, one Message is sent to the USB Host. This endpoint defaults to a 512-byte FIFO, which can hold up to 32 Messages.

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 9 USB r2.0 and USB r3.0

Functional Description

9.1 Introduction

This chapter describes the following USB implementations for USB 3380:

- USB r2.0 Functional Description
- USB r3.0 Functional Description
- *Note:* The registers that support the USB interface are detailed in Chapter 15, "USB Configuration Registers."

9.2 USB r2.0 Functional Description

The USB 3380 is a USB-function device, and is therefore a Slave to the USB Host. The bit- and packet-level protocols, as well as the USB 3380 electrical interface, conform to the *USB r2.0*. The USB Host initiates all USB Data transfers to and from the USB 3380 USB Port. The USB 3380 is configured for up to 14 endpoints, in addition to EP 0. Six of the endpoints are dedicated, and the other eight endpoints can be of type *Isochronous*, *Bulk*, or *Interrupt*. The Configuration registers are used to program endpoint characteristics. The USB 3380 operates in Full- (12 Mbps) or High-speed (480 Mbps) mode.

Note: The USB 3380 does not support Low-Speed mode.

9.2.1 USB Protocol

The USB packet protocol consists of Tokens, Packets, Transactions, and Transfers. Each is described in the sections that follow.

9.2.1.1 Tokens

Tokens are a type of Packet Identifier (PID), and follow the *Sync* field at the beginning of a packet. The four classic token types are OUT, IN, SOF, and SETUP. In High-Speed mode, the USB 3380 also recognizes the PING token.

9.2.1.2 Packets

There are four types of packets – Start-of-Frame (SOF), Token, Data, and Handshake – that are transmitted and received in the order listed in Table 9-1. Each packet begins with a *Sync* field and a Packet Identifier (PID). The other fields vary, depending upon the packet type.

 Table 9-1.
 USB Protocol Packets

				Quantity of Bits					
	Packet Type	Sync Field	Packet Identifier (PID)	Frame Number	Address	Endpoint	Data	Cyclic Redundancy Checks (CRC)	Total
1.	Start-of-Frame (SOF)	8	8	11	-	-	_	5	32
2.	Token	8	8	_	7	4	-	5	32
3.	Data	8	8	_	_	_	Ν	16	32 + <i>N</i>
4.	Handshake	8	8	_	-	-	_	-	16

9.2.1.3 Transactions

A single transaction consists of a Token packet, optional Data packet(s), and a Handshake packet.

9.2.1.4 Transfers

A single transfer consists of one or more transactions. Control transfers consist of a Setup transaction, optional Data transactions, and a Status transaction.

9.2.2 Automatic Retries

9.2.2.1 OUT Transactions

If an error occurs during an OUT transaction, the USB 3380 re-loads its USB FIFO Write pointer to the beginning of the failed packet. The Host then transmits another OUT token and re-transmits the packet. After the USB 3380 successfully receives the packet, the endpoint's **EP_STAT** register *Data Packet Received Interrupt* bit (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[3]) is Set. The USB 3380 can handle an unlimited quantity of back-to-back Retries; however, the Host determines the quantity of packet Retries.

9.2.2.2 IN Transactions

If an error occurs during an IN transaction, the USB 3380 re-loads its USB FIFO Read pointer to the beginning of the failed packet. The Host then transmits another IN token, and the USB 3380 re-transmits the packet. After the Host successfully receives the packet, the endpoint's **EP_STAT** register *Data Packet Transmitted Interrupt* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/ 40Ch, 36Ch/42Ch, 38Ch/44Ch[2]) is Set.

9.2.3 PING Flow Control

When operating in High-Speed mode, the USB 3380 supports the PING protocol for Bulk OUT and Control endpoints. This protocol allows the USB 3380 to indicate to the Host that it cannot accept an OUT packet. The Host then transmits PING tokens, to query the USB 3380. The USB 3380 returns an ACK in response to the PING when it is able to accept a maximum-size packet. At this time, the Host transmits an OUT token and Data packet. The USB 3380 returns an ACK handshake if the packet is accepted, and there is sufficient space to receive an additional packet. The USB 3380 returns a NYET handshake to the Host if it can accept only the current packet. The Host then starts transmitting PING tokens.

9.2.4 Packet Sizes

An endpoint Maximum Packet Size is determined by the corresponding EP_n _MAXPKT register. For IN transactions, the USB 3380 returns a maximum-size packet to the Host if the quantity of "Maximum Packet" bytes exist in the FIFO. If the FIFO data is validated, a packet size less than the maximum is returned to the Host in response to an IN token. For Interrupt and Isochronous endpoints, the Maximum Packet Size must be an even multiple of 8. Table 9-2 lists the allowable Maximum Packet Sizes, by endpoint type.

Endpoint Type	Allowable Maximum Packet Size (Bytes)		
Епаропіт туре	Full-Speed Mode	High-Speed Mode	
Bulk	8, 16, 32, 64	512	
Control	8, 16, 32, 64	64	
Interrupt	64 maximum	1,024 maximum	
Isochronous	1,023 maximum	1,024 maximum	

Table 9-2. Allowable Maximum Packet Size	s, By Endpoint Type
--	---------------------

9.2.5 USB Endpoints

The USB 3380 supports Bulk, Control, Interrupt, and Isochronous endpoints. All endpoints, except for Control endpoints, are unidirectional. Bidirectional Bulk, Interrupt, and Isochronous traffic requires two endpoints.

9.2.5.1 Control Endpoint (EP 0)

The Control endpoint, EP 0 (EP 0), is a *reserved* endpoint. The USB Host uses this endpoint to configure and acquire information about the USB 3380, its configurations, interfaces, and other endpoints. Control endpoints are bidirectional, and data delivery is guaranteed.

The Host transmits 8-byte Setup packets to EP 0, to which the USB 3380 interprets and responds. The USB 3380 consists of a set of registers dedicated to storing the Setup packet, and uses the EP 0 FIFO for Control data. For Control Writes, data flows through the FIFO from the USB interface to the PCI Express interface. For Control Reads, data flows through the FIFO from the PCI Express interface to the USB interface.

When EP 0 detects a Setup packet, the USB 3380 Sets *Status* bits in the endpoint's **EP_STAT** register (USB Controller, offset 30Ch) and interrupts the CPU (8051 or PCI Express Host). The CPU reads the Setup packet from the **EP_STAT** register, and responds based upon the packet contents. The CPU provides data to return to the Host, including status and Descriptors, unless the corresponding **STDRSP** register (USB Controller, offset 80h) auto-enumerate bit is Set. Refer to the *USB r2.0*, Chapter 9, "USB Standard Device Requests," for a description of the data that must be returned for each USB Request. The Host rejects Descriptors that contain unexpected field values.

Control Write Transfer

A successful Control Write transfer to Control EP 0 consists of the data listed in Table 9-3.

During the Setup transaction, the USB 3380 stores the Data Stage packet in its Setup registers. The USB 3380 returns an ACK handshake to the Host after all eight bytes are received. A *Setup Packet Interrupt* bit is Set to notify the CPU (8051 or PCI Express Host) that a Setup packet was received. The CPU reads and interprets the 8-byte Data packet. A Setup transaction cannot be stalled or NAKed; however, if the data is corrupt, the USB 3380 does not return an ACK to the Host.

During the optional Data transaction, zero, one, or more Data packets are written into the EP 0 FIFO. For each packet:

- 1. Interrupt bits are Set and can interrupt the CPU.
- **2.** CPU reads the FIFO.
- 3. USB 3380 returns an ACK if no error occurred.

For a successful Status transaction, the USB 3380 returns a zero-length Data packet. A NAK or STALL handshake is returned if an error occurs.

Stage	Packet	Packet Contents	Quantity of Bytes	Source
	Setup Token	SETUP PID, address, endpoint, and CRC5	3	Host
Setup	Data	DATA0 PID, 8 data bytes, and CRC16	11	Host
	Status	ACK	1	USB 3380
Data	OUT Token	OUT PID, address, endpoint, and CRC5	3	Host
(zero, one, or	Data (1/0)	DATA PID, N data bytes, and CRC16	N+3	Host
more packets)	Status	ACK	1	USB 3380
	IN Token	IN PID, address, endpoint, and CRC5	3	Host
Status	Data	DATA1 PID, zero-length packet (ZLP), and CRC16	3	USB 3380
	Status	ACK	1	Host

Table 9-3. Control Write Transfer

Control Write Transfer Details

For Control Write transfers, the Host first transmits 8 bytes of Setup information. The Setup bytes are stored into an 8-byte register bank, accessed by the CPU (8051 or PCI Express Host). After the 8 bytes are stored into the Setup registers, the *Setup Packet Interrupt* bit is Set. The CPU then reads the 8-byte Setup packet and prepares to respond to the optional Data stage. The quantity of bytes to be transferred in the Data stage is specified in the Setup packet. When the Setup packet is received, the *Control Status Stage Handshake* bit is automatically Set, in anticipation of the CPU to prepare its handshake response (ACK or STALL). After the *Control Status Stage Handshake* bit is Cleared and the OUT FIFO is empty, an ACK or STALL handshake is returned to the Host. Waiting for the OUT FIFO to become empty prevents another Control Write from corrupting the current packet data in the FIFO.

During a Control Write operation, an optional Data stage can follow the Setup stage. The *Data OUT Token Interrupt* bit is Set at the beginning of each Data packet. The bytes corresponding to the Data packet are stored into the EP 0 FIFO. If the FIFO fills and the Host transfers another byte, the USB 3380 returns a NAK handshake to the Host, signaling that the data cannot be accepted.

If a packet is not successfully received (NAK or Timeout status), the endpoint's **EP_STAT** register *Data Packet Received Interrupt* bit (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[3]) is not Set, and the data is automatically flushed from the FIFO. The Host later re-transmits the same packet. This process is transparent to the CPU.

If the CPU halted this endpoint by Setting the *Endpoint Halt* bit, the USB 3380 does not store data into the FIFO, and responds with a STALL acknowledge to the Host. There is no Status stage in this case.

The CPU can poll the *Data Packet Received Interrupt* bit or enable the bit as an interrupt, then read the packet from the FIFO. If the Host tries to write more data than indicated in the Setup packet, the CPU Sets EP 0's *Endpoint Halt* bit. In this case, there is no Status stage from the Host.

After all optional Data Stage packets are received, the Host transmits an IN token, signifying the Status stage. The *Control Status Interrupt* bit is Set after the Status stage IN token is received. Until the CPU Clears the *Control Status Stage Handshake* bit and the OUT FIFO is empty, the USB 3380 responds with NAKs, indicating that the USB 3380 is processing the Setup command. When the CPU Clears the *Control Status Stage Handshake* bit and firmware has emptied the OUT FIFO data, the USB 3380 responds with a Zero-Length Data packet (transfer OK) or STALL (error encountered).

Control Read Transfer

A successful Control Read transfer from Control EP 0 consists of the data listed in Table 9-4.

The Setup transaction is processed with the same method as Control Write transfers. (Refer to "Control Write Transfer Details.") During the optional Data transaction, zero, one, or more Data packets are read from the EP 0 FIFO. For each packet:

- 1. Interrupt bits are Set and can interrupt the CPU (8051 or PCI Express Host).
- 2. CPU writes data to the FIFO.
- 3. If there is no data in the FIFO, a NAK or ZLP is returned to the Host.
- 4. Host returns an ACK to the USB 3380 if no error occurred.

For a successful Status stage, the Host transmits a Zero-Length Data packet, and the USB 3380 responds with an ACK. A NAK or STALL is returned if an error occurred.

Table 9-4. Control Read Transfer

Stage	Packet	Packet Contents	Quantity of Bytes	Source
	Setup Token	SETUP PID, address, endpoint, and CRC5	3	Host
Setup	Data	DATA0 PID, 8 data bytes, and CRC16	11	Host
	Status	ACK	1	USB 3380
Data	IN Token	IN PID, address, endpoint, and CRC5	3	Host
(zero, one, or	Data (1/0)	DATA PID, N data bytes, and CRC16	N+3	USB 3380
more packets)	Status	ACK	1	Host
	OUT Token	OUT PID, address, endpoint, and CRC5	3	Host
Status	Data	DATA1 PID, ZLP, and CRC5	3	Host
	Status	ACK	1	USB 3380

Control Read Transfer Details

For Control Read transfers, the Host first transmits eight bytes of Setup information. The Setup bytes are stored into an 8-Byte Register bank that is accessed from the CPU (8051 or PCI Express Host). After the 8 bytes are stored in the Setup registers, the *Setup Packet Interrupt* bit is Set. The CPU then reads the 8-Byte Setup packet and prepares to respond to the optional Data stage. The quantity of bytes to be transferred in the Data stage is specified in the Setup packet. When the Setup packet is received, the *Control Status Stage Handshake* bit is automatically Set. While this bit is Set, the Control Status stage is acknowledged with a NAK, allowing the CPU to prepare its handshake response (ACK or STALL). After the *Control Status Stage Handshake* bit is Cleared, an ACK or STALL handshake is returned to the Host.

During a Control Read operation, an optional Data stage can follow the Setup stage. After the Setup stage, the CPU can start writing the first byte of packet data into the EP 0 FIFO, in anticipation of the Data stage. The *Data In Token Interrupt* bit is Set at the beginning of each Data packet. If there is data in the EP 0 FIFO, the data is returned to the Host. If EP 0 has no data to return, the endpoint returns a ZLP (signaling that no further data is available) or NAK handshake (the data is not available yet, but will be soon). The USB 3380 responds to the Data stage IN tokens, according to the data listed in Table 9-5.

After each packet is transmitted to the Host, the EP 0 **EP_STAT** register *Data Packet Transmitted Interrupt* bit (USB Controller, offset 30Ch[2]) is Set.

If a packet is not successfully transmitted (*Timeout* status bit Set), the *Data Packet Transmitted Interrupt* bit is not Set, and this packet is transmitted to the Host when another IN token is received. The Retry operation is transparent to the CPU.

If the Host tries to read more data than requested in the Setup packet, the CPU Sets the *Endpoint Halt* bit for the endpoint.

After all optional Data Stage packets are transmitted, the Host transmits an OUT token, followed by a Zero-Length Data packet, signifying the Status stage. The *Control Status Interrupt* bit is Set after the Status stage OUT token is received. Until the CPU Clears the *Control Status Stage Handshake* bit, the USB 3380 responds with NAKs, indicating that the USB 3380 is processing the command specified by the Setup stage. When the CPU Clears the *Control Status Stage Handshake* bit, the USB 3380 responds with an ACK (transfer OK) or STALL (EP 0 is stalled).

Packet Validated	Amount of Data in FIFO	Action
0	< Maximum Packet Size	NAK to the Host
X	\geq Maximum Packet Size	Return data to the Host
1	Empty	Zero-Length packet to the Host
1	> 0	Return data to the Host

Table 9-5. Control Read Transfer Details

Notes: "X" is "Don't Care."

9.2.5.2 Isochronous Endpoints

Isochronous endpoints are used for time-critical Data transfers. Isochronous transfers do not support handshaking nor error-checking protocol, and are guaranteed a certain amount of bandwidth during each frame. The USB 3380 ignores Cyclic Redundancy Checks (CRC) and Bit-Stuffing errors during Isochronous transfers; however, the USB 3380 Sets the endpoint's **EP_STAT** register (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch) handshaking status bits the same as it Sets for Non-Isochronous packets, enabling the CPU (8051 or PCI Express Host) to detect the errors. Isochronous endpoints are unidirectional, with the direction defined by the **EP_CFG** register(s) (USB Controller, offset(s) 300h, 320h, 340h, 360h, 380h).

For Isochronous endpoints, the Packet FIFO Size must be equal to or greater than the Maximum Packet Size. The Maximum Packet Size for an Isochronous endpoint ranges from 1 to 1,024 bytes, and must be an even multiple of 8 bytes.

For an Isochronous OUT endpoint, the CPU or DMA Controller can read data from the FIFO after an entire packet is received. If the FIFO is the same size as the Maximum Packet Size, then the ISO bandwidth must be Set so that the FIFO is emptied before the next ISO packet arrives.

For an Isochronous IN endpoint, the CPU or DMA Controller can write data to the FIFO at the same time that data is being transmitted to the USB.

Isochronous OUT Transactions

Isochronous OUT endpoints transfer data from a USB Host to the PCI Express interface. An Isochronous OUT transaction consists of the data listed in Table 9-6.

The USB Host initiates an Isochronous OUT transaction by transmitting an OUT token to an Isochronous OUT endpoint. The *Data OUT Token Interrupt* bit is Set when the OUT token is recognized. The bytes corresponding to the Data packet are stored into the endpoint's FIFO. Isochronous transactions are not Retried; therefore, if the FIFO is full when the Host transfers a packet (or the *NAK Packets* bit is Set), the packet is discarded. No Handshake packets are returned to the Host; however, the *USB OUT ACK Transmitted* and *Timeout* status bits are Set to indicate transaction status. If a CRC error is detected, the packet is accepted, and the *Timeout* status bit is Set. After all Data packets are received, the CPU (8051 or PCI Express Host) samples these status bits to determine whether the USB 3380 successfully received the packet.

By definition, Isochronous endpoints do not use handshaking with the Host. Because there is no method to return a stalled handshake from an Isochronous endpoint to the Host, data that is transmitted to a stalled Isochronous endpoint is received normally. The Maximum Packet Size must be less than or equal to the FIFO size.

If small packets are transmitted to this endpoint, the PCI Express interface must read a packet from the FIFO before the Host transmits the next packet. *For example*, if the Host transmits two 1-byte packets, each byte occupies one line in the FIFO. The endpoint's **EP_AVAIL** register(s) (USB Controller, offset(s) 310h, 330h/3F0h, 350h/410h, 370h/430h, 390h/450h[13:0]) reports that two bytes are available; however, there is no indication that two 32-bit Reads are required to access the bytes. Only one byte is valid for each 32-bit Read; the other bytes are ignored.

The CPU or DMA Controller wait for the endpoint's **EP_STAT** register *Data Packet Received Interrupt* bit (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[3]) to be Set. After the interrupt is Set, the data is read from the FIFO.

Packet	Packet Contents	Quantity of Bytes	Source
OUT Token	OUT PID, address, endpoint, and CRC5	3	Host
Data	DATA0 PID, N data bytes, and CRC16	<i>N</i> +3	Host

Table 9-6. Isochronous OUT Transactions

High-Bandwidth Isochronous OUT Transactions

The Host transmits high-bandwidth OUT PID sequences for each microframe, depending upon the Endpoint Descriptor **GPEP[3:0/Out/In]_HS_MAXPKT** register *Additional Transaction Opportunities* field(s) (USB Controller, Index 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h[12:11]), as listed in Table 9-7.

The USB 3380 accepts data (unless the FIFO is full), and records the PID in the endpoint's **EP_STAT** register *High-Bandwidth OUT Transaction PID* field(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[23:22]). This allows firmware to track PIDs as they arrive and determine whether the data sequence is complete. (Refer to Table 9-8.)

Table 9-7. High-Bandwidth Isochronous OUT Transactions

Additional Transaction Opportunities Field	PID Sequence	
00b	DATA0 (standard ISO)	
01b	MDATA, DATA1 (one additional transaction)	
10b	MDATA, MDATA, DATA2 (two additional transactions)	

Table 9-8. High-Bandwidth Isochronous OUT Transactions Data Sequence

High-Bandwidth OUT Transaction PID Field	PID Received
00b	DATA0
01b	DATA1
10b	DATA2
11b	MDATA

Isochronous IN Transactions

Isochronous IN endpoints transfer data from the PCI Express interface to a USB Host. An Isochronous IN transaction consists of the data listed in Table 9-9.

The USB Host initiates an Isochronous IN transaction by transmitting an IN token to an Isochronous IN endpoint. The *Data IN Token Interrupt* bit is Set when the IN token is recognized. If there is data in the endpoint's FIFO, the data is returned to the Host. If the endpoint has no data to return, a Zero-Length packet is returned to the Host. The USB 3380 responds to the IN token, according to the data listed in Table 9-10.

After the packet is transmitted to the Host, the endpoint's **EP_STAT** register *Data Packet Transmitted Interrupt* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[2]) is Set. If an IN token arrives and there is no valid packet in the FIFO, the USB 3380 returns a Zero-Length packet. No Handshake packets are returned to the Host; however, the *USB IN ACK Transmitted* and *Timeout* status bits are Set, to indicate transaction status. After all Data packets are transmitted, the CPU (8051 or PCI Express Host) samples these status bits, to determine whether the packets were successfully transmitted to the Host.

By definition, Isochronous endpoints do not handshake with the Host. Because there is no method to return a stalled handshake from an Isochronous endpoint to the Host, data that is requested from a stalled Isochronous endpoint is transmitted normally.

Table 9-9. Isochronous IN Transactions

Packet	Packet Contents	Quantity of Bytes	Source
IN Token	IN PID, address, endpoint, and CRC5	3	Host
Data	DATA0 PID, N data bytes, and CRC16	<i>N</i> +3	USB 3380

Table 9-10. IN Token Response

Packet Validated	Amount of Data in FIFO	Action
0	< Maximum Packet Size	Zero-Length packet to the Host; USB IN NAK Transmitted status bit Set
Х	≥ Maximum Packet Size	Return data to the Host
1	Empty	Zero-Length packet to the Host
1	>0	Return data to the Host

Note: "X" is "Don't Care."

High-Bandwidth Isochronous IN Transactions

A USB device that provides High-Bandwidth ISO IN endpoints is required to transmit ISO PID sequences for each microframe, according to the Endpoint Descriptor **GPEP[3:0/Out/In]_HS_MAXPKT** register *Additional Transaction Opportunities* field(s) (USB Controller, Index 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h[12:11]), as listed in Table 9-11.

When the first microframe IN token arrives, the USB 3380 copies the *Additional Transaction Opportunities* field, to determine the initial PID. Upon each succeeding microframe IN token, the PID advances to the next token.

Table 9-11. High-Bandwidth Isochronous IN Transactions

Additional Transaction Opportunities Field	PID Sequence			
00b	DATA0 (standard ISO)			
01b	DATA1, DATA0 (one additional transaction)			
10b	DATA2, DATA1, DATA0 (two additional transactions)			

9.2.5.3 Bulk Endpoints

Bulk endpoints are used for guaranteed error-free delivery of large amounts of data between a Host and device. Bulk endpoints are unidirectional, with the direction defined by the **EP_CFG** register(s) (USB Controller, offset(s) 300h, 320h, 340h, 360h, 380h).

Bulk OUT Transactions

Bulk OUT endpoints transfer data from a USB Host to the PCI Express interface. A Bulk OUT transaction to a Bulk OUT endpoint consists of the data listed in Table 9-12.

The USB Host initiates a Bulk OUT transaction by transmitting an OUT token to a Bulk OUT endpoint. The *Data OUT Token Interrupt* bit is Set when the OUT token is recognized. The bytes corresponding to the Data packet are stored into the endpoint's FIFO. If the FIFO is full when the Host transfers another packet, the packet is discarded and the *USB OUT NAK Transmitted* status bit is Set. At packet completion, a NAK handshake is returned to the Host, indicating that the packet cannot be accepted.

All USB data passes through the endpoint's FIFO to the PCI Express interface. The CPU waits until the Data Packet Received interrupt occurs before reading the FIFO data.

If a packet is not successfully received (*USB OUT NAK Transmitted* or *Timeout* status bits Set), the *Data Packet Received Interrupt* bit is not Set, and the data is automatically flushed from the FIFO. The Host later retransmits the same packet. This process is transparent to the CPU (8051 or PCI Express Host).

If the CPU halted this endpoint by Setting the *Endpoint Halt* bit, the USB 3380 does not store data into the FIFO, and responds with a STALL handshake to the Host.

Packet	Packet Contents	Quantity of Bytes	Source
OUT Token	OUT PID, address, endpoint, and CRC5	3	Host
Data (1/0)	DATA PID, N data bytes, and CRC16	<i>N</i> +3	Host
Status	ACK, NAK, or STALL	1	USB 3380

Table 9-12. Bulk OUT Transactions

Bulk IN Endpoints

Bulk IN endpoints transfer data from the PCI Express interface to a USB Host. A Bulk IN transaction from a Bulk IN endpoint consists of the data listed in Table 9-13.

The USB Host initiates a Bulk IN transaction by transmitting an IN token to a Bulk IN endpoint. The *Data IN Token Interrupt* bit is Set when the IN token is recognized. If there is validated data in the endpoint's FIFO, the data is returned to the Host. If the endpoint has no data to return, a Zero-Length packet (signaling that no further data is available) or NAK handshake (the data is not available yet) is returned. The USB 3380 responds to the IN token, according to the data listed in Table 9-14.

After the packet is transmitted to the Host, the endpoint's **EP_STAT** register *Data Packet Transmitted Interrupt* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[2]) is Set.

If a packet is not successfully transmitted (*Timeout* status bit is Set), the *Data Packet Transmitted Interrupt* bit is not Set, and the same packet is transmitted to the Host when another IN token is received. The Retry operation is transparent to the CPU (8051 or PCI Express Host).

If the CPU halted this endpoint by Setting the *Endpoint Halt* bit, the USB 3380 responds to the IN token with a STALL handshake to the Host.

Packet	Packet Contents	Quantity of Bytes	Source
IN Token	IN PID, address, endpoint, and CRC5	3	Host
Data (1/0)	DATA PID, N data bytes, and CRC16, or NAK or STALL	N+3	USB 3380
Status	ACK	1	Host

Table 9-13. Bulk IN Endpoints

Table 9-14.	Bulk IN Endpoints	Packet Validation
-------------	-------------------	-------------------

Packet Validated	Amount of Data in FIFO	Action
0	< Maximum Packet Size	NAK to the Host
Х	≥ Maximum Packet Size	Return data to the Host
1	Empty	Zero-Length packet to the Host
1	>0	Return data to the Host

Note: "X" is "Don't Care."

9.2.5.4 Interrupt Endpoints

Interrupt endpoints are used for transmitting or receiving small amounts of data to the Host with a bounded service period.

Interrupt OUT Transactions

Interrupt OUT endpoints transfer data from a USB Host to the PCI Express interface. An Interrupt OUT transaction to an Interrupt OUT endpoint consists of the data listed in Table 9-15.

The behavior of an Interrupt OUT endpoint is essentially the same as a Bulk OUT endpoint, except for the *Endpoint Toggle* bit. If the **EP_RSP** register *Interrupt Mode* bit is Cleared, the Interrupt OUT *Endpoint Toggle* bit is initialized to 0 (DATA0 PID), and behaves the same as a Bulk OUT endpoint. If the *Interrupt Mode* bit is Set, the Interrupt OUT *Endpoint Toggle* bit changes after each Data packet is received from the Host, without regard to the Status packet. PING protocol is not allowed for Interrupt OUT endpoints, as per the *USB r2.0*.

Packet	Packet Contents	Quantity of Bytes	Source
OUT Token	OUT PID, address, endpoint, and CRC5	3	Host
Data (1/0)	DATA PID, N data bytes, and CRC16	N+3	Host
Status	ACK, NAK, or STALL	1	USB 3380

Table 9-15. Interrupt OUT Transactions

Interrupt IN Endpoints

An Interrupt IN endpoint is polled at a rate specified in the Endpoint Descriptor. An Interrupt transaction from an Interrupt IN endpoint consists of the data listed in Table 9-16.

The behavior of an Interrupt IN endpoint is the same as a Bulk IN endpoint, except for the toggle bit. If the *Interrupt Mode* bit is Cleared, the Interrupt IN *Endpoint Toggle* bit is initialized to 0 (DATA0 PID), and behaves the same as a Bulk IN endpoint. Use Interrupt endpoints to communicate rate feedback information for certain Isochronous functions. To support this mode, the *Interrupt Mode* bit is Set, and the Interrupt IN *Endpoint Toggle* bit changes after each Data packet is transmitted to the Host, without regard to the Status packet.

After the packet is validated and transmitted to the Host, the USB 3380 does *not* return a Zero-Length packet in response to the next IN token.

Packet	Packet Contents	Quantity of Bytes	Source
IN Token	IN PID, address, endpoint, and CRC5	3	Host
Data (1/0)	DATA PID, N data bytes, and CRC16	N+3	USB 3380
Status	ACK	1	Host

Table 9-16. Interrupt IN Endpoints

High-Bandwidth Interrupt Endpoints

From the USB device point of view, high-bandwidth Interrupt endpoints are the same as Bulk endpoints, except that the MAXPKT is a value from 8 to 1,024, in even multiples of 8. Standard Interrupt endpoints in Full-Speed mode can program MAXPKT to a value from 8 to 64, in even multiples of 8.

9.2.6 USB Test Modes

Use the **XCVRDIAG** register *Force High-Speed Mode* or *Force Full-Speed Mode* bits (USB Controller, offset 94h[31:30]) to force the USB 3380 into High- or Full-Speed mode, respectively. These bits *must not be used in standard operation*, because they are for testing purposes only. In standard operation, the USB 3380 automatically performs *USB r2.0*-Chirp Protocol negotiation with the Host, to determine the correct operating speed.

USB r2.0 Test mode support is provided by way of the register's *USB Test Mode* field (field [26:24]). This field selects the appropriate USB Test mode Settings. (Refer to the *USB r2.0*, Section 9.4.9, for further details.) Usually, the Host transmits a SET_FEATURE request with the Test Selector in the upper byte of wIndex. To select the correct Test mode, copy the Test Selector into the *USB Test Mode* field.

USB Test mode Settings are functional only when the USB 3380 is in High-Speed mode. Also, if the USB 3380 is operating in High-Speed mode, and the USB Test Mode field is programmed to a non-zero value, the USB 3380 is prevented from switching out of High-Speed mode. Standard USB Suspend and Reset, as well as the Force High-Speed Mode and Force Full-Speed Mode bits, are ignored for testing purposes.

The USB 3380 can be forced into High-Speed mode (using the *Force High-Speed Mode* bit), regardless of whether the USB 3380 is connected to a Host Controller. After choosing High-Speed mode, USB Test modes can be selected.

Most USB Test modes require no further support from the USB 3380 firmware. However, the Test_Packet (100b) Test Selector requires the USB 3380 to return a specific packet.

Firmware performs the following sequence to activate the test mode:

- 1. Programs the USB Test Mode field to 100b (Test Packet).
- **2.** Flushes EP 0.
- **3.** Loads the following 53 (35h) hex byte packets into EP 0:

The packet is validated, using the EP 0 **EP_CFG** register *EP FIFO Byte Count* field (USB Controller, offset 300h[18:16]).

Test modes can be auto-responded, in which case the Test Packet (100b) Test Mode automatically loads the specified Test packet. Test modes can also be manually loaded, in which case Test packets (up to 64 bytes) can be loaded into the EP 0 FIFO.

9.3 USB r3.0 Functional Description

9.3.1 USB Interface

The USB 3380 is a USB functional device, meaning that its USB interface connects only to a USB Host or the downstream Port of a USB hub. The bit- and packet-level protocols, as well as the electrical interface, conform to the *USB r3.0*. The USB Host initiates all USB Data transfers to and from Port 0. The USB 3380 is configured for up to 14 endpoints, in addition to the Control endpoint, EP 0. Six of the endpoints are dedicated, and the other eight can be of type Isochronous, Bulk, or Interrupt. Configuration registers are used to program endpoint characteristics. The USB 3380 operates in Full-Speed (12 Mbps), High-Speed (480 Mbps), or SuperSpeed (5 Gbps) mode.

Full- and High-Speed information is discussed in Section 9.2. Because SuperSpeed mode is new (to *USB r3.0*), only SuperSpeed mode-related information is provided in this section.

Note: The USB 3380 does not support Low-Speed mode.

9.3.2 USB Protocol

The SuperSpeed USB packet protocol consists of four SuperSpeed packet types:

- Link Management Packet (LMP)
- Transaction Packet (TP)
- Data Packet (DP)
- Isochronous Timestamp Packet (ITP)

All packets start with a 14-byte Header, followed by a 2-byte Link Control word at the end of the packet Header (16 bytes total).

Note: The USB 3380 does not support the Stream protocol.

9.3.2.1 Link Management Packet

Link Management Packets (LMPs) are packets that are exchanged only between the SuperSpeed USB device and the hub or Host to which it is directly connected. LMPs are used to manage the SuperSpeed Link. LMPs are identified as *Type* field, with a value of 00000b in the packet format. The USB 3380 supports the following LMP subtypes, as defined in the *USB r3.0*, Section 8.4.1:

- Set Link Function
- U2 Inactivity timeout
- Port Capability
- Port Configuration
- Port Configuration Response

Note: The LMP subtypes listed above are a subset of the LMP types defined in the USB r3.0, Table 8-3.

9.3.2.2 Transaction Packet

Transaction packets (TPs) are used to control data flow and manage the end-to-end connection. TPs have no Data Payload. Each TP has a 16-bit Link Control word and 16-bit Cyclic Redundancy Check (CRC) to protect the data integrity. The USB 3380 supports the following TP subtypes:

- ACK
- NRDY
- ERDY
- STATUS
- STALL
- DEV_NOTIFICATION
- PING
- PING RESPONSE

9.3.2.3 Data Packet

Data packets (DPs) can be sent by either the USB Host or device. The USB 3380 uses DPs to return data to the Host in response to an ACK TP. All Data packets are comprised of a Data Packet Header (DPH) and Data Packet Payload (DPP). A 32-bit CRC-32 check sum follows the DPP.

Note: Refer to the USB r3.0, Section 7.2.1.2, for details regarding the Data Packet structure.

9.3.2.4 Isochronous Timestamp Packet

An Isochronous Timestamp Packet (ITP) is a Multicast packet sent by the Host, to all active Links. It consists of the following two fields:

- *Isochronous Timestamp* (ITS) provides a 14-bit Bus Interval Counter and 13-bit delta from the start of the current ITP to the previous bus interval boundary
- Bus Interval Adjustment Control

9.3.3 Transactions and Transfer

Control transfers consist of a Setup transaction stage, optional Data transaction stage, and Status transaction stage.

Bulk transactions use a two-phase transaction consisting of TPs and DPs. Under certain Flow Control and Halt conditions, the Data transaction stage can be replaced with a TP. The USB 3380 supports Burst transfers for Bulk transactions.

The Interrupt Transfer type is used for infrequent Data transfers with a bounded service period, which is similar to Bulk transactions. Interrupt transfers are limited to a burst of three DPs within each service interval. The Host is required to send an ACK TP for every DP received within the service interval, even if it is the last DP in that service interval. The final ACK TP acknowledges the last DP received, and issues a command to Clear the *NumP* field.

9.3.4 Automatic Retries

9.3.4.1 OUT Transactions

If an error occurs during an OUT transaction, the USB 3380 re-loads its USB FIFO Write pointer to the beginning of the failed packet, then returns an ACK (Retry) TP to the Host. The Host then re-transmits the packet. After the USB 3380 successfully receives the packet, the endpoint's **EP_STAT** register *Data Packet Received Interrupt* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[3]) is Set. The USB 3380 can handle an unlimited quantity of back-to-back Retries; however, the Host determines the quantity of packet Retries.

9.3.4.2 IN Transactions

If an error occurs during an IN transaction, and the Host returns an ACK for the IN Data packet received with the *Retry* bit Set, the USB 3380 responds with an NRDY, followed by an ERDY. Meanwhile, the USB 3380 rewinds its USB FIFO Read pointer to the last ACKed Data packet received from the Host. The Host then transmits another ACK TP, and the USB 3380 re-transmits the packet. After the Host successfully receives the packet, the endpoint's **EP_STAT** register *Data Packet Transmitted Interrupt* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[2]) is Set.

9.3.5 USB r3.0 Flow Control

SuperSpeed USB has its own Flow Control mechanism, different from those of Full- and High-Speed. Only Bulk, Control, and Interrupt endpoints can send Flow Control responses.

An IN endpoint is considered to be in a Flow Control condition, if it returns the following responses to an ACK TP:

- Responding with an NRDY TP, -or-
- Sending a DP with the EOB field Set in the DPH

An OUT endpoint is considered to be in the Flow Control condition, if it returns one of the following responses to a DP:

- Responding with an NRDY TP, -or-
- Sending an ACK TP with the NumP field Cleared

When an endpoint is in a Flow Control condition, it sends an ERDY TP to be moved back into the *Active* state. If the endpoint is an IN endpoint, it waits until it receives an ACK TP for the last DP it transmitted, before it can send an ERDY TP.

9.3.6 Packet Sizes

An endpoint Maximum Packet Size is determined by the corresponding **EP_n_MAXPKT** register. For IN transactions, the USB 3380 returns a maximum-sized packet to the Host, if the quantity of "Maximum Packet" bytes exist in the FIFO. If the FIFO data is validated, a packet size less than the maximum size can be returned to the Host. Table 9-17 lists the allowable Maximum Packet Sizes. Interrupt and Isochronous endpoints must have a Maximum Packet Size that is an even multiple of 8.

Endpoint Type	Allowable Maximum Packet Size (Bytes), by Mode						
	Full-Speed	High-Speed	SuperSpeed				
Control	8, 16, 32, 64	64	512				
Bulk	8, 16, 32, 64	512	1,024				
Interrupt	64 maximum	1,024 maximum	1,024 maximum				
Isochronous	1,023 maximum	1,024 maximum	1,024 maximum				

 Table 9-17.
 Allowable Maximum Packet Size

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 10 DMA Controller

10.1 Overview

The USB 3380 consists of four DMA channels, which are used to transfer data between the USB endpoint FIFOs and PCI Express interface. The four channels are assigned to General-Purpose Endpoints 0, 1, 2, and 3 (GPEP[3:0]). Each channel performs a single or Scatter/Gather DMA Data transfer, by processing a linked list of Descriptors. The DMA starting address can be on any byte boundary.

Note: Registers that support the DMA Controller are detailed in Section 15.8, "DMA Registers."

10.2 Single Transfer Mode

DMAADDR

In Single Transfer mode, a single block of data is transferred between a USB FIFO and the PCI Express interface.

10.2.1 OUT Endpoints

194h, 1B4h, 1D4h, 1F4h

When a packet is received into an OUT endpoint that has an assigned DMA channel, a Write Request is made to the PCI Express space. The DMA Controller then reads data from the endpoint FIFO, and writes the data to PCI Express space. These transactions continue until the DMA Byte Count reaches 0. If the FIFO becomes empty, the DMA Controller pauses until additional data is available. The USB Controller registers listed in Table 10-1 must be programmed for a single DMA Read transfer.

Writing to the channel's **DMASTAT** register *DMA Start* bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[0]) starts the DMA Data transfer. The DMA Data transfer can also be automatically started when an OUT packet is received, if the channel's **DMACTL** register *DMA OUT Auto Start Enable* bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[4]) is Set. When the DMA Data transfer is complete, various interrupts are generated.

Set to the PCI Target address

Offset(s)	Register	Description	Notes				
180h, 1A0h, 1C0h, 1E0h	DMACTL	DMA Control	Select Single Transfer mode and other miscellaneous controls				
190h, 1B0h, 1D0h, 1F0h	DMACOUNT	DMA Transfer Length	Set to the quantity of bytes and the direction to transfer				

Table 10-1. OUT Endpoints – Registers to Program for Single DMA Read Transfers

DMA Address

10.2.2 IN Endpoints

When an IN endpoint is ready to transmit a packet to the Host and there is sufficient space available in the endpoint FIFO, a Read Request is issued to the PCI Express space. The PCI Express Read Completions are then stored into the Endpoint IN FIFO. These transactions continue until the DMA Byte Count reaches 0. If the FIFO is full, the DMA Controller pauses until space is available. The USB Controller registers listed in Table 10-2 must be programmed for a single DMA Write transfer.

Writing to the channel's **DMASTAT** register *DMA Start* bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[0]) starts the DMA Data transfer. When the DMA Data transfer is complete, various interrupts are generated.

Table 10-2. IN Endpoints – Registers to Program for Single DMA Write Transfers

Offset(s)	Register	Description	Notes
180h, 1A0h, 1C0h, 1E0h	DMACTL	DMA Control	Select Single Transfer mode and other miscellaneous controls
190h, 1B0h, 1D0h, 1F0h	DMACOUNT	DMA Transfer Length	Set to the quantity of bytes and the direction to transfer
194h, 1B4h, 1D4h, 1F4h	DMAADDR	DMA Address	Set to the PCI Target address

10.3 Scatter/Gather Mode

In Scatter/Gather mode, creating a linked list of Descriptors can set up a series of DMA Data transfers. The list of Descriptors is stored in either on-chip, or PCI Express off-chip, memory, with the address of the first Descriptor programmed into the **DMADESC** register (USB Controller, offset(s) 198h, 1B8h, 1D8h, 1F8h). Each Descriptor consists of four DWords, located at offsets 0h, 4h, 8h, and Ch. (Refer to Table 10-3.) The register bits at offset 0h are described in the sections that follow.

Writing to the channel's **DMASTAT** register *DMA Start* bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[0]) starts the DMA Scatter/Gather Controller. The Controller then reads the four DWords at the PCI address, determined by the **DMADESC** register. A standard PCI Memory Read command is used for these transfers. These four DWords define the first DMA Data transfer, including the *Direction*, *DMA Byte Count*, *PCI Starting Address*, and *Next Descriptor Address* fields. The fourth DWord is divided into 16-bit *Reserved* and *User-Defined* fields, neither of which affects DMA Controller operation. After the DMA Data transfer completes, additional Descriptors are processed if the *End of Chain* bit is not Set.

Each Descriptor bit/field is described in the sections that follow.

Offset	31	30	29	28	27	26 25	24	23	4	3	0
Oh	Valid	Direction	Done Interrupt Enable	End of Chain	DMA Scatter/ Gather FIFO Validate	DMA ISO Extra Transaction Opportunity	DMA OUT Continue		DMA Byte	e Count	
4h		PCI Starting Address									
8h	Next Descriptor Address					ddress				0000b	,
Offset	31 16					16 15					0
Ch	Reserved					User-I	Define	ed			

Table 10-3. Scatter/Gather Mode Descriptors

USB 3380-AA/AB PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller Data Book, v1.3 Copyright © 2012 by PLX Technology, Inc. All Rights Reserved

10.3.1 Valid Bit

The *Valid* bit controls the processing of DMA Descriptors by the DMA Scatter/Gather Controller. When the firmware enters a Descriptor into the linked list, it Sets the *Valid* bit after the other fields in the Descriptor are written. As the DMA Scatter/Gather Controller processes the Descriptor list, it first checks the *Valid* bit, to determine whether a Descriptor is valid. If the *Valid* bit is Set, then Descriptor is considered valid and the corresponding DMA operation is started. If the *Valid* bit is Cleared, the Descriptor is periodically polled by the DMA Scatter/Gather Controller until the bit is Set. The polling rate is determined by the channel's **DMACTL** register *Descriptor Polling Rate* field(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[20:19]). The DMA Scatter/Gather Controller can be configured to pause when a Cleared *Valid* bit is detected. In this case, the firmware must restart the DMA Scatter/Gather Controller after setting up and validating additional Descriptors.

After a DMA Data transfer completes, the DMA Scatter/Gather Controller can be configured by the register's *DMA Clear Count Enable* bit(s) (bit 21) to Clear the *Valid* bit, effectively returning Descriptor ownership to the firmware.

If a Descriptor is encountered with the following bit/field values:

- DMA Byte Count field Cleared,
- Valid bit Set, and
- End of Chain bit Cleared,

the DMA Scatter/Gather Controller processes the next Descriptor in the chain.

Some applications do not require the use of the *Valid* bit. In those cases, the register's *DMA Valid Bit Enable* bit(s) (bit 17) is Cleared, allowing Descriptors to be processed without regard to the *Valid* bit.

10.3.2 *Clear Count Enable* Bit

The channel's **DMACTL** register(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h) determines whether the first Descriptor DWord is updated after the DMA Data transfer is complete. If this update is enabled, the *Valid* bit and *DMA Byte Count* fields are Cleared after the DMA Data transfer completes.

10.3.3 Direction Bit

When the *Direction* bit is Cleared, the DMA Controller transfers data from the USB Host to the PCI Express interface (OUT packets). When the *Direction* bit is Set, the DMA Controller transfers data from the PCI Express interface to the USB Host (IN packets).

10.3.4 Done Interrupt Enable Bit

When a DMA Data transfer associated with a Descriptor completes (*DMA Byte Count* reaches 0), an interrupt is generated if the *Done Interrupt Enable* bit is Set.

10.3.5 End of Chain Bit

The *End of Chain* bit in the first DWord indicates that there are no more Descriptors in the chain. If there are more Descriptors in the chain, the third DWord contains the next Descriptor address.

10.3.6 DMA Scatter/Gather FIFO Validate Bit

If the *DMA Scatter/Gather FIFO Validate* bit is Set for an IN endpoint, a USB short packet is automatically validated when the DMA Scatter/Gather Controller transfer completes. Therefore, each entry in a Scatter/Gather Descriptor list can be individually programmed to validate short packets. The channel's **DMACTL** register *DMA FIFO Validate* bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[2]) takes precedence over this bit. If the *DMA FIFO Validate* bit is Set, all USB short packets are automatically validated at the end of each DMA Data transfer.

10.3.7 DMA ISO Extra Transaction Opportunity Field

The *DMA ISO Extra Transaction Opportunity* field is loaded into the endpoint's **GPEP[3:0/Out/In]_HS_MAXPKT** register *Additional Transaction Opportunities* field(s) (USB Controller, Index 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h[12:11]) when the DMA Count Descriptor word is loaded from the Descriptor list. The number in this field represents the total number of ISO packets transmitted during the next microframe. Do **not** use this feature for large FIFOs (2,048 bytes), nor small two-packet ISO transfers of 1,025 to 2,048 bytes.

10.3.8 DMA OUT Continue Bit

If the *DMA OUT Continue* bit is Set and a short OUT packet is received, the endpoint's **EP_STAT** register *NAK Packets* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[4]) is Cleared when the FIFO is emptied, and the DMA Scatter/Gather Controller proceeds to read the next DMA Descriptor.

Additionally, when the *DMA OUT Continue* bit is Set, the endpoint's **EP_RSP** register *NAK OUT Packets Mode Clear* bit(s) (USB Controller, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/ 444h[2]) must also be Set.

10.3.9 DMA Byte Count Field

The *DMA Byte Count* field determines the quantity of bytes to transfer. The maximum DMA Data transfer size is 16 MB. This field is Cleared at the end of the DMA Data transfer if the channel's **DMACTL** register *DMA Clear Count Enable* bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[21]) is Set.

10.4 DMA OUT Transfer Completion

The endpoint's **EP_STAT** register *Short OUT Packet Done Interrupt* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[6]) is Set when the following occurs:

- Register's Short OUT Packet Received Interrupt bit (bit 5) is Set, and
- OUT FIFO becomes empty

The consequences for firmware are as follows:

- Short OUT Packet Done Interrupt bit is not Set if firmware Clears the Short OUT Packet Received Interrupt bit before the FIFO becomes empty
- *Short OUT Packet Done Interrupt* bit is not Set if the FIFO is empty and the USB 3380 receives a Zero-Length packet (with no Data Payload)

There are two methods firmware can use to reliably determine when a DMA OUT transfer is complete. Both methods require the endpoint's **EP_RSP** register *NAK OUT Packets Mode Set* and *NAK OUT Packets Mode Clear* bit(s) (USB Controller, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/ 444h[10 and 2], respectively) to be Set. Setting the *NAK OUT Packets Mode Set* and *NAK OUT Packets Mode Clear* bit(s) causes the USB 3380 to Set the register's *NAK Packets Set* and *NAK Packets Clear* bit(s) (bits [15 and 7], respectively), as well as the endpoint's **EP_STAT** register *NAK Packets* bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[4]), when a short OUT packet is accepted, preventing new packet data from entering the FIFO.

The simplest method for detecting DMA OUT transfer completion is to generate an interrupt on the *Short OUT Packet Received Interrupt* bit. In the interrupt service routine, firmware polls the endpoint's **EP_AVAIL** register(s) (USB Controller, offset(s) 310h, 330h/3F0h, 350h/410h, 370h/430h, 390h/450h), and reads the corresponding quantity of bytes from the endpoint's **EP_DATA** register(s) (USB Controller, offset(s) 314h, 334h/3F4h, 354h/414h, 374h/434h, 394h/454h). When the FIFO is empty, the endpoint's *FIFO Empty* status flag (**EP_STAT** register *FIFO Empty* bit(s) (bit 10)) is Set. The *Short OUT Packet Received Interrupt* bit is Set when the new packet enters the FIFO. Polling until the FIFO is empty ensures that newly arrived data is completely written to the PCI Express interface. In most PCI systems, the polling loop is short, because the DMA Controller bursts FIFO data to the PCI Express interface while the firmware is polling. Polling that takes more than a few loops to complete indicates that the DMA Data transfer is not working (*for example*, the target is not accepting DMA cycles).

To avoid polling, firmware can use a second method – generate an interrupt on the *Short OUT Packet Received Interrupt* or *Short OUT Packet Done Interrupt* bit. In the interrupt service routine, check whether the endpoint's **EP_AVAIL** register (or the *FIFO Empty* status flag) indicates that the FIFO is empty:

- If the FIFO is empty, the DMA Data transfer completed and standard OUT transfer completion handling can continue
- If the FIFO is not empty, firmware disables the *Short OUT Packet Received Interrupt* bit, and returns from the interrupt service routine

Firmware must not Clear the *Short OUT Packet Received Interrupt* bit at this time. Instead, firmware must disable the interrupt, by Clearing the endpoint's **EP_IRQENB** register *Short OUT Packet Received Interrupt Enable* bit(s) (USB Controller, offset(s) 308h, 328h/3E8h, 348h/408h, 368h/428h, 388h/448h[5]). When the DMA Data transfer completes and the FIFO is empty, the Short OUT Packet Done Interrupt occurs. The same interrupt service routine now finds the FIFO status to be empty; therefore, standard OUT transfer completion handling can continue.

10.5 DMA Scatter/Gather OUT Transfer Calculations

If a DMA Scatter/Gather OUT transfer is paused, the firmware might need to determine the quantity of bytes transferred up to that time.

If a DMA channel is paused before the current transfer completes, the **DMACOUNT**, **DMAADDR**, and **DMADESC** registers (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h; 194h, 1B4h, 1D4h, 1F4h; 198h, 1B8h, 1D8h, 1F8h, respectively) correspond to the current DMA Data transfer.

If the DMA channel is paused as the DMA Data transfer completes, the **DMADESC** register(s) is immediately updated to point to the next Descriptor; however, the **DMAADDR** and **DMACOUNT** registers are not updated until the next Descriptor is read. The window width varies, and is determined by other PCI Express interface activity that prevents the Descriptor from being read.

The situation is that when the DMA channel is paused, it is not known whether the **DMADESC** register(s) points to the current Descriptor or the next Descriptor.

If the **DMACOUNT** register(s) reflects a value of 0, the current DMA Data transfer completed and the **DMADESC** register(s) is pointing to the next DMA Descriptor. At this point, the new Descriptor is not read from memory.

If the **DMACOUNT** register(s) reflects a value equal to the *DMA Byte Count* field of the Descriptor pointed to by the **DMADESC** register(s), the previous DMA Data transfer is complete, and the **DMACOUNT**, **DMAADDR**, and **DMADESC** registers correspond to the new Descriptor. Otherwise, the three registers correspond to the current DMA Data transfer.

After these three registers are correlated, the firmware totals the quantity of bytes transferred in each Descriptor, up to and including the last Descriptor.

10.6 DMA Abort

If the CPU wants to stop the current DMA block transfer and the remainder of the DMA Descriptor transfers, it can abort the DMA channel by writing 1 to the channel's **DMASTAT** register *DMA Abort* bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[1]).

A DMA transfer is aborted when any of the following events occur:

- DMA Abort bit is Set
- · Completion with a status other than Successful Completion is received
 - Completion with Unsupported Request status
 - Completion with Completer Abort status
- Completion timeout occurs
- Completion is malformed
- Completion has a Byte Count error
- DMA PCI Express Request hitting a Link downstream Port

When the *DMA Abort* bit is written, the DMA operation is terminated after finishing the current PCI Express TLP. The channel's **DMACTL** register *DMA Enable* bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[1]) is Cleared. If a Scatter/Gather DMA Data transfer is in progress, no further Descriptor accesses are initiated. After the DMA Abort, flush the associated FIFO and re-program the DMA registers before attempting another DMA Data transfer.

10.7 DMA Pause

The USB 3380 supports two types of Pause, which are selected through the channel's **DMACTL** register *Pause Mode* bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[23]):

- Graceful Pause Mode
- Immediate Pause Mode

The pause is triggered by writing 0 to the register's *DMA Enable* bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[1]) when a DMA operation is in progress.

Both types of pause are described in the sections that follow.

10.7.1 Graceful Pause Mode

When the channel's **DMACTL** register *Pause Mode* bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[23]) is Set and the register's *DMA Enable* bit(s) is (bit 1) Cleared, Descriptor fetching is disabled. DMA transfers associated with the current and prefetch Descriptors are allowed to finish. The channel's **DMASTAT** register *DMA Pause Done Interrupt* bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[26]) is Set, if enabled (**DMACTL** register *DMA Pause Done Interrupt* bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[26]) is Set, if enabled (**DMACTL** register *DMA Pause Done Interrupt Enable* bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[26], is Set), when both Descriptors have finished. Information related to the last processed Descriptor is available in the registers.

If the *DMA Enable* bit is Set and the channel's **DMASTAT** register *DMA Start* bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[0]) is Set again by the CPU (8051 or PCI Express Host), the DMA simply resumes from where it is paused. In this case, Descriptor fetching is re-enabled and Data transfers are initiated. The next Descriptor is fetched from the location pointed to by the next Descriptor pointer. Software can change the next Descriptor pointer, before resuming (after being paused).

10.7.2 Immediate Pause Mode

When the channel's **DMACTL** register *Pause Mode and DMA Enable* bits (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[23 and 1], respectively) are both Cleared, Descriptor fetching is disabled, and no further PCI Express Requests are issued. The *DMA Pause Done Interrupt* bit(s) is Set, if enabled, as soon as any pending Requests are finished being issued and all Read Completions have been received. DMA operation is resumed from where it is paused, when the *DMA Enable* bit is Set again. The channel can also be aborted after an immediate pause.

The DMA Data transfer context is held while the channel is paused. When the *DMA Enable* bit is Set, the DMA Data transfer resumes from where it stopped. If the DMA Scatter/Gather Controller is active, it stops processing Descriptors during a DMA pause.

10.8 PCI Unaligned Write Transfers

DMA Write transfers are permitted to start at unaligned PCI address boundaries. *For example*, if the channel's **DMAADDR** register(s) (USB Controller, offset(s) 194h, 1B4h, 1D4h, 1F4h) is initialized to a value of 1 and there are three valid lines (12 bytes) in the OUT FIFO, the data is transferred. The channel's **DMAADDR** register value is 0000_000Dh after the DMA Write transfer completes.

There are no restrictions on unaligned DMA Write transfers.

10.9 PCI Unaligned Read Transfers

DMA Read transfers are allowed to start at unaligned PCI Address boundaries. *For example*, if the channel's **DMAADDR** register(s) (USB Controller, offset(s) 194h, 1B4h, 1D4h, 1F4h) is initialized to a value of 0000_0003h, and the channel's **DMACOUNT** register(s) (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h) is initialized to a value of 0000_0016h, the data is transferred. Bytes [3:0] are written to the first line in the FIFO, Bytes [7:4] to the second line, and so forth. The channel's **DMAADDR** register value is 0000_0013h after the DMA Read transfer completes.

There are no restrictions on unaligned DMA Read transfers.

Chapter 11 GPIO Controller Functional Description

11.1 GPIO Interface

The USB 3380 provides four General-Purpose I/O pins. GPIO pin functions are multiplexed with the LANE_GOOD# pin and USB_LINK_GOOD# function. GPIO functions are selected when the **Debug Control** register *LANE_GOOD#/GPIOx Pin Function Select* bit (Port 0, offset 1DCh[22]) is Cleared, as described in Table 11-1.

As listed in Table 11-1, the USB 3380, by default, uses the GPIO0 signal for hardware control of external power regulators. However, to allow software control of the GPIO0/LANE_GOOD# signal (*such as* to program I/O or read Lane status), software must additionally Set the USB Power Management Control register *GPIO0 Software Control* bit (USB Controller, offset 6C0h[11]).

When GPIO functions are selected, each GPIO pin is individually programmable through a set of **GPIO Control** registers, located in the USB Controller at offsets 50h through 60h. (Refer to Table 11-2.)

GPIO Pin	Port 0, Offset 1DCh[22]=1	Port 0, Offset 1DCh[22]=0
GPIO0	LANE_GOOD#	USB Power Management Function (default) (when USB Power Management Control register <i>GPIOO Software Control</i> bit (USB Controller, offset 6C0h[11] is Cleared)
		GPIO0
		(when USB Power Management Control register GPIO0 Software Control bit (USB Controller, offset 6C0h[11] is Set)
GPIO1	No Function	GPIO1 (default)
GPIO2	No Function	GPIO2 (default)
GPIO3	USB_LINK_GOOD#	USB_LINK_ACTIVE (default) (when GPIO Control register <i>GPIO3 LED Select</i> bit (USB Controller, offset 50h[12] is Cleared)
		GPIO3 (when GPIO Control register <i>GPIO3 LED Select</i> bit (USB Controller, offset 50h[12] is Set)

Table 11-1. GPIO Pin Multiplexing

Table 11-2.	USB Controller GPIO Control Registers
-------------	--

Offset	Register
50h	GPIO Control
54h	GPIO Status
58h	GPIO PWM Value
5Ch	GPIO PWM Ramp Control
60h	GPIO PWM Clock Frequency

When a GPIO*x* pin is configured as an input, software can read the value presented on the pin. Additionally, the USB 3380 can generate an interrupt, based upon the pin's High or Low logic level. GPIO inputs can also be configured with hardware-based de-bounce circuitry, which helps prevent multiple interrupts for noisy or slow transitions on the signal pin.

When a GPIOx pin is configured as an output, software can program the pin to be High or Low. GPIO outputs also support programmable pulse-width-modulated (PWM) output, where software can program the quantity of Clock cycles that the signal drives High versus Low. This feature is useful for driving LEDs at various brightness levels, by varying the output waveform's Duty cycle. Additionally, the PWM Duty cycle can be linearly increased or decreased, at a programmable rate. This can be used to make LEDs progressively brighter or dimmer, at a constant rate.

PWM functions repeat in cycles of 256 steps. The duration (or period) of each step is determined by the **GPIO PWM Clock Frequency** register. The value in this register divides an input clock of 62.5 MHz by a programmed value of 0 to 128 (0 = 128). The PWM Clock Frequency value is used to divide a 62.5 MHz input clock. Allowable values are from 1 to 256 (00h to FFh, where 00h corresponds to 256). For the highest output frequency, program the register's *PWM Clock Divider* field (field [7:0]) to 01h. This yields a PWM frequency of 245.1 KHz. For the slowest output frequency (default), program the field to 00h, for a PWM frequency of 1.908 KHz. Values of 02h through FFh linearly scale the PWM frequency within this range. The PWM step time is common to all GPIO outputs.

PWM High time is controlled by way of the **GPIO PWM Value** register. Values programmed into this register determine the quantity of steps (out of 256) that the output is driven High. For the remaining steps in the PWM cycle, the output is driven Low.

The PWM Value for each GPIO can be incremented or decremented by one step every n PWM cycles, where n is the value programmed in the **GPIO PWM Ramp Control** register. PWM ramping starts when a value of n=1 to 255 is programmed, and ends when the PWM value reaches 255 or 0.

11.2 GPIO Control/Status Registers

GPIO registers are located only in the USB Controller. For details, refer to Section 15.5, "USB Controller Device-Specific Registers."

Chapter 12 Interrupt and Status Register Operation

12.1 Overview

This chapter describes, in general terms, how Interrupt and Status registers operate. For in-depth details of all Interrupt bits, refer to:

- Chapter 14, "PCI Configuration Registers"
- Chapter 15, "USB Configuration Registers"

For interrupt information specific to the GPIOx pins, refer to Chapter 11, "GPIO Controller Functional Description."

There are many sources of interrupts from the USB, PCI, DMA, and serial EEPROM sections of the USB 3380. Each of these interrupt sources can be routed to the internal 8051 or PCI Express Root Complex, by way of a Conventional PCI INT*x* interrupt or Message Signaled Interrupt (MSI). Each interrupt source consists of two *Enable* bits – one each for the 8051 and Conventional PCI INTA Message or MSI. When the USB 3380 is configured for Root Complex mode, the Conventional PCI INT*x* interrupt or MSI is written to the RCIN endpoint FIFO, and all interrupts are serviced by the 8051 or USB Host, by way of the STATIN Interrupt endpoint. The 8051 consists of two Interrupt inputs – one is asserted when an **IRQSTAT0** interrupt is active, and the other is asserted when an **IRQSTAT1** interrupt is active.

12.2 MSI Capability and Interrupt Request Status Registers

Interrupt sources in a Port/the SuperSpeed USB are grouped into two categories – **IRQSTAT1** and **IRQSTAT0** registers (USB Controller, offsets 2Ch and 28h, respectively). The **PCIIRQENB1** and **PCIIRQENB0** registers (USB Controller, offsets 14h and 10h, respectively) are used to enable individual Interrupt sources in **IRQSTAT1** and **IRQSTAT0**, respectively.

At configuration time, system software traverses the function Capability list. If a Capability ID of 05h is found, the function implements MSI. System software reads the **MSI Capability** Structure registers, to determine function capabilities.

The **MSI Control** register *Multiple Message Capable* field (All Ports and USB Controller, offset 48h[19:17]) default value is 001b, which indicates that the USB 3380 requests up to two MSI Vectors (Address and Data). When the register's *Multiple Message Enable* field (All Ports and USB Controller, offset 48h[22:20]) is Cleared (default), only one Vector is allocated, and therefore, the USB 3380 can generate only one Vector for all errors or events.

System software initializes the MSI Address registers (All Ports and USB Controller, offsets 4Ch and 50h) and **MSI Data** register (All Ports and USB Controller, offset 54h) with a system-specified Vector. After system software enables the MSI function (by Setting the **MSI Control** register *MSI Enable* bit (All Ports and USB Controller, offset 48h[16]), when an Interrupt event occurs, the Interrupt Generation module generates a DWord Memory Write to the address specified by the **MSI Address** (lower 32 bits of the *Message Address* field) and **MSI Upper Address** (upper 32 bits of the *Message Address* field) register contents (All Ports and USB Controller, offsets 4Ch and 50h, respectively). The single DWord Payload includes zero (0) for the upper two bytes, and the lower two bytes are taken from the **MSI Data** register.

The quantity of MSI Vectors that are generated is determined by the **MSI Control** register *Multiple Message Capable* and *Multiple Message Enable* fields (All Ports and USB Controller, offset 48h[19:17 and 22:20], respectively):

- If **one** MSI Vector is enabled (default mode), **IRQSTAT1** and **IRQSTAT0** interrupt events are combined into a single Vector
- If two MSI Vectors are enabled, the individual vectors indicate:
 - Vector[0] IRQSTAT1
 - Vector[1] IRQSTAT0

12.3 Endpoint Response Registers

Each Configurable endpoint has an **Endpoint Response** register (USB Controller, **EP_RSP** register, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h). This register determines how the USB 3380 responds to various situations during USB transactions. Writing 1 to the **EP_RSP** register's RW1C bits (bits [7:0]) Clears the corresponding bits. Writing 1 to the register's RW1S bits (bits [15:8]) Sets the corresponding bits. Reading Byte 0 or 1 of the register returns its current bit states.

12.4 Endpoint Status Registers

Each Configurable endpoint has an **Endpoint Status** register (USB Controller, **EP_STAT** register, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch). The register's bits are Set when a particular endpoint event occurs, and Cleared by writing 1 to the corresponding bit. **EP_IRQENB** register bits [6:5, 3:0] can cause an interrupt to be generated when the corresponding *Interrupt Enable* bits are Set. Reading the **EP_STAT** register returns its current bit states.

12.5 Message Signaled Interrupt Support on PCI Express Side

Other than Conventional PCI INT*x* interrupt messaging, the USB 3380 also supports Message Signaled Interrupts (MSIs) as an alternative when an interrupt is sent to PCI Express Host. Support for MSIs and INT*x* is mutually exclusive. If MSIs are enabled, INT*x* are automatically disabled, and vice versa. The function of MSIs are controlled through the **MSI Capability** structure registers. For in-depth details of the MSI registers, refer to Section 14.9, "MSI Capability Registers (Offsets 48h - 64h)."

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 13 Power Management

13.1 Overview

The USB 3380 supports *PCI Power Mgmt.* r1.2 and *PCI Express Base r2.1*-compliant Power Management (PM), as well as the USB PM requirements detailed in the USB r3.0.

When operating in *USB r2.0* mode, the USB 3380 implements *USB r2.0* L1 (*USB r2.0* Link Power Management addendum) and L2 (Suspend state) Link PM states on the USB interface. When operating in *USB r3.0* SuperSpeed mode, the USB 3380 also implements the U1, U2, and U3 Link states. On the PCI Express interface, the USB 3380 implements ASPM L0s, ASPM L1, PCI Express L1, L2, and L2/L3 Ready Link PM states. Additionally, the USB 3380 supports the Conventional PCI-compatible PM D0, D1, D2, and D3 states.

This chapter covers the following PM topics:

- USB Power Configurations
- USB Interface Low-Power States
- PCI Express Power Management
- USB Suspend/Resume Sequences Adapter Mode
- USB Suspend/Resume Root Complex Mode
- USB Low-Power Suspend State

13.2 USB Power Configurations

The USB r3.0 defines both bus- and self-powered devices:

- *Bus-powered* devices are peripherals that derive their power from the USB Host, by way of the USB connector
- Self-powered devices use an external power supply

The most significant consideration when deciding whether to build a bus- or self-powered device is power consumption. The USB r3.0 dictates the following requirements for maximum current draw:

- Devices that are not Host-configured can draw only 100 mA from the USB connector Power pins
- Devices can draw no more than 500 mA from the USB connector Power pins
- In the Low-Power Suspend state, USB r2.0 L2 and USB r3.0 U3 Link states; however, devices can draw no more than 500 μ A (low-power devices) or 2.5 mA (high-power devices) from the USB connector Power pins

Notice: If these power considerations can be met without using an external power supply, it is recommended that the USB 3380 be bus-powered; otherwise, implement a self-powered design.

13.2.1 Self-Powered Devices

Generally, a device with high-power requirements is self-powered. In a self-powered device, the USB 3380 and all other circuits are powered by the local power supply. This allows the local CPU to continue accessing the USB 3380, by way of the PCI Express interface, even when the USB 3380 is not connected to the USB Host. The USB connector's Power pin is connected only to the USB_VBUS input.

While connected to the USB interface, the USB 3380 automatically requests the Low-Power Suspend state, as described in Section 13.3.

13.3 USB Interface Low-Power States

13.3.1 USB r2.0-Compliant Power States

The USB 3380 supports the following USB r2.0 low-power states:

- USB L1 Link PM State
- USB Suspend State or L2 Link PM State

13.3.1.1 USB L1 Link PM State

The USB 3380 supports the USB L1 Link PM state and can resume from it. The L1 Link PM state has exit latencies of 50 μ s to 1 ms, compared to the L2 Link PM state, which has exit latencies of many milliseconds. The Host sends the extended token packet with the *bm* attributes. The attributes Set the Remote Wakeup feature. The USB 3380 returns an ACK, NYET, or STALL Handshake packet to the Host, depending upon the conditions explained:

- ACK, if L1 is supported and traffic conditions allow, -or-
- NYET, if there are pending packets, -or-
- STALL, if it does not understand the *bm* Request

The USB 3380 does not respond to L1 Link Power Management (LPM) Requests if the USB2LPM register USB L1 LPM Support bit (USB Controller, offset C0h[0]) is Cleared.

The USB 3380 supports Host resume or remote wakeup from the L1 Link PM state.

13.3.1.2 USB Suspend State or L2 Link PM State

When there is a 3-ms period of USB inactivity, the USB r2.0 requires bus-powered devices to enter into the Low-Power Suspend state. During this state, bus-powered devices can draw no more 2.5 mA current. When in a Suspended state, the USB 3380 draws minimal current from the power supplies.

The USB 3380 supports Host-initiated resume and device remote wakeup signaling from the L2 Link PM state.

13.3.2 USB r3.0-Compliant Link States

The USB 3380 supports the following USB r3.0 Link states:

- U1 Link State
- U2 Link State
- U3 Link State (USB Suspend State)

13.3.2.1 U1 Link State

U1 Link state entry can be initiated by either the USB 3380 or USB Host. The Host initiates U1 entry by sending an LGO_U1 Link command packet. The USB 3380 accepts or rejects this Request, depending upon traffic conditions. If ready to enter the U1 Link state, the USB 3380 accepts the Request by sending an LAU Link command, then waits for an LPMA Link command for entering the U1 Link state. Exiting the U1 Link state, to return to the U0 Link state, can be initiated by either the USB 3380 or USB Host.

The USB 3380 initiates U1 Link state entry only if the U1_enable flag is Set. This flag is Set by a Set Feature Setup packet with the U1_ENABLE field Set from the USB Host. This field is Cleared upon receipt of a Clear Feature Setup packet that has its U1_ENABLE field Set.

Even if the *U1_enable* flag is not Set, the USB 3380 accepts U1 Requests from the Host, if traffic conditions permit.

The U1 Link state has exit latencies of 1 to 2 μ s.

13.3.2.2 U2 Link State

U2 Link state entry can be initiated by either the USB 3380 or USB Host. The Host initiates U2 entry by sending an LGO_U2 Link command packet. The USB 3380 accepts or rejects this Request, depending upon traffic conditions. If ready to enter the U2 Link state, the USB 3380 accepts the Request, by sending an LAU Link command, then waits for an LPMA Link command for entering the U2 Link state. Exiting the U2 Link state, to return to the U0 Link state, can be initiated by either the USB 3380 or USB Host.

The USB 3380 initiates U2 Link state entry only if the U2_enable flag is Set. This flag is Set by a Set Feature Setup packet with the U2_ENABLE field Set from the USB Host. This field is Cleared upon receipt of a Clear Feature Setup packet that has its U2_ENABLE field Set.

Even if the U2_enable flag is not Set, the USB 3380 accepts U2 Requests from the Host, if traffic conditions permit.

The U2 Link state has exit latencies of 80 to 100 µs (U2 has a higher exit latency than U1).

The USB 3380 can also directly enter the U2 Link state, after a U2 Inactivity timeout when in the U1 Link state. The U2 Inactivity timer is Set by a U2 Inactivity timeout LMP received from the USB Host.

13.3.2.3 U3 Link State (USB Suspend State)

The U3 Link state, also known as the USB Suspend state, is the lowest Link power state. U3 has a higher exit latency than the U1 and U2 Link states.

U3 Link state entry is always initiated by the USB Host, by sending an LGO_U3 Link command. The USB 3380 always accepts LGO_U3 Requests, by sending an LAU Link command, then settles into the U3 Link state after it receives an LPMA Link command.

Exit from the U3 Link state can be initiated either by the USB Host, or a device remote wakeup sent by the PCI Express Adapter (endpoint) device or PCI Express Host.

13.4 PCI Express Power Management

The USB 3380 provides Configuration registers and support hardware required by the *PCI Power Mgmt. r1.2* and PCI Express Link Power Management, as explained in the *PCI Express Base r2.1*.

The PCI-compatible device power states are programmed by writing into PCI power management control and status register, power state field. An interrupt, indicated by the **IRQSTAT1** register *Power State Change Interrupt Status* bit (USB Controller, offset 2Ch[27]), is generated when the power state is changed.

Table 13-1 lists supported and non-supported features and the register bits/fields used for configuration or activation. The USB 3380 also supports ASPM Link power states entry and exit, which is controlled autonomously by hardware, depending upon traffic conditions.

Register		Description		Supported		
Offset	Bit(s)	Description	Yes	No		
		PCI Power Management Capability (All Ports and USB Controller)				
	7:0	Capability ID Program to 01h, to indicate that the Capability structure is the PCI Power Management Capability structure.	~			
	15:8	Next Capability Pointer Default 48h points to the MSI Capability structure.	~			
	18:16	Version Default 011b indicates compliance with the <i>PCI Power Mgmt. r1.2.</i>	r			
	19	PME Clock Power Management Event (PME) clock. Does not apply to PCI Express. Returns a value of 0.		r		
	21	Device-Specific Initialization Default 0 indicates that Device-Specific Initialization is <i>not</i> required.	~			
40h	24:22	 AUX Current The Data register (All Ports and USB Controller, offset 44h[31:24]) is not implemented, by default. Until serial EEPROM writes a value, the Data register field is all zeros (0s). If serial EEPROM writes to the Data register, the Data register indicates that it is implemented, and those agents can then Clear the AUX Current value. If the Data register is implemented: This field returns a value of 000b. The Data register takes precedence over this field. If wakeup from the D3cold state is not supported, this field returns a value of 000b.	r			
	25	D1 Support 1 = USB 3380 supports the D1 state	v			
	26	D2 Support 1 = USB 3380 supports the D2 state	v			
	31:27	PME Support Bits [31, 30, and 27] must be Set to indicate that the USB 3380 will forward PME Messages, as required by the <i>PCI Express Base r2.1</i> .	~			

Table 13-1. Supported PCI Express PM Capabilities

Register				Supported	
Offset	Bit(s)	Bit(s) Description		No	
		PCI Power Management Status and Control (All Ports and USB Controller	·)	1	
		Power State Used to determine the current Device PM state of the Port/SuperSpeed USB, and to program the Port/SuperSpeed USB into a new Device PM state.			
	1:0	00b = D0 01b = D1 10b = D2 11b = D3hot	r		
	3	No Soft Reset 0 = D3hot to D0 state change causes a Fundamental Reset of the Port/SuperSpeed USB. This reset is propagated to the downstream Port and devices. 1 = Devices transitioning from the D3hot to D0 state, because of Power State commands, do not perform an internal reset.	r		
44h	8	PME Enable 0 = Disables PME generation by the corresponding USB 3380 Port/SuperSpeed USB 1 = Enables PME generation by the corresponding USB 3380 Port/SuperSpeed USB	r		
	12:9	Data Select Initially writable by serial EEPROM only ^a . This Configuration Space register (CSR) access privilege changes to RW after a Serial EEPROM Write occurs to this register. Selects the field [14:13] (<i>Data Scale</i>) and PCI Power Management Data register Data field (All Ports and USB Controller, offset 44h[31:24]). 0h = D0 power consumed 1h = D1 power consumed 2h = D2 power consumed 3h = D3 power consumed All other encodings are <i>reserved</i> .	v		
	14:13	Data Scale Writable by serial EEPROM only ^a . Indicates the scaling factor to be used when interpreting the PCI Power Management Data register Data field (All Ports and USB Controller, offset 44h[31:24]) value. The value and meaning of the Data Scale field varies, depending upon which data value is selected by field [12:9] (Data Select). There are four internal Data Scale fields (one each, per Data Select values 0h, 1h, 2h, and 3h), per Port/SuperSpeed USB. For other Data Select values, the Data value returned is 00h.	v		
	15	PME Status 0 = PME is not generated by the corresponding USB 3380 Port/SuperSpeed USB 1 = PME is being generated by the corresponding USB 3380 Port/SuperSpeed USB	~		

Table 13-1.	Supported PCI Express PM Capabilities	(Cont.))
		(00110)	,

a. With no serial EEPROM programming, Reads return a value of 00h for the **PCI Power Management Status and Control** register Data Scale and **PCI Power Management Data** register Data fields (for all Data Selects).

Register		Description		Supported			
Offset	Bit(s)	Description	Yes	No			
	PC	Power Management Control/Status Bridge Extensions (All Ports and USB Controller)					
	22	B2/B3 Support Reserved Cleared, as required by the PCI Power Mgmt. r1.2.		r			
	23	Bus Power/Clock Control Enable Reserved Cleared, as required by the PCI Power Mgmt. r1.2.		v			
44h		PCI Power Management Data (All Ports and USB Controller)					
	31:24	Data Writable by serial EEPROM only ^a . There are four supported <i>Data Select</i> values (0h, 1h, 2h, and 3h), per Port/ SuperSpeed USB. For other <i>Data Select</i> values, the <i>Data</i> value returned is 00h. Selected by the PCI Power Management Status and Control register <i>Data Select</i> field (All Ports and USB Controller, offset 44h[12:9]).	v				
	Device Capability (All Ports and USB Controller)						
	8:6	Endpoint L0s Acceptable Latency 111b = Enables the capability	~				
	11:9	Endpoint L1 Acceptable Latency 111b = Enables the capability	~				
6Ch	25:18	Captured Slot Power Limit Value The upper limit on power supplied by the slot is determined by multiplying the value in this field by the value in field [27:26] (<i>Captured Slot Power Limit Scale</i>).	~				
	27:26	Captured Slot Power Limit Scale The upper limit on power supplied by the slot is determined by multiplying the value in this field by the value in field [25:18] (<i>Captured Slot Power Limit Value</i>). 00b = 1.0 01b = 0.1 10b = 0.01 11b = 0.001	~				

a. With no serial EEPROM programming, Reads return a value of 00h for the **PCI Power Management Status and Control** register Data Scale and **PCI Power Management Data** register Data fields (for all Data Selects).

Register		Description		Supported	
Offset Bit(s)				No	
		Device Control (All Ports and USB Controller)			
701-	10	AUX Power PM Enable	~		
70h		Device Status (All Ports and USB Controller)			
	20	AUX Power Detected	~		
		Link Capability (All Ports)			
		Active State Power Management (ASPM) Support			
		Active State Link PM support. Indicates the level of ASPM supported by the Port/SuperSpeed USB.			
	11:10	01b = L0s Link PM state entry is supported	~		
		10b = L1 ASPM is supported			
		11b = L0s and L1 Link PM states are supported			
		All other encodings are <i>reserved</i> .			
	14:12	L1 Exit Latency			
74h		 Indicates the L0s Link PM state exit latency for the given PCI Express Link. Value depends upon the Advertised N_FTS register Advertised N_FTS field (Port 0, offset B84h[7:0]) value and Link speed. Exit latency is calculated, as follows: 2.5 GHz – Multiply Advertised N_FTS x 4 (4 symbol times in 1 N_FTS) x 4 ns (1 symbol time at 2.5 GT/s) 5.0 GHz – Multiply Advertised N_FTS x 4 (4 symbol times in 1 N_FTS) x 2 ns (1 symbol time at 5.0 GT/s) 	v		
		100b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 512 ns to less than 1 μs at 5.0 GT/s 101b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 1 μs to less than 2 μs at 2.5 GT/s			
		All other encodings are <i>reserved</i> .			
		L1 Exit Latency Indicates the L1 Link PM state exit latency for the given PCI Express Link. Value depends upon the Link speed.			
	17:15	001b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 1 µs to less than 2 µs at 5.0 GT/s 010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/s	r		
		All other encodings are <i>reserved</i> .			
	18	Clock Power Management Capable		~	

Register Offset Bit(s)		Description		Supported	
				No	
		Link Control (All Ports and USB Controller)			
		Active State Power Management (ASPM)			
		$00b = Disable^{c}$			
78h	1:0	01b = Enables only L0s Link PM state Entry	~		
		10b = Enables only L1 Link PM state Entry			
		11b = Enables both L0s and L1 Link PM state Entries			
	8	Clock Power Management Enable		~	
		Power Budget Extended Capability Header (All Ports and USB Controller)		
	15:0	PCI Express Extended Capability ID	~		
		Program to 0004h, as required by the PCI Express Base r2.1.			
138h	19:16	Capability Version	r		
		Program to 1h, as required by the PCI Express Base r2.1.			
	31:20	Next Capability Offset			
		Program to 148h, which addresses the Virtual Channel Extended Capability structure.	~		
		Data Select (All Ports and USB Controller)			
		Data Select			
13Ch	7:0	Indexes the Power Budget data reported, Power Budget Data registers, two per Port/ SuperSpeed USB, and selects the DWord of Power Budget data that appears in each Power Budget Data register. Index values start at 0, to select the first DWord of Power Budget data; subsequent DWords of Power Budget data are selected by increasing index values 0 to 1.	V		

c. The Port Receiver must be capable of entering the LOs Link PM state, regardless of whether the state is disabled.

Register		Description		Supported	
Offset Bit(s)		- Description -		No	
		Power Budget Data (All Ports and USB Controller)			
	7:0	Base Power Two registers per Port/SuperSpeed USB. Specifies (in Watts) the base power value in the operating condition. This value must be multiplied by the field [9:8] (Data Scale) contents, to produce the actual power consumption value.	v		
	9:8	Data Scale Specifies the scale to apply to the Base Power value. The device power consumption is determined by multiplying the field [7:0] (<i>Base Power</i>) contents with the value corresponding to the encoding returned by this field. 00b = 1.0x 01b = 0.1x 10b = 0.01x 11b = 0.001x	2		
	12:10	PM Sub-State000b = Power Management substate of the operating condition being described	~		
140h	14:13	PM State Power Management state of the operating condition being described. 00b = D0 state 01b = D1 state 10b = D2 state 11b = D3 state	V		
	17:15	Type Type of operating condition being described. 000b = PME Auxiliary 001b = Auxiliary 010b = Idle 011b = Sustained 111b = Maximum All other encodings are <i>reserved</i> .	v		
	20:18	Power Rail Power Rail of the operating condition being described. 000b = Power 12V 001b = Power 3.3V 010b = Power 1.8V 111b = Thermal All other encodings are <i>reserved</i> .	v		

Table 13-1.	Supported PCI Express PM Capabilitie	es (Cont.)

Register		Description		Supported		
Offset	Bit(s)	- Description		No		
	Power Budget Capability (All Ports and USB Controller)					
144h	0	System Allocated 1 = Power budget for the device is included within the system power budget	v			
		Power Management Hot Plug User Configuration (All Ports and USB Contro	oller)			
	0	L0s Entry Idle Counter Traffic idle time to meet, to enter the L0s Link PM state. 0 = Idle condition must last 1 μs 1 = Idle condition must last 4 μs	r			
1E0h	7	Disable PCI Express PM L1 Entry 1 = Disables L1 Link PM state entry on Port 0, when Port 0 is placed into the D3hot state	v			
TEON	10	L0s Entry Disable 0 = Enables entry into the L0s Link PM state on a Port/the SuperSpeed USB when the L0s idle conditions are met 1 = Disables entry into the L0s Link PM state on a Port/the SuperSpeed USB when the L0s idle conditions are met	r			
	12	PME on Host Resume Enable 1 = Enables forwarding of PME Messages when USB Host Resume signaling is detected on the USB interface while the USB 3380 is in the D1, D2, or D3hot state	v			

13.4.1 Conventional PCI Device Power Management States

The PCI-compatible Device PM states, listed in Table 13-2, are programmed by writing into the **PCI Power Management Status and Control** register *Power State* field (All Ports and USB Controller, offset 44h[1:0]).

Power State	Description
D0	Fully operational. This state requires the greatest amount of current.
D1	Light sleep. Only PCI Express Configuration transactions are accepted. The PCI Express interface requests the PCI Express L1 Link PM state when programmed to the D1 state.
D2 Heavy sleep. Same as the D1 state. Only PCI Express Configuration transactions are accep The PCI Express interface requests the PCI Express L1 Link PM state when programmed the D2 state.	
	Software accessible. By default, the USB 3380 does not need to be re-configured when programmed back from the D3hot-to-D0 state, without power and PEX_PERST# recycling.
D3hot	Note: The USB 3380 is in this state before entering into a standby state or full power-off. Only PCI Express Configuration transactions are accepted. The PCI Express interface requests the PCI Express L1 Link PM state when programmed to the D3 state. After the USB 3380 is programmed to the D3hot state, sending a PME_Turn_Off Message to the Host can prepare the USB 3380 for turning Off the main power in Adapter mode.
D3cold Power Off. Main power to the USB 3380 is removed, with only the VAUX_CORE and VDD_IO supply rails optionally powered.	

 Table 13-2.
 Supported PCI Device Power Management States

13.4.2 PCI Express Link Power Management States

The USB 3380 holds its upstream Link and downstream Link in the L0 Link PM state during standard operation (Conventional PCI-PM state is in the D0 Active state). ASPM defines a mechanism for components in the D0 state, to reduce Link power by placing their Links into a low-power state and instructing the other end of the Link to do likewise. This allows hardware-autonomous, dynamic Link power reduction beyond what is achievable by software-only-controlled PM. Table 13-3 defines the relationship between a component's Power state and upstream Link. Table 13-4 defines the relationship between Link PM states and power-saving actions.

Conventional PCI PM, and the L1 and L2/L3 Ready Link PM states are controlled by the PCI Express Root Complex programming the USB 3380 into the D3hot state, and subsequently broadcasting the PME_Turn_Off Message to the USB 3380.

The USB 3380 supports the following PCI Express Link PM states:

- ASPM L0s Link Power Management State
- ASPM L1 Link Power Management State
- L1 PCI Express Link Power Management State
- L2/L3 Ready PCI Express Link Power Management State
- L2 or L3 PCI Express Link Power Management State

Each is described in the sections that follow.

		-
Downstream Component State	Permissible Upstream Component State	Permissible Interconnect Link PM State
D0	D0	L0, L0s, L1 (optional) – ASPM.
D1	D0-to-D1	L1, L2/L3 Ready.
D2	D0-to-D2	L1, L2/L3 Ready.
D3hot	D0-to-D3hot	L1, L2/L3 Ready.
D3cold (Vaux)	D0-to-D3cold	L2 (Vaux present), L3 (Vaux not present).

Table 13-3. Relationship between Component Power State and Upstream Link

Table 13-4. Relationship between Link PM States and Power-Saving Actions

Link Power Management State	Power-Saving Actions
Tx L0s	PCI Express Tx Lane is in a High-Impedance state.
Rx L0s	PCI Express Rx Lane is in a low-power state.
L1	PCI Express Tx and Rx Lanes are in a low-power state.
L2/L3 Ready	FC timers are suspended. Can optionally turn off the USB 3380 internal clocks.
L2 (D3cold with Vaux present)	Only WAKE# and beacon detect logic active with Vaux supply. Otherwise, the remainder of the USB 3380 is powered Off.
L3 (D3cold)	Component is fully powered Off. Vaux is not present.

13.4.2.1 ASPM L0s Link Power Management State

ASPM L0s Link PM state entry is controlled by the PCI Express Host programming the Link Control register *Active State Power Management (ASPM)* field (All Ports and USB Controller, offset 78h[1:0]) for ASPM control. When enabled and traffic idle conditions are met, the USB 3380 enters the L0s Link PM state, and the PHY Tx Lane is driven to a low-power Electrical Idle state. Receivers go to the L0s Link PM state, even if the Transmitter is not enabled for L0s. Exit from Tx L0s is triggered by a pending DLLP or TLP to transmit.

In Root Complex mode, the downstream Port LOs Link PM state can be enabled by the USB Host, serial EEPROM, and/or 8051 programming the *Active State Power Management (ASPM)* field for ASPM control.

13.4.2.2 ASPM L1 Link Power Management State

ASPM L1 Link PM state entry is controlled by the PCI Express Host programming the Link Control register *Active State Power Management (ASPM)* field (All Ports and USB Controller, offset 78h[1:0]) for ASPM control. When enabled and traffic idle conditions are met, the USB 3380 enters the L1 Link PM state after negotiation. Port 0 always starts L1 Link PM state negotiation. The PHY Tx and Rx Lane is in a low-power Electrical Idle state. Exit from ASPM L1 is triggered by a pending DLLP or TLP to transmit, and can be triggered by either side of the Link.

In Root Complex mode, ASPM L1 on downstream Ports can be enabled by the USB Host, serial EEPROM, and/or 8051 programming the *Active State Power Management (ASPM)* field for ASPM control. The downstream Port enters the ASPM L1 state when a downstream PCI Express Adapter (endpoint) requests the ASPM L1 Link PM state, and successfully negotiates L1 Link PM state entry.

13.4.2.3 L1 PCI Express Link Power Management State

L1 Link PM state entry is controlled by the PCI Express Host programming the **PCI Power Management Status and Control** register *Power State* field (All Ports and USB Controller, offset 44h[1:0]) to a non-zero value. When enabled and traffic idle conditions are met, Port 0 enters the PCI Express PM L1 Link power state after L1 negotiation. Port 0 always starts L1 Link PM state negotiation in Adapter mode. The PHY Tx and Rx Lane is in a low-power Electrical Idle state. Exit from PCI Express PM L1 is triggered by a pending DLLP or TLP to transmit, and it can be initiated by either side of the Link.

In Root Complex mode, PCI PM L1 state entry is initiated by the PCI Express endpoint device when the the USB Host and/or 8051 programs its *Device Power State* field to a non-zero value.

13.4.2.4 L2/L3 Ready PCI Express Link Power Management State

L2/L3 Ready Link PM state entry is controlled by a PCI Express Host sending a PME_Turn_Off Message to the USB 3380. When a PME_Turn_Off Message is received and traffic conditions are met, Port 0 sends a PME_TO_Ack Message and starts L2/L3 Ready Link PM state negotiation. The PHY Tx and Rx Lane is in a low-power Electrical Idle state when in the L2/L3 Ready Link PM state.

In Adapter mode, when the PCI Express upstream Link enters the L2/L3 Ready Link PM state, the USB interface disconnects from the USB Host, except when the USB interface is in the Suspend state. When suspended, the USB interface is not disconnected and facilitates either USB Host wakeup or USB 3380 device remote wakeup.

In Root Complex mode, a PME_Turn_Off Message can be generated, using the PCIOUT Dedicated endpoint, to put the PCI Express endpoint devices and USB 3380 downstream Port Lane into the L2/L3 Ready Link PM state.

13.4.2.5 L2 or L3 PCI Express Link Power Management State

The USB 3380 has the option of supporting a very low auxiliary power-operated Link/Device PM state when the PCI Express Link enters the L2/L3 Ready Link PM state in Adapter mode, or the USB Host is in the Suspend state in Root Complex mode. In Adapter mode, when the connected PCI Express system supports wakeup from the D3cold state and Auxiliary power is available, the USB 3380 settles into the D3cold state when main power is removed. The PCI Express Link settles into the L2 Link PM state.

If an Auxiliary power supply is not provided, and the system does not support the D3cold state, the PCI Express Link settles into the L3 Link PM state (powered Off). Refer to Section 13.7 for further details.

13.5 USB Suspend/Resume Sequences – Adapter Mode

The USB 3380 supports the following USB Suspend/Resume sequences in Adapter mode:

- Suspend Sequence with 8051 Held in Reset
- · Host-Initiated Wakeup with 8051 Held in Reset
- Suspend Sequence with 8051 Operating
- Host-Initiated Wakeup with 8051 Operating

13.5.1 Suspend Sequence with 8051 Held in Reset

- When a USB Host Suspend condition is detected, the USB 3380 Sets the IRQSTAT1 register Suspend Request Change Interrupt Status bit (USB Controller, offset 2Ch[2]), and generates an Interrupt Message to the PCI Express Host if the corresponding interrupt is enabled in the PCIIRQENB1 register Suspend Request Change PCI Express Interrupt Enable bit (USB Controller, offset 14h[2]).
- 2. The PCI Express Host places the USB 3380 into the low-power D1, D2, or D3hot state, by writing to the PCI Power Management Status and Control register (All Ports and USB Controller, offset 44h). If the USBCTL register *Immediately Suspend* bit (USB Controller, offset 8Ch[7]) is Set, after 500 µs the USB 3380 enters the Suspend state. If the *Immediately Suspend* bit is Cleared, the PCI Express Host must write to the IRQSTAT1 register *Suspend Request Interrupt Status* bit (USB Controller, offset 2Ch[3]), then write to the PCI Power Management Status and Control register, to change the USB 3380 into the D1, D2, or D3hot state. After the PCI Express Host writes to the *Suspend Request Interrupt Status* bit, and after 500 µs has passed, if the PCI Express Link enters the PCI Express L1 Link PM state, the USB 3380 enters the Suspend state.

Note: A Device-Remote Wakeup event is not recognized during the 500-µs suspend delay period.

If a USB device is self-powered (*that is*, not drawing power from the USB Host by way of the USB VBUS line), the PCI Express Host can ignore the Suspend Request Change interrupt and does not need to place the USB 3380 into the D1, D2, or D3hot state.

13.5.2 Host-Initiated Wakeup with 8051 Held in Reset

The USB Host can wake up the USB 3380, by driving a non-idle state on the USB_DM/USB_DP signals when operating in *USB r2.0* speed, or by driving an LFPS that meets *USB r3.0* SuperSpeed U3 Link state exit requirements. The USB 3380 detects the Host's Wakeup request, then restarts its internal clock if it is already in a stopped state. The Host-Initiated Wakeup is recognized only when the USB_VBUS input is High, and the USBCTL register *USB Root Port Wakeup Enable* and *USB Detect Enable* bits (USB Controller, offset 8Ch[11 and 3]) are both Set. The USB 3380 asserts the Suspend Request Change interrupt to the PCI Express Host, with the USBSTAT register *Suspend Status* bit (USB Controller, offset 90h[9]) Cleared. The PCI Express Host then places the USB 3380 into the D0 state, where it is ready to process USB packets.

If the PCI Express Host must wakeup the USB 3380 in the absence of USB Host activity, the PCI Express Host can change the state to D0. The PCI Express Host can write 1 to the **USBSTAT** register *Generate Resume* bit (USB Controller, offset 90h[5]). This causes a device remote wakeup to the USB Host, if remote wakeup is enabled by the USB Host through the corresponding SET_FEATURE Request. When operating in *USB r3.0* SuperSpeed mode, and device remote wakeup is detected when in the U3 state, after the Link is brought back to the U0 state, the USB 3380 sends a Device remote wakeup Device notification TP toward the USB Host.

13.5.3 Suspend Sequence with 8051 Operating

- 1. When a USB Host Suspend condition is detected, the 8051 and PCI Express Host receive the Suspend Request Change interrupt.
- 2. The 8051 or PCI Express Host places the USB 3380 into the D1/D2/D3 state, by writing to the PCI Power Management Status and Control register (All Ports and USB Controller, offset 44h). If the USBCTL register *Immediately Suspend* bit (USB Controller, offset 8Ch[7]) is Set after 500 µs, the USB 3380 enters a Suspend state when PCI Express Link settles into the L1 Link PM state.

Note: A Device-Remote Wakeup event is not recognized during the 500 µs suspend delay period.

If a device is self-powered, the 8051 or PCI Express Host can ignore the Suspend Request Change interrupt, and never place the USB 3380 into the D1/D2/D3 state.

13.5.4 Host-Initiated Wakeup with 8051 Operating

The USB Host can wakeup the USB 3380, by driving a non-idle state on the USB interface when operating at *USB r2.0* speed or by sending an LFPS that meets *USB r3.0* SuperSpeed U3 Link state exit requirements. The USB 3380 detects the Host's Wakeup Request, then restarts its internal clocks. The Host-Initiated Wakeup is recognized only when the USB_VBUS input is High, and the USBCTL register *USB Root Port Wakeup Enable* and *USB Detect Enable* bits (USB Controller, offset 8Ch[11, 3]) are both Set. The 8051 and PCI Express Host receive the Resume interrupt, if the corresponding interrupt(s) is enabled. The 8051 or PCI Express Host then changes the USB 3380 power state to the D0 state, where it is ready to process USB packets.

13.6 USB Suspend/Resume – Root Complex Mode

The USB 3380 supports the following USB Suspend/Resume sequences in Root Complex mode:

- Suspend Sequence
- USB Host-Initiated Wakeup
- Device-Remote Wakeup
- Resume Interrupt

13.6.1 Suspend Sequence

If the 8051 is running, perform the following Suspend procedure when operating in Root Complex mode:

- 1. During Configuration register initialization, the CPUIRQENB1 register *Suspend Request Change* 8051 Interrupt Enable bit (USB Controller, offset 1Ch[2]) is Set, to generate an 8051 interrupt.
- 2. When the USB is idle for 3 ms for the USB r2.0 mode of operation, or the USB Link enters the U3 Link state in the USB r3.0 SuperSpeed mode of operation, the USB 3380 Sets the IRQSTAT1 register Suspend Request Change Interrupt Status bit (USB Controller, offset 2Ch[2]), which generates an interrupt to the 8051. This interrupt also occurs in USB r2.0 mode when the USB 3380 is not connected to a Host, and the USB data lines are pulled to the idle state (HSDP and FSDP are High, and HSDM and FSDM are Low).

This interrupt only occurs if the USB_VBUS input is High.

- **3.** The 8051 accepts this interrupt by Clearing the *Suspend Request Change Interrupt Status* bit, and performs the required tasks. This can include placing other PCI Express devices into the Low-Power state and stopping the PCI Express clock to other devices.
- 4. The 8051 writes a 1 to the IRQSTAT1 register Suspend Request Interrupt Status bit (USB Controller, offset 2Ch[3]), to initiate the transition to the Low-Power Suspend state. After 500 μs, USB 3380 enters the Low-Power Suspend state.

Note: A Device-Remote Wakeup event is not recognized during the 500-µs suspend delay period.

If the **USBCTL** register *Immediately Suspend* bit (USB Controller, offset 8Ch[7]) is Set, the USB 3380 automatically suspends when the USB Host is idle for 3 ms in *USB r2.0* mode, or the Link settles into the U3 Link state when operating in *USB r3.0* mode. After 500 µs, the USB Link enters a Suspend state that consumes very low power, if the PCI Express Link is already in the L1 Link PM state.

If a device is self-powered, it can ignore the USB Suspend Request and never write 1 to the *Suspend Request Interrupt Status* bit.

13.6.2 USB Host-Initiated Wakeup

The USB Host can wakeup the USB 3380, by driving a non-idle state on the USB interface when operating at *USB r2.0* speed or by driving an LFPS that meets *USB r3.0* SuperSpeed U3 Link state exit requirements. The USB 3380 detects the Host's Wakeup Request. The Host-Initiated Wakeup is recognized only when the USB_VBUS input is High, and the USBCTL register *USB Root Port Wakeup Enable* and *USB Detect Enable* bits (USB Controller, offset 8Ch[11, 3]) are both Set. The 8051 receives a Resume interrupt and powers up the other PCI Express devices and associated clocks. The USB 3380 GPIO pins can be used for controlling power and clocks to other devices.

13.6.3 Device-Remote Wakeup

Another PCI Express device can initiate a Device-Remote Wakeup, by asserting WAKE# to the USB 3380. After the USB 3380 completes the wakeup process, the 8051 writes to the USBSTAT register *Generate Resume* bit (USB Controller, offset 90h[5]). This transmits a Device Remote Wake Resume signal to the USB Host.

13.6.4 Resume Interrupt

When the USB 3380 starts a Device-Remote or Host-Initiated Wakeup, the USB 3380 can also be programmed to generate a Resume interrupt. The **IRQSTAT1** register *Resume Interrupt Status* bit (USB Controller, offset 2Ch[1]) is Set when a resume is detected, and enabled to generate an interrupt when the *Resume Interrupt Enable* bit is Set.

13.7 USB Low-Power Suspend State

The USB 3380 has the option of entering the USB Low-Power Suspend state, when the USB interface enters the Suspended state, with most of its circuitry powered down. In the USB Low-Power Suspend state, a small portion of the USB 3380 that detects the Host wakeup and device remote wakeup is operational, which ensures that the suspend current from the USB_VBUS input is as low as 2.5 mA. This circuit mostly operates on the USB cable's VBUS pin. Main power to the USB 3380 can be controlled by LANE_GOOD# (GPIO0) output, which in turn controls a power switch MOSFET. In this state, GPIO1 is operated in the always ON power domain, and can be used to control the PCI Express Adapter (endpoint) device's clock reset and power.

Parameters Set by the USB Host (*such as* device address, configuration, and U1/U2_enable) are held in this power state. After USB Host or Device Resume is detected, the USB 3380 powers itself, using an external power switch that is controlled by LANE_GOOD#/GPIO0. A full re-programming of the register set, through serial EEPROM/USB Host or PCI Express Host, is required, to resume traffic after coming out of the USB Low-Power Suspend state.

In Adapter mode, where the USB 3380 resides in a PCI Express system, the suspend current can be provided from the PCI Express Vaux supply. In such systems, the USB 3380 has the capability of waking up either from USB Host Resume, or PCI Express WAKE#, or beacon events from PCI Express Adapter (endpoint) devices. In such cases, the PCI Express Host can wakeup the USB Host, after the USB 3380 is powered up and the PCI Express interface enters the L0 Link PM state.

Table 13-5 lists supported and non-supported features, and briefly describes the register bits/fields used for configuration or activation. For further details, refer to the referenced register bits/fields, in Chapter 15, "USB Configuration Registers."

Register		Description		orted
Offset	Bit(s)	Description		
		PCIIRQENB1 (USB Controller)		
	1	Resume PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when the	v	
	2	USB 3380 resumes from the Suspended state Suspend Request Change PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when a change in the Suspend Request Interrupt state is detected.	V	
14h	27	change in the Suspend Request Interrupt state is detected Power State Change PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when the PCI Power Management Status and Control register Power State field (All Ports and USB Controller, offset 44h[1:0]) changes	v	
	30	PCI Express Endpoint Power Management PCI Express Interrupt Enable Valid only in Adapter mode. PCI Express Adapter (endpoint) enable for Power Management PCI Express interrupts.	v	

Table 13-5. USB Power Management Support Registers

Register		Description		orted					
Offset	Bit(s)	Description		No					
		CPUIRQENB1 (USB Controller)							
		Resume 8051 Interrupt Enable							
	1	1 = Enables ability to generate an 8051 interrupt when the USB 3380 resumes from the Suspended state	~						
		Suspend Request Change 8051 Interrupt Enable							
1Ch	2	1 = Enables ability to generate an 8051 interrupt when a change in the Suspend Request Interrupt state is detected	~						
ren		Power State Change 8051 Interrupt Enable							
	27	1 = Enables ability to generate an 8051 interrupt when the PCI Power Management Status and Control register <i>Power State</i> field (All Ports and USB Controller, offset 44h[1:0]) changes	~						
		PCI Express Endpoint Power Management 8051 Interrupt Enable							
	30	Valid only in Enhanced Adapter mode.	~						
		1 = Enables ability to generate an 8051 interrupt to the PCI Express Adapter (endpoint)							
		USBIRQENB1 (USB Controller)							
	1	Resume USB Interrupt Enable							
		1 = Enables ability to generate a STATIN Endpoint interrupt when the USB 3380 resumes from the Suspended state	~						
	2	Suspend Request Change USB Interrupt Enable							
24h		1 = Enables ability to generate a STATIN Endpoint interrupt when a change in the Suspend Request Interrupt state is detected	~						
	27	Power State Change USB Interrupt Enable							
		1 = Enables ability to generate a STATIN Endpoint interrupt when the PCI Power Management Status and Control register <i>Power State</i> field (All Ports and USB Controller, offset 44h[1:0]) changes	~						
		PCI Express Endpoint Power Management USB Interrupt Enable							
	30	1 = Enables ability to generate a STATIN Endpoint interrupt to the PCI Express Adapter (endpoint)	~						
	IRQSTAT1 (USB Controller)								
	1	Resume Interrupt Status	v						
	1	1 = Indicates that the USB 3380 resumed from the Suspended state	•						
	2	Resume Interrupt Status 1 = Suspend Request Interrupt state (bit 3) changed	r						
2Ch	2	Resume Interrupt Status							
2011	3	1 = USB 3380 detected a USB Suspend Request from the Host	~						
	77	Power State Change Interrupt Status							
	27	1 = PCI Power Management Status and Control register <i>Power State</i> field (All Ports and USB Controller, offset 44h[1:0]) changed	~						
	30	PCI Express Endpoint Power Management Interrupt Status PCI Express Adapter (endpoint) Power Management PCI interrupt.	~						

Table 13-5. USB Power Management Support Registers (Cont.)

Register		- Description		orted
Offset	Bit(s)	Description		No
		USBCTL (USB Controller)		
	1	Remote Wakeup Enable 1 = Enables the Device Remote Wakeup feature	~	
	2	PCI Express Wakeup Enable 1 = Enables the PCI Express WAKE# pin or beacon, to wake up the USB 3380	r	
	5	Remote Wakeup Support Indicates whether the USB 3380 supports Device Remote Wakeup.	v	
8Ch	7	Immediately Suspend 0 = IRQSTAT1 register Suspend Request Interrupt Status bit (USB Controller, offset 2Ch[3]) must be written to initiate the Suspend sequence 1 = Allows the USB 3380 to automatically enter the Suspend state when the USB is idle for 3 ms. Automatically Set if Root Complex mode is selected and a valid serial EEPROM is not detected at reset time.	r	
	11	USB Root Port Wakeup Enable 0 = Wakeup condition is not detected 1 = Root Port Wakeup condition is detected when activity is detected on the USB line interface	v	
		USBSTAT (USB Controller)	r	r
90h	5	Generate Resume Writing 1 initiates a Resume sequence to the Host, if Device Remote Wakeup is enabled (USBCTL register Remote Wakeup Enable bit (USB Controller, offset 8Ch[1]) is Set).	v	
	9	Suspend Status 1 = Indicates that the USB 3380 was previously in the Suspend state	v	
		USBPM Control (USB Controller)		
	0	USB Mode PME to ACK Send Enable 1 = In Adapter mode, enables PME TO ACK Message generation in response to a received PME_Turn_Off Message	v	
	1	PME to ACK in Suspend Only 1 = In Adapter mode, enables PME to ACK generation only when the USB interface is in the Suspend state	r	
6C0h	2	USB2 L1 STATIN Pending Device Remote Wakeup Enable 1 = <i>USB r2.0</i> L1 Link PM state remote wakeup due to a pending STATIN Dedicated Endpoint interrupt. The USB 3380 returns a NYET handshake for L1 Requests, if a STATIN interrupt is pending.	r	
	3	USB2 L1 USB IN FIFO Packet Pending Device Remote Wakeup Enable 1 = Enables USB r2.0 L1 Link PM state remote wakeup due to a pending USB IN FIFO Data packet. The USB 3380 returns a NYET handshake for L1 Requests, if the USB IN FIFOs are not empty.	r	
	4	USB Suspend STATIN Pending Device Remote Wakeup Enable 1 = Enables USB Suspend Device Remote Wakeup due to a pending STATIN interrupt	~	
	5	USB Suspend IN FIFO Packet Pending Device Remote Wakeup Enable 1 = Enables USB Suspend Device Remote Wakeup due to a pending USB IN FIFO Data packet	~	

Table 13-5. USB Power Management Support Registers (Cont.)

Chapter 14 PCI Configuration Registers

14.1 Introduction

This chapter defines the USB 3380 PCI Configuration registers. Each USB 3380 Port and the SuperSpeed USB has its own PCI Configuration register space. The register mapping is similar for each Port/the SuperSpeed USB. (Refer to Table 14-1.) This chapter also presents the USB 3380 PCI Configuration registers and the order in which they appear in the register map. Register descriptions, when applicable, include details regarding their use and meaning in Port 0, the downstream Port, and the SuperSpeed USB. (Refer to Table 14-4.)

All USB 3380 registers can be accessed by Configuration or Memory Requests.

Other registers are defined in Section 15, "USB Configuration Registers."

For further details regarding register names and descriptions, refer to the following specifications:

- PCI r3.0
- PCI Power Mgmt. r1.2
- P-to-P Bridge r1.1
- PCI Express Base r2.1

14.2 PCI Configuration Register Map

Table 14-1 defines the PCI Configuration register mapping.

Table 14-1. PCI Configuration Register Map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCI Express Inte			
PCI-Compatible Type 1 Configurat	ion Header Reg	gisters (Offsets 00h – 3Ch)	Capability Pointer (40h)
USB PCI-Compatible Type 0 Configurat	Controller – ion Header Reg	gisters (Offsets 00h – 3Ch)	
		Next Capability Pointer (48h)	Capability ID (01h)
PCI Power M	anagement Cap	bability Registers (Offsets 40h – 44h)	
		Next Capability Pointer (68h)	Capability ID (05h)
MS	I Capability Re	egisters (Offsets 48h – 64h)	
		Next Capability Pointer (00h)	Capability ID (10h)
Nout Conskility Offsat (ED 4b)		eserved	A4h -
Next Capability Offset (FB4h)	1h	PCI Express Extended	Capability ID (0003h)
Device Serial Num	ber Extended C	Capability Registers (Offsets 100h –	134h)
Next Capability Offset (148h)	1h	PCI Express Extended	Capability ID (0004h)
Power Budget	Extended Capa	bility Registers (Offsets 138h – 144l	ı)
Next Capability Offset (950h)	1h	PCI Express Extended	Capability ID (0002h)
Virtual Channel	Extended Capa	ability Registers (Offsets 148h – 1BC	Ch)
Devie	ce-Specific Reg	isters (Offsets 1C0h – 444h)	
		eserved	520h -

Table 14-1. PCI Configuration Register Map (Cont.)

31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		
Devic	e-Specific Regist	ers (Offsets 530h – B88h)	530h	
Next Capability Offset 2 (000h)	1h	PCI Express Extended Capability ID 2 (000Bh)	950h	
Devic	e-Specific Regist	ers (Offsets 530h – B88h)	 B88h	
	Factory Test	Only/Reserved B8Ch -	FB0h	
Next Capability Offset (138h)	1h	PCI Express Extended Capability ID (0001h)	FB4h	
Advanced Error Repo	rting Extended Ca	apability Registers (Offsets FB4h – FE8h)	 FE8h	
Reserved FECh –				

14.3 Register Configuration and Map

The USB 3380 PCI Configuration registers are configured similarly – not all the same. Port 0 includes more Device-Specific registers than the SuperSpeed USB. Port 0 also contains registers that are used to set up and control the USB 3380, as well as a serial EEPROM interface.

Table 14-2 defines the register configuration and map.

 Table 14-2.
 Register Configuration and Map

Register Types	Port 0	Port 2	USB Controller
PCI Express Interface (Ports 0 and 2) – PCI-Compatible Type 1 Configuration Header Registers (Offsets 00h – 3Ch)	00h – 3Ch	00h – 3Ch	
USB Controller – PCI-Compatible Type 0 Configuration Header Registers (Offsets 00h – 3Ch)			00h – 3Ch
PCI Power Management Capability Registers (Offsets 40h – 44h)	40h - 44h	40h - 44h	40h - 44h
MSI Capability Registers (Offsets 48h – 64h)	48h - 64h	48h-64h	48h - 64h
PCI Express Capability Registers (Offsets 68h – A0h)	68h – A0h	68h – 80h 8Ch – A0h	68h – A0h
Device Serial Number Extended Capability Registers (Offsets 100h – 134h)	100h - 134h	100h - 134h	100h - 134h
Power Budget Extended Capability Registers (Offsets 138h – 144h)	138h – 144h		
Virtual Channel Extended Capability Registers (Offsets 148h – 1BCh)	148h – 1BCh	148h – 1BCh	148h – 1BCh
Device-Specific Registers (Offsets 1C0h – 444h)			
Device-Specific Registers – Error Checking and Debug (Offsets 1C0h – 1FCh)	1C0h – 1FCh	1E0h – 1ECh, 1F8h, 1FCh	1E0h – 1ECh, 1F8h, 1FCh
Device-Specific Registers – Physical Layer (Offsets 200h – 25Ch)	200h - 25Ch		
Device-Specific Registers – Serial EEPROM (Offsets 260h – 26Ch)	260h - 26Ch		
Device-Specific Registers (Offsets 530h – B88h)			
Device-Specific Registers – Port Configuration (Offset 574h)	574h		
Device-Specific Registers – Negotiated Link Width (Offsets 660h – 67Ch)	660h – 67Ch		
Device-Specific Registers – Vendor-Specific Extended Capability 2 (Offsets 950h – 95Ch)	950h – 95Ch	950h – 95Ch	950h – 95Ch
Device-Specific Registers – Ingress Credit Handler Control and Status (Offsets 9F0h – 9FCh)	9F0h – 9FCh		
Device-Specific Registers – Ingress Credit Handler Threshold (Offsets A00h – A2Ch)	A00h – A2Ch		
Device-Specific Registers – Physical Layer (Offsets B80h – B88h)	B80h – B88h		
Advanced Error Reporting Extended Capability Registers (Offsets FB4h – FE8h)	FB4h – FDCh	FB4h – FDCh	FB4h – FE8h

Table 14-3 lists registers that are generally individual registers that support all Ports and the SuperSpeed USB (changing the register value in one Port/SuperSpeed USB changes the same register in the other Port/SuperSpeed USB).

Offset	Register	Comment
00h	Vendor ID and Device ID	
08h	PCI Class Code and Revision ID	
34h	Capability Pointer	
100h	Device Serial Number Extended Capability Header	
104h	Serial Number (Lower DW)	
108h	Serial Number (Upper DW)	
950h	Vendor-Specific Extended Capability 2	
954h	Vendor-Specific Header 2	
958h	Hardwired Vendor ID and Hardwired Device ID	
95Ch	Hardwired Revision ID	

Table 14-3. Singular Registers Shared by All Ports and SuperSpeed USB

14.4 Register Access

Each Port and the SuperSpeed USB implement a 4-KB Configuration Space. The lower 256 bytes (offsets 00h through FFh) comprise the PCI-compatible Configuration Space, and the upper 960 Dwords (offsets 100h through FFFh) comprise the PCI Express Extended Configuration Space. The USB 3380 supports four mechanisms for accessing the registers:

- PCI r3.0-Compatible Configuration Mechanism
- PCI Express Enhanced Configuration Access Mechanism
- Device-Specific Memory-Mapped Configuration Mechanism
- Serial Peripheral Interface (SPI) Bus (refer to Chapter 5, "Serial EEPROM Controller")

The serial EEPROM sideband register access mechanism can modify Read-Only (RO) register values.

Each Port captures the Bus Number and Device Number on every Type 0 Configuration Write, as required by the *PCI r3.0*. Therefore, following a Fundamental Reset, software must initially perform a Configuration Write to each Port (using either the PCI r3.0-Compatible Configuration Mechanism or PCI Express Enhanced Configuration Access Mechanism), to allow each Port to capture its designated Bus Number and Device Number. The initial access to each Port, *for example*, could be a Configuration Write Request to a RO register, *such as* the **Device ID** / **Vendor ID** register (All Ports, offset 00h).

14.4.1 PCI r3.0-Compatible Configuration Mechanism

The *PCI r3.0*-Compatible Configuration mechanism provides standard access to the USB 3380 Ports' and the SuperSpeed USB's first 256 bytes (the bytes at offsets 00h through FFh) of the PCI Express Configuration Space. The mechanism uses PCI Type 0 and Type 1 Configuration transactions to access the USB 3380 Configuration registers. Each Port/SuperSpeed USB can convert a Type 1 Configuration Request (destined to a downstream Port or device) to a Type 0 Configuration Request (targeting the next downstream Port or device), as described below. The USB Controller responds only to Type 0 accesses. In Legacy Adapter mode, the USB 3380 responds only to Type 0 Requests on the PCI Express interface. In Enhanced Adapter mode, Type 1 Requests received by Port 0 are automatically converted to Type 0 Requests.

The USB 3380 decodes all Type 1 Configuration accesses received on Port 0, when any of the following conditions exist:

- If the Bus Number in the Configuration access is not within Port 0's Secondary Bus Number and Subordinate Bus Number range, Port 0 responds with an Unsupported Request (UR).
- Specified Bus Number in the Configuration access is the USB 3380 internal virtual PCI Bus Number, the USB 3380 automatically converts the Type 1 Configuration access into the appropriate Type 0 Configuration access for the specified device.
 - If the specified device corresponds to the PCI-to-PCI bridge in one of the USB 3380 downstream Ports, the USB 3380 processes the Read or Write Request to the specified downstream Port register specified in the original Type 1 Configuration access.
 - If the specified Device Number does not correspond to any of the USB 3380 downstream Port Device Numbers, the USB 3380 responds with a UR.

- If the specified Bus Number in the Type 1 Configuration access is not the USB 3380 internal virtual PCI Bus Number, but is the Bus Number of one of the USB 3380 downstream Port secondary/subordinate buses, the USB 3380 passes the Configuration access on to the PCI Express Link attached to that USB 3380 downstream Port.
 - If the specified Bus Number is the downstream Port Secondary Bus Number, and the specified Device Number is 0, the USB 3380 converts the Type 1 Configuration access to a Type 0 Configuration access before passing it on.
 - If the specified Device Number is not 0, the downstream Port drops the Transaction Layer Packet (TLP) and generates a UR.
- If the specified Bus Number is not the downstream Port Secondary Bus Number, the USB 3380 passes along the Type 1 Configuration access, without change.

Because the mechanism is limited to the first 256 bytes of the PCI Express Configuration Space of the USB 3380 Ports and SuperSpeed USB, the PCI Express Enhanced Configuration Access Mechanism or Device-Specific Memory-Mapped Configuration Mechanism must be used to access beyond Byte FFh. The PCI Express Enhanced Configuration Access mechanism can access the registers in the PCI-compatible region, as well as those in the PCI Express Extended Configuration Space.

14.4.2 PCI Express Enhanced Configuration Access Mechanism

The PCI Express Enhanced Configuration Access mechanism is implemented on all PCI Express PCs and on systems that do not implement a processor-specific firmware interface to the Configuration Space. The mechanism provides a Memory-Mapped Address space in the Root Complex, through which the Root Complex translates a Memory access into one or more Configuration Requests. Device drivers normally use an application programming interface (API) provided by the Operating System (OS), to use this mechanism.

The mechanism can be used to access all USB 3380 registers.

14.4.3 Device-Specific Memory-Mapped Configuration Mechanism

The Device-Specific Memory-Mapped Configuration mechanism provides a method to access the Configuration registers of all Ports and the USB Controller within a single 128-KB Memory map, as listed in Table 14-4. The registers are contained within a 4-KB range. To use this mechanism in Enhanced Adapter mode, program the Port 0 Type 1 Configuration Space **Base Address 0** and **Base Address 1** registers (**BAR0** and **BAR1**, offsets 10h and 14h, respectively), which are typically enumerated at boot time by BIOS and/or the OS software. After the Port 0 BARs are enumerated, Port 0 registers can be accessed with Memory Reads from and Writes to the first 4 KB (0000h to 0FFFh), Port 2 registers can be accessed with Memory Reads from and Writes to the third 4 KB (2000h to 2FFFh). (Refer to Table 14-4.) Within each of these 4-KB windows, individual registers are located at the DWord offsets indicated in Table 14-1.

Port 0 BAR0 and BAR1 are typically enumerated at boot time, by BIOS and/or the OS software.

USB Controller registers, for both Legacy and Enhanced modes, are accessible from the PCI Express interface, using Memory Read/Write accesses that are offset from the USB Controller Type 0 Header **BAR0/1** registers (**BAR0** and **BAR1**, offsets 10h and 14h, respectively), as listed in Table 14-5.

This mechanism follows the *PCI Express Base r2.1* Configuration Request Routing rules, which do not allow the propagation of Configuration Requests from downstream-to-upstream, nor peer-to-peer. By default, if a downstream Port receives a Memory Request from a downstream device targeting the USB 3380 Configuration registers, the Port or SuperSpeed USB:

- Responds to a Memory Read Request with a UR
- By default, silently discards a Memory Write Request (in compliance with the *PCI Express Base r2.1*)

In Memory Requests that target USB 3380 registers, the Payload Length indicated within the Memory Request Header must be 1 DWord. Lengths greater than 1 DWord result in a Completer Abort error.

Table 14-4. Port Register Offsets from Port 0 BAR0/1 Base Address (Enhanced Adapter Mode)

Port Number	Register Offset from Port 0 BAR0/1	Location Range
0 (upstream)	0000h to 0FFFh	0 to 4 KB
2(downstream; virtual Port connecting to USB Controller endpoint)	2000h to 2FFFh	8 to 12 KB

Table 14-5. USB Controller Register Offsets from USB Controller BAR0/1 Base Address (Legacy and Enhanced Adapter Modes)

Register Block	Register Offset from USB Controller BAR0/1	Location Range
USB Controller Configuration registers	0000h to 0FFFh	0 to 4 KB
USB Controller PCI Configuration registers (Type 0)	1000h to 1FFFh	4 to 8 KB

14.5 Register Descriptions

The remainder of this chapter details the USB 3380 registers, including:

- Bit/field names
- Description of register functions for each Port and the SuperSpeed USB
- Type (such as RW or HwInit; refer to Table 14-6 for Type descriptions)
- Whether the power-on/reset value can be modified, by way of the USB 3380 serial EEPROM Initialization feature
- Default power-on/reset value

Table 14-6. Register Types, Grouped by User Accessibility

Туре	Description
HwInit	Hardware-Initialized Refers to the USB 3380 Hardware-Initialization mechanism or USB 3380 Serial EEPROM register Initialization features. RO after initialization and can only be reset with a Fundamental Reset. HwInit register bits are not modified by a Soft Reset.
RO	Read-Only Read-Only and cannot be altered by software. Permitted to be initialized by the USB 3380 Hardware- Initialization mechanism or USB 3380 serial EEPROM register Initialization features.
ROS	Read-Only, Sticky Same as RO, except that bits are neither initialized nor modified by a Soft Reset.
RsvdP	<i>Reserved</i> and Preserved <i>Reserved</i> for future RW implementations. Registers are RO and must return a value of 0 when read. Software must preserve the value read for Writes to bits.
RsvdZ	<i>Reserved</i> and Zero <i>Reserved</i> for future RW1C implementations. Registers are RO and must return a value of 0 when read. Software must use 0 for Writes to bits.
RW	Read-Write Read/Write and permitted to be Set or Cleared by software to the needed state.
RW1C	Write 1 to Clear Status Indicates status when read. A status bit Set by the system (to indicate status) is Cleared by writing 1 to that bit. Writing 0 to the bit has no effect.
RW1CS	Write 1 to Clear, Sticky Same as RW1C, except that bits are neither initialized nor modified by a Soft Reset.
RWS	Read-Write, Sticky Same as RW, except that bits are Set or Cleared by software to the needed state. Bits are neither initialized nor modified by a Soft Reset.
RZ	Software Read Zero Software Read always returns a value of 0; however, software is allowed to write this register.
W1RZ	Write 1 to Clear, Software Read ZeroWrite 1 to activate the function. Reads to this bit always return a value of 0.
WO	Write-Only.

14.6 PCI-Compatible Type 1 Configuration Header Registers (Offsets 00h – 3Ch)

This section details the PCI-Compatible Type 1 Configuration Header registers. Table 14-7 defines the register map.

Table 14-7. PCI-Compatible Type 1 Configuration Header Register Map

31 30 29 28 27 26 25 24		15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		٦.
Devic	ce ID		lor ID	(
PCI S	tatus	PCI Co	ommand	(
	PCI Class Code		PCI Revision ID	(
PCI BIST (Reserved) PCI Header Type		Master Latency Timer (Not Supported) Cache Line Size		(
	Base A	ddress 0		
	Base A	ddress 1		
Secondary Latency Timer (Not Supported)	Subordinate Bus Number	Secondary Bus Number	Primary Bus Number	
Secondary Status	Not Supported/Reserved	I/O Limit	I/O Base	
Memory	y Limit	Memory Base		
Prefetchable N	Memory Limit	Prefetchable Memory Base		
	Prefetchable Memory	y Upper Base Address		
	Prefetchable Memory	Upper Limit Address		2
I/O Limit U	pper 16 Bits	I/O Base Upper 16 Bits		
	Reserved		Capability Pointer (40h)	
	Expansion ROM Bas	se Address (Reserved)	1	
Not Supported/Reserved	Bridge Control	PCI Interrupt Pin	PCI Interrupt Line	3

Register 14-1. 00h PCI Configuration ID (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	Vendor ID Identifies the device manufacturer. Defaults to the PCI-SIG-issued Vendor ID of PLX (10B5h), if not overwritten by serial EEPROM.	RO	Yes	10B5h
31:16	Device ID Identifies the particular device. Defaults to the PLX part number for the USB 3380, if not overwritten by serial EEPROM.	RO	Yes	3380h

Register 14-2. 04h PCI Command/Status (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default
	PCI Command			
0	I/O Access Enable 0 = USB 3380 ignores I/O Space accesses on the Port's primary interface 1 = USB 3380 responds to I/O Space accesses on the Port's primary interface	RW	Yes	0
1	Memory Access Enable 0 = USB 3380 ignores Memory Space accesses on the Port's primary interface 1 = USB 3380 responds to Memory Space accesses on the Port's primary interface	RW	Yes	0
2	Bus Master Enable Controls USB 3380 Memory and I/O Request forwarding upstream. Neither affect Message (including INTx Interrupt Messages) forwarding nor Completions traveling upstream or downstream. 0 = USB 3380 handles Memory and I/O Requests received on the Port's downstream/secondary interface as Unsupported Requests (URs); for Non-Posted Requests, the USB 3380 returns a Completion with UR Completion status. Because MSI Messages are in-band Memory Writes, disables MSI Messages as well. 1 = USB 3380 forwards Memory and I/O Requests upstream.	RW	Yes	0
3	Special Cycle Enable Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
4	Memory Write and Invalidate Enable Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
5	VGA Palette Snoop Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
6	Parity Error Response Enable Controls bit 24 (Master Data Parity Error Detected).	RW	Yes	0
7	IDSEL Stepping/Wait Cycle Control <i>Not supported</i> Cleared, as required by the <i>PCI Express Base r2.1</i> .	RsvdP	No	0
8	SERR# Enable Controls bit 30 (<i>Signaled System Error</i>). 1 = Enables reporting of Fatal and Non-Fatal errors detected by the device to the Root Complex, and, enables primary interface forwarding of ERR_FATAL and ERR_NONFATAL Messages from downstream Ports and devices when the Port's Bridge Control register <i>SERR# Enable</i> bit (All Ports, offset 3Ch[17]) is Set	RW	Yes	0
9	Fast Back-to-Back Transactions EnableNot supportedCleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
10	Interrupt Disable 0 = Port is enabled to generate INT <i>x</i> Interrupt Messages 1 = Port is prevented from generating INT <i>x</i> Interrupt Messages	RW	Yes	0
15:11	Reserved	RsvdP	No	0-0h

Register 14-2. 04h PCI Command/Status (All Ports) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
	PCI Status			
18:16	Reserved	RsvdP	No	000b
19	Interrupt Status 0 = No INT <i>x</i> Interrupt Message is pending 1 = INT <i>x</i> Interrupt Message is pending internally to the Port	RO	No	0
20	Capability List Capability function is supported. Set, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	1
21	66 MHz Capable Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
22	Reserved	RsvdP	No	0
23	Fast Back-to-Back Transactions Capable Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
24	 Master Data Parity Error Detected If bit 6 (<i>Parity Error Response Enable</i>) is Set, the Port Sets this bit when the Port: Forwards the poisoned Transaction Layer Packet (TLP) Write Request from the secondary to the primary interface, -or- Receives a Completion marked as poisoned on the primary interface If the <i>Parity Error Response Enable</i> bit is Cleared, the USB 3380 never Sets this bit. This error is natively reported by the Uncorrectable Error Status register <i>Poisoned TLP Status</i> bit (All Ports and USB Controller, offset FB8h[12]), which is mapped to this bit for Conventional PCI backward compatibility. 	RW1C	Yes	0
26:25	DEVSEL# Timing <i>Not supported</i> Cleared, as required by the <i>PCI Express Base r2.1.</i>	RsvdP	No	00Ь
27	 Signaled Target Abort Port 0 Sets this bit if one of the following conditions exist: Port 0 receives a Memory Request targeting a USB 3380 register, and the Payload Length (indicated within the Memory Request Header) is greater than 1 DWord Port 0 receives a Memory Request targeting a USB 3380 register address within a non-existent Port This error is reported by the Uncorrectable Error Status register Completer Abort Status bit (All Ports and USB Controller, offset FB8h[15]), which is mapped to this bit for Conventional PCI backward compatibility. 	RW1C	Yes	0

Register 14-2. 04h PCI Command/Status (All Ports) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
28	Received Target Abort Reserved	RsvdP	No	0
29	Received Master Abort Reserved	RsvdP	No	0
30	Signaled System Error If bit 8 (<i>SERR# Enable</i>) is Set, the Port Sets this bit when it transmits or forwards an ERR_FATAL or ERR_NONFATAL Message upstream. This error is natively reported by the Device Status register <i>Fatal Error</i> <i>Detected</i> and <i>Non-Fatal Error Detected</i> bits (All Ports and USB Controller, offset 70h[18:17], respectively), which are mapped to this bit for Conventional PCI backward compatibility.	RW1C	Yes	0
31	Detected Parity Error This error is natively reported by the Uncorrectable Error Status register <i>Poisoned TLP Status</i> bit (All Ports and USB Controller, offset FB8h[12]), which is mapped to this bit for Conventional PCI backward compatibility. 1 = Port received a Poisoned TLP on its primary side, regardless of the bit 6 (<i>Parity Error Response Enable</i>) state	RW1C	Yes	0

Register 14-3. 08h PCI Class Code and Revision ID (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default		
	PCI Revision ID					
7:0	Revision ID Unless overwritten by the serial EEPROM, returns the Silicon Revision (AAh or ABh), the PLX-assigned Revision ID for this version of the USB 3380. The USB 3380 Serial EEPROM register Initialization capability is used to replace the PLX Revision ID with another Revision ID.	RO	Yes	AAh or ABh		
	PCI Class Code		<u>.</u>	060400h		
15:8	Register-Level Programming Interface The USB 3380 Ports support the <i>P-to-P Bridge r1.1</i> requirements, but not subtractive decoding, on their upstream interface.	RO	Yes	00h		
23:16	Sub-Class Code PCI-to-PCI bridge.	RO	Yes	04h		
31:24	Base Class Code Bridge device.	RO	Yes	06h		

Register 14-4. 0Ch Miscellaneous Control (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Cache Line Size			
	Cache Line Size			
7:0	System Cache Line Size. Implemented as a RW field for Conventional PCI compatibility purposes and does not impact USB 3380 functionality.	RW	Yes	00h
	Master Latency Timer			
	Master Latency Timer			
15:8	Not supported	RsvdP	No	00h
	Cleared, as required by the PCI Express Base r2.1.			
	PCI Header Type			
	Configuration Layout Type			
22:16	The Port's Configuration Space Header adheres to the Type 1 PCI-to-PCI Bridge Configuration Space layout defined by the <i>P-to-P Bridge r1.1</i> .	RO	No	01h
	Multi-Function Device			
23	0 = Single-function device	RO	No	0
23	1 = Indicates multiple (up to eight) functions (logical devices), each containing its own, individually addressable Configuration Space, 256 DWords in size	RO	110	0
	PCI BIST			
	PCI BIST			
31:24	Reserved	RsvdP	No	00h
	Built-In Self-Test (BIST) Pass or Fail.			

Register 14-5. 10h Base Address 0 (Port 0)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
0	Memory Space Indicator 0 = Base Address register maps the USB 3380 Configuration registers into Memory space Note: Port 0 is hardwired to 0.	Port 0	RO	No	0
	Reserved	Downstream	RsvdP	No	0
2:1	Memory Map Type 00b = Base Address register is 32 bits wide and can be mapped anywhere in the 32-bit Memory space 10b = Base Address register is 64 bits wide and can be mapped anywhere in the 64-bit Address space All other encodings are <i>reserved</i> .	Port 0	RO	Yes	00b
	Reserved	Downstream	RsvdP	No	00b
3	Prefetchable0 = Base Address register maps the USB 3380 Configuration registers into Non-Prefetchable Memory spaceNote:Port 0 is hardwired to 0.	Port 0	RO	Yes	0
	Reserved	Downstream	RsvdP	No	0
13:4	Reserved		RsvdP	No	0-0h
31:14	Base Address 0 Base Address (BAR0) for the Device-Specific Memory-Mapped Configuration mechanism.	Port 0	RW	Yes	0-0h
	Reserved	Downstream	RsvdP	No	0-0h

Register 14-6. 14h Base Address 1 (Port 0)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
31:0	Base Address 1 RO when the Base Address 0 (BAR0) register is not enabled as a 64-bit BAR (<i>Memory Map Type</i> field (Port 0, offset 10h[2:1]) is not programmed to 10b).	Port 0	RW	Yes	0000_0000h
51.0	For 64-bit addressing (BAR0/1), Base Address 1 (BAR1) extends Base Address 0 (BAR0) to provide the upper 32 Address bits when the Base Address 0 register <i>Memory Map Type</i> field (Port 0, offset 10h[2:1]) is programmed to 10b.	Downstream	RsvdP	Yes	0000_0000h

Register 14-7. 18h Bus Number (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Primary Bus Number Primary Bus Number of this PCI-to-PCI bridge. Records the Bus Number of the PCI Bus segment to which the primary interface of this Port is connected. Set by Configuration software.	RW	Yes	00h
15:8	Secondary Bus Number Secondary Bus Number of this PCI-to-PCI bridge. Records the Bus Number of the PCI Bus segment that is the secondary interface of this Port. Set by Configuration software.	RW	Yes	00h
23:16	Subordinate Bus Number Subordinate Bus Number of this PCI-to-PCI bridge. Records the Bus Number of the highest numbered PCI Bus segment that is subordinate to this Port. Set by Configuration software.	RW	Yes	OOh
31:24	Secondary Latency Timer Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	00h

Register 14-8.	1Ch Secondary	Status,	I/O Limit,	and I/O Base
(All Ports)				

Bit(s)	Description	Туре	Serial EEPROM	Default
forward	If ISA Addressing mode is enabled (PCI Command register I/O Access Enable bit (ds I/O transactions from its primary interface to its secondary interface (downstrean by the I/O Base and I/O Limit registers when the Base is less than or equal to the L	n) if an I/O a		
I/O ada	sely, the Port forwards I/O transactions from its secondary interface to its primary in Iress is outside this Address range. If the Port does not implement an I/O Address ran transactions on its secondary interface upstream, to its primary interface.			
	I/O Base			
	I/O Base Addressing Capability			
3:0	1h = 32-bit I/O Address decoding is supported	RO	Yes	1h
	All other encodings are <i>reserved</i> .			
	I/O_BAR[15:12]			
	I/O Base Address[15:12]. The Ports use their I/O Base and I/O Limit registers to determine the address range of I/O transactions to forward from one interface to the other.			
7:4	I/O Base Address[15:12] bits specify the Port's I/O Base Address[15:12]. The USB 3380 assumes I/O Base Address[11:0]=000h.	RW	Yes	Fh
	For 16-bit I/O addressing, the USB 3380 assumes Address[31:16]=0000h.			
	For 32-bit addressing, the USB 3380 decodes Address[31:0], and uses the I/O Upper Base and Limit Address register <i>I/O Base Upper 16 Bits</i> and <i>I/O Limit</i> <i>Upper 16 Bits</i> fields (All Ports, offset 30h[15:0 and 31:16], respectively).			
	I/O Limit	•	ł	•
	I/O Limit Addressing Capability			
11:8	1h = 32-bit I/O Address decoding is supported	RO	Yes	1h
	All other encodings are <i>reserved</i> .			
	I/O_Limit[15:12]			
	I/O Limit Address[15:12]. The Ports use their I/O Base and I/O Limit registers to determine the Address range of I/O transactions to forward from one interface to the other.			
	The I/O Limit Address[15:12] bits specify the Port's I/O Limit Address[15:12]. The USB 3380 assumes Address bits [11:0] of the I/O Limit Address are FFFh.			
15:12	For 16-bit I/O addressing, the USB 3380 decodes Address bits [15:0] and assumes Address bits [31:16] of the I/O Limit Address are 0000h.	RW	Yes	Oh
	For 32-bit addressing, the USB 3380 decodes Address bits [31:0], and uses the I/O Upper Base and Limit Address register <i>I/O Base Upper 16 Bits</i> and <i>I/O Limit Upper 16 Bits</i> fields (All Ports, offset 30h[15:0 and 31:16], respectively).			
	If the I/O Limit Address is less than the I/O Base Address, the USB 3380 does not forward I/O transactions from the Port's primary/upstream bus to its secondary/downstream bus. However, the USB 3380 forwards all I/O transactions from the secondary bus of the Port to its primary bus.			

Register 14-8. 1Ch Secondary Status, I/O Limit, and I/O Base (All Ports) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Secondary Status	L	L	
20:16	Reserved	RsvdP	No	0-0h
21	66 MHz Capable Not supported	RsvdP	No	0
	0 = Not enabled, because PCI Express does <i>not support</i> 66 MHz			
22	Reserved	RsvdP	No	0
23	Fast Back-to-Back Transactions Capable Reserved Not enabled, because PCI Express does not support this function.	RsvdP	No	0
24	 Master Data Parity Error If the Bridge Control register Parity Error Response Enable bit (All Ports, offset 3Ch[16]) is Set, the Port Sets this bit when transmitting or receiving a TLP on its downstream side, and when either of the following two conditions occur: Port receives Completion marked poisoned Port forwards poisoned TLP Write Request If the Parity Error Response Enable bit is Cleared, the USB 3380 never Sets this bit. These errors are reported by the Uncorrectable Error Status register Poisoned TLP Status bit (All Ports and USB Controller, offset FB8h[12]), and mirrored to this bit for Conventional PCI backward compatibility. 	RW1C	Yes	0
26:25	DEVSEL# Timing <i>Not supported</i> Cleared, as required by the <i>PCI Express Base r2.1.</i>	RsvdP	No	00Ь
27	Signaled Target Abort Cleared, as required by the <i>PCI Express Base r2.1</i> .	RsvdP	No	0
28	Received Target Abort Cleared, as required by the <i>PCI Express Base r2.1</i> , because the USB 3380 never initiates a Request itself.	RsvdP	No	0
29	Received Master Abort Cleared, as required by the <i>PCI Express Base r2.1</i> , because the USB 3380 never initiates a Request itself.	RsvdP	No	0
30	Received System Error 1 = Downstream Port received an ERR_FATAL or ERR_NONFATAL Message on its secondary interface from a downstream device	RW1C	Yes	0
31	Detected Parity Error 1 = Downstream Port received a poisoned TLP from a downstream device, regardless of the Bridge Control register <i>Parity Error Response Enable</i> bit (All Ports, offset 3Ch[16]) state	RW1C	Yes	0

Register 14-9. 20h Memory Base and Limit (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default		
Note: The Port forwards Memory transactions from its primary interface to its secondary interface (downstream) if a Memory address is within the range defined by the Memory Base and Memory Limit registers (when the Base is less than or equal to the Limit).						
Conversely, the Port forwards Memory transactions from its secondary interface to its primary interface (upstream) if a Memory address is outside this Address range (provided that the address is not within the range defined by the Prefetchable Memory Base (All Ports, offsets $28h + 24h[15:0]$) and Prefetchable Memory Limit (All Ports, offsets $2Ch + 24h[31:16]$) registers).						
	Memory Base					
3:0	Reserved	RsvdP	No	Oh		
15:4	MEM_BAR[31:20] Memory Base Address[31:20]. Specifies the Port's Non-Prefetchable Memory Base Address[31:20]. The USB 3380 assumes Memory Base Address[19:0]=0_0000h.	RW	Yes	FFFh		
	Memory Limit		1	1		
19:16	Reserved	RsvdP	No	Oh		
31:20	MEM_Limit[31:20] Memory Limit Address[31:20]. Specifies the Port's Non-Prefetchable Memory Limit Address[31:20]. The USB 3380 assumes Memory Limit Address[19:0]=F_FFFFh.	RW	Yes	000h		

Register 14-10. 24h Prefetchable Memory Base and Limit (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default
address is	The Port forwards Memory transactions from its primary interface to its secondars s within the range defined by the Prefetchable Memory Base (All Ports, offsets 28 l Ports, offsets 2Ch + 24h[31:16]) registers (when the Base is less than or equal	$\frac{8h}{8h} + 24h[15]$:0]) and Prefetch	
address is	ly, the Port forwards Memory transactions from its secondary interface to its prins soutside this Address range (provided that the address is not within the range defi isters (All Ports, offset 20h)).			
	Prefetchable Memory Base			
	Prefetchable Memory Base Capability			
0	0 = Port supports 32-bit Prefetchable Memory Addressing 1 = Port defaults to 64-bit Prefetchable Memory Addressing support, as required by the <i>PCI Express Base r2.1</i>	RO	Yes	1
	<i>Note:</i> If the application needs 32-bit only Prefetchable space, the serial EEPROM must Clear both this bit and bit 16 (Prefetchable Memory Limit Capability).			
3:1	Reserved	RsvdP	No	000b
	PMEM_BAR[31:20]			
15:4	Prefetchable Memory Base Address[31:20]. Specifies the Port's Prefetchable Memory Base Address[31:20].	RW	Yes	FFFh
	The USB 3380 assumes Prefetchable Memory Base Address[19:0]=0_0000h.			
	Prefetchable Memory Limit			I
	Prefetchable Memory Limit Capability			
16	0 = Port supports 32-bit Prefetchable Memory Addressing 1 = Port defaults to 64-bit Prefetchable Memory Addressing support, as required by the <i>PCI Express Base r2.1</i>	RO	Yes	1
19:17	Reserved	RsvdP	No	000b
	PMEM_Limit[31:20]			
31:20	Prefetchable Memory Limit Address[31:20]. Specifies the Port's Prefetchable Memory Limit Address[31:20].	RW	Yes	000h
	The USB 3380 assumes Prefetchable Memory Limit Address[19:0]=F_FFFFh.			

Bit(s)	Description	Description		Serial EEPROM	Default
31:0	PBUP[63:32] Prefetchable Memory Base Address[63:32]. The USB 3380 uses this register for Prefetchable Memory Upper Base	Offset 24h[0]=1	RW	Yes	0000_0000h
51.0	Address[63:32]. When the Prefetchable Memory Base register <i>Prefetchable Memory Base Capability</i> field indicates 32-bit addressing, this register is RO and returns a value of 0000_0000h.	Offset 24h[0]=0	RO	No	0000_0000h

Register 14-11. 28h Prefetchable Memory Upper Base Address (All Ports)

Register 14-12. 2Ch Prefetchable Memory Upper Limit Address (All Ports)

Bit(s)	Description		Туре	Serial EEPROM	Default
	PLIMUP[63:32] Prefetchable Memory Limit Address[63:32]. The USB 3380 uses this register for Prefetchable Memory Upper Limit Address[63:32]. When the Prefetchable Memory Limit	Offset 24h[16]=1	RW	Yes	0000_0000h
31:0	When the Prefetchable Memory Limit register <i>Prefetchable Memory Limit Capability</i> field indicates 32-bit addressing, this register is RO and returns a value of 0000_0000h. <i>Note:</i> The serial EEPROM must not write a non-zero value into this register when the RO attribute is Set for this register.	Offset 24h[16]=0	RO	No	0000_0000h

Register 14-13. 30h I/O Upper Base and Limit Address (All Ports)

Bit(s)	Description		Туре	Serial EEPROM	Default
	I/O Base Upper 16 Bits The USB 3380 uses this register for I/O Base Address[31:16].	Offset 1Ch[3:0]=1h	RW	Yes	0000h
15:0	When the I/O Base register <i>I/O Base</i> <i>Addressing Capability</i> field indicates 16-bit addressing, this register is RO and returns a value of 0000h.	Offset 1Ch[3:0]=0h	RO	No	0000h
	I/O Limit Upper 16 Bits The USB 3380 uses this register for I/O Limit Address[31:16].	Offset 1Ch[11:8]=1h	RW	Yes	0000h
31:16	When the I/O Limit register <i>I/O Limit</i> Addressing Capability field indicates 16-bit addressing, this register is RO and returns a value of 0000h. Note: The serial EEPROM must not write a non-zero value into this register when the RO attribute is Set for this register.	Offset 1Ch[11:8]=0h	RO	No	0000h

Register 14-14. 34h Capability Pointer (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Capability Pointer Default 40h points to the PCI Power Management Capability structure.	RO	Yes	40h
31:8	Reserved	RsvdP	No	0000_00h

Register 14-15. 38h Expansion ROM Base Address (All Ports)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	Expansion ROM Base Address Reserved	RsvdP	No	0000_0000h

Register 14-16.	3Ch Bridge Control and PCI Interrupt Signal
(All Ports)	

Bit(s)	Description	Туре	Serial EEPROM	Default
	PCI Interrupt Line	•		
7:0	Interrupt Line Routing Value The USB 3380 does <i>not</i> use this register; however, the register is included for operating system and device driver use.	RW	Yes	00h
	PCI Interrupt Pin	1	1 1	
15.0	Interrupt Pin Identifies the Conventional PCI Interrupt Message(s) that the device (or device function) uses. Only value 00h or 01h is allowed in the USB 3380.	PO	Vas	01h
15:8	00h = Indicates that the device does not use Conventional PCI Interrupt Message(s) 01h, 02h, 03h, and 04h = Maps to Conventional PCI Interrupt Messages for INTA#, INTB#, INTC#, and INTD#, respectively	RO	Yes	0111
	Bridge Control		· · · · · · · · · · · · · · · · · · ·	
16	Parity Error Response Enable Controls the response to Poisoned TLPs. 0 = Disables the Secondary Status register Master Data Parity Error bit (All Ports, offset 1Ch[24]) 1 = Enables the Secondary Status register Master Data Parity Error bit (All Ports, offset 1Ch[24]) SEEDE# Enable	RW	Yes	0
17	SERR# Enable Controls forwarding of ERR_COR, ERR_FATAL, and ERR_NONFATAL from the secondary interface to the primary interface. When Set, and the PCI Command register <i>SERR# Enable</i> bit (All Ports, offset 04h[8]) is Set, enables the PCI Status register <i>Signaled System Error</i> bit (All Ports, offset 04h[30]).	RW	Yes	0
18	 ISA Enable Modifies the USB 3380's response to Conventional PCI ISA I/O addresses enabled by the Port's I/O Base and I/O Limit registers (All Ports, offset 1Ch[7:0 and 15:8], respectively) and located in the first 64 KB of the PCI I/O Address space (0000_0000h to 0000_FFFFh). 0 = Port's I/O Base and I/O Limit registers, and I/O Base Upper 16 Bits and I/O Limit Upper 16 Bits registers (All Ports, offset 30h[15:0 and 31:16], respectively), define the Port's I/O Address range 1 = If the Port's I/O Address range (defined by the Port's I/O Base, I/O Limit, I/O Base Upper 16 Bits, I/O Limit Upper 16 Bits registers) includes I/O addresses below 64 KB, the upper 768 I/O addresses within each 1-KB block below 64 KB are excluded from the Port's I/O Address range 	RW	Yes	0

Register 14-16. 3Ch Bridge Control and PCI Interrupt Signal (All Ports) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
	 VGA Enable Modifies the bridge response to VGA-compatible addresses. When Set, the bridge positively decodes and forwards the following addresses on the primary interface to the secondary interface (and, conversely, blocks forwarding of these addresses from the secondary interface to the primary interface): Memory addresses within the range 000A_0000h to 000B_FFFFh I/O addresses in the first 64 KB of the I/O Address space (AD[31:16] is 0000h), where AD[9:0] is within the ranges 3B0h to 3BBh and 3C0h to 3DFh (inclusive of ISA address aliases – AD[15:10] is not decoded) 			
	 ditionally, when Set, forwarding of these addresses is independent of the: Memory and I/O Address ranges defined by the bridge I/O Base, I/O Limit, Memory Base, Memory Limit, Prefetchable Memory Base, and Prefetchable Memory Limit registers Bit 18 (ISA Enable) Setting 		Yes	0
19	VGA address forwarding is qualified by the PCI Command register <i>Memory Access Enable</i> and <i>I/O Access Enable</i> bits (All Ports, offset 04h[1:0], respectively). The default state of this bit after reset must be 0.	RW		
	0 = Do not forward VGA-compatible Memory and I/O addresses from the primary to the secondary interface (addresses defined above) unless they are enabled for forwarding by the defined Memory and I/O Address ranges 1 = Forward VGA-compatible Memory and I/O addresses (addresses defined above) from the primary interface to the secondary interface (when the <i>Memory Access</i> <i>Enable</i> and <i>I/O Access Enable</i> bits are Set), independent of the Memory and I/O Address ranges and independent of the <i>ISA Enable</i> bit			
	<i>Note:</i> Conventional PCI VGA support – To avoid potential I/O address conflicts, if the VGA Enable bit is Set in Port 0 and a downstream Port, Set the PCI Command register I/O Access Enable bit (All Ports, offset 04h[0]) in the remaining downstream Ports, unless those downstream Ports are configured to use default 32-bit address decoding and their I/O Address range is Set above 1_0000h.			

Register 14-16. 3Ch Bridge Control and PCI Interrupt Signal (All Ports) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
20	VGA 16-Bit Decode Enable Used only when bit 19 (<i>VGA Enable</i>) is also Set, enabling VGA I/O decoding and forwarding by the bridge. Status after reset is 0. Enables system configuration software to select between 10- and 16-bit I/O address decoding, for VGA I/O register accesses forwarded from the primary interface to the secondary interface. 0 = Execute 10-bit address decodes on VGA I/O accesses	RW	Yes	0
	1 = Execute 16-bit address decodes on VGA I/O accesses			
21	Master Abort ModeNot supportedCleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
22	Secondary Bus Reset 1 = Causes a Hot Reset on the Port's downstream Link	RW	Yes	0
23	Fast Back-to-Back Transactions Enable Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
24	Primary Discard Timer Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
25	Secondary Discard Timer Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
26	Discard Timer Status <i>Not supported</i> Cleared, as required by the <i>PCI Express Base r2.1</i> .	RsvdP	No	0
27	Discard Timer SERR# Enable <i>Not supported</i> Cleared, as required by the <i>PCI Express Base r2.1</i> .	RsvdP	No	0
31:28	Reserved	RsvdP	No	Oh

14.7 PCI-Compatible Type 0 Configuration Header Registers (Offsets 00h – 3Ch)

This section details the PCI-Compatible Type 0 Configuration Header registers. Table 14-8 defines the register map.

Table 14-8. PCI-Compatible Type 0 Configuration Header Register Map (USB Controller)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
Device ID			lor ID
PCI	Status	PCI Co	ommand
	PCI Class Code	1	PCI Revision ID
PCI BIST (Reserved)	PCI Header Type	Master Latency Timer (Not Supported)	Cache Line Size
	Base A	ddress 0	
	Base A	ddress 1	
	Base A	ddress 2	
	Base A	ddress 3	
	Base A	ddress 4	
	Base A	ddress 5	
	Res	erved	
Subsys	stem ID	Subsystem	n Vendor ID
	Res	erved	
Reserved Capability Pointer (40h)			
	Res	erved	1
Max_Lat (<i>Reserved</i>)	Min_Gnt (Reserved)	PCI Interrupt Pin	PCI Interrupt Line

Register 14-17. 00h PCI Configuration ID (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	Vendor ID Identifies the device manufacturer. Defaults to the PCI-SIG-issued Vendor ID of PLX (10B5h), if not overwritten by serial EEPROM.	RO	Yes	10B5h
31:16	Device ID Identifies the particular device. Defaults to the PLX part number for the USB 3380, if not overwritten by serial EEPROM.	RO	Yes	3380h

Register 14-18. 04h PCI Command/Status (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
	PCI Command	•	•	
0	I/O Access Enable 0 = USB 3380 ignores I/O Space accesses on the USB Controller's primary interface 1 = USB 3380 responds to I/O Space accesses on the USB Controller's primary interface	RW	Yes	0
1	Memory Access Enable 0 = USB 3380 ignores Memory Space accesses on the USB Controller's primary interface 1 = USB 3380 responds to Memory Space accesses on the USB Controller's primary interface	RW	Yes	0
2	Bus Master Enable Controls USB 3380 Memory and I/O Request forwarding upstream. Neither affect Message (including INTx Interrupt Messages) forwarding nor Completions traveling upstream or downstream. 0 = USB 3380 handles Memory and I/O Requests received on the USB Controller downstream/secondary interface as Unsupported Requests (URs); for Non-Posted Requests, the USB 3380 returns a Completion with UR Completion status. Because MSI Messages are in-band Memory Writes, disables MSI Messages as well. 1 = USB 3380 forwards Memory and I/O Requests upstream.	RW	Yes	0
3	Special Cycle Enable Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0

Register 14-18. 04h PCI Command/Status (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Memory Write and Invalidate Enable			
4	Not supported	RsvdP	No	0
	Cleared, as required by the PCI Express Base r2.1.			
	VGA Palette Snoop			
5	Not supported	RsvdP	No	0
	Cleared, as required by the PCI Express Base r2.1.			
6	Parity Error Response Enable	RW	Yes	0
0	Controls bit 24 (Master Data Parity Error Detected).	KW	168	0
	IDSEL Stepping/Wait Cycle Control			
7	Not supported	RsvdP	No	0
	Cleared, as required by the PCI Express Base r2.1.			
	SERR# Enable		Yes	
8	Controls bit 30 (Signaled System Error).	RW		0
0	1 = Enables reporting of Fatal and Non-Fatal errors detected by the USB Controller to the Root Complex	i.vv		0
	Fast Back-to-Back Transactions Enable			
9	Not supported	RsvdP	No	0
	Cleared, as required by the PCI Express Base r2.1.			
10	Interrupt Disable			
	0 = USB Controller is enabled to generate INTx Interrupt Messages	RW	Yes	0
	1 = USB Controller is prevented from generating INT x Interrupt Messages			
15:11	Reserved	RsvdP	No	0-0h

Register 14-18. 04h PCI Command/Status (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
	PCI Status			
18:16	Reserved	RsvdP	No	000b
19	Interrupt Status0 = No INTx Interrupt Message is pending1 = INTx Interrupt Message is pending internally to the USB Controller	RO	No	0
20	Capability List Capability function is supported. Set, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	1
21	66 MHz Capable Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
22	Reserved	RsvdP	No	0
23	Fast Back-to-Back Transactions Capable Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	0
24	 Master Data Parity Error Detected If bit 6 (<i>Parity Error Response Enable</i>) is Set, the USB Controller Sets this bit when the USB Controller: Forwards the poisoned Transaction Layer Packet (TLP) Write Request from the secondary to the primary interface, -or- Receives a Completion marked as poisoned on the primary interface If the <i>Parity Error Response Enable</i> bit is Cleared, the USB 3380 never Sets this bit. This error is natively reported by the Uncorrectable Error Status register <i>Poisoned TLP Status</i> bit (All Ports and USB Controller, offset FB8h[12]), which is mapped to this bit for Conventional PCI backward compatibility. 	RW1C	Yes	0
26:25	DEVSEL# Timing <i>Not supported</i> Cleared, as required by the <i>PCI Express Base r2.1.</i>	RsvdP	No	00b
27	 Signaled Target Abort The USB Controller Sets this bit if any of the following conditions exist: USB Controller receives a Completion (from the PCI Express interface) that has a Completion status of Completer Abort (CA), -or- USB Controller receives a Memory Request targeting a USB 3380 register, and the Payload Length (indicated within the Memory Request Header) is greater than 1 DWord USB Controller receives a Memory Request targeting a USB 3380 register address within a non-existent Port Note: When Set during a forwarded Completion, the Uncorrectable Error Status register Completer Abort Status bit (All Ports and USB Controller, offset FB8h[15]) is not Set. 	RW1C	Yes	0

Register 14-18. 04h PCI Command/Status (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
28	Received Target Abort	RW1C	Yes	0
29	Received Master Abort	RW1C	Yes	0
30	Signaled System Error If bit 8 (<i>SERR# Enable</i>) is Set, the USB Controller Sets this bit when it transmits or forwards an ERR_FATAL or ERR_NONFATAL Message upstream. This error is natively reported by the Device Status register <i>Fatal Error</i> <i>Detected</i> and <i>Non-Fatal Error Detected</i> bits (All Ports and USB Controller, offset 70h[18:17], respectively), which are mapped to this bit for Conventional PCI backward compatibility.	RW1C	Yes	0
31	Detected Parity Error This error is natively reported by the Uncorrectable Error Status register <i>Poisoned TLP Status</i> bit (All Ports and USB Controller, offset FB8h[12]), which is mapped to this bit for Conventional PCI backward compatibility. 1 = USB Controller received a Poisoned TLP on its primary side, regardless of the bit 6 (<i>Parity Error Response Enable</i>) state	RW1C	Yes	0

Register 14-19. 08h PCI Class Code and Revision ID (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default		
	PCI Revision ID					
7:0	Revision ID Unless overwritten by the serial EEPROM, returns the Silicon Revision (AAh or ABh), the PLX-assigned Revision ID for this version of the USB 3380. The USB 3380 Serial EEPROM register Initialization capability is used to replace the PLX Revision ID with another Revision ID.	RO	Yes	AAh or ABh		
	PCI Class Code					
15:8	Register-Level Programming Interface The USB Controller supports the <i>P-to-P Bridge r1.1</i> requirements, but not subtractive decoding, on its upstream interface.	RO	Yes	FEh		
23:16	Sub-Class Code PCI-to-PCI bridge.	RO	Yes	03h		
31:24	Base Class Code Bridge device.	RO	Yes	0Ch		

Register 14-20. 0Ch Miscellaneous Control (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default		
	Cache Line Size					
7:0	Cache Line Size System Cache Line Size. Implemented as a RW field for Conventional PCI compatibility purposes and does not impact USB 3380 functionality.	RW	Yes	00h		
	Master Latency Timer					
	Master Latency Timer					
15:8	Not supported Cleared, as required by the PCI Express Base r2.1.	RsvdP	No	00h		
	PCI Header Type					
22:16	Configuration Layout Type The USB Controller Configuration Space Header adheres to the Type 1 PCI-to- PCI Bridge Configuration Space layout defined by the <i>P-to-P Bridge r1.1</i> .	RO	No	01h		
23	Multi-Function Device0 = Single-function device1 = Indicates multiple (up to eight) functions (logical devices), each containing its own, individually addressable Configuration Space, 256 DWords in size	RO	No	0		
	PCI BIST		·			
31:24	PCI BIST Reserved Built-In Self-Test (BIST) Pass or Fail.	RsvdP	No	00h		

Register 14-21. 10h Base Address 0 (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
0	Memory Space Indicator0 = Base Address register maps the USB 3380's USB Configurationregisters (refer to Chapter 15, "USB Configuration Registers") intoMemory spaceNote:Port 0 is hardwired to 0.	RO	No	0
	Reserved	RsvdP	No	0
2:1	Memory Map Type 00b = Base Address register is 32 bits wide and can be mapped anywhere in the 32-bit Memory space All other encodings are <i>reserved</i> .	RO	No	00Ь
3	Prefetchable 0 = Base Address register maps the USB 3380 Configuration registers into Non-Prefetchable Memory space Note: Port 0 is hardwired to 0.	RO	Yes	0
	Reserved	RsvdP	No	0
12:4	Reserved	RsvdP	No	0-0h
31:13	Base Address 0 Base Address (BAR0) for the Device-Specific Memory-Mapped Configuration mechanism.	RW	Yes	0-0h
	Reserved	RsvdP	No	0-0h

Register 14-22. 14h Base Address 1 (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
0	Memory Space Indicator 0 = Base Address register maps the on-chip 8051/DMA Descriptor RAM into Memory space	RO	No	0
2:1	Memory Map Type 00b = Base Address register is 32 bits wide and can be mapped anywhere in the 32-bit Memory space 10b = Base Address register is 64 bits wide and can be mapped anywhere in the 64-bit Address space All other encodings are <i>reserved</i> .	RO	No	00b
3	Prefetchable 0 = Base Address register maps the USB 3380 Configuration registers into Non-Prefetchable Memory space Note: Port 0 is hardwired to 0.	RO	Yes	0
15:4	Reserved	RsvdP	No	000h
31:16	Base Address 1Base Address (BAR1) for the Device-Specific Memory-Mapped Configuration mechanism.This Base Address field maps 32 KB of on-chip RAM used for storing 8051 microcode and/or on-chip DMA Descriptor tables. Accesses to this Memory space are limited to single DWord access for Writes, and up to 128 bytes for Reads.	RW	Yes	0000h

Register 14-23. 18h Base Address 2 (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
0	Memory Space Indicator 0 = Implemented as a Memory BAR	RO	No	0
2:1	Memory Map Type 00b = Base Address register is 32 bits wide and can be mapped anywhere in the 32-bit Memory space 10b = Base Address register is 64 bits wide and can be mapped anywhere in the 64-bit Address space All other encodings are <i>reserved</i> .	RO	Yes	00ь
3	Prefetchable 0 = Non-Prefetchable 1 = Prefetchable	RO	Yes	0
15:4	Reserved	RsvdP	No	000h
31:16	Base Address 2 Resolution is 1 MB.	RW	Yes	0000h

Register 14-24. 1Ch Base Address 3 (USB Controller)

Bit(s)	Description		Туре	Serial EEPROM	Default			
<i>Note:</i> This register has RW privilege if BAR2/3 is configured as a 64-bit BAR (Base Address 2 register Memory Map Type field (USB Controller, offset 18h[2:1]), is programmed to 10b).								
0	Memory Space Indicator BAR3 can be used as an independent 32-bit only BAR,	Offset 18h[2:1]=00b	RsvdP	No	0			
0	or as the upper 32 bits of 64-bit BAR2/3 . 0 = Memory space only supported	Offset 18h[2:1]=10b	RW	Yes	0			
2:1	Memory Map Type 00b = Base Address register is 32 bits wide and can	Offset 18h[2:1]=00b	RsvdP	No	00b			
2:1	be mapped anywhere in the 32-bit Memory space All other encodings are <i>reserved</i> .	Offset 18h[2:1]=10b	RW	Yes	00b			
2	Prefetchable	Offset 18h[2:1]=00b	RsvdP	No	0			
3	0 = Non-Prefetchable 1 = Prefetchable	Offset 18h[2:1]=10b	RW	Yes	0			
	Reserved	Offset 18h[2:1]=00b	RsvdP	No	000h			
15:4	When BAR2/3 are used as a 64-bit BAR, bits [31:0] (including bits [15:4]) are used as the upper 32 bits.	Offset 18h[2:1]=10b	RW	Yes	000h			
31:16	Base Address 3		RW	Yes	0000h			

Register 14-25. 20h Base Address 4 (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
0	Memory Space Indicator 0 = Memory space only supported	RO	No	0
2:1	Memory Map Type 00b = Base Address register is 32 bits wide and can be mapped anywhere in the 32-bit Memory space 10b = Base Address register is 64 bits wide and can be mapped anywhere in the 64-bit Address space All other encodings are <i>reserved</i> .	RO	Yes	00b
3	Prefetchable 0 = Non-Prefetchable 1 = Prefetchable	RO	Yes	0
15:4	Reserved	RsvdP	No	000h
31:16	Base Address 4	RW	Yes	0000h

Register 14-26. 24h Base Address 5 (USB Controller)

Bit(s)	Description		Туре	Serial EEPROM	Default			
<i>Note:</i> This register has RW privilege if BAR4/5 is configured as a 64-bit BAR (Base Address 4 register Memory Map Type field (USB Controller, offset 20h[2:1]), is programmed to 10b).								
0	Memory Space Indicator BAR5 can be used as an independent 32-bit only BAR,	Offset 20h[2:1]=00b	RsvdP	No	0			
0	or as the upper 32 bits of 64-bit BAR4/5 . 0 = Memory space only supported	Offset 20h[2:1]=10b	RW	Yes	0			
2:1	Memory Map Type 00b = Base Address register is 32 bits wide and can	Offset 20h[2:1]=00b	RsvdP	No	00b			
	mapped anywhere in the 32-bit Memory space l other encodings are <i>reserved</i> .	Offset 20h[2:1]=10b	RW	Yes	00b			
	Prefetchable	Offset 20h[2:1]=00b	RsvdP	Yes	0			
3	0 = Non-Prefetchable 1 = Prefetchable	Offset 20h[2:1]=10b	RW	Yes	0			
	Reserved	Offset 20h[2:1]=00b	RsvdP	No	000h			
15:4	When BAR4/5 are used as a 64-bit BAR, bits [31:0] (including bits [15:4]) are used as the upper 32 bits.	Offset 20h[2:1]=10b	RW	Yes	000h			
31:16	Base Address 5		RW	Yes	0000h			

Register 14-27. 2Ch Subsystem ID and Subsystem Vendor ID (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Subsystem Vendor ID			
15:0	Subsystem Vendor ID Identifies the device manufacturer. Defaults to the PCI-SIG-issued Vendor ID of PLX (10B5h), if not overwritten by serial EEPROM.	RO	Yes	10B5h
	Subsystem ID			
31:16	Device ID Identifies the particular device. Defaults to the PLX part number for the USB 3380, if not overwritten by serial EEPROM.	RO	Yes	3380h

Register 14-28. 34h Capability Pointer (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Capability Pointer Default 40h points to the PCI Power Management Capability structure.	RO	Yes	40h
31:8	Reserved	RsvdP	No	0000_00h

Register 14-29. 3Ch Bridge Control and PCI Interrupt Signal (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default	
	PCI Interrupt Line				
7:0	Interrupt Line Routing Value The USB 3380 does <i>not</i> use this register; however, the register is included for operating system and device driver use.	RW	Yes	00h	
	PCI Interrupt Pin				
15:8	Interrupt Pin Identifies the Conventional PCI Interrupt Message(s) that the device (or device function) uses. Only value 00h or 01h is allowed in the USB 3380. 00h = Indicates that the device does not use Conventional PCI Interrupt Message(s) 01h, 02h, 03h, and 04h = Maps to Conventional PCI Interrupt Messages for INTA#, INTB#, INTC#, and INTD#, respectively	RO	Yes	01h	
	Min_Gnt				
23:16	Minimum Grant Reserved Does not apply to PCI Express.	RsvdP	No	00h	
	Max_Lat				
31:24	Maximum Latency Reserved Does not apply to PCI Express.	RsvdP	No	00h	

14.8 PCI Power Management Capability Registers (Offsets 40h – 44h)

This section details the PCI Power Management Capability registers. Table 14-9 defines the register map.

Table 14-9. PCI Power Management Capability Register Map (All Ports and USB Controller)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCI Power Manag	gement Capability	Next Capability Pointer (48h)	Capability ID (01h)	40h
PCI Power Management Data	PCI Power Management Control/Status Bridge Extensions (<i>Reserved</i>)	PCI Power Manageme	ent Status and Control	44h

Register 14-30. 40h PCI Power Management Capability (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Capability ID Program to 01h, to indicate that the Capability structure is the PCI Power Management Capability structure.	RO	Yes	01h
15:8	Next Capability Pointer Default 48h points to the MSI Capability structure.	RO	Yes	48h
18:16	Version Default 011b indicates compliance with the <i>PCI Power Mgmt. r1.2.</i>	RO	Yes	011b
19	PME Clock Power Management Event (PME) clock. Does not apply to PCI Express. Returns a value of 0.	RsvdP	No	0
20	Reserved	RsvdP	No	0
21	Device-Specific Initialization 0 = Device-Specific Initialization is <i>not</i> required	RO	Yes	0
24:22	 AUX Current The Data register (All Ports and USB Controller, offset 44h[31:24]) is not implemented, by default. Until serial EEPROM writes a value, the Data register field is all zeros (0s). If serial EEPROM writes to the Data register, the Data register indicates that it is implemented, and those agents can then Clear the AUX Current value. If the Data register is implemented: This field returns a value of 000b. The Data register takes precedence over this field. If wakeup from the D3cold state is not supported, this field returns a value of 000b. 	RO	Yes	001b
25	D1 Support 1 = USB 3380 supports the D1 state	RO	No	1
26	D2 Support 1 = USB 3380 supports the D2 state	RO	No	1
31:27	PME Support Bits [31, 30, and 27] must be Set, to indicate that the USB 3380 will forward PME Messages, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	1Eh

Bit(s)	Description	Туре	Serial EEPROM	Default
	PCI Power Management Status and Control			
1:0	Power State Used to determine the current Device PM state of the Port/SuperSpeed USB, and to program the Port/SuperSpeed USB into a new Device PM state. 00b = D0 01b = D1 10b = D2 11b = D3hot	RW	Yes	00Ъ
	If software attempts to write an unsupported state to this field, the Write operation completes normally; however, the data is discarded and no state change occurs.			
2	Reserved	RsvdP	No	0
3	No Soft Reset 0 = D3hot to D0 state change causes a Fundamental Reset of the Port/SuperSpeed USB. This reset is propagated to the downstream Port and devices. 1 = Devices transitioning from the D3hot to D0 state, because of Power State commands, do not perform an internal reset.	RO	Yes	0
7:4	Reserved	RsvdP	No	Oh
8	PME Enable0 = Disables PME generation by the corresponding USB 3380 Port/ SuperSpeed USB1 = Enables PME generation by the corresponding USB 3380 Port/ SuperSpeed USB	RWS	No	0
12:9	Data Select Initially writable by serial EEPROM only ^a . This Configuration Space register (CSR) access privilege changes to RW after a Serial EEPROM Write occurs to this register. Selects the field [14:13] (<i>Data Scale</i>) and PCI Power Management Data register Data field (All Ports and USB Controller, offset 44h[31:24]). 0h = D0 power consumed 1h = D1 power consumed 2h = D2 power consumed 3h = D3 power consumed All other encodings are <i>reserved</i> .	RO	Yes	Oh
14:13	Data Scale Writable by serial EEPROM only ^a . Indicates the scaling factor to be used when interpreting the PCI Power Management Data register Data field (All Ports and USB Controller, offset 44h [31:24]) value. The value and meaning of the Data Scale field varies, depending upon which data value is selected by field [12:9] (Data Select). There are four internal Data Scale fields (one each, per Data Select values 0h, 1h, 2h, and 3h), per Port. For other Data Select values, the Data value returned is 00h.	RO	Yes	00b
15	PME Status 0 = PME is not generated by the corresponding USB 3380 Port/SuperSpeed USB 1 = PME is being generated by the corresponding USB 3380 Port/SuperSpeed USB	RW1CS	No	0

Register 14-31. 44h PCI Power Management Status and Control (All Ports and USB Controller)

Register 14-31. 44h PCI Power Management Status and Control (All Ports and USB Controller) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default		
	PCI Power Management Control/Status Bridge Extensions					
21:16	Reserved	RsvdP	No	0-0h		
22	B2/B3 Support Reserved Cleared, as required by the PCI Power Mgmt. r1.2.	RsvdP	No	0		
23	Bus Power/Clock Control Enable Reserved Cleared, as required by the PCI Power Mgmt. r1.2.	RsvdP	No	0		
	PCI Power Management Data					
31:24	Data Writable by serial EEPROM only ^a . There are four supported Data Select values (0h, 1h, 2h, and 3h), per Port/ SuperSpeed USB. For other Data Select values, the Data value returned is 00h. Selected by the PCI Power Management Status and Control register Data Select field (All Ports and USB Controller, offset 44h[12:9]).	RO	Yes	OOh		

a. With no serial EEPROM programming, Reads return a value of 00h for the **PCI Power Management Status and Control** register Data Scale and **PCI Power Management Data** register Data fields (for all Data Selects).

14.9 MSI Capability Registers (Offsets 48h – 64h)

This section details the Message Signaled Interrupt (MSI) Capability registers. Table 14-10 defines the register map.

Table 14-10.MSI Capability Register Map
(All Ports and USB Controller)^a

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
MSI Control	Next Capability Pointer (68h)Capability ID (05h)	48h
MSI A	Address	4Ch
MSI Upp	er Address	50h
Reserved	MSI Data	54h
MSI	Mask	58h
MSI	Status	5Ch
Res	erved 60h-	64h

a. Offsets 54h, 58h, and 5Ch change to 50h, 54h, and 58h, respectively, when the **MSI Control** register MSI 64-Bit Address Capable bit (All Ports and USB Controller, offset 48h[23]) is Cleared.

Register 14-32. 48h MSI Capability (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
	MSI Capability Header	4		
7:0	Capability ID Program to 05h, as required by the <i>PCI r3.0</i> .	RO	Yes	05h
15:8	Next Capability Pointer Program to 68h, to point to the PCI Express Capability structure.	RO	Yes	68h
	MSI Control	1		
16	MSI Enable 0 = MSIs for the Port/SuperSpeed USB are disabled 1 = MSIs for the Port/SuperSpeed USB are enabled, and INT <i>x</i> Interrupt Messages are disabled	RW	Yes	0
19:17	Multiple Message Capable 000b = Port/SuperSpeed USB can request only one MSI Vector 001b = Port/SuperSpeed USB can request two MSI Vectors 010b through 111b = Reserved	RO	Yes	001b
22:20	Multiple Message Enable 000b = Port/SuperSpeed USB is allocated one MSI Vector, by default 001b = Port/SuperSpeed USB is allocated two MSI Vectors 010b through 111b = Reserved Note: This field should not be programmed with a value larger than that of field [19:17] (Multiple Message Capable). If the value of this field is larger than that of field [19:17], the Multiple Message Capable value takes effect.	RW	Yes	000Ъ
23	MSI 64-Bit Address Capable 0 = USB 3380 is capable of generating MSI 32-bit addresses (MSI Address register, offset 4Ch, is the Message address) 1 = USB 3380 is capable of generating MSI 64-bit addresses (MSI Address register, offset 4Ch, is the lower 32 bits of the Message address, and MSI Upper Address register, offset 50h, is the upper 32 bits of the Message address)	RO	Yes	1
24	Per Vector Masking Capable 0 = USB 3380 does not have Per Vector Masking capability 1 = USB 3380 has Per Vector Masking capability	RO	Yes	1
31:25	Reserved	RsvdP	No	0-0h

Register 14-33. 4Ch MSI Address (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
1:0	Reserved	RsvdP	No	00b
31:2	Message Address Note: If the MSI Control register MSI 64-Bit Address Capable bit (All Ports and USB Controller, offset 48h[23]) is Set (default), refer to the MSI Upper Address register for the MSI Upper Address (All Ports and USB Controller, offset 50h).	RW	Yes	0-0h

Register 14-34. 50h MSI Upper Address (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	Message Upper AddressThis register is valid/used only when the MSI Control registerMSI 64-Bit Address Capable bit (All Ports and USB Controller, offset 48h[23]) is Set.MSI Write transaction upper address[63:32].Note:Refer to the MSI Address register for the MSI Lower Address	RW	Yes	0000_0000h

Register 14-35. 54h MSI Data (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default			
	<i>Note:</i> The offset for this register changes from 54h, to 50h, when the MSI Control register MSI 64-Bit Address Capable bit (All Ports and USB Controller, offset 48h[23]) is Cleared.						
15:0	Message Data MSI Write transaction TLP Payload.	RW	Yes	0000h			
31:16	Reserved	RsvdP	No	0000h			

Register 14-36. 58h MSI Mask (All Ports and USB Controller)

Bit(s)	Description		Туре	Serial EEPROM	Default	
	rrSpeed USB interrupt sources are grouped into two ca Ch and 28h, respectively).	tegories – IRQSTAT1 and I	IRQSTAT0 re	gisters (USB C	Controller,	
Message .	tity of MSI Vectors that are generated is determined by <i>Enable</i> fields (All Ports and USB Controller, offset 48)	h[19:17 and 22:20], respecti	vely):		nd <i>Multiple</i>	
• If t	 ne MSI Vector is enabled (default mode), both interrup wo MSI Vectors are enabled, the individual vectors ind Vector[0] IRQSTAT1 Vector[1] IRQSTAT0 		a single Vecto	r		
Notes: The offset for this register changes from 58h, to 54h, when the MSI Control register MSI 64-Bit Address Capable bit (All Ports and USB Controller, offset 48h[23]) is Cleared. The bits in this register can be used to mask their respective MSI Status register bits (All Ports and USB Controller, offset 5Ch).						
	MSI Mask for IRQSTAT1	Offset 48h[22:20]=001b	RW	Yes	0	
0	MSI Mask for Shared Interrupt Sources MSI mask for both interrupt sources when the MSI Control register <i>Multiple Message Enable</i> field indicates that the Host has allocated one Vector.	Offset 48h[22:20]=000b	RW	Yes	0	
1	MSI Mask for IRQSTAT0	Offset 48h[22:20]=001b	RW	Yes	0	
1	Reserved	Offset 48h[22:20]=000b	RsvdP	No	0	
31:2	Reserved		RsvdP	No	0-0h	

Register 14-37. 5Ch MSI Status (All Ports and USB Controller)

one Vector.

Reserved

Reserved

1

31:2

Enable field indicates that the Host has allocated

MSI Pending Status for IRQSTAT0

Bit(s)	Description		Туре	Serial EEPROM	Default
	rSpeed USB interrupt sources are grouped into two cath and 28h, respectively).	tegories – IRQSTAT1 and I	IRQSTAT0 re	gisters (USB C	Controller,
	ity of MSI Vectors that are generated is determined by Enable fields (All Ports and USB Controller, offset 481			age Capable a	nd <i>Multiple</i>
• If ty - - The bits i	 ne MSI Vector is enabled (default mode), both interrup vo MSI Vectors are enabled, the individual vectors ind Vector[0] IRQSTAT1 Vector[1] IRQSTAT0 n this register are self-Clearing, as soon as the USB 33 	icate: 80 generates the MSI Messa	age. In the eve	nt that a partic	
	masked in the MSI Mask register (All Ports and USB e generation is masked or blocked.	Controller, offset 58h), Stat	<i>us</i> bits will no	t be automatic	ally Cleared
	he offset for this register changes from 5Ch, to 58h, wh and USB Controller, offset 48h[23]) is Cleared.	nen the MSI Control registe	r MSI 64-Bit A	Address Capab	le bit
The bits is	n this register can be masked by their respective MSI M	Mask register bits (All Ports	and USB Con	troller, offset	58h).
	MSI Pending Status for IRQSTAT1	Offset 48h[22:20]=001b	RW	Yes	0
0	MSI Pending Status for Shared Interrupt Sources				
0	MSI pending status for both interrupt sources when the MSI Control register <i>Multiple Message</i>	Offset 48h[22:20]=000b	RW	Yes	0

Offset 48h[22:20]=001b

Offset 48h[22:20]=000b

RW

RsvdP

RsvdP

Yes

No

No

0

0

0-0h

14.10 PCI Express Capability Registers (Offsets 68h – A0h)

This section details the PCI Express Capability registers. Command, Status, and Events are included in these registers. Table 14-11 defines the register map.

Note: The Root Complex PCI Express Root Port registers, located at offsets 84h and 88h are visible/ available only in Root Complex mode. For further details, refer to Section 7.4.1.2, "PCI Express Root Port Registers."

Table 14-11. PCI Express Capability Register Map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Reserved					
Reserved (Enhanced Adapter Mode)	Reserved (Enhanced	d Adapter Mode)			
 Link Status 2 (Legacy Adapter Mode)	Link Control 2 (Lega	Link Control 2 (Legacy Adapter Mode)			
Reserved					
Device Status 2 (Reserved)	Device Co	Device Control 2			
Devi	ice Capability 2				
	ed (Adapter Mode) (Root Complex Mode)				
Root Capability and Control (Root Complex Mode)					
Reserved (Adapter Mode)					
 Reserved 7Ch					
Link Status	Link Control				
	y (Legacy Adapter Mode) nhanced Adapter Mode)				
Device Status		Device Control			
Device Capability					
PCI Express Capability	Next Capability Pointer (00h)	Capability ID (10h)			

Register 14-38. 68h List and Capability (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
	PCI Express Capability List			
7:0	Capability ID Program to 10h, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	10h
15:8	Next Capability Pointer 00h = This capability is the last capability in the USB 3380's Port/SuperSpeed USB's Capabilities list The USB 3380 Extended Capabilities list starts at offset 100h.	RO	Yes	00h
	PCI Express Capability			
19:16	Capability Version The Ports/SuperSpeed USB program this field to 2h, as required by the <i>PCI Express Base r2.1.</i>	RO	Yes	2h
23:20	Device/Port Type Set at reset, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	1h
24	Slot Implemented Reserved	RsvdP	No	0
29:25	Interrupt Message Number Reserved	RsvdP	No	0-0h
31:30	Reserved	RsvdP	No	00b

Register 14-39. 6Ch Device Capability (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
2:0	Maximum Payload Size Supported 000b = Ports/SuperSpeed USB support a 128-byte maximum Payload 001b = Ports/SuperSpeed USB support a 256-byte maximum Payload	RO	Yes	001b
	No other encodings are supported.			
4:3	Phantom Functions Supported Not supported	RO	Yes	00b
5	Extended Tag Field Supported 0 = Maximum Tag field is 5 bits 1 = Reserved	RO	Yes	0
8:6	Endpoint L0s Acceptable Latency 111b = Enables the capability	RO	Yes	111b
11:9	Endpoint L1 Acceptable Latency 111b = Enables the capability	RO	Yes	111b
14:12	Reserved , as required by the PCI Express Base r2.1.	RsvdP	No	000b
15	Role-Based Error Reporting	RO	Yes	1
17:16	Reserved	RsvdP	No	00b
25:18	Captured Slot Power Limit Value The upper limit on power supplied by the slot is determined by multiplying the value in this field by the value in field [27:26] (<i>Captured Slot Power Limit Scale</i>).	RO	Yes	00h
27:26	Captured Slot Power Limit Scale The upper limit on power supplied by the slot is determined by multiplying the value in this field by the value in field [25:18] (<i>Captured Slot Power Limit Value</i>). 00b = 1.0 01b = 0.1 10b = 0.01 11b = 0.001	RO	Yes	00Ь
31:28	Reserved	RsvdP	No	Oh

Register 14-40. 70h Device Status and Control	
(All Ports and USB Controller)	

Bit(s)	Description	Туре	Serial EEPROM	Default
	Device Control		ł	ł
0	Correctable Error Reporting Enable 0 = Disables 1 = Enables the Port/SuperSpeed USB to report Correctable errors	RW	Yes	0
1	Non-Fatal Error Reporting Enable 0 = Disables 1 = Enables the Port/SuperSpeed USB to report Non-Fatal errors	RW	Yes	0
2	Fatal Error Reporting Enable0 = Disables1 = Enables the Port/SuperSpeed USB to report Fatal errors	RW	Yes	0
3	Unsupported Request Reporting Enable 0 = Disables 1 = Enables the Port/SuperSpeed USB to report UR errors	RW	Yes	0
4	Enable Relaxed Ordering PCI Express Interface Not supported	RW	Yes	1
	USB Controller Not supported	RsvdP	No	0
7:5	Maximum Payload SizeSoftware can change this field to configure the Ports/SuperSpeed USB to support other Payload Sizes; however, software cannot change this field to a value larger than that indicated by the Device Capability register Maximum Payload Size Supported field (All Ports and USB Controller, offset 6Ch[2:0]).000b = Port/SuperSpeed USB supports a 128-byte maximum Payload 001b = Port/SuperSpeed USB supports a 256-byte maximum Payload No other encodings are supported.	RW	Yes	000Ь
8	Extended Tag Field Enable Not supported	RsvdP	No	0
9	Phantom Functions Enable Not supported	RsvdP	No	0
10	AUX Power PM Enable 0 = Disables auxiliary power 1 = Enables auxiliary power	RWS	Yes	0
11	Enable No Snoop Not supported	RsvdP	No	0

Register 14-40. 70h Device Status and Control (All Ports and USB Controller) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Ports (Type 0, Enhanced Adapter Mode) Not supported Virtual PCI-to-PCI bridges do not generate Read Requests, they only forward them.	RsvdP	No	000Ь
14:12	USB Controller (Type 1) Max Read Request Size Specifies the maximum PCI Express Read Request size, in bytes, that can be generated by the USB 3380, for DMA accesses. 000b = 128 bytes 001b = 256 bytes 010b = 512 bytes (default) 011b = 1,024 bytes 100b = 2,048 bytes 101b = 4,096 bytes All other encodings are <i>reserved</i> .	RW	Yes	010b
15	Reserved Hardwired to 0, as required by the PCI Express Base r2.1.	RsvdP	No	0
	Device Status			
16	Correctable Error Detected Set when the Port/SuperSpeed USB detects a Correctable error, regardless of the bit 0 (<i>Correctable Error Reporting Enable</i>) state. 0 = Port/SuperSpeed USB did not detect a Correctable error 1 = Port/SuperSpeed USB detected a Correctable error	RW1C	Yes	0
17	Non-Fatal Error Detected Set when the Port/SuperSpeed USB detects a Non-Fatal error, regardless of the bit 1 (<i>Non-Fatal Error Reporting Enable</i>) state. 0 = Port/SuperSpeed USB did not detect a Non-Fatal error 1 = Port/SuperSpeed USB detected a Non-Fatal error	RW1C	Yes	0
18	Fatal Error Detected Set when the Port/SuperSpeed USB detects a Fatal error, regardless of the bit 2 (<i>Fatal Error Reporting Enable</i>) state. 0 = Port/SuperSpeed USB did not detect a Fatal error 1 = Port/SuperSpeed USB detected a Fatal error	RW1C	Yes	0
19	Unsupported Request Detected Set when the Port/SuperSpeed USB detects a UR, regardless of the bit 3 (Unsupported Request Reporting Enable) state. 0 = Port/SuperSpeed USB did not detect a UR 1 = Port/SuperSpeed USB detected a UR	RW1C	Yes	0
20	AUX Power Detected 1 = Auxiliary power is detected on the Port/SuperSpeed USB	ROS	Yes	1
21	Transactions Pending	RO	No	0
31:22	Reserved	RsvdP	No	0-0h

Register 14-41.	74h Link Capability
(All Ports)	

Bit(s)	Description	Туре	Serial EEPROM	Default
Note: 7	This register is visible/available only in Legacy Adapter mode. Res	served in Er	hanced Adap	ter mode.
3:0	Supported Link Speeds Indicates the Port/SuperSpeed USB's supported Link speed. 0010b = 5.0 and 2.5 GT/s Link speeds are supported All other encodings are <i>reserved</i> .	RO	Yes	0010b
9:4	Maximum Link WidthThe USB 3380 maximum Link width is $x1 = 00_0001b$ $00_0000b = Reserved$ $00_0001b = x1$ All other encodings are not supported.	ROS	No	Programmed by serial EEPROM value for the Port Configuration register <i>Port</i> <i>Configuration</i> bit (Port 0, offset 574h[0])
11:10	Active State Power Management (ASPM) Support Active State Link PM support. Indicates the level of ASPM supported by the Port/SuperSpeed USB. 00b = <i>Reserved</i> 01b = L0s Link PM state entry is supported 10b = L1 ASPM is supported 11b = L0s and L1 Link PM states are supported	RO	Yes	11b

Register 14-41. 74h Link Capability (All Ports) (Cont.)

L0s Exit Latency Indicates the L0s Link PM state exit latency for the given			
 PCI Express Link. Value depends upon the Advertised N_FTS register Advertised N_FTS field (Port 0, offset B84h[7:0]) value and Link speed. Exit latency is calculated, as follows: 2.5 GHz – Multiply Advertised N_FTS x 4 (4 symbol times in 1 N_FTS) x 4 ns (1 symbol time at 2.5 GT/s) 5.0 GHz – Multiply Advertised N_FTS x 4 (4 symbol times in 1 N_FTS) x 2 ns (1 symbol time at 5.0 GT/s) 	RO	No	100b (5.0 GT/s) 101b (2.5 GT/s)
100b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 512 ns to less than 1 μ s at 5.0 GT/s 101b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 1 μ s to less than 2 μ s at 2.5 GT/s All other encodings are <i>reserved</i> .			
L1 Exit Latency Indicates the L1 Link PM state exit latency for the given PCI Express Link. Value depends upon the Link speed. 001b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 1 µs to less than 2 µs at 5.0 GT/s 010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/s	RO	Yes	001b (5.0 GT/s) 010b (2.5 GT/s)
All other encodings are <i>reserved</i> . Clock Power Management Capable Not supported	RsvdP	No	0
Surprise Down Error Reporting Capable Reserved	RsvdP	No	0
Data Link Layer Link Active Reporting Capable Reserved	RsvdP	No	0
Link Bandwidth Notification Capability Reserved	RsvdP	No	0
Reserved	RsvdP	No	00b
Port Number Valid only in Enhanced Adapter mode. In Legacy Adapter mode, there are no Ports, only the Type 0 endpoint. 00h = Port 0	ROS	No	Programmed by serial EEPROM value for the Port Configuration register <i>Port Configuration</i> bit (Port 0, offset 574h[0])
	 2.5 GHz – Multiply Advertised N_FTS x 4 (4 symbol times in 1 N_FTS) x 4 ns (1 symbol time at 2.5 GT/s) 5.0 GHz – Multiply Advertised N_FTS x 4 (4 symbol times in 1 N_FTS) x 2 ns (1 symbol time at 5.0 GT/s) 100b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 512 ns to less than 1 µs at 5.0 GT/s 101b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 1 µs to less than 2 µs at 2.5 GT/s All other encodings are <i>reserved</i>. L1 Exit Latency Indicates the L1 Link PM state exit latency for the given PCI Express Link. Value depends upon the Link speed. 001b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 1 µs to less than 2 µs at 5.0 GT/s 010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 1 µs to less than 2 µs at 5.0 GT/s 010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/s All other encodings are <i>reserved</i>. Clock Power Management Capable Not supported Surprise Down Error Reporting Capable Reserved Data Link Layer Link Active Reporting Capable Reserved Link Bandwidth Notification Capability Reserved Reserved Valid only in Enhanced Adapter mode. In Legacy Adapter mode, there are no Ports, only the Type 0 endpoint. 	 2.5 GHz – Multiply Advertised N_FTS x 4 (4 symbol times in 1 N_FTS) x 4 ns (1 symbol time at 2.5 GT/s) 5.0 GHz – Multiply Advertised N_FTS x	• 2.5 GHz - Multiply Advertised N_FTS x 4 (4 symbol times in 1 N_FTS) x 4 ns (1 symbol time at 2.5 GT/s)RONo• 5.0 GHz - Multiply Advertised N_FTS x 4 (4 symbol time in 1 N_FTS) x 2 ns (1 symbol time at 5.0 GT/s)RONo100b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 512 ns to less than 1 µs at 5.0 GT/sRONo101b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 1 µs to less than 1 µs at 5.0 GT/sROYes101b = Port/SuperSpeed USB's L0s Link PM state Exit Latency is 1 µs to less than 2 µs at 2.5 GT/sROYes11 Exit Latency Indicates the L1 Link PM state exit latency for the given PCI Express Link. Value depends upon the Link speed.ROYes001b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 1 µs to less than 2 µs at 2.5 GT/sROYes010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/sRONo2010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/sRsvdPNo2010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/sRsvdPNo2010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/sRsvdPNo2010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/sRsvdPNo2010b = Port/SuperSpeed USB's L1 Link PM state Exit Latency is 2 µs to less than 4 µs at 2.5 GT/sRsvdPNo2010b = ReservedRsvdPNoRsvdPNo2010b = ReservedRsvdPN

Port 0	Port 2 ^a	SuperSpeed USB
x1 Lane 0	x1 Virtual Link	x1

Table 14-12. Port/SuperSpeed Configuration

a. Port 2 is an internal virtual PCI-to-PCI bridge that connects the USB Controller to the PCI Express fabric. It is not affected by the Link Capability register Port Number field value.

Register 14-42. 78h Link Status and Control (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Link Control			
1:0	Active State Power Management (ASPM) 00b = Disable ^a 01b = Enables only L0s Link PM state Entry 10b = Enables only L1 Link PM state Entry 11b = Enables both L0s and L1 Link PM state Entries	RW	Yes	00b
2	Reserved	RsvdP	No	0
3	Read Request Return Parameter Control Read Request Return Parameter "R" control. Read Completion Boundary (RCB). Cleared, as required by the <i>PCI Express Base r2.1</i> .	RW	Yes	0
4	Link Disable Reserved	RsvdP	No	0
5	Retrain Link Reserved	RsvdP	No	0
6	Common Clock Configuration 0 = Port/SuperSpeed USB and the device at the other end of the Port/SuperSpeed USB's PCI Express Link use an asynchronous Reference Clock source 1 = Port/SuperSpeed USB and the device at the other end of the Port/SuperSpeed USB's PCI Express Link use a common (synchronous) Reference Clock source (constant phase relationship)	RW	Yes	0
7	 Extended Sync When Set, causes the Port/SuperSpeed USB to transmit: 4,096 FTS Ordered-Sets in the L0s Link PM state, Followed by a single SKIP Ordered-Set prior to entering the L0 Link PM state, Finally, transmission of 1,024 TS1 Ordered-Sets in the <i>Recovery</i> state. 	RW	Yes	0
8	Clock Power Management Enable Reserved Read and Writable only when the Link Capability register Clock Power Management Capable bit is Set.	RsvdP	No	0
9	Hardware-Autonomous Width Disable Reserved	RsvdP	No	0
10	Link Bandwidth Management Interrupt Enable Reserved	RsvdP	No	0
11	Link Autonomous Bandwidth Interrupt Enable Reserved	RsvdP	No	0
15:12	Reserved	RsvdP	No	Oh

Register 14-42. 78h Link Status and Control (All Ports and USB Controller) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Link Status			
19:16	Current Link Speed Indicates the current Link speed of the Port/SuperSpeed USB's PCI Express Link. 0001b = 2.5 GT/s Link speed 0010b = 5.0 GT/s Link speed All other encodings are <i>reserved</i> . The value in this field is undefined when the Link is not up.	RO	No	0001Ь
25:20	Negotiated Link Width Dependent upon the physical Port configuration. Link width is determined by the negotiated value with the attached Lane/Port (Port 0 only). 00_0001b = x1 or the Port/SuperSpeed USB is in the <i>DL_Down</i> state All other encodings are <i>not supported</i> .	RO	No	00_0001b
26	Reserved	RsvdP	No	0
27	Link Training Reserved	RsvdP	No	0
28	Slot Clock Configuration 0 = Indicates that the USB 3380 uses an independent clock 1 = Indicates that the USB 3380 uses the same physical Reference Clock that the platform provides on the connector	HwInit	Yes	0
29	Data Link Layer Link Active Reserved	RsvdP	No	0
30	Link Bandwidth Management Status Reserved	RsvdP	No	0
31	Link Autonomous Bandwidth Status Reserved	RsvdP	No	0

a. The Port Receiver must be capable of entering the LOs Link PM state, regardless of whether the state is disabled.

Register 14-43. 84h Root Capability and Control (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
Note: 7	his register is visible/available only in Root Complex mode.			
0	System Error on Correctable Error Enable 0 = Disables 1 = Enables the SuperSpeed USB to report Correctable System errors	RW	Yes	0
1	System Error on Non-Fatal Error Reporting Enable 0 = Disables 1 = Enables the SuperSpeed USB to report Non-Fatal System errors	RW	Yes	0
2	System Error on Fatal Error Reporting Enable 0 = Disables 1 = Enables the SuperSpeed USB to report Fatal System errors	RW	Yes	0
3	PME Interrupt Enable	RW	Yes	0
4	CRS Software Invisibility Enable Not supported	RsvdP	No	0
15:5	Reserved	RsvdP	No	0-0h
16	System Error On Reserved	RsvdP	No	0
31:17	Reserved	RsvdP	No	0-0h

Register 14-44. 88h Root Status (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default		
Note: T	Note: This register is visible/available only in Root Complex mode.					
15:0	PME Requester ID	RO	Yes	0000h		
16	PME Status0 = PME is not generated by the Root Port1 = PME is being generated by the Root Port	RW1C	Yes	0		
17	PME Pending	RO	Yes	0		
31:18	Reserved	RsvdP	No	0-0h		

Register 14-45. 8Ch Device Capability 2 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
3:0	Completion Timeout Range Supported	RO	Yes	Oh
4	Completion Timeout Range Supported	RO	Yes	0
5	ARI Forwarding Supported Reserved	RsvdP	No	0
31:6	Reserved	RsvdP	No	0-0h

Register 14-46. 90h Device Status and Control 2 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default				
	Device Control 2							
3:0	Completion Timeout Value Programmable timeout values include the values listed below. 00h = 20 ms $01h = 128 \mu \text{s}$ 02h = 2 ms 05h = 30 ms 06h = 200 ms 09h = 400 ms 10h = 2s 13h = 8s (default) 14h = 20s	RW	Yes	13h				
4	Completion Timeout Range Disable	RW	Yes	0				
5	ARI Forwarding Enable Reserved	RsvdP	No	0				
15:6	Reserved	RsvdP	No	0-0h				
	Device Status 2							
31:16	Reserved	RsvdP	No	0-0h				

Register 14-47. 98h Link Status and Control 2 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
lote: 1	This register is visible/available only in Legacy Adapter mode. Reserved in	n Enhanced A	dapter mode.	
	Link Control 2			
3:0	Target Link Speed 0001b = 2.5 GT/s Link speed is supported 0010b = 5.0 GT/s Link speed is supported All other encodings are <i>reserved</i> .	RWS	Yes	0010Ь
4	Enter Compliance	RWS	Yes	0
5	Hardware Autonomous Speed Disable Reserved Initial transition to the highest supported common Link speed is not blocked by this bit.	RsvdP	No	0
6	Selectable De-Emphasis Selects the standard de-emphasis level when the Link is operating at 5.0 GT/s. When the Link is operating at 2.5 GT/s, the Setting of this bit has no effect (de-emphasis at 2.5 GT/s is -3.5 dB). 0 = -6 dB (Link is operating at 5.0 GT/s)	HwInit	Yes	0 (5.0 GT/s) 1 (2.5 GT/s)
9:7	1 = -3.5 dB (Link is operating at 2.5 GT/s) Transmit Margin Intended for debug and compliance testing only.	RWS	Yes	000Ь
10	Enter Modified Compliance Intended for debug and compliance testing only. Valid only for Function 0 of Port 0.	RWS	Yes	0
11	Compliance SOS 1 = LTSSM must periodically send SKIP Ordered-Sets between sequences when sending the Compliance Pattern or Modified Compliance Pattern	RWS	Yes	0
12	Compliance De-Emphasis Sets the de-emphasis level in the <i>Polling.Compliance</i> substate, if the entry occurred due to bit 4 (<i>Enter Compliance</i>) being Set.	RWS	Yes	0
15:13	Reserved	RsvdP	No	000b
	Link Status 2	1		
16	Current De-Emphasis Level Reflects the de-emphasis level. 0 = -6 dB (Link is operating at 5.0 GT/s) 1 = -3.5 dB (Link is operating at 2.5 GT/s)	RO	Yes	0 (5.0 GT/s) 1 (2.5 GT/s)
31:17	Reserved	RsvdP	No	0-0h

14.11 Device Serial Number Extended Capability Registers (Offsets 100h – 134h)

This section details the Device Serial Number Extended Capability registers. Table 14-13 defines the register map.

Table 14-13. Device Serial Number Extended Capability Register Map (All Ports and USB Controller)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Next Capability Offset (FB4h)	Next Capability Offset (FB4h)Capability Version (1h)PCI Express Extended Capability ID (0003h)			
Serial Number (Lower DW)				
Serial Number (Upper DW)				
Reserved 10Ch –				

Register 14-48. 100h Device Serial Number Extended Capability Header (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	PCI Express Extended Capability ID Program to 0003h, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	0003h
19:16	Capability Version Program to 1h, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	lh
31:20	Next Capability Offset Program to FB4h, which addresses the Advanced Error Reporting Extended Capability structure.	RO	Yes	FB4h

Register 14-49. 104h Serial Number (Lower DW) (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	PCI Express Device Serial Number (1st DW) Lower half of a 64-bit register. Value programmed by Serial EEPROM register initialization. Per the <i>PCI Express Base r2.1</i> , all USB 3380 Ports and the SuperSpeed USB must contain the same value; therefore, one physical register is shared by all Ports and the SuperSpeed USB. (Refer to Table 14-3.) The Serial Number registers contain the IEEE-defined 64-bit Extended Unique Identifier (EUI-64 TM), of which the upper 24 bits are the Company ID value (00_0EDFh) assigned by the IEEE Registration Authority, and the lower 40 bits are the Extension ID assigned by the identified Company (PLX). The most through least significant bytes are contained within the lowest through highest Byte addresses, respectively.	RO	Yes	B5DF_0E00h

Register 14-50. 108h Serial Number (Upper DW) (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	PCI Express Device Serial Number (2nd DW) Upper half of a 64-bit register. Value programmed by Serial EEPROM register initialization. Per the <i>PCI Express Base r2.1</i> , all USB 3380 Ports and the SuperSpeed USB must contain the same value; therefore, one physical register is shared by all Ports and the SuperSpeed USB. (Refer to Table 14-3.) The Serial Number registers contain the IEEE-defined 64-bit Extended Unique Identifier (EUI-64), of which the upper 24 bits are the Company ID value (00_0EDFh) assigned by the IEEE Registration Authority, and the lower 40 bits are the Extension ID assigned by the identified Company (PLX). The most through least significant bytes are contained within the lowest through highest Byte addresses, respectively.	RO	Yes	Silicon Revision AA: AA86_0210h Silicon Revision AB: AB86_0210h

14.12 Power Budget Extended Capability Registers (Offsets 138h – 144h)

This section details the Power Budget Extended Capability registers. These registers work differently than the others, especially with respect to serial EEPROM Reads and Writes. *For example*, when writing to Index 5 of the **Power Budget Data** register (All Ports and USB Controller, offset 140h), write 5 into the **Data Select** register *Data Select* field (All Ports and USB Controller, offset 13Ch[7:0]), then write the value into the **Power Budget Data** register. Table 14-14 defines the register map.

Table 14-14. Power Budget Extended Capability Register Map (All Ports and USB Controller)

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Next Capability Offset (148h)
 Capability Version (1h)
 PCI Express Extended Capability ID (0004h)
 138h

 Reserved
 Data Select
 13Ch

 Power Budget Data
 140h

 Power Budget Capability
 144h

Register 14-51. 138h Power Budget Extended Capability Header (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	PCI Express Extended Capability ID Program to 0004h, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	0004h
19:16	Capability Version Program to 1h, as required by the <i>PCI Express Base r2.1</i> .	RO	Yes	lh
31:20	Next Capability Offset Program to 148h, which addresses the Virtual Channel Extended Capability structure.	RO	Yes	148h

Register 14-52. 13Ch Data Select (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Data Select Indexes the Power Budget data reported, Power Budget Data registers, two per Port/SuperSpeed USB, and selects the DWord of Power Budget data that appears in each Power Budget Data register. Index values start at 0, to select the first DWord of Power Budget data; subsequent DWords of Power Budget data are selected by increasing index values 0 to 1.	RW	Yes	00h
31:8	Reserved	RsvdP	No	0000_00h

Register 14-53. 140h Power Budget Data (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
describes	Fwo registers per Port/SuperSpeed USB can be programmed, through the serial 1 is the power usage for a different operating condition. Each configuration is select ect field (All Ports and USB Controller, offset 13Ch[7:0]).			
7:0	Base Power Two registers per Port/SuperSpeed USB. Specifies (in Watts) the base power value in the operating condition. This value must be multiplied by the field [9:8] (<i>Data Scale</i>) contents, to produce the actual power consumption value.	RO	Yes	00h
9:8	Data Scale Specifies the scale to apply to the Base Power value. The device power consumption is determined by multiplying the field [7:0] (<i>Base Power</i>) contents with the value corresponding to the encoding returned by this field. 00b = 1.0x 01b = 0.1x 10b = 0.01x 11b = 0.001x	RO	Yes	00Ь
12:10	PM Sub-State 000b = Power Management substate of the operating condition being described	RO	Yes	000b
14:13	PM State Power Management state of the operating condition being described. 00b = D0 state 01b = D1 state 10b = D2 state 11b = D3 state	RO	Yes	00b
17:15	Type Type of operating condition being described. 000b = PME Auxiliary 001b = Auxiliary 010b = Idle 011b = Sustained 111b = Maximum All other encodings are <i>reserved</i> .	RO	Yes	000b
20:18	Power Rail Power Rail of the operating condition being described. 000b = Power 12V 001b = Power 3.3V 010b = Power 1.8V 111b = Thermal All other encodings are <i>reserved</i> .	RO	Yes	000Ъ
31:21	Reserved	RsvdP	No	0-0h

Register 14-54. 144h Power Budget Capability (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
0	System Allocated 1 = Power budget for the device is included within the system power budget	HwInit	Yes	1
31:1	Reserved	RsvdP	No	0-0h

14.13 Virtual Channel Extended Capability Registers (Offsets 148h – 1BCh)

This section details the Virtual Channel Extended Capability registers, which are duplicated for each Port. Table 14-15 defines the register map for one Port.

Table 14-15. Virtual Channel Extended Capability Register Map (All Ports and USB Controller)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16		15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
Next Capability Offset (950h) Capability Version (1h)		PCI Express Extended Capability ID (0002h)	148h
	Port VC C	Capability 1	14Ch
	Port VC C	Capability 2	150h
Port VC Status (<i>Reserved</i>)	Port VC Control	154h
	VC0 Resour	ce Capability	158h
	VC0 Resou	irce Control	15Ch
VC0 Resource Status		Reserved	160h
	Reserved 164h		

Register 14-55. 148h Virtual Channel Extended Capability Header (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	PCI Express Extended Capability ID Program to 0002h, as required by the <i>PCI Express Base r2.1</i> .	RO	No	0002h
19:16	Capability Version Program to 1h, as required by the PCI Express Base r2.1.	RO	No	1h
31:20	Next Capability Offset Next extended capability is the Vendor-Specific Extended Capability 2 structure, offset 950h.	RO	No	950h

Register 14-56. 14Ch Port VC Capability 1 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
2:0	Extended VC Counter 000b = USB 3380 Port supports only one Virtual Channel, VC0 All other encodings are <i>reserved</i> .	RO	Yes	000Ь
3	Reserved	RsvdP	No	0
6:4	Low-Priority Extended VC Counter Not supported	RO	Yes	000b
7	Reserved	RsvdP	No	0
9:8	Reference Clock Reserved	RsvdP	No	00b
11:10	Port Arbitration Table Entry Size Reserved	RsvdP	Yes	10b
31:12	Reserved	RsvdP	No	0000_0h

Register 14-57. 150h Port VC Capability 2 (All Ports and USB Controller)

E	Bit(s)	Description	Туре	Serial EEPROM	Default
	0	VC Arbitration Capability Indicates the type of VC arbitration supported by the device for the LPVC (Low-Priority Extended VC) group. 0 = Indicates that the Round-Robin (Hardware-Fixed) Arbitration scheme is not supported 1 = Indicates that the Round-Robin (Hardware-Fixed) Arbitration scheme is supported	RO	Yes	0
	31:1	Reserved	RsvdP	No	0-0h

Register 14-58. 154h Port VC Status and Control (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Port VC Control			
	Load VC Arbitration Table			
0	Not supported	RsvdP	No	0
	Reads always return a value of 0.			
	VC Arbitration Select			
3:1	Selects the Port/SuperSpeed USB's VC arbitration type, as per the supported arbitration type indicated by the Port VC Capability 2 register <i>VC Arbitration Capability</i> bit (All Ports and USB Controller, offset 150h[0]) value.	Yes	000Ь	
	000b = Bit 0; Non-configurable (Hardware-Fixed) Arbitration			
	All other encodings are <i>reserved</i> .			
15:4	Reserved	RsvdP	No	000h
	Port VC Status			
16	VC Arbitration Table Status Reserved	RsvdP	No	0
31:17	Reserved	RsvdP	No	0-0h

Register 14-59. 158h VC0 Resource Capability (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Port Arbitration Capability 7:0 Bit 0 = 1 – Non-configurable (Hardware-Fixed) Arbitration All other bits read 0.		No	01h
14:8	Reserved	RsvdP	No	0-0h
15	Reject Snoop Transactions Not a PCI Express switch feature; therefore, this bit is Cleared.	RsvdP	No	0
22:16	Maximum Time Slots Reserved	RsvdP	No	000_0000Ь
23	Reserved	RsvdP	No	0
31:24	Port Arbitration Table Offset Offset of the Port Arbitration Table, as the quantity of DQWords from the Base address of the Virtual Channel Extended Capability structure. 00h = Non-configurable (Hardware-Fixed) Arbitration All other encodings are <i>reserved</i> .	RO	No	00h

Register 14-60. 15Ch VC0 Resource Control (All Ports and USB Controller)

Bit(s)	Description		Serial EEPROM	Default
0	TC/VC Map Defines Traffic Classes [7:0], respectively, and indicates which	RO	No	1
7:1	TCs are mapped to VC0. Traffic Class 0 (TC0) must be mapped to VC0. By default, Traffic Classes [7:1] are mapped to VC0.	RW	Yes	7Fh
15:8	Reserved	RsvdP	No	00h
16	Load Port Arbitration Table Software writes this bit, to load the updated WRR Port Arbitration Table value to the internal logic. Software Read always returns a value of 0.		Yes	0
19:17	Port Arbitration Select	RW	Yes	000b
23:20	Reserved	RsvdP	No	Oh
26:24	VC0 ID Defines the Port/SuperSpeed USB's VC0 ID code. 000b = VC0 (default; VC0 is the only/default VC) All other encodings are <i>Reserved</i> .		No	000Ь
30:27	Reserved	RsvdP	No	Oh
31	VC0 Enable 0 = Not allowed 1 = Enables the Port/SuperSpeed USB's only/default VC, VC0	RO	No	1

Register 14-61. 160h VC0 Resource Status (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	Reserved	RsvdP	No	0000h
16	Port/SuperSpeed USB Arbitration Table Status The Port/SuperSpeed USB's Arbitration Table is <i>not</i> implemented; therefore, this bit has no function, and always reads 0.	RO	No	0
17	VC0 Negotiation Pending 0 = Port/SuperSpeed USB's VC0 negotiation is complete 1 = Port/SuperSpeed USB's VC0 initialization is not complete			1
31:18	Reserved	RsvdP	No	0-0h

14.14 Device-Specific Registers (Offsets 1C0h – 444h)

This section details the Device-Specific registers located at offsets 1C0h through 444h. Device-Specific registers are unique to the USB 3380 and not referenced in the *PCI Express Base r2.1*. Table 14-16 defines the register map.

Other Device-Specific registers are detailed in Section 14.15, "Device-Specific Registers (Offsets 530h – B88h)."

Note: It is recommended that these registers not be changed from their default values.

Table 14-16.Device-Specific Register Map
(Offsets 1C0h – 444h)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Device-Specific Registers – Error Checking and Debug (Offsets 1C0h – 1FCh)		
		1FCh
		200h
Device-Specific Registers – Physical Layer (Offsets 200h – 25Ch)		
		25Ch
Device-Specific Registers – Serial EEPROM (Offsets 260h – 26Ch)		260h
Device-specific Registers – Seriai EEI Roivi (Offsets 2001 – 2001)		 26Ch
Factory Test Only/Reserved	270h –	444h

14.14.1 Device-Specific Registers – Error Checking and Debug (Offsets 1C0h – 1FCh)

This section details the Device-Specific Error Checking and Debug registers. Table 14-17 defines the register map.

Table 14-17. Device-Specific Error Checking and Debug Register Map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Factory Test Only 1C0h –	1C4h
ECC Error Check Disable	1C8h
Factory Test Only 1CCh –	1D4h
Clock Enable	1D8h
Debug Control	1DCh
Power Management Hot Plug User Configuration	1E0h
Egress Control and Status	1E4h
Bad TLP Counter	1E8h
Bad DLLP Counter	1ECh
Reserved	1F0h
Software Lane Status	1F4h
ACK Transmission Latency Limit	1F8h
Factory Test Only	1FCh

Register 14-62. 1C8h ECC Error Check Disable (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default				
3:0	Factory Test Only	RWS	Yes	Oh				
	Disable PCI Express INTx Message for Hot Plug Event-Triggered Interrupts			vent-Triggered		Event-Triggered		
4	0 = Hot Plug Event Interrupt Requests send an INTx Message to the PCI Express interface	RWS	Yes	0				
	1 = Hot Plug Event Interrupt Requests do not send an INT <i>x</i> Message to the PCI Express interface							
5	Factory Test Only	RWS	Yes	0				
6	Disable PCI Express INTx Message for GPIO-Generated Interrupts 0 = General-Purpose Input/Output (GPIO) Interrupt Requests send an INTx Message to the PCI Express interface 1 = GPIO Interrupt events do not send an INTx Message to the PCI Express interface		Yes	0				
9:7	Factory Test Only	RWS	Yes	000b				
10	Factory Test Only	RW1CS	Yes	0				
31:11	Reserved	RsvdP	No	0-0h				

Register 14-63. 1D8h Clock Enable

(Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
	erSpeed USB are automatically enabled. An ena ed USB's <i>PDA</i> and <i>INT Port x/SuperSpeed USB</i>			
Note: It	is not possible to enable more Ports/SuperSpee	d USBs than	the maximum sp	pecified for the device.
0	PDA Port 0 Clock Enable 0 = Disables 1 = Enables	RWS	Yes	1
1	Reserved	RsvdP	No	0
2	PDA Port 2 Clock Enable 0 = Disables 1 = Enables	RWS	Yes	1
3	PDA SuperSpeed USB Clock Enable 0 = Disables 1 = Enables	RWS	Yes	1
4	INT Port 0 Clock Enable 0 = Disables 1 = Enables	RWS	Yes	1
5	Reserved	RsvdP	No	0
6	INT Port 2 Clock Enable 0 = Disables 1 = Enables	RWS	Yes	1
7	INT SuperSpeed USB Clock Enable 0 = Disables 1 = Enables	RWS	Yes	1
8	REFCLK 1 Enable Used to enable/disable Reference Clock Pair 1, PEX_REFCLK_OUTn1/ PEX_REFCLK_OUTp1. 0 = Disables	RWS	Yes	1
	1 = Enables			
10:9	Factory Test Only	RWS	Yes	11b
31:11	Reserved	RsvdP	No	0-0h

Register 14-64. 1DCh Debug Control (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
	This register must be the first Configuration register p gh 9h, as listed in Table 5-1, "Serial EEPROM Data F		py the serial EEP	ROM, at serial EEPROM locations
0	STRAP_DEBUG_SEL# Pin State Reflects the logical state of the STRAP_DEBUG_SEL# input. 0 = Selected function is enabled	RO	No	0 (STRAP_DEBUG_SEL#=L) 1 (STRAP_DEBUG_SEL#=H)
1	Reserved	RsvdP	No	0
2	STRAP_PROBE_MODE# Pin State Reflects the logical state of the STRAP_PROBE_MODE# input.	RO	No	0 (STRAP_PROBE_MODE#=L) 1 (STRAP_PROBE_MODE#=H)
3	0 = Selected function is enabled <pre>Reserved</pre>	RsvdP	No	0
4	STRAP_UPCFG_TIMER_EN# Pin State Reflects the logical state of the STRAP_UPCFG_TIMER_EN# input at reset. This bit's state can be subsequently overwritten by serial EEPROM.	RO	Yes	0 (STRAP_UPCFG_TIMER_EN#=L) 1 (STRAP_UPCFG_TIMER_EN#=H)
	0 = Selected function is enabled			
5	Reserved	RsvdP	No	0
6	Force PCI Express Gen 1 (2.5 GT/s) Operation 0 = PCI Express Links are forced to operate at Gen 1 bit rates 1 = PCI Express Links are allowed to transition to Gen 2 bit rates (5.0 GT/s)	RWS	Yes	1
	Note: The value read from this bit is invalid.			
7	Factory Test Only	RWS	Yes	1
11:8	Reserved	RsvdP	No	Oh
13:12	Factory Test Only	RWS	Yes	00b
15:14	Reserved	RsvdP	No	ООЬ
16	Upstream Hot Reset Control 0 = Reset all logic, except Sticky bits and Device-Specific registers 1 = Reset only the Configuration Space registers of all Ports/SuperSpeed USB defined by the PCI Express Base r2.1	RWS	Yes	0
	<i>Note:</i> Only a Fundamental Reset serial EEPROM load affects this bit.			
17	Disable Serial EEPROM Load on Hot Reset 0 = Enables serial EEPROM load upon Port 0 Hot Reset or <i>DL_Down</i> state 1 = Disables serial EEPROM load upon Port 0 Hot Reset or <i>DL_Down</i> state	RWS	Yes	0
19:18	Reserved	RsvdP	No	00b

Register 14-64. 1DCh Debug Control (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
20	 Upstream Port DL_Down Reset Propagation Disable Setting this bit: Enables Port 0 to ignore a Hot Reset training sequence, and Blocks the USB 3380 from manifesting an internal reset due to a DL_Down event 	RWS	Yes	0
21	Cut-Thru Enable 0 = Disables Cut-Thru support 1 = Enables Cut-Thru support	RWS	Yes	1
22	LANE_GOOD#/GPIOx Pin Function Select 0 = LANE_GOOD# pin functions as the GPIO pin. 1 = LANE_GOOD# pin functions as the Lane Good status for Lane 0. Additionally, GPIO3 functions as USB_LINK_GOOD#, which indicates whether the USB Link is up. Note: For GPIO[2:1], the value of this bit is "Don't Care."	RWS	Yes	0
23	Factory Test Only	RWS	Yes	0
30:24	Reserved	RsvdP	No	0-0h
31	 8051 Cache Controller Off Reads always return a value of 0. 0 = Enables 8051 instruction cache 1 = Disables 8051 instruction cache (default) 	WO	Yes	1

Register 14-65. 1E0h Power Management Hot Plug User Configuration (All Ports and USB Controller)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
Note: W	 <i>hen programming this register, always</i> <i>Preserve the default states of bits [5:3]</i> <i>Write 1 to bit 6</i> 			1	
0	 L0s Entry Idle Counter Traffic idle time to meet, to enter the L0s Link PM state. 0 = Idle condition must last 1 μs 1 = Idle condition must last 4 μs 		RW	Yes	0
1	ASPM L1 Disable		RW	Yes	0
2	Reserved		RsvdP	No	0
3	Factory Test Only Note: When programming this register, always preserve the	e state of this bit.	W1RZ	Yes	0
4	Factory Test Only Note: When programming this register, always preserve the	e state of this bit.	RWS	Yes	1
5	Factory Test Only Note: When programming this register, always preserve the	-	RW	Yes	0
6	Factory Test Only Note: When programming this register, always write 1 to the second secon		RW	Yes	1
7	Disable PCI Express PM L1 Entry 1 = Disables L1 Link PM state entry on Port 0, when Port 0 i into the D3hot state		RW	Yes	0
8	 DLLP Timeout Link Retrain Disable Disable Link retraining when no Data Link Layer Packets (D are received for more than 256 μs. 0 = Enables Link retraining when no DLLPs are received for than 256 μs (default) 1 = DLLP Timeout is disabled 		RW	Yes	0
9	Factory Test Only		RW	Yes	0
10	L0s Entry Disable 0 = Enables entry into the L0s Link PM state on a Port/the St when the L0s idle conditions are met 1 = Disables entry into the L0s Link PM state on a Port/the St when the L0s idle conditions are met		RW	Yes	0
11	Factory Test Only		RW	Yes	0

Register 14-65. 1E0h Power Management Hot Plug User Configuration (All Ports and USB Controller) (Cont.)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
12	PME on Host Resume Enable 1 = Enables forwarding of PME Messages when USB Host is detected on the USB interface while the USB 3380 is in t or D3hot state		RW	Yes	0
15:13	Factory Test Only		RO	Yes	000b
17:16	Factory Test Only		RsvdP	No	00b
18	HPC In-Band Presence Detect Disable 1 = Disable Hot Plug Controller In-Band Presence Detect		RW	Yes	0
31:19	Reserved		RsvdP	No	0-0h

Register 14-66. 1E4h Egress Control and Status (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
1:0	Reserved	RW	Yes	00b
8:2	Factory Test Only	RW	Yes	20h
9	Vendor-Specific Type 0 UR 0 = Do not generate UR Vendor-Defined Type 0 Broadcast TLP in DL_Down state 1 = Generate UR Vendor-Defined Type 0 Broadcast TLP in DL_Down state	RW	Yes	0
10	Egress Credit Timeout Enable 0 = Egress Credit Timeout mechanism is disabled. 1 = Egress Credit Timeout mechanism is enabled. The timeout period is selected in bit 11 (<i>Egress Credit Timeout Value</i>). Status is reflected in bit 16 (<i>VCO Egress Credit Timeout Status</i>). If the Egress Credit Timer is enabled and expires (due to lack of Flow Control credits from the connected device), the Port/SuperSpeed USB brings down its Link. This event generates a Surprise Down Uncorrectable error, for downstream Port 2. For Port 0 Egress Credit Timeout, the connected upstream device detects the Surprise Down event.	RW	Yes	0
11	Egress Credit Timeout Value 0 = 384 to 512 ms 1 = 896 to 1,024 ms	RW	Yes	0
12	 Egress Credit Timeout Short 0 = No Function 1 = Dependent upon the bit 11 (<i>Egress Credit Timeout Value</i>) value: When bit 11 is Cleared, then timeout is 768 μs to 1 ms When bit 11 is Set, then timeout is 1.792 ms to 2 ms 	RW	Yes	0
15:13	Reserved	RsvdP	No	000b
16	VC0 Egress Credit Timeout Status 0 = No timeout 1 = Timeout	RW1C	No	0
18:17	VC0 Egress Credit Timeout Type 00b = Posted 01b = Non-Posted 10b = Completion 11b = Reserved	RO	Yes	00Ь

Register 14-67. 1E8h Bad TLP Counter (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	Bad TLP Counter Counts the quantity of TLPs received with bad Link Cyclic Redundancy Check (LCRC), or quantity of TLPs with a Sequence Number Mismatch error. The Counter saturates at FFFF_FFFh and does not roll over to 0000_0000h.	RWS	Yes	0000_0000h

Register 14-68. 1ECh Bad DLLP Counter (All Ports and USB Controller)

Bit((s)	Description	Туре	Serial EEPROM	Default
31:	:0	Bad DLLP Counter Counts the quantity of DLLPs received with bad LCRC, or quantity of DLLPs with a Sequence Number Mismatch error. The Counter saturates at FFFF_FFFFh and does not roll over to 0000_0000h.	RWS	Yes	0000_0000h

Bit(s)	Description	Туре	Serial EEPROM	Default
	Lane 0 Up Status			
0	0 = Lane is down	RO	No	1
	1 = Lane is up			
1	Reserved	RsvdP	No	0
	Lane 2 Up Status			
2	0 = Lane is down	RO	No	1
	1 = Lane is up			
	SuperSpeed USB Up Status			
3	0 = SuperSpeed USB is down	RO	No	1
	1 = SuperSpeed USB is up			
31:4	Reserved	RsvdP	No	0000_000h

Register 14-69. 1F4h Software Lane Status (Port 0)

Register 14-70. 1F8h ACK Transmission Latency Limit (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
The value	of this register should be valid after Link negotiation.			
11:0	ACK Transmission Latency Limit Acknowledge Control Packet (ACK) Transmission Latency Limit.	RWS	Yes	FFh
	x1 Link width = FFh			
15:12	Reserved	RsvdP	No	Oh
23:16	Upper 8 Bits of the Replay Timer Limit The value in this register is a multiplier of the default internal timer values that are compliant to the <i>PCI Express Base r2.1</i> . These bits should normally remain the default value, 00h.	RWS	Yes	OOh
30:24	Reserved	RsvdP	No	00h
31	ACK Transmission Latency Timer Status Indicates the written status of field [11:0] (ACK Transmission Latency Limit). After the register is written, either by software and/or serial EEPROM, this bit is Set, and Cleared only by a Fundamental Reset.	RO	No	0

14.14.2 Device-Specific Registers – Physical Layer (Offsets 200h – 25Ch)

This section details the Device-Specific Physical Layer (PHY) registers. Table 14-18 defines the register map.

Another Device-Specific PHY register is detailed in Section 14.15.6, "Device-Specific Registers – Physical Layer (Offsets B80h – B88h)."

Table 14-18.Device-Specific PHY Register Map
(Offsets 200h – 25Ch) (Port 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Layer Receiver Detect Status	Physical Layer Electrical Idle for Compliance Mask
Physical Layer Receiver Not Detected Mask	Physical Layer Electrical Idle Detect Mask
Factor	y Test Only 208h
Physical Layer User Te	st Pattern, Bytes 0 through 3
Physical Layer User Te	st Pattern, Bytes 4 through 7
Physical Layer User Tes	st Pattern, Bytes 8 through 11
Physical Layer User Test	t Pattern, Bytes 12 through 15
Physical Layer (Command and Status
Physical Laye	r Function Control
Physica	ıl Layer Test
Factor	y Test Only
Reserved	Physical Layer Port/SuperSpeed USB Command
SKIP Ordered-Set Interval, P	Port and SuperSpeed USB Control
SerDes D	iagnostic Data
Re	23Ch
Port Receive	er Error Counters
Re	eserved
Factor	y Test Only
Physical Laye	r Additional Status
PRBS C	Control/Status
Factor	y Test Only

Register 14-71.	200h Physical Layer Receiver Detect Status/Electrical Idle for Compliance Mask	
(Port 0)		

Bit(s)	Description	Туре	Serial EEPROM	Default
	r is used for specifying whether the Lanes and SuperSpeed USB detecte tected an exit from Electrical Idle.	d a Receiver	during an LTSS	M Detect state,
	Physical Layer Electrical Idle for Compli	iance Mask		
	r allows masking that specifies whether the Lanes and SuperSpeed USB M <i>Polling.Compliance</i> substate to occur.	must never e	xit Electrical Id	lle, for entry
	Electrical Idle on SerDes 0 Causes Entry to Compliance State			
	When all the bits are Cleared, the LTSSM <i>Polling.Compliance</i> substate cannot be entered, due to the Electrical Idle condition.	RWS		
0	1 = Lane 0 must have detected a Receiver during the LTSSM <i>Detect</i> state, and must not see an exit from Electrical Idle during the <i>Polling.Active</i> substate, to cause entry to the <i>Polling.Compliance</i> substate		Yes	1
1	Reserved	RsvdP	No	0
2	Electrical Idle on SerDes 2 Causes Entry to Compliance State When all the bits are Cleared, the LTSSM <i>Polling.Compliance</i> substate cannot be entered, due to the Electrical Idle condition. 1 = Lane 2 must have detected a Receiver during the LTSSM <i>Detect</i> state, and must not see an exit from Electrical Idle during the <i>Polling.Active</i> substate, to cause entry to the <i>Polling.Compliance</i> substate	RWS	Yes	1
3	Electrical Idle on SuperSpeed USB Causes Entry to Compliance State When all the bits are Cleared, the LTSSM <i>Polling.Compliance</i> substate cannot be entered, due to the Electrical Idle condition. 1 = The SuperSpeed USB must have detected a Receiver during the LTSSM <i>Detect</i> state, and must not see an exit from Electrical Idle during the <i>Polling.Active</i> substate, to cause entry to the <i>Polling.Compliance</i> substate	RWS	Yes	1
15:4	Reserved	RsvdP	No	000h
	Physical Layer Receiver Detect Se	atus		
This register	r returns the Receiver's LTSSM Detect state status for both Lanes and S	uperSpeed US	SB.	
16	Receiver Detected on Lane 0 Returns the Receiver's LTSSM <i>Detect</i> state status, and reads back as 1 when a Receiver is detected on Lane 0.	RO	No	Set by SerDes
17	Reserved	RsvdP	No	0
	Receiver Detected on Lane 2			
18	Returns the Receiver's LTSSM <i>Detect</i> state status, and reads back as 1 when a Receiver is detected on Lane 2.	RO	No	Set by SerDes
	Receiver Detected on SuperSpeed USB			Set by
19	Returns the Receiver's LTSSM <i>Detect</i> state status, and reads back as 1 when a Receiver is detected on the SuperSpeed USB Link.	RO	No	Set by SuperSpeed USB
31:20	Reserved	RsvdP	No	000h

Register 14-72. 204h Physical Layer Electrical Idle Detect/Receiver Detect Mask (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
	is used to mask Electrical Idle Detect and Receiver functions for debug purposes USB problems with these circuits.	s. It can also b	e used to mask	SerDes and
	king Electrical Idle detect does not affect the inferred Electrical Idle detection. ical Idle Detect bits with care.	Use the SerDe	es x and Super	Speed USB
	Physical Layer Electrical Idle Detect Mask			
USB basis. V	t Electrical Idle mask. This register allows masking of the Electrical Idle Detect When the bits in this register are Set, the Lane/SuperSpeed USB's <i>Electrical Idle</i> presence of Electrical Idle. Masking Electrical Idle detect does not affect the in	condition flag	does not asser	t, regardless
	SerDes 0 Mask Electrical Idle Detect			
0	0 = Analog Electrical Idle detection is enabled for SerDes 0. 1 = Analog Electrical Idle detection is disabled for SerDes 0. Electrical Idle entrance inference, however, can be enabled by one or more available methods only if this bit is Set, and the Physical Layer Function Control register <i>Port 0 Electrical Idle Inference Disable</i> bit (Port 0, offset 224h[24]) is Cleared.	RWS	Yes	0
1	Reserved	RsvdP	No	0
2	SerDes 2 Mask Electrical Idle Detect 0 = Analog Electrical Idle detection is enabled for SerDes 2. 1 = Analog Electrical Idle detection is disabled for SerDes 2. Electrical Idle entrance inference, however, can be enabled by one or more available methods only if this bit is Set, and the Physical Layer Function Control register <i>Port 2 Electrical Idle Inference Disable</i> bit (Port 0, offset 224h[26]) is Cleared.	RWS	Yes	0
3	SuperSpeed USB Mask Electrical Idle Detect 0 = Analog Electrical Idle detection is enabled for the SuperSpeed USB. 1 = Analog Electrical Idle detection is disabled for the SuperSpeed USB. Electrical Idle entrance inference, however, can be enabled by one or more available methods only if this bit is Set, and the Physical Layer Function Control register <i>SuperSpeed USB Electrical Idle Inference Disable</i> bit (Port 0, offset 224h[27]) is Cleared.	RWS	Yes	0
15:4	Reserved	RsvdP	No	000h

Register 14-72.	204h Physical Layer Electrical Idle Detect/Receiver Detect Mask
(Port 0) (Cont.)	

Bit(s)	Description	Туре	Serial EEPROM	Default	
Physical Layer Receiver Not Detected Mask					
basis. When	ect a Receiver mask. This register allows masking of the Receiver Detect function the bits in this register are Set, the PHY functions as if the Lane/SuperSpeed US nee of a Receiver.				
16	SerDes 0 Mask Receiver Not Detected	RWS	Yes	0	
	1 = Masks the Receiver Not Detected for SerDes 0. Lane 0 will always detect a Receiver. The PHY functions as if a Receiver was detected on Lane 0, regardless of the				
	actual presence of a Receiver.				
17	Reserved	RsvdP	No	0	
18	SerDes 2 Mask Receiver Not Detected				
	1 = Masks the Receiver Not Detected for SerDes 2. Lane 2 will always detect a Receiver.The PHY functions as if a Receiver was detected on Lane 2, regardless of the actual presence of a Receiver.	RWS	Yes	0	
	SuperSpeed USB Mask Receiver Not Detected				
19	1 = Masks the Receiver Not Detected for the SuperSpeed USB. The SuperSpeed USB will always detect a Receiver.	RWS	Yes	0	
	The PHY functions as if a Receiver was detected on the SuperSpeed USB, regardless of the actual presence of a Receiver.				
31:20	Reserved	RsvdP	No	000h	

Register 14-73. 210h Physical Layer User Test Pattern, Bytes 0 through 3 (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default	
<i>Note:</i> A 16-byte test pattern can be written to register offsets 210h through 21Ch. When User Test Pattern (UTP) transmission is enabled, Byte 0 of register offset 210h is transmitted first and Byte 3 (Byte 15 of the UTP) of register offset 21Ch is transmitted last. (Refer to Section 16.2.3, "Digital Loopback Master Mode," for further details.) Every byte of the UTP can be a Control or Data character. Illegal Control characters can be specified.					
7:0	Byte 0 of the UTP. This is the first byte transferred.	RW	Yes	00h	
15:8	Byte 1 of the UTP.	RW	Yes	00h	
23:16	Byte 2 of the UTP.	RW	Yes	00h	
31:24	Byte 3 of the UTP.	RW	Yes	00h	

Register 14-74. 214h Physical Layer User Test Pattern, Bytes 4 through 7 (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default	
<i>Note:</i> A 16-byte test pattern can be written to register offsets 210h through 21Ch. When User Test Pattern (UTP) transmission is enabled, Byte 0 of register offset 210h is transmitted first and Byte 3 (Byte 15 of the UTP) of register offset 21Ch is transmitted last. (Refer to Section 16.2.3, "Digital Loopback Master Mode," for further details.) Every byte of the UTP can be a Control or Data character. Illegal Control characters can be specified.					
7:0	Byte 4 of the UTP. This is the fifth byte transferred.	RW	Yes	00h	
15:8	Byte 5 of the UTP.	RW	Yes	00h	
23:16	Byte 6 of the UTP.	RW	Yes	00h	
31:24	Byte 7 of the UTP.	RW	Yes	00h	

Register 14-75.	218h Physical Layer User Test Pattern, Bytes 8 through 11
(Port 0)	

Bit(s)	Description		Serial EEPROM	Default
<i>Note:</i> A 16-byte test pattern can be written to register offsets 210h through 21Ch. When User Test Pattern (UTP) transmission is enabled, Byte 0 of register offset 210h is transmitted first and Byte 3 (Byte 15 of the UTP) of register offset 21Ch is transmitted last. (Refer to Section 16.2.3, "Digital Loopback Master Mode," for further details.) Every byte of the UTP can be a Control or Data character. Illegal Control characters can be specified.				
7:0	Byte 8 of the UTP. This is the ninth byte transferred.	RW	Yes	00h
15:8	Byte 9 of the UTP.	RW	Yes	00h
23:16	Byte 10 of the UTP.	RW	Yes	00h
31:24	Byte 11 of the UTP.	RW	Yes	00h

Register 14-76. 21Ch Physical Layer User Test Pattern, Bytes 12 through 15 (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default	
is enabled (Refer to S	<i>Note:</i> A 16-byte test pattern can be written to register offsets 210h through 21Ch. When User Test Pattern (UTP) transmission is enabled, Byte 0 of register offset 210h is transmitted first and Byte 3 (Byte 15 of the UTP) of register offset 21Ch is transmitted last. (Refer to Section 16.2.3, "Digital Loopback Master Mode," for further details.) Every byte of the UTP can be a Control or Data character. Illegal Control characters can be specified.				
7:0	Byte 12 of the UTP. This is the thirteenth byte transferred.	RW	Yes	00h	
15:8	Byte 13 of the UTP.	RW	Yes	00h	
23:16	Byte 14 of the UTP.	RW	Yes	00h	
31:24	Byte 15 of the UTP.	RW	Yes	00h	

Register 14-77. 220h Physical Layer Command and Status

(Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default	
This regis	This register provides various Command and Status bits for Physical Layer operation.				
2:0	Number of Ports Available Returns the quantity of enabled Ports.	RO	No	Programmed by serial EEPROM value for the Port Configuration register <i>Port</i> <i>Configuration</i> bit (Port 0, offset 574h[0])	
3	Upstream Cross-Link Enable 0 = Disables upstream cross-link, Port 0 cannot be connected to another upstream Port 1 = Enables upstream cross-link, Port 0 can be connected to another upstream Port	RWS	Yes	1	
4	Downstream Cross-Link Enable 0 = Disables downstream cross-link, downstream Ports cannot be connected to other downstream Ports 1 = Enables downstream cross-link, downstream Ports can be connected to other downstream Ports	RWS	Yes	1	
6:5	Reserved	RsvdP	No	00b	
7	Factory Test Only	RWS	Yes	0	
15:8	Reserved	RsvdP	No	00h	
31:16	User Test Pattern K-Code Flag The corresponding UTP byte is transmitted as a kcode. Notice: Use caution when turning on k-characters, because the transmit logic does not examine illegal codes for validity. Also, sequences of control codes that can be detected as legal SKIP Ordered-Sets in the middle of the data pattern can confuse the Receive data checking logic. Therefore, it is recommended to not turn on k-characters when testing with a UTP.	RWS	Yes	0000h	

Register 14-78.	224h Physical Layer Function Control
(Port 0)	

Bit(s)	Description	Туре	Serial EEPROM	Default
This regis	ster contains Port/SuperSpeed USB-based PHY Safety	bits.	•	
3:0	Configuration Fail Counter[3:0] Specifies the quantity of times that the <i>Configuration</i> state must fail, before the Port toggles its <i>Gen 2 Feature Disable</i> flag. Writing 0000b to this field disables this Gen 1 compatibility function. The initial value of this field is determined by the STRAP_UPCFG_TIMER_EN# input state. If the input is Low when reset de-asserts, the initial value of this field is 0001b; otherwise, the initial value is 0000b.	RWS	Yes	0000b (STRAP_UPCFG_TIMER_EN#=H) 0001b (STRAP_UPCFG_TIMER_EN#=L)
6:4	Electrical Idle Inference Time Select[2:0] Selects the amount of time to wait until no SKIP Ordered-Sets are detected, for Electrical Idle to be inferred. Does not affect Electrical Idle inference during the <i>Recovery.Speed</i> substate. $000b = 4 \ \mu s$ $001b = 6 \ \mu s$ $010b = 8 \ \mu s$ $011b = 16 \ \mu s$ $100b = 32 \ \mu s$ $101b = 64 \ \mu s$ $110b = 128 \ \mu s (default)$ $111b = 256 \ \mu s$	RWS	Yes	110Ь
7	Reserved	RsvdP	No	0

Register 14-78. 224h Physical Layer Function Control (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
9:8	Recovery.Speed Electrical Idle Inference Time Divider Select[1:0]Selects the amount of time that no TS1 nor TS2 Ordered-Sets are detected during the <i>Recovery.Speed</i> substate, for Electrical Idle to be 	RWS	Yes	00ь
11:10	Detect.Quiet Wait Time Select Code[1:0] Selects the amount of time to wait during the <i>Detect.Quiet</i> substate, before starting the Receiver Detect operation, when a break from Electrical Idle is detected. If Electrical Idle is detected on the Lanes and SuperSpeed USB, the wait time is 12 ms. 00b = 0 ms 01b = 4 ms 10b = 8 ms 11b = 12 ms	RWS	Yes	00Ь
15, 12	Unconditional SerDes/SuperSpeed USB Disable	RWS	Yes	00b
14:13	Reserved	RsvdP	No	00b
16	 Inferred Electrical Idle Inference Exit Type Selects the method used to detect exit from Electrical Idle, after Electrical Idle has been inferred. 0 = Fast Method – Type 0 Exit mode is used, which uses conventional analog Electrical Idle Exit Detection circuitry 1 = Slow Method – Type 1 Exit mode is used, which uses the Symbol Framer Detection Time Select Code and Inferred Electrical Idle Exit Time Select Code Timers (fields [21:20 and 19:18], respectively) 	RWS	Yes	0
	Reserved	RsvdP	No	0

Register 14-78. 224h Physical Layer Function Control (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
19:18	Inferred Electrical Idle Exit Time Select Code When Electrical Idle has been inferred and the Electrical Idle Inference Exit Type is 1 (bit 16 is Set), this field selects the amount of time that the SerDes/SuperSpeed USB Receive Data path remains disabled. $00b = 2 \ \mu s$ $01b = 4 \ \mu s$ $10b = 8 \ \mu s$ $11b = 16 \ \mu s$	RWS	Yes	00Ь
21:20	Symbol Framer Detection Time Select Code When Electrical Idle has been inferred and the Electrical Idle Inference Exit Type is 1 (bit 16 is Set), this field selects the amount of time that the symbol framer is allowed to obtain symbol lock. 00b = 128 ns 01b = 256 ns 10b = 512 ns $11b = 1 \mu\text{s}$	RWS	Yes	00Ь
23:22	Reserved	RsvdP	No	00b
24	Port 0 Electrical Idle Inference Disable 0 = Electrical Idle inference is enabled, if the Physical Layer Electrical Idle Detect Mask register SerDes 0 Mask Electrical Idle Detect bit (Port 0, offset 204h[0]) is Set. 1 = Overall Electrical Idle inference logic is disabled on Port 0. Electrical Idle inference during the Recovery.Speed substate is not affected and will continue to operate.	RWS	Yes	0
25	Reserved	RsvdP	No	0
26	Port 2 Electrical Idle Inference Disable 0 = Electrical Idle inference is enabled, if the Physical Layer Electrical Idle Detect Mask register SerDes 2 Mask Electrical Idle Detect bit (Port 0, offset 204h[2]) is Set. 1 = Overall Electrical Idle inference logic is disabled on Port 2. Electrical Idle inference during the Recovery.Speed substate is not affected and will continue to operate.	RWS	Yes	0
27	SuperSpeed USB Electrical Idle Inference Disable 0 = Electrical Idle inference is enabled, if the Physical Layer Electrical Idle Detect Mask register SuperSpeed USB Mask Electrical Idle Detect bit (Port 0, offset 204h[3]) is Set. 1 = Overall Electrical Idle inference logic is disabled on the SuperSpeed USB. Electrical Idle inference during the Recovery.Speed substate is not affected and will continue to operate.	RWS	Yes	0

Register 14-78. 224h Physical Layer Function Control (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
28	Port 0 Electrical Idle Inference on EIOS Receipt Enable 0 = Electrical Idle inference is enabled upon Electrical Idle Ordered-Set (EIOS) receipt, if the Physical Layer Electrical Idle Detect Mask register SerDes 0 Mask Electrical Idle Detect bit (Port 0, offset 204h[0]) is Set 1 = Electrical Idle will be inferred as soon as an EIOS is received on Lane 0	RWS	Yes	0
29	Reserved	RsvdP	No	0
30	Port 2 Electrical Idle Inference on EIOS Receipt Enable 0 = Electrical Idle inference is enabled upon EIOS receipt, if the Physical Layer Electrical Idle Detect Mask register SerDes 2 Mask Electrical Idle Detect bit (Port 0, offset 204h[2]) is Set 1 = Electrical Idle will be inferred as soon as an EIOS is received on Lane 2	RWS	Yes	0
31	SuperSpeed USB Electrical Idle Inference onEIOS Receipt Enable0 = Electrical Idle inference is enabled upon EIOSreceipt, if the Physical Layer Electrical IdleDetect Mask register SuperSpeed USB MaskElectrical Idle Detect bit (Port 0, offset 204h[3])is Set1 = Electrical Idle will be inferred as soonas an EIOS is received on the SuperSpeed USB	RWS	Yes	0

Register 14-79. 228h Physical Layer Test (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
This regist	er provides controls to enable various PHY test modes.			
0	Port 0 Timer Test Mode Enable 0 = Normal PHY Timer parameters are used 1 = Millisecond scale timers in the Port 0 LTSSM are reduced to microsecond scale	RWS	Yes	0
1	Reserved	RsvdP	No	0
2	Port 2 Timer Test Mode Enable 0 = Normal PHY Timer parameters are used 1 = Millisecond scale timers in the Port 2 LTSSM are reduced to microsecond scale	RWS	Yes	0
3	SuperSpeed USB Timer Test Mode Enable 0 = Normal PHY Timer parameters are used 1 = Millisecond scale timers in the SuperSpeed USB LTSSM are reduced to microsecond scale	RWS	Yes	0
4	SKIP Timer Test Mode Enable	RW	Yes	0
5	Ignore Compliance Receive TCB	RWS	Yes	0
6	Analog Loopback Enable 0 = USB 3380 enters Digital Loopback Slave mode if an external device sends at least two consecutive TS1 Ordered-Sets that have the <i>Loopback</i> bit exclusively Set in the TS1 Training Control symbol. The USB 3380 then loops back data through the Elastic buffer, 8b/10b decoder, and 8b/10b encoder. 1 = Loopback point of all Ports/SuperSpeed USB is located before the Elastic buffer. This means that data recovered from the Serial data in the recovered Receive Clock domain is re-serialized, then re-transmitted in that same recovered clock domain. This allows the Loopback Master to transmit and receive a user test pattern (UTP) in an asynchronous clocking system. It is also the required mode for re-transmitting a PRBS pattern back to the Loopback Master. Overrides the Lane/SuperSpeed USB's Parallel "Digital" Loopback Setting bit(s) [27:26, 24] (<i>Lane x/SuperSpeed USB Parallel</i> <i>Loopback Path Enable</i>).	RWS	Yes	0
7	Reserved	RsvdP	No	0

Register 14-79. 228h Physical Layer Test (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
8	Factory Test Only	RW	Yes	0
9	Factory Test Only	RO	No	0
10	Factory Test Only	RW1C	Yes	0
19:11	Reserved	RsvdP	No	0-0h
20	Lane 0 Serial Loopback Path Enable 0 = Disabled 1 = Lane 0 enables the Serial <i>Loopback</i> (Master) path, regardless of the LTSSM state	RW	Yes	0
21	Reserved	RsvdP	No	0
22	Lane 2 Serial Loopback Path Enable 0 = Disabled 1 = Lane 2 enables the Serial <i>Loopback</i> (Master) path, regardless of the LTSSM state	RW	Yes	0
23	SuperSpeed USB Serial Loopback Path Enable0 = Disabled1 = SuperSpeed USB enables the Serial Loopback (Master) path, regardless of the LTSSM state	RW	Yes	0

Register 14-79.	228h Physical Layer Test
(Port 0) (Cont.)	

Bit(s)	Description	Туре	Serial EEPROM	Default
24	Lane 0 Parallel Loopback Path EnableIt is recommended that Port 0 be placed into a Port Disable state, by Setting the Port and SuperSpeed USB Control register Disable Port 0 bit (Port 0, offset 234h[16]), followed by a Port Quiet state, by Setting the Port 0 Quiet bit (Port 0, offset 234h[20]), before Setting 	RW	Yes	0
	<i>Note:</i> This path is automatically enabled when the LTSSM enters the Loopback. Active substate, as a Loopback Slave.			
25	Reserved	RsvdP	No	0
26	Lane 2 Parallel Loopback Path Enable It is recommended that Port 2 be placed into a <i>Port Disable</i> state, by Setting the Port and SuperSpeed USB Control register <i>Disable</i> <i>Port 2</i> bit (Port 0, offset 234h[18]), followed by a <i>Port Quiet</i> state, by Setting the <i>Port 2 Quiet</i> bit (Port 0, offset 234h[22]), before Setting this bit. 0 = Parallel "Digital" <i>Loopback</i> (Slave) path is disabled for this Lane 1 = Lane manually enables the Parallel "Digital" <i>Loopback</i> (Slave) path, regardless of the LTSSM state <i>Note: This path is automatically enabled when the LTSSM</i> <i>enters the Loopback.Active substate, as a Loopback Slave.</i>	RW	Yes	0
27	SuperSpeed USB Parallel Loopback Path EnableIt is recommended that the SuperSpeed USB be placed into a Disablestate, by Setting the Port and SuperSpeed USB Control registerDisable SuperSpeed USB bit (Port 0, offset 234h[19]), followedby a Quiet state, by Setting the SuperSpeed USB Quiet bit (Port 0,offset 234h[23]), before Setting this bit.0 = Parallel "Digital" Loopback (Slave) path is disabled for theSuperSpeed USB1 = SuperSpeed USB manually enables the Parallel "Digital" Loopback(Slave) path, regardless of the LTSSM stateNote: This path is automatically enabled when the LTSSMenters the Loopback.Active substate, as a Loopback Slave.	RW	Yes	0

Register 14-79. 228h Physical Layer Test (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
	SerDes 0 User Test Pattern Enable 0 = Disables user test pattern transmission 1 = Enables user test pattern transmission			
28	Notes: This bit and the SerDes Test register SerDes 0 BIST Generator/ Checker Enable bit (Port 0, offset B88h[16]) are mutually exclusive functions and must not be enabled together for SerDes 0. The logical result of both bits ANDed with one another must be 0.	RW	Yes	0
	UTP transmission should be enabled only when operating as a Loopback Master, or when the LTSSM has returned to the Detect.Quiet substate and the Port and SuperSpeed USB Control register Port 0 Quiet bit (Port 0, offset 234h[20]) is Set.			
29	Reserved	RsvdP	No	0
	SerDes 2 User Test Pattern Enable 0 = Disables user test pattern transmission 1 = Enables user test pattern transmission Notes: This bit and the SerDes Test register SerDes 2 BIST Generator/			
30	Checker Enable bit (Port 0, offset B88h[18]) are mutually exclusive functions and must not be enabled together for SerDes 2. The logical result of both bits ANDed with one another must be 0.	RW	Yes	0
	UTP transmission should be enabled only when operating as a Loopback Master, or when the LTSSM has returned to the Detect.Quiet substate and the Port and SuperSpeed USB Control register Port 2 Quiet bit (Port 0, offset 234h[22]) is Set.			
	SuperSpeed USB User Test Pattern Enable0 = Disables user test pattern transmission1 = Enables user test pattern transmission			
31	Notes: This bit and the SerDes Test register SuperSpeed USB BIST Generator/Checker Enable bit (Port 0, offset B88h[19]) are mutually exclusive functions and must not be enabled together for the SuperSpeed USB. The logical result of both bits ANDed with one another must be 0.	RW	Yes	0
	UTP transmission should be enabled only when operating as a Loopback Master, or when the LTSSM has returned to the Detect.Quiet substate and the Port and SuperSpeed USB Control register SuperSpeed USB Quiet bit (Port 0, offset 234h[23]) is Set.			

Bit(s)	Description	Туре	Serial EEPROM	Default
	er provides the Port/SuperSpeed USB Loopback, Scrambler Disable, and as Loopback Master status.	Compliance R	Receive commands	,
	Port 0 Loopback Command			
	0 = Port 0 is not enabled to go to the <i>Loopback</i> Master state.			
0	1 = Port 0 attempts to enter the <i>Loopback</i> state as a Loopback Master. If this bit is Set before the <i>Configuration</i> state is reached, the <i>Configuration.Linkwidth.Start</i> to <i>Loopback</i> path is used. If this bit is Set later, the <i>Recovery.Idle</i> to <i>Loopback</i> path is used.	RWS	Yes	0
	Port 0 Scrambler Disable Command			
	When Set, unconditionally disables the data scramblers on Lane 0, and causes the <i>Disable Scrambling</i> Training Control Bit to be Set in the transmitted Training Sets.			
	If a serial EEPROM load Sets this bit, the scrambler is disabled in a <i>Configuration.Complete</i> substate.	RWS Yes	0	
1	If software Sets this bit when the Link is in the Up state, hardware disables its scrambler without executing the Link Training protocol. This scrambler disable takes effect after the Link passes through <i>Configuration</i> again. The upstream/downstream device scrambler will not be disabled.			
	0 = Port 0's scrambler is enabled			
	1 = Port 0's scrambler is disabled			
	Port 0 Compliance Receive Command			
2	0 = When Port 0 transmits TS1 Ordered-Sets, the <i>Compliance Receive</i> Training Control Bit within these Ordered-Sets is not Set during the <i>Polling.Active</i> nor <i>Loopback.Entry</i> substate	RWS	Yes	0
	1 = When Port 0 transmits TS1 Ordered-Sets, the <i>Compliance Receive</i> Training Control Bit within these Ordered-Sets is Set during the <i>Polling.Active</i> or <i>Loopback.Entry</i> substate			
	Port 0 Ready as Loopback Master			
3	Link Training and Status State Machine (LTSSM) established Loopback as a Master for Port 0.			
	0 = Port 0 is not in Loopback Master mode.	RO	No	0
	1 = Indicates that Port 0 has successfully transitioned to the <i>Loopback.Active</i> substate as a Loopback Master. The LTSSM remains in this substate, until bit 0 (<i>Port 0 Loopback Command</i>) is Cleared. This bit is Cleared when the USB 3380 exits the <i>Loopback.Active</i> substate.	ĸŬ	NO	0
7:4	Reserved	RsvdP	No	Oh

Register 14-80.	230h Physical Layer	Port/SuperSpeed US	SB Command
(Port 0)			

Register 14-80. 230h Physical Layer Port/SuperSpeed USB Command (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
8	Port 2 Loopback Command0 = Port 2 is not enabled to go to the Loopback Master state.1 = Port 2 attempts to enter the Loopback state as a Loopback Master.If this bit is Set before the Configuration state is reached,the Configuration.Linkwidth.Start to Loopback path is used.If this bit is Set later, the Recovery.Idle to Loopback path is used.	RWS	Yes	0
9	Port 2 Scrambler Disable CommandWhen Set, unconditionally disables the data scramblers on Lane 2, and causes the Disable Scrambling Training Control Bit to be Set in the transmitted Training Sets.If a serial EEPROM load Sets this bit, the scrambler is disabled in a Configuration.Complete substate.If software Sets this bit when the Link is in the Up state, hardware 	RWS	Yes	0
10	Port 2 Compliance Receive Command0 = When Port 2 transmits TS1 Ordered-Sets, the Compliance ReceiveTraining Control Bit within these Ordered-Sets is not Set during thePolling.Active nor Loopback.Entry substate1 = When Port 2 transmits TS1 Ordered-Sets, the Compliance ReceiveTraining Control Bit within these Ordered-Sets is Set during thePolling.Active or Loopback.Entry substate	RWS	Yes	0
11	Port 2 Ready as Loopback MasterLTSSM established Loopback as a Master for Port 2.0 = Port 2 is not in Loopback Master mode.1 = Indicates that Port 2 has successfully transitioned to theLoopback.Active substate as a Loopback Master. The LTSSMremains in this substate, until bit 8 (Port 2 Loopback Command)is Cleared. This bit is Cleared when the USB 3380 exitsthe Loopback.Active substate.	RO	No	0

Register 14-80.	230h Physical Layer Port/SuperSpeed USB Command
(Port 0) (Cont.)	

Bit(s)	Description	Туре	Serial EEPROM	Default
12	SuperSpeed USB Loopback Command0 = SuperSpeed USB is not enabled to go to the LoopbackMaster state.1 = SuperSpeed USB attempts to enter the Loopback state as a Loopback Master. If this bit is Set before the Configuration state is reached, the Configuration.Linkwidth.Start to Loopback path is used.If this bit is Set later, the Recovery.Idle to Loopback path is used.	RWS	Yes	0
13	SuperSpeed USB Scrambler Disable CommandWhen Set, unconditionally disables the data scramblers on the SuperSpeed USB, and causes the Disable Scrambling Training Control Bit to be Set in the transmitted Training Sets.If a serial EEPROM load Sets this bit, the scrambler is disabled in a Configuration.Complete substate.If software Sets this bit when the Link is in the Up state, hardware disables its scrambler without executing the Link Training protocol. This scrambler disable takes effect after the Link passes through Configuration again. The upstream/downstream device scrambler will not be disabled.0 = SuperSpeed USB's scrambler is enabled 1 = SuperSpeed USB's scrambler is disabled	RWS	Yes	0
14	SuperSpeed USB Compliance Receive Command 0 = When the SuperSpeed USB transmits TS1 Ordered-Sets, the Compliance Receive Training Control Bit within these Ordered-Sets is not Set during the Polling.Active nor Loopback.Entry substate 1 = When the SuperSpeed USB transmits TS1 Ordered-Sets, the Compliance Receive Training Control Bit within these Ordered-Sets is Set during the Polling.Active or Loopback.Entry substate	RWS	Yes	0
15	SuperSpeed USB Ready as Loopback Master LTSSM established Loopback as a Master for the SuperSpeed USB. 0 = SuperSpeed USB is not in Loopback Master mode. 1 = Indicates that the SuperSpeed USB has successfully transitioned to the <i>Loopback.Active</i> substate as a Loopback Master. The LTSSM remains in this substate, until bit 12 (<i>SuperSpeed USB Loopback</i> <i>Command</i>) is Cleared. This bit is Cleared when the USB 3380 exits the <i>Loopback.Active</i> substate.	RO	No	0
31:16	Reserved	RsvdP	No	0000h

Register 14-81. 234h SKIP Ordered-Set Interval, Port and SuperSpeed USB Control (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
 The non-<i>reserved</i> upper 16 bits of this register (also referred to as the <i>Port and SuperSpeed USB Control register</i>) are us or enable the LTSSM within individual Ports and the SuperSpeed USB. The bits are intended to be used in lieu of placin and/or SuperSpeed USB into the <i>Loopback.Active</i> substate as a Loopback Master. These bits enable the test patterns to be with or without a device attached at the far end. Recommended usage is as follows: 1. Set the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> and <i>Port x/SuperSpeed USB Quiet</i> bits. Setting the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> bit forces the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> bit forces the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> bit forces the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> bit forces the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> bit forces the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> bit forces the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> bit. If 5.0 GT/s is needed, also Set the Port/SuperSpeed USB's <i>Test Pattern x Rate</i> bit. If Set, Clear the Port and/or SuperSpeed USB's <i>Disable Port x/SuperSpeed USB</i> bit. Load the UTP registers and enable UTP transmission, or just enable PRBS transmission. 			g the Port transmitted, SB into	
11:0	 SKIP Ordered-Set Interval Specifies the SKIP Ordered-Set interval (in symbol times). When a value of 000h is written, SKIP Ordered-Set transmission is disabled. 000h = Disables SKIP Ordered-Set transmission 49Ch = Minimum interval (1,180 symbol times) 602h = Maximum interval (1,538 symbol times) Note: A high value (such as FFFh) can cause the Link to fail. 	RWS	Yes	49Ch
15:12	Reserved	RsvdP	No	Oh

Register 14-81.	234h SKIP Ordered-Set Interval, Port and SuperSpeed USB Control
(Port 0) (Cont.)	

Bit(s)	Description	Туре	Serial EEPROM	Default
16	Disable Port 0 0 = Enables Link Training operation on Port 0. 1 = LTSSM remains in the <i>Detect.Quiet</i> substate on Port 0, if it is currently in, or returns to, that substate. Unconditionally disables Port 0. This is different from the Link Training and Status State Machine (LTSSM) <i>Disabled</i> state, in that Port 0 does not attempt to enter this state. If Port 0 is idle, it ceases attempting to detect a Receiver. If Port 0 is up, it immediately returns to the <i>Detect.Quiet</i> substate and remains there. No Electrical Idle Ordered-Set (EIOS) is sent, which could force any connected device to the <i>Recovery</i> state, and then to the LTSSM <i>Detect</i> state. Port 0 remains disabled until this bit is Cleared. While Port 0 is disabled, SerDes 0 is placed into the P1 SerDes Power state.	RWS	Yes	0
17	Reserved	RsvdP	No	0
18	Disable Port 2 0 = Enables Link Training operation on Port 2. 1 = LTSSM remains in the <i>Detect.Quiet</i> substate on Port 2, if it is currently in, or returns to, that substate. Unconditionally disables Port 2. This is different from the LTSSM <i>Disabled</i> state, in that Port 2 does not attempt to enter this state. If Port 2 is idle, it ceases attempting to detect a Receiver. If Port 2 is up, it immediately returns to the <i>Detect.Quiet</i> substate and remains there. No EIOS is sent, which could force any connected device to the <i>Recovery</i> state, and then to the LTSSM <i>Detect</i> state. Port 2 remains disabled until this bit is Cleared. While Port 2 is disabled, SerDes 2 is placed into the P1 SerDes Power state.	RWS	Yes	0
19	Disable SuperSpeed USB 0 = Enables Link Training operation on the SuperSpeed USB. 1 = LTSSM remains in the <i>Detect.Quiet</i> substate on the SuperSpeed USB, if it is currently in, or returns to, that substate. Unconditionally disables the SuperSpeed USB. This is different from the LTSSM <i>Disabled</i> state, in that the SuperSpeed USB does not attempt to enter this state. If the SuperSpeed USB is idle, it ceases attempting to detect a Receiver. If the SuperSpeed USB is up, it immediately returns to the <i>Detect.Quiet</i> substate and remains there. No EIOS is sent, which could force any connected device to the <i>Recovery</i> state, and then to the LTSSM <i>Detect</i> state. The SuperSpeed USB remains disabled until this bit is Cleared. While the SuperSpeed USB is disabled, it is placed into the P1 SerDes Power state.	RWS	Yes	0

Register 14-81. 234h SKIP Ordered-Set Interval, Port and SuperSpeed USB Control (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Port 0 Quiet Once in the <i>Detect.Quiet</i> substate, Receiver termination is enabled and the Transmitters are placed into the P0 SerDes Power state. Port 0 can now transmit test patterns (PRBS or UTP), with or without an attached device and without being in the <i>Loopback.Active</i> substate.			
20	 0 = LTSSM is allowed to exit the <i>Detect.Quiet</i> substate in a normal manner (no effect on the LTSSM) 1 = LTSSM remains in the <i>Detect.Quiet</i> substate on Port 0 if it is currently in, or returns to, that substate 	RWS	Yes	0
	<i>Note:</i> Use this bit when it is necessary to transmit some data pattern, without first entering the Loopback. Active substate as a Loopback Master.			
21	Reserved	RsvdP	No	0
22	 Port 2 Quiet Once in the <i>Detect.Quiet</i> substate, Receiver termination is enabled and the Transmitters are placed into the PO SerDes Power state. Port 2 can now transmit test patterns (PRBS or UTP), with or without an attached device and without being in the <i>Loopback.Active</i> substate. 0 = LTSSM is allowed to exit the <i>Detect.Quiet</i> substate in a normal manner (no effect on the LTSSM) 1 = LTSSM remains in the <i>Detect.Quiet</i> substate on Port 2 if it is currently in, or returns to, that substate <i>Note:</i> Use this bit when it is necessary to transmit some data pattern, without first entering the Loopback.Active substate as a Loopback Master. 	RWS	Yes	0
23	 SuperSpeed USB Quiet Once in the <i>Detect.Quiet</i> substate, Receiver termination is enabled and the Transmitters are placed into the P0 SerDes Power state. The SuperSpeed USB can now transmit test patterns (PRBS or UTP), with or without an attached device and without being in the <i>Loopback.Active</i> substate. 0 = LTSSM is allowed to exit the <i>Detect.Quiet</i> substate in a normal manner (no effect on the LTSSM) 1 = LTSSM remains in the <i>Detect.Quiet</i> substate on the SuperSpeed USB if it is currently in, or returns to, that substate <i>Note:</i> Use this bit when it is necessary to transmit some data pattern, without first entering the Loopback.Active substate as a Loopback Master. 	RWS	Yes	0

Register 14-81.	234h SKIP Ordered-Set Interval, Port and SuperSpeed USB Control
(Port 0) (Cont.)	

Bit(s)	Description	Туре	Serial EEPROM	Default
24	 Port 0 Test Pattern x Rate Port 0 transmits the selected test pattern (PRBS or UTP) at 5.0 GT/s, if bit 20 (<i>Port 0 Quiet</i>) is also Set (manual rate selection is enabled only when the <i>Quiet</i> bit is Set). 0 = Test pattern is transmitted at the Gen 1 Link rate (2.5 GT/s) 1 = Test pattern is transmitted at the Gen 2 Link (5.0 GT/s) 		Yes	0
25	Reserved	RsvdP	No	0
26	 Port 2 Test Pattern x Rate Port 2 transmits the selected test pattern (PRBS or UTP) at 5.0 GT/s, if bit 22 (<i>Port 2 Quiet</i>) is also Set (manual rate selection is enabled only when the <i>Quiet</i> bit is Set). 0 = Test pattern is transmitted at a rate of 2.5 GT/s 1 = Test pattern is transmitted at a rate of 5.0 GT/s 		Yes	0
27	SuperSpeed USB Test Pattern x Rate The SuperSpeed USB transmits the selected test pattern (PRBS or UTP) at 5.0 GT/s, if bit 23 (<i>SuperSpeed USB Quiet</i>) is also Set (manual rate		Yes	0

Register 14-81. 234h SKIP Ordered-Set Interval, Port and SuperSpeed USB Control (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
28	 Port 0 Bypass UTP Alignment Pattern Must be Set if the following conditions exist: Port 0 is a Loopback Master transmitting the User Test Pattern, and Loopback Slave is in a different clock domain 0 = UTP Transmitter continuously transmits the alignment pattern until any UTP checker in SerDes 0 indicates that it has received the alignment pattern. The UTP Transmitter will then transmit one sync pattern, followed by the programmed user test pattern. 1 = Programmed user test pattern will be preceded by one alignment pattern (D3.2 D18.2 D13.2 D17.1) and one sync pattern (K28.5 D3.2 D18.2 D13.2). 	RWS	Yes	0
29	Reserved		No	0
30	 Port 2 Bypass UTP Alignment Pattern Must be Set if the following conditions exist: Port 2 is a Loopback Master transmitting the User Test Pattern, and Loopback Slave is in a different clock domain 0 = UTP Transmitter continuously transmits the alignment pattern until any UTP checker in SerDes 2 indicates that it has received the alignment pattern. The UTP Transmitter will then transmit one sync pattern, followed by the programmed user test pattern. 1 = Programmed user test pattern will be preceded by one alignment pattern (D3.2 D18.2 D13.2 D17.1) and one sync pattern (K28.5 D3.2 D18.2 D13.2). 		Yes	0
31	 (D3.2 D18.2 D18.2 D17.1) and one sync pattern (K28.5 D3.2 D18.2 D18.2 D13.2). SuperSpeed USB Bypass UTP Alignment Pattern Must be Set if the following conditions exist: SuperSpeed USB is a Loopback Master transmitting the User Test Pattern, and Loopback Slave is in a different clock domain 0 = UTP Transmitter continuously transmits the alignment pattern until any UTP checker in the SuperSpeed USB indicates that it has received the alignment pattern. The UTP Transmitter will then transmit one sync pattern, followed by the programmed user test pattern. 1 = Programmed user test pattern will be preceded by one alignment pattern (D3.2 D18.2 D13.2 D17.1) and one sync pattern (K28.5 D3.2 D18.2 D13.2). 		Yes	0

Register 14-82. 238h SerDes Diagnostic Data (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
This regist	er is used to retrieve Diagnostic Test results for SerDes[0, 2] and the SuperS	peed USB.		
	UTP Expected Data			
7:0	When User Test Pattern (UTP) is enabled, if an error is detected in the received UTP data, this field returns the expected data.	RO	No	00h
	UTP Actual Data			
15:8	When UTP is enabled, if an error is detected in the received UTP data, this field returns the actual data that was received.	RO	No	00h
	UTP/PRBS Error Counter			
	Receiver Detected flags. Returns the quantity of errors detected by the UTP (bit 30 is Cleared) or PRBS (bit 30 is Set) Data Checkers. The Error Counter saturates at 255, and is Cleared when UTP/PRBS is disabled.			
	UTP Mode		No	
23:16	To Clear the Counter, disable UTP mode by Clearing one or more of the Physical Layer Test register <i>SerDes x/SuperSpeed USB User Test Pattern Enable</i> bit(s) (Port 0, offset 228h[31:30, 28]).	RO		00h
	PRBS Mode			
	To Clear the Counter, disable PRBS mode by Clearing one or more of the SerDes Test register <i>SerDes x/SuperSpeed USB BIST Generator/ Checker Enable</i> bit(s) (Port 0, offset B88h[19:18, 16]).			
	SerDes Diagnostic Data Select			
	Used to select the SerDes[0, 2] or the SuperSpeed USB to which the diagnostic data in this register pertains.			
25:24	Status selection code for the fields representing RO bits [30, 23:0] of this register. The binary code represents a status selection for Lane 0, 2, or the SuperSpeed USB. The test results for physical device Lanes [0, 2] or the SuperSpeed USB are selected with corresponding binary codes from 0, 2, 3, respectively.	RW	Yes	00b
	<i>Note:</i> To obtain diagnostic data on all SerDes and the SuperSpeed USB, run a test, then cycle these bits.			
29:26	Reserved	RsvdP	No	Oh
	PRBS Counter/-UTP Counter			
30	0 = Indicates that field [23:16] (<i>UTP/PRBS Error Counter</i>) is the UTP Error Counter	RO	No	0
	1 = Indicates that field [23:16] (<i>UTP/PRBS Error Counter</i>) is the PRBS Error Counter			
31	Reserved	RsvdP	No	0

Register 14-83. 248h Port Receiver Error Counters (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Port 0 Receiver Error Counter When read, returns the quantity of Receiver errors detected by Port 0. The Error Counter saturates at 255. The Counter is Cleared with any Write to the corresponding byte in this register; otherwise, this field is RO.	RW1C	No	00h
15:8	Reserved		No	00h
23:16	Port 2 Receiver Error Counter When read, returns the quantity of Receiver errors detected by Port 2. The Error Counter saturates at 255. The Counter is Cleared with any Write to the corresponding byte in this register; otherwise, this field is RO.	RW1C	No	00h
31:24	SuperSpeed USB Receiver Error Counter When read, returns the quantity of Receiver errors detected by the		No	00h

Register 14-84.	254h Physical Layer	Additional Status
(Port 0)		

Bit(s)	Description	Туре	Serial EEPROM	Default
0	Port 0 Loopback Master Entry Failed 1 = Indicates that Port 0 failed to enter the Loopback state as a Loopback Master, and abandoned the attempt by returning the LTSSM to the Detect state Note: If this bit and the Physical Layer Port/SuperSpeed USB Command register Port 0 Ready as Loopback Master bit (Port 0, offset 230h[3]) are both Set, the Loopback state was entered after the initial failure from the Configuration state.		Yes	0
1	Reserved	RsvdP	No	0
2	Port 2 Loopback Master Entry Failed 1 = Indicates that Port 2 failed to enter the Loopback state as a Loopback Master, and abandoned the attempt by returning the LTSSM to the Detect state Note: If this bit and the Physical Layer Port/SuperSpeed USB Command register Port 2 Ready as Loopback Master bit (Port 0, offset 230h[11]) are both Set, the Loopback state was entered after the initial failure from the Configuration state.	RW1C	Yes	0
3	SuperSpeed USB Loopback Master Entry Failed 1 = Indicates that the SuperSpeed USB failed to enter the Loopback state as a Loopback Master, and abandoned the attempt by returning the LTSSM to the Detect state Note: If this bit and the Physical Layer Port/SuperSpeed USB Command register SuperSpeed USB Ready as Loopback Master bit (Port 0, offset 230h[15]) are both Set, the Loopback state was entered after the initial failure from the Configuration state.		Yes	0
7:4	PhyStatus PIPE interface PhyStatus.		No	PCFG
14:8	Received Modified Compliance Error Counter	RO	No	0-0h
15	Received Modified Compliance Pattern Lock	RO	No	0

Register 14-84. 254h Physical Layer Additional Status (Port 0) (*Cont.*)

Bit(s)	Description	Туре	Serial EEPROM	Default
16	Port 0 External Loopback Enable 1 = Allows Port 0 to reach Link Up status, when receiving its own Training Sets during Link training. It is necessary to Set this bit when the Port 0 Receivers are directly connected, externally, to its Transmitters.	RW	Yes	0
17	Reserved	RsvdP	No	0
18	Port 2 External Loopback Enable 1 = Allows Port 2 to reach Link Up status, when receiving its own Training Sets during Link training. It is necessary to Set this bit when the Port 2 Receivers are directly connected, externally, to its Transmitters.	RW	Yes	0
19	SuperSpeed USB External Loopback Enable 1 = Allows the SuperSpeed USB to reach Link Up status, when receiving its own Training Sets during Link training. It is necessary to Set this bit when the SuperSpeed USB Receivers are directly connected, externally, to its Transmitters.		Yes	0
23:20	2 nd Receiver Detect Disable	RWS	Yes	Oh
25:24	Received Modified Compliance Lane Select		Yes	00b
27:26	Reserved		No	00b
28	Factory Test Only	RW	Yes	0
31:29	Reserved	RsvdP	No	000b

Register 14-85. 258h PRBS Control/Status (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
0	PRBS Pattern Sync Status Device Lane 0 Diagnoses broken Loopback wiring, because no errors can be detected and counted until pattern sync is detected. Sync achieved is Active-High.		N	
0	0 = Causes the PRBS pattern generator, when enabled, to output the PRBS7 sequence 1 = Indicates that Lane 0's PRBS Data Checker has synchronized to the incoming PRBS data pattern – the Receiver has acquired its first match on two sequentially received words	RO	No	0
1	Reserved	RsvdP	No	0
2	PRBS Pattern Sync Status Device Lane 2 Diagnoses broken Loopback wiring, because no errors can be detected and counted until pattern sync is detected. Sync achieved is Active-High.	RO	No	0
2	0 = Causes the PRBS pattern generator, when enabled, to output the PRBS7 sequence 1 = Indicates that Lane 2's PRBS Data Checker has synchronized to the incoming PRBS data pattern – the Receiver has acquired its first match on two sequentially received words			
	PRBS Pattern Sync Status Device SuperSpeed USB			
	Diagnoses broken Loopback wiring, because no errors can be detected and counted until pattern sync is detected. Sync achieved is Active-High.		No	
3	0 = Causes the PRBS pattern generator, when enabled, to output the PRBS7 sequence	RO		0
	1 = Indicates that the SuperSpeed USB's PRBS Data Checker has synchronized to the incoming PRBS data pattern – the Receiver has acquired its first match on two sequentially received words			
15:4	Reserved	RsvdP	No	000h
	PRBS Pattern Invert Enable			
16	1 = Causes the PRBS pattern generator to output the one's complement of the PRBS7 sequence	RW	Yes	0
31:17	Reserved	RsvdP	No	0-0h

14.14.3 Device-Specific Registers – Serial EEPROM (Offsets 260h – 26Ch)

This section details the Device-Specific Serial EEPROM registers. Table 14-19 defines the register map.

Table 14-19. Device-Specific Serial EEPROM Register Map (Port 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status Data from Serial EEPROM	Serial EEPROM Status	Serial EEPROM Control			
Serial EEPROM Buffer					
Serial EEPROM Clock Frequency					
ReservedSerial EEPROM3rd Address Byte					

Register 14-86. 260h Serial EEPROM Status and Control (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Serial EEPROM Control			
12:0	EepBlkAddr Serial EEPROM Block Address for 32 KB.	RW	Yes	000h
15:13	EepCmd[2:0]Commands to the Serial EEPROM Controller.000b = Reserved001b = Data from bits [31:24] (Status Data from Serial EEPROM register)is written to the serial EEPROM's internal Status register010b = Write four bytes of data from the EepBuf into the memory locationpointed to by field [12:0] (EepBlkAddr)011b = Read four bytes of data from the memory location pointed to by field[12:0] (EepBlkAddr) into the EepBuf100b = Reset Write Enable latch101b = Data from the serial EEPROM's internal Status register iswritten to bits [31:24] (Status Data from Serial EEPROM register)110b = Set Write Enable latch111b = ReservedNote: For value of 001b, only bits [31, 27:26] can be writteninto the serial EEPROM's internal Status register.	RW	Yes	000Ь

Bit(s)	Description		Туре	Serial EEPROM	Default
	Serial EEPROM Status		L	l.	1
17:16	EepPrsnt[1:0] Serial EEPROM Present status. 00b = Not present 01b = Serial EEPROM is present – Validation Signature is verified 10b = Reserved 11b = Serial EEPROM is present – Validation Signature is not verified		HwInit	No	00b
18	EepCmdStatus Serial EEPROM Command status. 0 = Serial EEPROM Command is complete 1 = Serial EEPROM Command is not complete		RO	No	0
19	Reserved		RsvdP	No	0
20	EepBlkAddr Upper Bit Serial EEPROM Block Address upper bit 13. Extends the serial EEPROM	to 64 KB.	RW	Yes	0
21	EepAddrWidth Override 0 = Field [23:22] (<i>EepAddrWidth</i>) is RO 1 = Field [23:22] (<i>EepAddrWidth</i>) is software-writable		RW	Yes	0
	EepAddrWidth Serial EEPROM Address width. If the addressing width cannot be determined, 00b is returned. A non-zero value is reported only if the validation signature (5Ah) is successfully read from the first serial EEPROM location.		HwInit	No	00b
23:22	This field is usually HwInit; however, it is RW if bit 21 (<i>EepAddrWidth Override</i>) is Set.Bit 21 =00b = Undetermined101b = 1 byte110b = 2 bytes111b = 3 bytes1			No	00Ъ

Register 14-86. 260h Serial EEPROM Status and Control (Port 0) (*Cont.*)

Register 14-86. 260h Serial EEPROM Status and Control (Port 0) (Cont.)

Bit(s)			Des		Туре	Serial EEPROM	Default		
	Status Data from Serial EEPROM ^a								
24	EepRdy Serial EEPROM RDY#. 0 = Serial EEPROM is ready to transmit data 1 = Write cycle is in progress							Yes	0
25	0 = Serial		e enable. Write is disabled Write is enabled		RW	Yes	0		
	EepBp[1:0] Serial EEPROM Block-Write Protect bits. Block Protection options protect the top ¹ / ₄ , top ¹ / ₂ , or the entire serial EEPROM. USB 3380 Configuration data is stored in the lower addresses; therefore, when using Block Protection, the entire serial EEPROM should be protected with BP[1:0]=11b.					data			
	BP[1:0]	Level	Array Add	dresses Protec	ted, by Device	Size			
	51[1:0]	Level	8 KB	16 KB	32 KB	64 KB			
27:26	00b	0	None	None	None	None	RW	Yes	00b
	01b	1 (top ½)	1800h – 1FFFh	3000h – 3FFFh	6000h – 7FFFh	_			
	10b	2 (top ½)	1000h – 1FFFh	2000h – 3FFFh	4000h – 7FFFh	_			
	11b	3 (All)	0000h – 1FFFh	0000h – 3FFFh	0000h – 7FFFh	-			

Register 14-86.	260h Serial EEPROM Status and Control
(Port 0) (Cont.)	

Bit(s)	Description	Туре	Serial EEPROM	Default
30:28	EepWrStatusSerial EEPROM Write status. Value is 000b when the serial EEPROM is not in an internal Write cycle.Note:The definition of this field varies among serial EEPROM manufacturers. Reads of the serial EEPROM's internal Status register can return a value of 000b or 111b, depending upon the serial EEPROM that is used.	RO	No	000ь
31	 EepWpen Serial EEPROM Write Protect enable. Overrides the internal serial EEPROM Write Protect WP# input and enables/disables Writes to the Serial EEPROM Status register (bits [23:16] of this register): When WP#=H or this bit is Cleared, and bit 25 (<i>EepWen</i>) is Set, the Serial EEPROM Status register is writable When WP#=L and this bit is Set, or bit 25 (<i>EepWen</i>) is Cleared, the Serial EEPROM Status register is write-protected Notes: If the internal serial EEPROM Write Protect WP# input is Low, after software Sets the EepWen bit to write-protect the Serial EEPROM Status register; the EepWen value cannot be Cleared, nor can the EepBp[1:0] field be Cleared to disable Block Protection, until the WP# input is High. This bit is not implemented in certain serial EEPROMS. Refer to the serial EEPROM manufacturer's data sheet. 	RW	Yes	0

a. Within the serial EEPROM's internal Status register, only bits [31, 27:26] can be written.

Register 14-87. 264h Serial EEPROM Buffer (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	EepBuf Serial EEPROM RW buffer. Read/Write command to the Serial EEPROM Control register (Port 0, offset 260h) results in a 4-byte Read/Write to/from the serial EEPROM device.	RW	Yes	0000_0000h

Register 14-88. 268h Serial EEPROM Clock Frequency (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
	EepFreq[2:0] Serial EEPROM clock (EE_CLK/EE_SK) frequency control.			
2:0	000b = 1 MHz (default) 001b = 1.98 MHz 010b = 5 MHz 011b = 9.62 MHz 100b = 12.5 MHz 101b = 15.6 MHz 110b = 17.86 MHz 111b = Reserved	RW	Yes	000Ь
7:3	Reserved	RsvdP	No	0-0h
	EepCsStHld[2:0] CS to SCLK setup and hold timing to the serial EEPROM, between EE_CS# active and EE_CLK/EE_SK active, and between EE_CLK/EE_SK inactive and EE_CS# inactive. Time increases in ½ EE_CLK/EE_SK Clock cycle increments, from a minimum of ½, to a maximum of 4.			
10:8	000b = ½ EE_CLK/EE_SK clocks (minimum time) 001b = 1 EE_CLK/EE_SK clocks (+ ½ clock) 010b = 1 ½ EE_CLK/EE_SK clocks 011b = 2 EE_CLK/EE_SK clocks 100b = 2 ½ EE_CLK/EE_SK clocks 101b = 3 EE_CLK/EE_SK clocks 110b = 3 ½ EE_CLK/EE_SK clocks 111b = 4 EE_CLK/EE_SK clocks (maximum time)	RW	Yes	010b
31:11	Reserved	RsvdP	No	0-0h

Register 14-89. 26Ch Serial EEPROM 3rd Address Byte (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Serial EEPROM 3 rd Address Byte	RW	Yes	00h
31:8	Reserved	RsvdP	No	0000_00h

14.15 Device-Specific Registers (Offsets 530h – B88h)

This section details the Device-Specific registers located at offsets 530h through B88h. Device-Specific registers are unique to the USB 3380 and not referenced in the *PCI Express Base r2.1*. Table 14-20 defines the register map.

Other Device-Specific registers are detailed in Section 14.14, "Device-Specific Registers (Offsets 1C0h – 444h)."

Note: It is recommended that these registers not be changed from their default values.

Table 14-20.Device-Specific Register Map
(Offsets 530h – B88h)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	Factory Test C	Dnly/Reserved	530h -
Device-Spe	cific Registers – Po	ort Configuration (Offset 574h)	
	Factory T	Fest Only/Reserved	578h –
Device-Specific R	egisters – Negotiato	ed Link Width (Offsets 660h – 67Ch)	
	Rese	rved	680h –
Next Capability Offset 2 (000h)	1h	PCI Express Extended Capability ID 2 (000E	Bh)
Device-Specific Registers	- Vendor-Specific	Extended Capability 2 (Offsets 950h – 95Ch)	
	Factory Test C	Only/Reserved	960h –
Device-Specific Registers –	Ingress Credit Han	dler Control and Status (Offsets 9F0h – 9FCh)	
Device-Specific Registe	rs – Ingress Credit	Handler Threshold (Offsets A00h – A2Ch)	
	Factory Test C	Only/Reserved	A30h -

14.15.1 Device-Specific Registers – Port Configuration (Offset 574h)

This section details the Device-Specific Port Configuration register. Table 14-21 defines the register map.

Table 14-21. Device-Specific Port Configuration Register Map (Port 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Port Configuration

574h

Register 14-90. 574h Port Configuration (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
Notes: 7	The Port configuration is listed in Table 14-12.			
Port 2 is	the virtual PCI-to-PCI bridge, and is always enabled. It is n	ot affected by	the value of this	register.
0	Port Configuration Indicates the Port 0 Link width configuration. This register is reset only by a Fundamental Reset (PEX_PERST# assertion). 0 = x1 (Port 0) 1 = Reserved	RO	Yes	0
31:1	Reserved	RsvdP	No	0-0h

14.15.2 Device-Specific Registers – Negotiated Link Width (Offsets 660h – 67Ch)

This section details the Device-Specific Negotiated Link Width register. Table 14-22 defines the register map.

Table 14-22. Device-Specific Negotiated Link Width Register Map (Port 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Factory Test Only 660h –	668h
Reserved Negotiated Link Width for Ports 0 and 2 and SuperSpeed USB	66Ch
Reserved	670h
Factory Test Only674h -	67Ch

Register 14-91. 66Ch Negotiated Link Width for Ports 0 and 2 and SuperSpeed USB (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
Note: The	e downstream Port and SuperSpeed USB are always x1 Link	width.		
0	Negotiated Link Width for Port 0 0 = x1 1 = Reserved	RO	No	0
1	Link Speed for Port 0 0 = Negotiated Link SerDes speed is 2.5 GT/s 1 = Negotiated Link SerDes speed is 5.0 GT/s	RO	No	0
3:2	Reserved	RsvdP	No	00b
4	Negotiated Link Width for Port 2 0 = x1 1 = Reserved	RO	No	0
5	Valid Negotiated Link Width for Port 20 = Negotiated Link SerDes speed is 2.5 GT/s1 = Negotiated Link SerDes speed is 5.0 GT/s	RO	No	0
6	Negotiated Link Width for SuperSpeed USB Reserved	RsvdP	No	0
7	Valid Negotiated Link Speed for SuperSpeed USB Reserved	RsvdP	No	1
31:8	Reserved	RsvdP	No	0000_00h

14.15.3 Device-Specific Registers – Vendor-Specific Extended Capability 2 (Offsets 950h – 95Ch)

This section details the Device-Specific, Vendor-Specific Extended Capability 2 registers. Table 14-23 defines the register map.

Table 14-23. Device-Specific, Vendor-Specific Extended Capability 2 Register Map (All Ports and USB Controller)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Next Capability Offset 2 (000h)	Capability Version 2 (1h)	PUT Express Extended (apapility II) / (UUUBh)		
Vendor-Specific Header 2				954h
Hardwired Device ID	Hardwired Device ID Hardwired Vendor ID			
Reserved			Hardwired Revision ID	95Ch

Register 14-92. 950h Vendor-Specific Extended Capability 2 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	PCI Express Extended Capability ID 2 Program to 000Bh, indicating that the Capability structure is the Vendor-Specific Extended Capability structure.	RO	Yes	000Bh
19:16	Capability Version 2	RO	Yes	1h
31:20	Next Capability Offset 2 000h = This extended capability is the last capability in the USB 3380 Extended Capabilities list	RO	Yes	000h

Register 14-93. 954h Vendor-Specific Header 2 (All Ports and USB Controller)

E	Bit(s)	Description	Туре	Serial EEPROM	Default
	15:0	Vendor-Specific ID 2 ID Number of this Extended Capability structure.	RO	Yes	0001h
1	19:16	Vendor-Specific Rev 2 Version Number of this structure.	RO	Yes	Oh
3	31:20	Vendor-Specific Length 2 Quantity of bytes in the entire structure.	RO	Yes	028h

Register 14-94. 958h PLX Hardwired Configuration ID (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	Hardwired Vendor ID Always returns the PLX PCI-SIG-assigned Vendor ID value, 10B5h.	RO	No	10B5h
31:16	Hardwired Device ID Always returns the USB 3380 default Device ID value, 3380h.	RO	No	3380h

Register 14-95. 95Ch PLX Hardwired Revision ID (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Hardwired Revision ID Always returns the USB 3380 default PCI Revision ID value, AAh or ABh.	RO	No	Current Rev # (AAh or ABh)
31:8	Reserved	RsvdP	No	0000_00h

14.15.4 Device-Specific Registers – Ingress Credit Handler Control and Status (Offsets 9F0h – 9FCh)

This section details the Device-Specific Ingress Credit Handler (INCH) Control and Status registers. Table 14-24 defines the register map.

Table 14-24. Device-Specific INCH Control and Status Register Map (Port 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INCH Status Control for Port 0	9F0h
INCH Status Read for Port 0	9F4h
INCH Status Control for Port 2 and SuperSpeed USB	9F8h
INCH Status Read for Port 2 and SuperSpeed USB	9FCh

Register 14-96. 9F0h INCH Status Control for Port 0 (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
3:0	Credit Available Select Write the value here to specify which of the six Credit Available registers to read. This value is used as input to the INCH Status Read for Port 0 register <i>Read Credit Available Value</i> field (Port 0, offset 9F4h[19:0]). Oh = INCH Threshold Port 0 VC0 Posted credits available 1h = INCH Threshold Port 0 VC0 Non-Posted credits available 2h = INCH Threshold Port 0 VC0 Completion credits available 8h = INCH Threshold Port 0 VC0 Posted register (Port 0, offset A00h) 9h = INCH Threshold Port 0 VC0 Non-Posted register (Port 0, offset A04h) Ah = INCH Threshold Port 0 VC0 Completion register (Port 0, offset A08h)	RWS	Yes	Oh
23:4	All other encodings are <i>reserved</i> . <i>Reserved</i>	RsvdP	No	Oh

Register 14-96. 9F0h INCH Status Control for Port 0 (Port 0) (Cont.)

Bit(s)		Description	Туре	Serial EEPROM	Default	
24	Determir by Port 0	a is written by Port 0	RWS	Yes	0	
27:25	Reserved	!	RsvdP	No	000b	
31:28	Determin is include through (<i>Note: H</i> <i>IN FIFO</i> <i>Complex</i> 0 = FIFC	IFO OFF hes whether General-Purpose Endpoint <i>x</i> (GPEP <i>x</i>) ed in the level check. Bits [28:31] map to GPEP0 GPEP3, respectively. In Root Complex mode, by default, the GPEP1 and GPEP3 s are not included in the credit calculations for Root mode. (Refer to Section 8.5.1.1, "PCI Express Credits." is included in the level check is not included in level check	RWS	Yes	Adapter mode: 0000b Root Complex mode:	
	Bit	General-Purpose Endpoint			1010b	
	28	GPEP0				
	29	GPEP1				
	30	GPEP2				
	31	GPEP3				

Register 14-97. 9F4h INCH Status Read for Port 0 (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Read Credit Available Value			
19:0	Read register selected in the INCH Status Control for Port 0 register <i>Credit</i> <i>Available Select</i> field (Port 0, offset 9F0h[3:0]). The value returns the selected Credit Available register.	RWS	Yes	0_000h
31:20	Reserved	RsvdP	No	000h

Register 14-98.	9F8h INCH Status Control for Port 2 and SuperSpeed USB
(Port 0)	

Bit(s)	Description	Туре	Serial EEPROM	Default
3:0	Credit Available Select Write the value here to specify which of the 12 Credit Available registers to read. This value is used as input to the INCH Status Read for Port 2 and SuperSpeed USB register <i>Read Credit Available Value</i> field (Port 0, offset 9FCh[19:0]). 0h = INCH Threshold Port 2 VC0 Posted credits available (default) 1h = INCH Threshold Port 2 VC0 Non-Posted credits available 2h = INCH Threshold Port 2 VC0 Completion credits available 3h = INCH Threshold SuperSpeed USB VC0 Posted credits available 4h = INCH Threshold SuperSpeed USB VC0 Non-Posted credits available 5h = INCH Threshold Port 2 VC0 Posted register (Port 0, offset A18h) 9h = INCH Threshold Port 2 VC0 Non-Posted register (Port 0, offset A18h) 9h = INCH Threshold Port 2 VC0 Completion register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Posted register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Posted register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Posted register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Posted register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Posted register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Posted register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Non-Posted register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Non-Posted register (Port 0, offset A20h) Bh = INCH Threshold SuperSpeed USB VC0 Non-Posted register (Port 0, offset A28h) Dh = INCH Threshold SuperSpeed USB VC0 Completion register (Port 0, offset A28h) Dh = INCH Threshold SuperSpeed USB VC0 Completion register (Port 0, offset A22h) All other encodings are <i>reserved</i> .	RWS	Yes	Oh
25:4	Reserved	RsvdP	No	0-0h
29:26	 INCH FIFO OFF Determines whether General-Purpose Endpoint <i>x</i> (GPEP<i>x</i>) is included in the level check. The bits map to GPEP0 through GPEP3, as follows: Bit 26 maps to GPEP0 Bit 27 maps to GPEP1 Bit 28 maps to GPEP2 Bit 29 maps to GPEP3 0 = FIFO is included in the level check 1 = FIFO is not included in level check 	RWS	Yes	Oh
31:30	Reserved	RsvdP	No	00b

Register 14-99. 9FCh INCH Status Read for Port 2 and SuperSpeed USB (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
	Read Credit Available Value			
19:0	Read register selected in the INCH Status Control for Port 2 and SuperSpeed USB register <i>Credit Available Select</i> field (Port 0, offset 9F8h[3:0]). The value returns the selected Credit Available register.	RWS	Yes	0_0000h
31:20	Reserved	RsvdP	No	000h

14.15.5 Device-Specific Registers – Ingress Credit Handler Threshold (Offsets A00h – A2Ch)

This section details the Device-Specific Ingress Credit Handler (INCH) Threshold registers. **Changing credit values from default register values must be done carefully; otherwise, the USB 3380 will not properly function.** Table 14-25 defines the register map.

Table 14-25. Device-Specific INCH Threshold Register Map (Port 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	INCH Threshold Port 0 VC0 Posted		A00h
Factory Test Only/Reserved	INCH Threshold Port 0 VC0 Non-Posted		A04h
	INCH Threshold Port 0 VC0 Completion		A08h
	Reserved	A0Ch-	A14h
	INCH Threshold Port 2 VC0 Posted		A18h
Factory Test Only/Reserved	INCH Threshold Port 2 VC0 Non-Posted		A1Ch
	INCH Threshold Port 2 VC0 Completion		A20h
	INCH Threshold SuperSpeed USB VC0 Posted		A24h
Factory Test Only/Reserved	INCH Threshold SuperSpeed USB VC0 Non-Posted		A28h
	INCH Threshold SuperSpeed USB VC0 Completion		A2Ch

Register 14-100. A00h, A18h, A24h INCH Threshold Port *x* and SuperSpeed USB VC0 Posted (Port 0)

Serial Bit(s) Default Description Туре EEPROM Posted credits are used for VC0 Memory Write and Message transactions. Port x is Ports 0 and 2. These Ports and the SuperSpeed USB are associated with register offsets A00h, A18h, and A24h, respectively. 2:0 Reserved RsvdP No 000b **Posted Payload Credit** Default advertised Posted Payload credit. Bit resolution is in units of 8. Each increment provides 8 Posted Payload Refer to credits (for example, Ah = 80 Posted Payload credits). Each credit means 7:3 RWS Yes Description that 16 bytes of storage are reserved for Posted TLP Payload data. Port 0 = 32 Payload Credits Downstream Port = 128 Payload Credits **Posted Header Credit** Default advertised Posted Header credit. Bit resolution is 1 for 1. Each increment provides 1 Posted Header credit Refer to (for example, Ah = 10 Posted Header credits). Each credit means that 13:8 RWS Yes Description storage is reserved for the entire Header of a Posted TLP. Port 0 = 16 Header Credits Downstream Port = 22 Header Credits 31:14 Reserved RsvdP No 0-0h

Register 14-101. A04h, A1Ch, A28h INCH Threshold Port x and SuperSpeed USB VC0 Non-Posted (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default		
	Non-Posted credits are used for VC0 Memory Read, I/O Read, I/O Write, Configuration Read, and Configuration Write transactions. Port <i>x</i> is Ports 0 and 2. These Ports and the SuperSpeed USB are associated with register offsets A04h, A1Ch, and A28h, respectively.					
	Non-Posted Payload Credit					
7:0	The Non-Posted Payload is stored with the Non-Posted Header; therefore Non-Posted Payload credit is always available. Because of this, the USB 3380 hardwires this field to 00h (infinite credits).	RsvdP	Yes	00h		
	Non-Posted Header Credit					
	Default advertised Non-Posted Header credit.					
13:8	Bit resolution is 1 for 1. Each increment provides 1 Non-Posted Header credit (<i>for example</i> , $Ah = 10$ Non-Posted Header credits). Each credit means that storage is reserved for the entire Header of a Non-Posted TLP.	RWS	Yes	Refer to Description		
	Port $0 = 10$ Header Credits					
	Downstream Port = 16 Header Credits					
23:14	Reserved	RsvdP	No	0-0h		
25:24	Factory Test Only	RWS	Yes	00b		
27:26	Reserved	RsvdP	No	00b		
31:28	Factory Test Only	RW	Yes	Oh		

Register 14-102. A08h, A20h, A2Ch INCH Threshold Port x and SuperSpeed USB VC0 Completion (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default			
transaction	Completion credits are used for VC0 Memory Read, I/O Read, I/O Write, Configuration Read, and Configuration Write transaction Completions. Port <i>x</i> is Ports 0 and 2. These Ports and the SuperSpeed USB are associated with register offsets A08h, A20h, and A2Ch, respectively.						
2:0							
7:3	Completion Payload Credit Default advertised Completion Payload credit. Bit resolution is in units of 8. Each increment provides 8 Completion Payload Credits (<i>for example</i> , Ah = 80 Completion Payload credits). Each Credit means that 16 bytes of storage are reserved for Completion TLP Payload data. Port 0 = 224 Payload Credits Downstream Port = 128 Payload Credits	RWS	Yes	Refer to Description			
13:8	Completion Header Credit Default advertised Completion Header credit. Bit resolution is 1 for 1. Each increment provides 1 Completion Header credit (<i>for example</i> , Ah = 10 Completion Header credits). Each credit means that storage is reserved for the entire Header of a Completion TLP. Port 0 = 28 Header Credits Downstream Port = 16 Header Credits	RWS	Yes	Refer to Description			
31:14	Reserved	RsvdP	No	0-0h			

USB 3380-AA/AB PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller Data Book, v1.3 Copyright © 2012 by PLX Technology, Inc. All Rights Reserved

14.15.6 Device-Specific Registers – Physical Layer (Offsets B80h – B88h)

This section details the Device-Specific Physical Layer (PHY) **Advertised N_FTS** register, located at offset B84h; the remaining register within this structure are *Factory Test Only*. Table 14-26 defines the register map.

Other Device-Specific PHY registers are detailed in Section 14.14.2, "Device-Specific Registers – Physical Layer (Offsets 200h – 25Ch)."

Table 14-26.Device-Specific PHY Register Map
(Offsets B80h – B88h) (Port 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Factory Test Only	B80h
Reserved Advertise	ed N_FTS B84h
SerDes Test	B88h

Register 14-103. B84h Advertised N_FTS (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
7:0	Advertised N_FTS Advertised Number of Fast Training Sets (N_FTS) value to transmit for all Ports and the SuperSpeed USB (in Training Sets). Used, along with Link speed, for determining the L1 Exit Latency (Link Capability register <i>L1 Exit</i> <i>Latency</i> field (All Ports, offset 74h[14:12])).	RWS	Yes	40h
31:8	Reserved	RsvdP	No	0000_00h

Register 14-104. B88h SerDes Test (Port 0)

Bit(s)	Description	Туре	Serial EEPROM	Default
0	Bit Error Checker	RW	Yes	0
1	Factory Test Only	RW	Yes	0
2	Data Bus Width Select	RW	Yes	0
3	Packet Length Select	RW	Yes	0
4	Factory Test Only	RW	Yes	0
5	Comma Detection Enable	RW	Yes	1
6	Comma Pattern Generator Enable	RW	Yes	0
7	TSEQ Pattern G Enable	RW	Yes	0
9:8	PRBS Number Select	RW	Yes	00b
15:10	Factory Test Only	RW	Yes	0-0h
16	 SerDes 0 BIST Generator/Checker Enable SerDes 0 PRBS Enable. Bits SMB_RX_BISTEN_U and SMB_TX_BISTEN_U of L0_PREG_AD20_IN. 0 = Disables PRBS sequence generation/checking on SerDes 0 1 = Enables PRBS sequence generation/checking on SerDes 0 Notes: This bit and the Physical Layer Test register SerDes 0 User Test Pattern Enable bit (Port 0, offset 228h[28]) are mutually exclusive functions and must not be enabled together for SerDes 0. The logical result of both bits ANDed with one another must be 0. PRBS transmission should be enabled only when operating as a Loopback Master, or when the LTSSM has returned to the Detect.Quiet substate and the Port and SuperSpeed USB Control register Port 0 Quiet bit (Port 0, 	RW	Yes	0
17	offset 234h[20]) is Set. Reserved	RsvdP	No	0

Register 14-104. B88h SerDes Test (Port 0) (Cont.)

Bit(s)	Description	Туре	Serial EEPROM	Default
	SerDes 2 BIST Generator/Checker Enable SerDes 2 PRBS Enable. Bits SMB_RX_BISTEN_U and SMB_TX_BISTEN_U of L2_PREG_AD20_IN. 0 = Disables PRBS sequence generation/checking on SerDes 2			
18	1 = Enables PRBS sequence generation/checking on SerDes 2 Notes: This bit and the Physical Layer Test register SerDes 2 User Test	RW	Yes	0
10	Pattern Enable bit (Port 0, offset 228h[30]) are mutually exclusive functions and must not be enabled together for SerDes 2. The logical result of both bits ANDed with one another must be 0.	κw	105	0
	PRBS transmission should be enabled only when operating as a Loopback Master, or when the LTSSM has returned to the Detect.Quiet substate and the Port and SuperSpeed USB Control register Port 2 Quiet bit (Port 0, offset 234h[22]) is Set.			
	SuperSpeed USB BIST Generator/Checker Enable SuperSpeed USB PRBS Enable. Bits SMB_RX_BISTEN_U and SMB_TX_BISTEN_U of L3_PREG_AD20_IN.			
	0 = Disables PRBS sequence generation/checking on SerDes 2 1 = Enables PRBS sequence generation/checking on SerDes 2			
19	Notes: This bit and the Physical Layer Test register SuperSpeed USB User Test Pattern Enable bit (Port 0, offset 228h[31]) are mutually exclusive functions and must not be enabled together for the SuperSpeed USB. The logical result of both bits ANDed with one another must be 0.	RW	Yes	0
	PRBS transmission should be enabled only when operating as a Loopback Master, or when the LTSSM has returned to the Detect.Quiet substate and the Port and SuperSpeed USB Control register SuperSpeed USB Quiet bit (Port 0, offset 234h[23]) is Set.			
27:20	Reserved	RsvdP	No	00h
	SerDes RESET_B			
31:28	Writing 1 to these bits causes the RESET_B and RESET_B_U inputs to the corresponding SerDes to assert for 128 μ s. This reset also causes the corresponding LTSSM to return to its initial state. These bits always return a value of 0 when read.	RW1C	Yes	Oh

14.16 Advanced Error Reporting Extended Capability Registers (Offsets FB4h – FE8h)

This section details the Advanced Error Reporting Extended Capability registers. Table 14-27 defines the register map.

Note: The Root Complex Event Collector registers, located at offsets FE0h through FE8h are visible/ available only in Root Complex mode. For further details, refer to Section 7.4.1.3, "Root Complex Event Collector Registers."

Table 14-27. Advanced Error Reporting Extended Capability Register Map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Next Capability Offset (138h)	Capability Version (1h)	PCI Express Extended Capability ID (0001h)	FB4h
	Uncorrectable	e Error Status	FB8h
	Uncorrectabl	e Error Mask	FBCh
	Uncorrectable	Error Severity	FC0h
Reserved		Correctable Error Status	FC4h
Reserved		Correctable Error Mask	FC8h
	Advanced Error Cap	abilities and Control	FCCh
	Header Log 0		
	Header Log 0 Header Log 1		
	Header	: Log 2	FD8h
	Header	: Log 3	FDCh
R	Reserved (Action of Error Command	dapter Mode) (Root Complex Mode)	FE0h
	Reserved (Ad Root Error Status (R	dapter Mode) oot Complex Mode)	FE4h
	Reserved (Ad Error Source ID (Re	dapter Mode) oot Complex Mode)	FE8h

Register 14-105. FB4h Advanced Error Reporting Extended Capability Header (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
15:0	PCI Express Extended Capability ID	RO	Yes	0001h
19:16	Capability Version	RO	Yes	1h
31:20	Next Capability Offset Program to 138h, which addresses the Power Budget Extended Capability structure.	RO	Yes	138h

Register 14-106. FB8h Uncorrectable Error Status (All Ports and USB Controller)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
the error is not sen	f an individual error is masked (corresponding bit in the Un is detected, its Error Status bit is still updated; however, an at to the Root Complex, and the Advanced Error Capabilitie CCh[4:0]) and Header Log x registers (offsets FD0h throug	error reporting Mes s and Control regist	sage (ERR_FAT ter First Error F	AL or ERR_NC	
3:0	Reserved		RsvdP	No	Oh
4	Data Link Protocol Error Status 0 = No error is detected 1 = Error is detected		RW1CS	Yes	0
5	Surprise Down Error Status 0 = No error is detected 1 = Error is detected		RW1CS	Yes	0
11:6	Reserved		RsvdP	No	0-0h
12	Poisoned TLP Status 0 = No error is detected 1 = Error is detected	Poisoned TLP Status 0 = No error is detected			0
13	Flow Control Protocol Error Status Reserved/Not supported		RO	No	1
14	Completion Timeout Status 0 = No error is detected 1 = Error is detected		RW1CS	Yes	0
15	Completer Abort Status		RW1CS	Yes	0
16	Unexpected Completion Status 0 = No error is detected 1 = Error is detected		RW1CS	Yes	0
17	Receiver Overflow Status 0 = No error is detected 1 = Error is detected		RW1CS	Yes	0
18	Malformed TLP Status0 = No error is detected1 = Error is detected		RW1CS	Yes	0
19	ECRC Error Status Not supported		RsvdP	No	0
20	Unsupported Request Error Status 0 = No error is detected 1 = Error is detected		RW1CS	Yes	0
21	Reserved		RsvdP	No	0
22	Uncorrectable Internal Error Status 0 = No error is detected 1 = Error is detected	0	RW1CS	Yes	0
	Reserved	Otherwise	RsvdP	No	0
31:23	Reserved		RsvdP	No	0-0h

Register 14-107. FBCh Uncorrectable Error Mask (All Ports and USB Controller)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
	The bits in this register can be used to mask their respective l r, offset FB8h).	Uncorrectable Error	Status registe	r bits (All Ports	and USB
3:0	Reserved		RsvdP	No	Oh
4	Data Link Protocol Error Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header lo	ogging for this error	RWS	Yes	0
5	Surprise Down Error Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header lo	ogging for this error	RWS	Yes	0
11:6	Reserved		RsvdP	No	0-0h
12	Poisoned TLP Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header lo	RWS	Yes	0	
13	Flow Control Protocol Error Mask Reserved/Not supported		RsvdP	No	0
14	Completion Timeout Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header logging for this error		RWS	Yes	0
15	Completer Abort Mask		RWS	Yes	0
16	Unexpected Completion Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header logging for this error		RWS	Yes	0
17	Receiver Overflow Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header lo	ogging for this error	RWS	Yes	0
18	Malformed TLP Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header lo	gging for this error	RWS	Yes	0
19	ECRC Error Mask Not supported		RsvdP	No	0
20	Unsupported Request Error Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header lo	ogging for this error	RWS	Yes	0
21	Reserved		RsvdP	No	0
22	Uncorrectable Internal Error Mask 0 = No mask is Set 1 = Masks error reporting, first error update, and Header logging for this error	0	RWS	Yes	1
	Reserved	Otherwise	RsvdP	No	1
31:23	Reserved		RsvdP	No	0-0h

Register 14-108. FC0h Uncorrectable Error Severity (All Ports and USB Controller)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
3:0	Reserved		RsvdP	No	Oh
4	Data Link Protocol Error Severity 0 = Error is reported as non-fatal 1 = Error is reported as fatal		RWS	Yes	1
5	Surprise Down Error Severity 0 = Error is reported as non-fatal 1 = Error is reported as fatal		RWS	Yes	1
11:6	Reserved		RsvdP	No	0-0h
12	Poisoned TLP Severity 0 = Error is handled as an Advisory Non-Fatal error, and reported as a Correctable error 1 = Error is reported as fatal		RWS	Yes	0
13	Flow Control Protocol Error Severity		RO	No	1
14	Completion Timeout Severity 0 = Error is handled as an Advisory Non-Fatal error, and reported as a Correctable error 1 = Error is reported as fatal		RWS	Yes	0
15	Completer Abort Severity 0 = Error is handled as an Advisory Non-Fatal error, and reported as a Correctable error 1 = Error reported as fatal		RWS	Yes	0
16	Unexpected Completion Severity 0 = Error is handled as an Advisory Non-Fatal error, and reported as a Correctable error 1 = Error is reported as fatal		RWS	Yes	0
17	Receiver Overflow Severity 0 = Error is reported as non-fatal 1 = Error is reported as fatal		RWS	Yes	1
18	Malformed TLP Severity 0 = Error is reported as non-fatal 1 = Error is reported as fatal		RWS	Yes	1
19	ECRC Error Severity Not supported		RsvdP	No	0
20	Unsupported Request Error Severity 0 = Error is handled as an Advisory Non-Fatal error, and reported as a Correctable error 1 = Error is reported as fatal		RWS	Yes	0
21	Reserved		RsvdP	No	0
22	Uncorrectable Internal Error Severity 0 = Error is reported as non-fatal 1 = Error is reported as fatal	0	RWS	Yes	1
	Reserved	Otherwise	RsvdP	No	1
31:23	Reserved		RsvdP	No	0-0h

Register 14-109. FC4h Correctable Error Status (All Ports and USB Controller)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
Note: Th offset FC8	he bits in this register can be masked by their respective Corre (h).	ectable Error Mask	t register bits (A	All Ports and US	B Controller
0	Receiver Error Status0 = No error is detected1 = Error is detected		RW1CS	Yes	0
5:1	Reserved		RsvdP	No	0-0h
6	Bad TLP Status0 = No error is detected1 = Error is detected		RW1CS	Yes	0
7	Bad DLLP Status0 = No error is detected1 = Error is detected		RW1CS	Yes	0
8	REPLAY NUM Rollover Status Replay Number Rollover status.0 = No error is detected1 = Error is detected		RW1CS	Yes	0
11:9	Reserved		RsvdP	No	000b
12	Replay Timer Timeout Status0 = No error is detected1 = Error is detected		RW1CS	Yes	0
13	Advisory Non-Fatal Error Status 0 = No error is detected 1 = Error is detected		RW1CS	Yes	0
14	Corrected Internal Error Status 0 = No error is detected 1 = Error is detected	0	RW1CS	Yes	0
	Reserved	Otherwise	RsvdP	No	0
15	Header Log Overflow Status 0 = No error is detected 1 = Error is detected		RW1CS	Yes	0
31:16	Reserved		RsvdP	No	0000h

Register 14-110. FC8h Correctable Error Mask (All Ports and USB Controller)

Bit(s)	Description	Ports	Туре	Serial EEPROM	Default
	he bits in this register can be used to mask their respective Co , c_{i} , offset FC4h).	rrectable Error Sta	atus register b	its (All Ports an	d USB
	Receiver Error Mask				
0	0 = Error reporting is not masked 1 = Error reporting is masked		RWS	Yes	0
5:1	Reserved		RsvdP	No	0-0h
6	Bad TLP Mask 0 = Error reporting is not masked 1 = Error reporting is masked		RWS	Yes	0
7	Bad DLLP Mask 0 = Error reporting is not masked 1 = Error reporting is masked		RWS	Yes	0
8	REPLAY NUM Rollover Mask Replay Number Rollover mask. 0 = Error reporting is not masked		RWS	Yes	0
11:9	1 = Error reporting is masked Reserved		RsvdP	No	000b
12	Replay Timer Timeout Mask 0 = Error reporting is not masked 1 = Error reporting is masked		RWS	Yes	0
13	Advisory Non-Fatal Error Mask 0 = Error reporting is not masked 1 = Error reporting is masked		RWS	Yes	1
14	Corrected Internal Error Mask 0 = Error reporting is not masked 1 = Error reporting is masked	0	RWS	Yes	1
	Reserved	Otherwise	RsvdP	No	0
15	Header Log Overflow Mask 0 = Error reporting is not masked 1 = Error reporting is masked		RWS	Yes	1
31:16	Reserved		RsvdP	No	0000h

Register 14-111. FCCh Advanced Error Capabilities and Control (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
4:0	First Error Pointer Identifies the bit position of the first error reported in the Uncorrectable Error Status register (All Ports and USB Controller, offset FB8h).	ROS	No	1Fh
5	ECRC Generation Capable Not supported	RsvdP	No	0
6	ECRC Generation Enable Not supported	RsvdP	No	0
7	ECRC Check Capable Not supported	RsvdP	No	0
8	ECRC Check Enable Not supported	RsvdP	No	0
31:9	Reserved	RsvdP	No	0-0h

Register 14-112. FD0h Header Log 0 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	TLP Header 0 First DWord Header. TLP Header associated with error.	ROS	Yes	0000_0000h

Register 14-113. FD4h Header Log 1 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	TLP Header 1 Second DWord Header. TLP Header associated with error.	ROS	Yes	0000_0000h

Register 14-114. FD8h Header Log 2 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	TLP Header 2 Third DWord Header. TLP Header associated with error.	ROS	Yes	0000_0000h

Register 14-115. FDCh Header Log 3 (All Ports and USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
31:0	TLP Header 3 Fourth DWord Header. TLP Header associated with error.	ROS	Yes	0000_0000h

Register 14-116. FE0h Root Error Command (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
Note: T	his register is visible/available only in Root Complex mode. Reserved in Adapter mode.			
0	Correctable Error Reporting Enable 0 = Disables 1 = Enables the SuperSpeed USB to report Correctable errors	RW	Yes	0
1	Non-Fatal Error Reporting Enable 0 = Disables 1 = Enables the SuperSpeed USB to report Non-Fatal errors	RW	Yes	0
2	Fatal Error Reporting Enable0 = Disables1 = Enables the SuperSpeed USB to report Fatal errors	RW	Yes	0
31:3	Reserved	RsvdP	No	0-0h

Register 14-117. FE4h Root Error Status (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default
Note: 7	[.] his register is visible/available only in Root Complex mode. Reserved in Adapter mode.			
0	ERR_COR Received0 = SuperSpeed USB did not receive a Correctable error1 = SuperSpeed USB received a Correctable error	RW1CS	Yes	0
1	Multiple ERR_COR Received0 = SuperSpeed USB did not receive multiple Correctable errors1 = SuperSpeed USB received multiple Correctable errors	RW1CS	Yes	0
2	ERR_FATAL/NONFATAL Received 0 = SuperSpeed USB did not receive a Fatal or Non-Fatal error 1 = SuperSpeed USB received a Fatal or Non-Fatal error	RW1CS	Yes	0
3	ERR_FATAL/NONFATAL Received 0 = SuperSpeed USB did not receive a Fatal or Non-Fatal error 1 = SuperSpeed USB received a Fatal or Non-Fatal error	RW1CS	Yes	0
4	First Uncorrectable Fatal	RW1CS	Yes	0
5	Non-Fatal Error Messages Received	RW1CS	Yes	0
6	Fatal Error Messages Received	RW1CS	Yes	0
26:7	Reserved	RsvdP	No	0-0h
31:27	Advanced Error Interrupt Message Number	RO	Yes	0-0h

Register 14-118. FE8h Error Source ID (USB Controller)

Bit(s)	Description	Туре	Serial EEPROM	Default	
Note: T	Note: This register is visible/available only in Root Complex mode. Reserved in Adapter mode.				
15:0	ERR_COR Source ID	ROS	Yes	0000h	
31:16	ERR_FATAL/NONFATAL Source ID	ROS	Yes	0000h	

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 15 USB Configuration Registers

15.1 Introduction

This chapter describes the USB Configuration Space registers (CSRs) that are specific to the USB 3380's USB Controller functions.

These Memory-Mapped CSRs are accessed using the 64-KB Memory space defined by PCI Base Address 0 (**BAR0**; **Base Address 0** register (USB Controller, offset 10h)) in the Type 0 PCI Express Configuration registers. The Indexed registers are accessed by using the **IDXADDR** and **IDXDATA** registers (USB Controller, offsets 30h and 34h, respectively). The USB CSROUT endpoint and the 8051 can also access these CSRs using cursor registers. Each register is 32 bits wide, and is accessed one byte, word, or DWord at a time.

These registers use Little Endian byte ordering, which is consistent with the *PCI Express Base r2.1*. The least significant byte (LSB) in a DWord is accessed at Address 0. The least significant bit (lsb) in a DWord is 0, and the most significant bit (msb) is 31.

After the USB 3380 is powered-up or reset, the registers are programmed to their default values. Writes to unused registers are ignored, and Reads from unused registers return a value of 0. For compatibility with future revisions, *RsvdZ* bits within a register must always be written with a 0.

Other registers are defined in Chapter 14, "PCI Configuration Registers."

15.2 Access Attributes

The following table lists the attributes used to indicate the type of access provided by each register bit.

Note: Register bits that are writeable by the 8051 or USB are also writeable by the Serial EEPROM Controller.

Attribute	Description
HwInit	Hardware or firmware initialized, such as by pin strapping or serial EEPROM.
PIN	Read value determined by external pin.
RC	Read-Only. Read to Clear.
RO	Read-Only.
ROS	Sticky Read-Only. Not modified by reset; preserved with AUX power.
RsvdP	<i>Reserved</i> and Preserved. Software must write the Read value.
RsvdZ	<i>Reserved</i> and Zero. Software must write 0.
RW	Read-Write.
RW1C	Write 1 to Clear.
RW1CS	Sticky Write 1 to Clear.
RW1S	Write 1 to Set.
RW1T	Write 1 to toggle.
RWC	Read-Write. Read to Clear.
RWS	Sticky Read-Write.
RWU	Read/Write (Output Pin), Read-Only (Input Pin) Specific to the GPIOx <i>Data</i> register bits. When the referenced GPIOx pin is configured as output, the value written appears on the output pin, and are returned by a Read. When the referenced GPIOx pin is configured as an input, Reads to this bit always return the pin state, and Writes have no effect.
RZ	Read value unknown.
RZW1C	Write 1 to Clear; Read value unknown.

Table 15-1. Access Attributes

15.3 Register Summary

Table 15-2. Register Summary

Register Group	Offset (from BAR0)
USB Controller Device-Specific Registers	00h - 7Ch
USB Interface Control Registers	80h – FFh
PCI Express/Configuration Cursor Registers	100h - 17Fh
DMA Registers	180h – 1FCh 680h – 6BCh
Dedicated Endpoint Registers	200h - 254h
EP 0 and GPEPx Registers	300h – 4FFh
FIFO Registers	500h - 614h
USB Power Management Registers	6C0h - 6C4h
Indexed Registers	Index 00h – FFh

15.4 Preserved Registers during Suspend

The registers listed in Table 15-3 must be powered-up during the Suspend state, and should not be overwritten by the serial EEPROM during a resume re-load.

Table 15-3. Preserved USB Controller Registers during Susp
--

Offset	Register	Comment
50h	GPIOCTRL	13 bits; GPIO Control
84h	PRODVENDID	32 bits; Product ID and Vendor ID
88h	RELNUM	16 bits; Device Release Number
8Ch	USBCTL	13 bits; USB Control
90h	USBSTAT	2 bits; USB Status
A4h	OURADDR	7 bits; Our USB Address
A8h	OURCONFIG	8 bits; Our USB Configuration
C8h	USBCTL2	8 bits; USB Control 2
304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h	EP_RSP	9 bits; for all endpoints (Halt and Toggle bits)

15.5 USB Controller Device-Specific Registers

Offset (from BAR0)	Register	Description
00h	DEVINIT	Device Initialization
04h - 08h	Reserved	
0Ch	PCICTL	PCI Control
10h	PCIIRQENB0	PCI Express Interrupt Request Enable 0
14h	PCIIRQENB1	PCI Express Interrupt Request Enable 1
18h	CPUIRQENB0	8051 Interrupt Request Enable 0 (<i>Reserved</i> in Legacy Adapter mode)
1Ch	CPUIRQENB1	8051 Interrupt Request Enable 1 (<i>Reserved</i> in Legacy Adapter mode)
20h	USBIRQENB0	STATIN Interrupt Request Enable 0 (<i>Reserved</i> in Legacy Adapter mode)
24h	USBIRQENB1	STATIN Interrupt Request Enable 1 (<i>Reserved</i> in Legacy Adapter mode)
28h	IRQSTAT0	Interrupt Request Status 0
2Ch	IRQSTAT1	Interrupt Request Status 1
30h	IDXADDR	Indexed Register Address
34h	IDXDATA	Indexed Register Data
38h	FIFOCTL	FIFO Control
3Ch	BAR2CTL	BAR2 Enhanced Control (<i>Reserved</i> in Legacy Adapter mode)
40h	BAR3CTL	BAR3 Enhanced Control (<i>Reserved</i> in Legacy Adapter mode)
44h - 4Ch	Reserved	
50h	GPIOCTRL	GPIO Control ^a
54h	GPIOSTAT	GPIO Status ^a
58h	PWMV	GPIO PWM Value ^a
5Ch	PWMRC	GPIO PWM Ramp Control ^a
60h	PWMFREQ	GPIO PWM Clock Frequency ^a
64h - 74h	Reserved	
78h	Root Message Dispatch	Root Message Dispatch 0/1 – RCIN/8051 FIFO (<i>Reserved</i> in Adapter mode)
7Ch	HUC Cursor Data	HUC Cursor Data

Table 15-4. USB Controller Device-Specific Registers

a. The GPIO-related registers (USB Controller, offsets 50h through 60h) are **reserved** (have no function) when the **Debug Control** register LANE_GOOD#/GPIOx Pin Function Select bit (Port 0, offset 1DCh[22]) is Set.

Register 15-1. 00h DEVINIT Device Initialization (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	8051 Reset If a valid serial EEPROM with 8051 firmware is detected, this bit is automatically Cleared when the serial EEPROM Read completes. If a valid serial EEPROM is not detected, this bit is not Cleared.	RWU	Yes	1
	0 = 8051 is enabled to execute firmware 1 = 8051 is held in a reset state			
	USB Soft Reset			
	Reading this bit always returns a value of 0.			
1	1 = USB Control section of the USB 3380 is reset. Also, the OURADDR and OURCONFIG registers (USB Controller, offsets A4h and A8h, respectively) are Cleared.	W1RZ	Yes	0
	PCI Soft Reset			
2	Reading this bit returns a value of 1 while the Reset sequence is in progress (approximately 10 ms), and a value of 0 when the Reset sequence is complete.	W1R	Yes	0
2	1 = PCI Configuration registers and the PCI Control section of the USB 3380 are reset. Additionally, Hot Reset Training Sets are transmitted from downstream PCI Express Ports.		105	0
	Configuration Soft Reset			
3	Reading this bit always returns a value of 0.	W1RZ	Yes	0
	1 = All PCI Configuration registers for the USB Controller block are reset			
	FIFO Soft Reset			
4	Reading this bit always returns a value of 0.	W1RZ	Yes	0
	1 = All endpoint FIFOs are flushed			
	PCI Enable			
5	This bit is automatically Set when a valid serial EEPROM is not detected and Adapter mode is selected.	RWU	Yes	0
	0 = PCI Express accesses to the USB 3380 result in a Target Retry response 1 = USB 3380 normally responds to PCI Express accesses			
	PCI ID			
6	0 = Standard PCI Device ID and Vendor ID are returned to the PCI Express Host when the PRODVENDID register (USB Controller, offset 84h) is accessed	RW	Yes	0
	1 = Subsystem Vendor ID and Device ID values in the Subsystem ID and Subsystem Vendor ID register (USB Controller, offset 2Ch) are returned to the PCI Express Host when the PRODVENDID register (USB Controller, offset 84h) is accessed			
7	Reserved	RsvdP	No	0
	1	1	1	1

Register 15-1. 00h DEVINIT Device Initialization (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
11:8	Local Clock Frequency No function	RW	Yes	8h
15:12	Reserved	RsvdP	No	Oh
20:16	PCI Expansion ROM Range Determines the PCI Expansion ROM Base Address register range, in increments of 2 KB. The default corresponds to a 2-KB range, and the maximum range is 64 KB. Bit 16 of this register corresponds to Address bit 11, and bit 20 corresponds to Address bit 15. Starting with bit 16 of the register, as each successive bit is Cleared, the range doubles. The PCI Expansion ROM Base Address register must be a multiple of the range.	RW	Yes	1Fh
31:21	Reserved	RO	No	0-0h

Register 15-2. 0Ch PCICTL PCI Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	 PCIBAR0 Enable PCI Express-to-Configuration Register Address space (PCIBAR0) enable. 0 = PCIBAR0 is disabled 1 = PCIBAR0 is enabled 	RW	Yes	1
1	 PCIBAR1 Enable PCI Express-to-8051 Memory Address space (PCIBAR1) enable. 0 = PCIBAR1 is disabled 1 = PCIBAR1 is enabled 	RW	Yes	1
31:2	Reserved	RsvdP	No	0-0h

Register 15-3. 10h PCIIRQENB0 PCI Express Interrupt Request Enable 0)
(USB Controller)	

Bit(s)	Description	Access	Serial EEPROM	Default
0	Endpoint 0 PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on EP 0.	RW	Yes	0
	Legacy Adapter Mode GPEP0 OUT/IN PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP0	RW	Yes	0
1	Enhanced Adapter Mode GPEP0 OUT PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP0 OUT	RW	Yes	0
	Legacy Adapter Mode GPEP1 OUT/IN PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP1	RW	Yes	0
2	Enhanced Adapter Mode GPEP1 OUT PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP1 OUT	RW	Yes	0
	Legacy Adapter Mode GPEP2 OUT/IN PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP2	RW	Yes	0
3	Enhanced Adapter Mode GPEP2 OUT PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP2 OUT	RW	Yes	0
4	Legacy Adapter Mode GPEP3 OUT/IN PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP3	RW	Yes	0
4	Enhanced Adapter Mode GPEP3 OUT PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP3 OUT	RW	Yes	0
6:5	Reserved	RW	Yes	00b
7	Setup Packet PCI Express Interrupt Enable 1 = Enables ability to generate a PCI Express interrupt when a Setup packet is received from the Host	RW	Yes	0

Register 15-3. 10h PCIIRQENB0 PCI Express Interrupt Request Enable 0 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
8	USB to PCI Express TLP Drained on Port 0 PCI Express Interrupt Enable	RW	Yes	0
9	Reserved	RsvdP	No	0
10	USB Configuration Retry PCI Express Interrupt Enable	RW	Yes	0
11	USB IN FIFO Timeout PCI Express Interrupt Enable	RW	Yes	0
16:12	Reserved	RsvdP	No	0-0h
	Legacy Adapter Mode Reserved	RsvdP	No	0
17	Enhanced Adapter Mode GPEP0 IN PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP0 IN	RW	Yes	0
	Legacy Adapter Mode Reserved	RsvdP	No	0
18	Enhanced Adapter Mode GPEP1 IN PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP1 IN	RW	Yes	0
	Legacy Adapter Mode Reserved	RsvdP	No	0
19	Enhanced Adapter Mode GPEP2 IN PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP2 IN	RW	Yes	0
20	Legacy Adapter Mode Reserved	RsvdP	No	0
	Enhanced Adapter Mode GPEP3 IN PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active on GPEP3 IN	RW	Yes	0
31:21	Reserved	RsvdP	No	0-0h

Register 15-4. 14h PCIIRQENB1 PCI Express Interrupt Request Enable 1 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	SOF PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when the USB 3380 receives a Start-of-Frame (SOF) packet	RW	Yes	0
1	Resume PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when the USB 3380 resumes from the Suspended state	RW	Yes	0
2	Suspend Request Change PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when a change in the Suspend Request Interrupt state is detected	RW	Yes	0
3	Suspend Request PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when a USB Suspend Request from the Host is detected	RW	Yes	0
4	Root Port Reset PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when a Root Port Reset (Host Port Reset) is detected	RW	Yes	0
5	Reserved	RW	Yes	0
6	Control Status PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an IN or OUT token indicating Control Status is received	RW	Yes	0
7	VBUS PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when a change is detected on the USB_VBUS input	RW	Yes	0
	EEPROM Done PCI Express Interrupt Enable			
8	1 = Enables ability to generate an Interrupt Message to the PCI Express interface when a Serial EEPROM Read or Write transaction completes	RW	Yes	0
9	DMA Channel 0 PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active from DMA Channel A	RW	Yes	0
10	DMA Channel 1 PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active from DMA Channel B	RW	Yes	0
11	DMA Channel 2 PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active from DMA Channel C	RW	Yes	0
12	DMA Channel 3 PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when an interrupt is active from DMA Channel D	RW	Yes	0
13	GPIO PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface to generate when an interrupt is active from one of the GPIOx pins	RW	Yes	0
14	SOF Downcount PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when the SOF Frame Downcount Counter reflects a value of 0 and an SOF is detected	RW	Yes	0
15	Reserved	RW	Yes	0

Register 15-4. 14h PCIIRQENB1 PCI Express Interrupt Request Enable 1 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
16	PCI Master Cycle Done PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when a USB- or 8051-initiated PCI Express access completes. For example, in the case of a PCI Express Memory Read Request, this interrupt indicates that the Read Request has completed and data is available in PCIMSTDATA.	RW	Yes	0
18:17	Reserved	RW	Yes	00b
19	PCI Target Abort Received PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when the USB 3380 receives a Completion TLP with Completer Abort (CA) status	RW	Yes	0
	Master Abort Interrupt Enable			
20	1 = Enables ability to generate an Interrupt Message when the USB 3380 receives a Completion TLP with Unsupported Request (UR) status	RW	Yes	0
24:21	Reserved	RsvdP	No	Oh
25	PCI Parity Error PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when the USB 3380 receives a poisoned TLP	RW	Yes	0
26	Reserved	RW	Yes	0
27	Power State Change PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface when the PCI Power Management Status and Control register <i>Power State</i> field (All Ports and USB Controller, offset 44h[1:0]) changes	RW	Yes	0
28	PCI Express DL_DOWN State Change PCI Express Interrupt Enable	RW	Yes	0
29	PCI Express Hot Reset PCI Express Interrupt Enable	RW	Yes	0
30	 PCI Express Endpoint Power Management PCI Express Interrupt Enable Valid only in Adapter mode. PCI Express Adapter (endpoint) enable for Power Management PCI Express interrupts. 	RW	Yes	0
31	Global PCI Express Interrupt Enable 1 = Enables ability to generate an Interrupt Message to the PCI Express interface	RW	Yes	0

Register 15-5.	18h CPUIRQENB0 8051 Interrupt Request Enable 0
(USB Controlle	er)

Bit(s)	Description	Access	Serial EEPROM	Default
Note:	This register is used only by firmware running on the 8051. Reserved in Legacy.	Adapter mode.		
	Endpoint 0 8051 Interrupt Enable			
0	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on EP 0	RW	Yes	0
	GPEP0 OUT 8051 Interrupt Enable			
1	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on GPEP0 OUT	RW	Yes	0
	GPEP1 OUT 8051 Interrupt Enable			
2	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on GPEP1 OUT	RW	Yes	0
	GPEP2 OUT 8051 Interrupt Enable			
3	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on GPEP2 OUT	RW	Yes	0
	GPEP3 OUT 8051 Interrupt Enable			
4	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on GPEP3 OUT	RW	Yes	0
6:5	Reserved	RW	Yes	00b
	Setup Packet 8051 Interrupt Enable			
7	1 = Enables ability to generate an 8051 interrupt when a Setup packet is received from the Host	RW	Yes	0
8	USB to PCI Express TLP Drained on Port 0 8051 Interrupt Enable	RW	Yes	0
9	Reserved	RsvdP	No	0
10	USB Configuration Retry 8051 Interrupt Enable	RW	Yes	0
11	USB IN FIFO Timeout 8051 Interrupt Enable	RW	Yes	0
16:12	Reserved	RsvdP	No	0-0h
	GPEP0 IN 8051 Interrupt Enable			
17	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on GPEP0 IN	RW	Yes	0
	GPEP1 IN 8051 Interrupt Enable			
18	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on GPEP1 IN	RW	Yes	0
	GPEP2 IN 8051 Interrupt Enable			
19	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on GPEP2 IN	RW	Yes	0
	GPEP3 IN 8051 Interrupt Enable			
20	1 = Enables ability to generate an 8051 interrupt when an interrupt is active on GPEP3 IN	RW	Yes	0
31:21	Reserved	RsvdP	No	0-0h

Register 15-6. 1Ch CPUIRQENB1 8051 Interrupt Request Enable 1 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
Note:	This register is used only by firmware running on the 8051. Reserved in Legacy A	dapter mode.		
0	SOF 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when the USB 3380 receives a Start-of-Frame (SOF) packet	RW	Yes	0
1	Resume 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when the USB 3380 resumes from the Suspended state	RW	Yes	0
2	Suspend Request Change 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when a change in the Suspend Request Interrupt state is detected	RW	Yes	0
3	Suspend Request 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when a USB Suspend Request from the Host is detected	RW	Yes	0
4	Root Port Reset 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when a Root Port Reset (Host Port Reset) is detected	RW	Yes	0
5	Reserved	RW	Yes	0
6	Control Status 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when an IN or OUT token indicating Control Status is received	RW	Yes	0
7	VBUS 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when a change is detected on the USB_VBUS input	RW	Yes	0
8	Serial EEPROM Done 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when a Serial EEPROM Write or Read transaction completes	RW	Yes	0
9	DMA Channel 0 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when an interrupt is active from DMA Channel A	RW	Yes	0
10	DMA Channel 1 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when an interrupt is active from DMA Channel B	RW	Yes	0
11	DMA Channel 2 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when an interrupt is active from DMA Channel C	RW	Yes	0

Register 15-6. 1Ch CPUIRQENB1 8051 Interrupt Request Enable 1 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
10	DMA Channel 3 8051 Interrupt Enable	DIII		0
12	1 = Enables ability to generate an 8051 interrupt when an interrupt is active from DMA Channel D	RW	Yes	0
	GPIO 8051 Interrupt Enable			
13	1 = Enables ability to generate an 8051 interrupt when an interrupt is active from one of the GPIOx pins	RW	Yes	0
	SOF Downcount 8051 Interrupt Enable			
14	1 = Enables ability to generate an 8051 interrupt when the SOF Frame Downcount Counter reflects a value of 0 and an SOF is detected	RW	Yes	0
15	Reserved	RW	Yes	0
	PCI Master Cycle Done 8051 Interrupt Enable			
16	1 = Enables ability to generate an 8051 interrupt when a USB- or 8051-initiated PCI Express TLP completes	RW	Yes	0
17	Reserved	RW	Yes	0
18	PCI Express Hot Plug 8051 Interrupt Enable	RW	Yes	0
	PCI Target Abort Received 8051 Interrupt Enable			
19	1 = Enables ability to generate an 8051 interrupt when the USB 3380 receives a Completion with Completer Abort (CA) status	RW	Yes	0
	PCI Master Abort Received 8051 Interrupt Enable			
20	1 = Enables an 8051 interrupt when the USB 3380 receives a Completion with Unsupported Request (UR) status	RW	Yes	0
	Enhanced Adapter Mode	RsvdP	No	0
21	Reserved			
	Root Complex Mode Correctable Error Message Received 8051 Interrupt Enable	RW	Yes	0
	Enhanced Adapter Mode	RsvdP	No	0
22	Reserved	10701		v
	Non-Fatal Error Message Received 8051 Interrupt Enable	RW	Yes	0
23	Enhanced Adapter Mode Reserved	RsvdP	No	0
	Fatal Error Message Received 8051 Interrupt Enable	RW	Yes	0

Register 15-6. 1Ch CPUIRQENB1 8051 Interrupt Request Enable 1 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
24	PCI INTA# 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when the PCI INTA# input asserts and Root Complex mode is selected	RW	Yes	0
25	PCI Parity Error 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when the USB 3380 receives a poisoned TLP	RW	Yes	0
26	Reserved	RW	Yes	0
27	Power State Change 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt when the PCI Power Management Status and Control register <i>Power State</i> field (All Ports and USB Controller, offset 44h[1:0]) changes	RW	Yes	0
28	PCI Express DL_DOWN State Change 8051 Interrupt Enable	RW	Yes	0
29	PCI Express Hot Reset 8051 Interrupt Enable	RW	Yes	0
30	PCI Express Endpoint Power Management 8051 Interrupt EnableValid only in Enhanced Adapter mode.1 = Enables ability to generate an 8051 interrupt to the PCI ExpressAdapter (endpoint)	RW	Yes	0
31	Global 8051 Interrupt Enable 1 = Enables ability to generate an 8051 interrupt	RW	Yes	0

Register 15-7. 20h USBIRQENB0 STATIN Interrupt Request Enable 0 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
Note:	This register is used only by firmware running on the 8051. Valid only in Root Co	omplex mode.	Reserved in Add	apter mode.
	Endpoint 0 USB Interrupt Enable			
0	1= Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active on USB device EP 0	RW	Yes	0
	GPEP0 OUT USB Interrupt Enable			
1	1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active on GPEP0 OUT	RW	Yes	0
	GPEP1 OUT USB Interrupt Enable			
2	1 = Enables ability to generate a STATIN Endpoint when an interrupt is active on GPEP1 OUT	RW	Yes	0
	GPEP2 OUT USB Interrupt Enable			
3	1 = Enables ability to generate a STATIN Endpoint when an interrupt is active on GPEP2 OUT	RW	Yes	0
	GPEP3 OUT USB Interrupt Enable			
4	1 = Enables ability to generate a STATIN Endpoint when an interrupt is active on GPEP3 OUT	RW	Yes	0
6:5	Reserved	RW	Yes	00b
	Setup Packet USB Interrupt Enable			
7	1 = Enables ability to generate a STATIN Endpoint interrupt when a Setup packet is received from the Host	RW	Yes	0
8	USB to PCI Express TLP Drained on Port 0 USB Interrupt Enable	RW	Yes	0
9	Reserved	RsvdP	No	0
10	USB Configuration Retry USB Interrupt Enable	RW	Yes	0
11	USB IN FIFO Timeout USB Interrupt Enable	RW	Yes	0
16:12	Reserved	RsvdP	No	0-0h
	GPEP0 IN 8051 Interrupt Enable			
17	1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active on GPEP0 IN	RW	Yes	0
	GPEP1 IN 8051 Interrupt Enable			
18	1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active on GPEP1 IN	RW	Yes	0
	GPEP2 IN 8051 Interrupt Enable			
19	1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active on GPEP2 IN	RW	Yes	0
	GPEP3 IN 8051 Interrupt Enable			
20	1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active on GPEP3 IN	RW	Yes	0
31:21	Reserved	RsvdP	No	0-0h

Register 15-8. 24h USBIRQENB1 STATIN Interrupt Request Enable 1 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default		
Note:	This register is used only by firmware running on the 8051. Valid only in Root Co	s used only by firmware running on the 8051. Valid only in Root Complex mode. Reserved in Adapter mode.				
0	SOF USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when the USB 3380 receives a Start-of-Frame (SOF) packet	RW	Yes	0		
1	Resume USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when the USB 3380 resumes from the Suspended state	RW	Yes	0		
2	Suspend Request Change USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when a change in the Suspend Request Interrupt state is detected	RW	Yes	0		
3	Suspend Request USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when a USB Suspend Request from the Host is detected	RW	Yes	0		
4	Root Port Reset USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when a Root Port Reset (Host Port Reset) is detected	RW	Yes	0		
5	Reserved	RW	Yes	0		
6	Control Status USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when an IN or OUT token indicating Control Status is received	RW	Yes	0		
7	VBUS USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when a change is detected on the USB_VBUS input	RW	Yes	0		
8	EEPROM Done USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when a Serial EEPROM Read or Write transaction completes	RW	Yes	0		
9	DMA Channel 0 USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active from this DMA channel	RW	Yes	0		
10	DMA Channel 1 USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active from this DMA channel	RW	Yes	0		
11	DMA Channel 2 USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active from this DMA channel	RW	Yes	0		

Register 15-8. 24h USBIRQENB1 STATIN Interrupt Request Enable 1 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
12	DMA Channel 3 USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active from this DMA channel	RW	Yes	0
13	GPIO USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when an interrupt is active from one of the GPIO <i>x</i> pins	RW	Yes	0
14	SOF Downcount USB Interrupt Enable 1 = Enables a STATIN Endpoint interrupt when the SOF Frame Downcount Counter reflects a value of 0 and an SOF is detected	RW	Yes	0
15	Reserved	RW	Yes	0
16	PCI Master Cycle Done USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when a USB- or 8051-initiated PCI Express TLP completes	RW	Yes	0
17	Reserved	RW	Yes	0
18	PCI Express Hot Plug USB Interrupt Enable	RW	Yes	0
19	PCI Target Abort Received USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when the USB 3380 receives a Completion with Completer Abort (CA) status	RW	Yes	0
20	PCI Master Abort Received USB Interrupt Enable 1 = Enables ability to generate a STATIN Endpoint interrupt when the USB 3380 receives a Completion with Unsupported Request (UR) status	RW	Yes	0
21	Correctable Error Message Received USB Interrupt Enable	RW	Yes	0
22	Non-Fatal Error Message Received USB Interrupt Enable	RW	Yes	0
23	Fatal Error Message Received USB Interrupt Enable	RW	Yes	0

Register 15-8. 24h USBIRQENB1 STATIN Interrupt Request Enable 1 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
	PCI INTA# USB Interrupt Enable			
24	1 = Enables ability to generate a STATIN Endpoint interrupt when the PCI INTA# input asserts and Root Complex mode is selected	RW	Yes	0
	PCI Parity Error USB Interrupt Enable			
25	1 = Enables ability to generate a STATIN Endpoint interrupt when the USB 3380 receives a poisoned TLP	RW	Yes	0
	PCI INTA# Interrupt Enable			
26	1 = Enables ability to generate a STATIN Endpoint interrupt when the PCI INTA# input asserts and Root Complex mode is selected	RW	Yes	0
	Power State Change USB Interrupt Enable			
27	1 = Enables ability to generate a STATIN Endpoint interrupt when the PCI Power Management Status and Control register <i>Power State</i> field (All Ports and USB Controller, offset 44h[1:0]) changes	RW	Yes	0
28	PCI Express DL_DOWN State Change USB Interrupt Enable	RW	Yes	0
29	PCI Express Hot Reset USB Interrupt Enable	RW	Yes	0
	PCI Express Endpoint Power Management USB Interrupt Enable			
30	1 = Enables ability to generate a STATIN Endpoint interrupt to the PCI Express Adapter (endpoint)	RW	Yes	0
31	Global USB Interrupt Enable	RW	Vee	0
51	1 = Enables ability to generate a STATIN Endpoint interrupt	ĸw	Yes	0

Register 15-9. 28h IRQSTAT0 Interrupt Request Status 0 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	Endpoint 0 Interrupt Status Conveys the EP 0 interrupt status. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
	1 = Read the endpoint's EP_STAT register (USB Controller, offset 30Ch), to determine the cause of the interrupt			
	Legacy Adapter Mode GPEP0 OUT/IN Interrupt Status			
	Conveys the GPEP0 interrupt status. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
	1 = Read the endpoint's EP_STAT register (USB Controller, offset 32Ch), to determine the cause of the interrupt			
1	Enhanced Adapter Mode GPEP0 OUT Interrupt Status GPEP0 OUT Interrupt Status Conveys the GPEP0 OUT interrupt status. This bit is Set independently of the Interrupt Enable bit.	RO	No	0
	1 = Read the endpoint's EP_STAT register (USB Controller, offset 32Ch), to determine the cause of the interrupt			
	Legacy Adapter Mode GPEP1 OUT/IN Interrupt Status Conveys the GPEP1 interrupt status. This bit is Set independently of the Interrupt Enable bit.	RO	No	0
2	1 = Read the endpoint's EP_STAT register (USB Controller, offset 34Ch), to determine the cause of the interrupt			
2	Enhanced Adapter Mode GPEP1 OUT Interrupt Status Conveys the GPEP1 OUT interrupt status. This bit is Set independently of the			
	Interrupt Enable bit. 1 = Read the endpoint's EP_STAT register (USB Controller, offset 34Ch), to determine the cause of the interrupt	RO	No	0
	Legacy Adapter Mode			
	GPEP2 OUT/IN Interrupt Status Conveys the GPEP2 interrupt status. This bit is Set independently of the Interrupt Enable bit.	RO	No	0
	1 = Read the endpoint's EP_STAT register (USB Controller, offset 36Ch), to determine the cause of the interrupt			
3	Enhanced Adapter Mode GPEP2 OUT Interrupt Status Conveys the GPEP2 OUT interrupt status. This bit is Set independently of the			
	<i>Interrupt Enable</i> bit. 1 = Read the endpoint's EP_STAT register (USB Controller, offset 36Ch), to determine the cause of the interrupt	RO	No	0

Register 15-9. 28h IRQSTAT0 Interrupt Request Status 0 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
	Legacy Adapter Mode GPEP3 OUT/IN Interrupt Status			
	Conveys the GPEP3 interrupt status. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
4	1 = Read the endpoint's EP_STAT register (USB Controller, offset 38Ch), to determine the cause of the interrupt			
4	Enhanced Adapter Mode GPEP3 OUT Interrupt Status			
	Conveys the GPEP3 OUT interrupt status. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
	1 = Read the endpoint's EP_STAT register (USB Controller, offset 38Ch), to determine the cause of the interrupt			
6:5	Reserved	RO	No	00b
	Setup Packet Interrupt Status			
7	Writing 1 Clears this bit.	RW1C	Yes	0
	1 = Setup packet was received from the Host			
	USB to PCI Express TLP Drained on Port 0			
8	1 = PCI Express TLP generated from USB (PCIOUT) targeting PCI Express Port 0 has been transmitted	RW1C	Yes	0
9	Reserved	RsvdP	No	0
10	USB Configuration Retry Interrupt Status	RW1C	Yes	0
11	USB IN FIFO Timeout Interrupt Status	RW1C	Yes	0

Register 15-9.	28h IRQSTAT0 Interrupt Request Status 0
(USB Controlle	er) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
12	INTA# Asserted 1 = PCI Express Assert_INTA# Message was transmitted to the	RO	No	0
16:13	PCI Express interface Reserved	RO	No	Oh
10.15	Legacy Adapter Mode Reserved	RsvdP	No	0
17	Enhanced Adapter Mode GPEP0 IN Interrupt Status Conveys the GPEP0 IN interrupt status. This bit is Set independently of the <i>Interrupt Enable</i> bit. 1 = Read the endpoint's EP_STAT register (USB Controller, offset 3ECh), to determine the cause of the interrupt	RO	No	0
	Legacy Adapter Mode Reserved	RsvdP	No	0
18	Enhanced Adapter Mode GPEP1 IN Interrupt Status Conveys the GPEP1 IN interrupt status. This bit is Set independently of the <i>Interrupt Enable</i> bit. 1 = Read the endpoint's EP_STAT register (USB Controller, offset 40Ch), to determine the cause of the interrupt	RO	No	0
	Legacy Adapter Mode Reserved	RsvdP	No	0
19	Enhanced Adapter Mode GPEP2 IN Interrupt Status Conveys the GPEP2 IN interrupt status. This bit is Set independently of the <i>Interrupt Enable</i> bit. 1 = Read the endpoint's EP_STAT register (USB Controller, offset 42Ch), to determine the cause of the interrupt	RO	No	0
	Legacy Adapter Mode Reserved	RsvdP	No	0
20	Enhanced Adapter Mode GPEP3 IN Interrupt Status Conveys the GPEP3 IN interrupt status. This bit is Set independently of the <i>Interrupt Enable</i> bit. 1 = Read the endpoint's EP_STAT register (USB Controller, offset 44Ch), to determine the cause of the interrupt	RO	No	0
31:21	Reserved	RsvdP	No	0-0h

Register 15-10. 2Ch IRQSTAT1 Interrupt Request Status 1 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	SOF Interrupt Status Indicates when the USB 3380 receives a Start-of-Frame (SOF) packet. Writing 1 Clears this status bit. This bit is Set every millisecond for full-speed connections, and every 125 µs for high-speed connections.	RW1C	Yes	0
1	Resume Interrupt Status Writing 1 Clears this status bit. 1 = Indicates that the USB 3380 resumed from the Suspended state		Yes	0
2	Suspend Request Change Interrupt Status Writing 1 Clears this status bit. 1 = Suspend Request Interrupt state (bit 3) changed	RW1C	Yes	0
3	Suspend Request Interrupt Status The Suspend Request state cannot be Set nor Cleared by writing this bit. Instead, writing 1 to this bit places the USB 3380 into Low-Power Suspend mode. (Refer to Section 13.6, "USB Suspend/Resume – Root Complex Mode," and Section 13.5, "USB Suspend/Resume Sequences – Adapter Mode," for further details.)	W1R	Yes	0
4	 1 = USB 3380 detected a USB Suspend Request from the Host Root Port Reset Interrupt Status Writing 1 Clears this status bit. 1 = Indicates a change in the Root Port Reset (Host Port Reset) Detector state 	RW1C	Yes	0
5	Reserved	RO	No	0
6	 Control Status Interrupt Status Writing 1 Clears this status bit. 1 = IN or OUT token indicating Control Status was received 	RW1C	Yes	0
7	VBUS Interrupt Status Writing 1 Clears this status bit. 1 = Indicates that a change occurred on the USB_VBUS input. Read the USBCTL register VBUS Pin bit (USB Controller, offset 8Ch[10]) for the current state of this input.	RW1C	Yes	0

Register 15-10. 2Ch IRQSTAT1 Interrupt Request Status 1 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
	Serial EEPROM Done Interrupt Status			
8	Writing 1 Clears this status bit.	RW1C	Yes	0
	1 = Serial EEPROM Read or Write transaction completed			
	DMA Channel 0 Interrupt Status			
9	Conveys the interrupt status for DMA Channel A. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
	1 = Read the channel's DMASTAT register (USB Controller, offset 184h), to determine the cause of the interrupt			
	DMA Channel 1 Interrupt Status			
10	Conveys the interrupt status for DMA Channel B. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
	1 = Read the channel's DMASTAT register (USB Controller, offset 1A4h), to determine the cause of the interrupt			
	DMA Channel 2 Interrupt Status			
11	Conveys the interrupt status for DMA Channel C. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
	1 = Read the channel's DMASTAT register (USB Controller, offset 1C4h), to determine the cause of the interrupt			
	DMA Channel 3 Interrupt Status			
12	Conveys the interrupt status for DMA Channel D. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
	1 = Read the channel's DMASTAT register (USB Controller, offset 1E4h), to determine the cause of the interrupt			
	GPIO Interrupt Status			
13	Conveys the interrupt status for the four GPIOx pins. This bit is Set independently of the <i>Interrupt Enable</i> bit.	RO	No	0
	1 = Read the GPIOSTAT register (USB Controller, offset 54h), to determine the cause of the interrupt			
	SOF Downcount Interrupt Status			
14	Writing 1 Clears this status bit.	RW1C	Yes	0
14	1 = SOF Frame Downcount Counter reflects a value of 0 and an SOF is detected	KWIC	105	0
15	Reserved	RO	No	0
	PCI Master Cycle Done Interrupt Status			
16	Writing 1 Clears this status bit.	RW1C	Yes	0
	1 = USB- or 8051-initiated PCI Express TLP completed			
17	Reserved	RO	No	0
18	PCI Express Hot Plug Interrupt Status	RO	Yes	0
	PCI Target Abort Received Interrupt Status			
19	Writing 1 Clears this status bit.	RW1C	Yes	0
17	1 = USB 3380 received a Completion with Completer Abort (CA) status			

Register 15-10. 2Ch IRQSTAT1 Interrupt Request Status 1 (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
	PCI Master Abort Received Interrupt Status			
20	Writing 1 Clears this status bit.	RW1C	Yes	0
	1 = USB 3380 received a Completion with Unsupported Request (UR) status			
21	Adapter Mode Reserved	RsvdP	No	0
21	Root Complex Mode Correctable Error Message Received Interrupt Status	RW1C	Yes	0
22	Adapter Mode Reserved	RsvdP	No	0
22	Root Complex Mode Non-Fatal Error Message Received Interrupt Status	RW1C	Yes	0
22	Adapter Mode Reserved	RsvdP	No	0
23	Root Complex Mode Fatal Error Message Received Interrupt Status	RW1C	Yes	0
24	PCI INTA# Interrupt Status Writing 1 Clears this status bit.	RW1C	Yes	0
	1 = PCI INTA# input asserted and Root Complex mode is selected			
25	PCI Parity Error Interrupt Status Writing 1 Clears this status bit.	RW1C	Yes	0
	1 = USB 3380 received a poisoned TLP			
26	Reserved	RO	No	0
27	Power State Change Interrupt Status 1 = PCI Power Management Status and Control register <i>Power State</i> field (All Ports and USB Controller, offset 44h[1:0]) changed	RW1C	Yes	0
28	PCI Express DL_DOWN State Change Interrupt Status	RW1C	Yes	0
29	PCI Express Hot Reset Interrupt Status 1 = PHY received a Hot Reset on TS1	RW1C	Yes	0
30	Adapter Mode PCI Express Endpoint Power Management Interrupt Status PCI Express Adapter (endpoint) Power Management PCI interrupt.	RW1C	Yes	0
	Root Complex Mode Reserved	RsvdP	No	0
31	Reserved	RO	No	0

Register 15-11. 30h IDXADDR Indexed Register Address (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
15:0	Indexed Register Address Selects which indexed register is accessed when the IDXDATA register (USB Controller, offset 34h) is read or written.	RW	Yes	0000h
31:16	Reserved	RsvdZ	No	0000h

Register 15-12. 34h IDXDATA Indexed Register Data (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
31:0	Indexed Register Data Provides access to the Indexed Data register selected by the IDXADDR register (USB Controller, offset 30h).	RW	Yes	0000_0000h

Register 15-13. 38h FIFOCTL FIFO Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
1:0	FIFO Configuration Select Reserved	RW	Yes	00b
	Legacy Adapter Mode PCI BAR2 Select 0 = GPEP[3:0] endpoint FIFOs are each assigned one quadrant of PCI BAR2 space (GPEP0 = 1 st quadrant, GPEP1 = 2 nd quadrant, GPEP2 = 3 rd quadrant, GPEP3 = 4 th quadrant) 1 = PCI Writes to and Banda from the PCI BAP2 space are directed		RW Yes	
2	 1 = PCI Writes to and Reads from the PCI BAR2 space are directed to the GPEP[3:0] endpoint FIFOs, as follows: Writes to the lower half of the space are directed to the GPEP0 endpoint FIFO Reads from the lower half of the space are directed to the GPEP1 endpoint FIFO Writes to the upper half of the space are directed to the GPEP2 endpoint FIFO Reads from the upper half of the space are directed to the GPEP2 endpoint FIFO Reads from the upper half of the space are directed to the GPEP2 endpoint FIFO 	RW		0
	Enhanced Adapter Mode Reserved Note: The Enhanced Adapter mode equivalent function of this bit is provided by the FIFOCTL register {Endpoint Number, Direction of Endpoint} for Quadrant x of BAR2 bits (USB Controller, offset 3Ch[15:0]).	RsvdP	No	0
3	Ignore FIFO Availability 0 = PCI Express accesses to empty/full FIFOs result in a Retry termination 1 = PCI Express accesses to empty and/or full FIFOs result in a standard termination; however, Read data is undefined, and Write data is ignored	RW	Yes	1
15:4	Reserved	RO	Yes	000h
31:16	Legacy Adapter Mode PCI BAR2 Range Determines the PCI BAR2 range, in increments of 64 KB. The default corresponds to a 64-KB range. Starting with bit 16, as each successive bit is changed to a value of 0, the range doubles. Value of 0 corresponds to a 4-GB range, thereby causing PCI BAR2 to be disabled. PCI BAR2 must be a multiple of the range.	RW	Yes	FFFFh
	Enhanced Adapter Mode Reserved Note: The Enhanced Adapter mode equivalent function of this bit is provided by the FIFOCTL register PCI BAR2 Range field (USB Controller, offset 3Ch[31:16]).	RsvdP	No	0

Register 15-14. 3Ch BAR2CTL BAR2 Enhanced Control (USB Controller)

Bit(s)		Description	Access	Serial EEPROM	Default
Note:	This reg	ister is visible/available only in Enhanced Adapter mode. Reserved in Le	gacy Adapter n	node.	
	{Endpo	int Number, Direction of Endpoint} for Quadrant 0 of BAR2			
	Bit(s)	Description/Function			
	0	Direction Indicates the IN/OUT direction of the GPEP <i>x</i> endpoint indicated by bits [3:1].			
3:0		Endpoint Number Indicates the GPEP <i>x</i> number to which Quadrant 0 of PCI BAR2 is mapped.	RW	Yes	Oh
	3:1	000b = GPEP0 001b = GPEP1 010b = GPEP2 011b = GPEP3			
		All other encodings are <i>reserved</i> .			
	{Endpo	int Number, Direction of Endpoint} for Quadrant 1 of BAR2			
	Bit(s)	Description/Function			
	4	Direction Indicates the IN/OUT direction of the GPEP <i>x</i> endpoint indicated by bits [7:5].			
		Endpoint Number	RW		
7:4		Indicates the GPEP <i>x</i> number to which Quadrant 1 of PCI BAR2 is mapped.		Yes	Oh
	7:5	000b = GPEP0 001b = GPEP1 010b = GPEP2 011b = GPEP3			
		All other encodings are <i>reserved</i> .			

Register 15-14. 3Ch BAR2CTL BAR2 Enhanced Control (USB Controller) (Cont.)

Bit(s)		Description	Access	Serial EEPROM	Default
	{Endpo	int Number, Direction of Endpoint} for Quadrant 2 of BAR2			
	Bit(s)	Description/Function	•		
	8	Direction Indicates the IN/OUT direction of the GPEP <i>x</i> endpoint indicated by bits [11:9].			
11:8	11:9	Endpoint Number Indicates the GPEPx number to which Quadrant 2 of PCI BAR2 is mapped. 000b = GPEP0 001b = GPEP1 010b = GPEP2 011b = GPEP3 All other encodings are <i>reserved</i> .	RW	Yes	Oh
	{Endpo	int Number, Direction of Endpoint} for Quadrant 3 of BAR2			
	Bit(s)	Description/Function			
	12	Direction Indicates the IN/OUT direction of the GPEP <i>x</i> endpoint indicated by bits [15:13].			
15:12	15:13	Endpoint Number Indicates the GPEPx number to which Quadrant 3 of PCI BAR2 is mapped. 000b = GPEP0 001b = GPEP1 010b = GPEP2	RW	Yes	Oh
		0100 = GPEP2 011b = GPEP3 All other encodings are <i>reserved</i> .			
	PCI BA	R2 Range			
31:16	correspondent is changed to a 4-C	ines the PCI BAR2 range, in increments of 64 KB. The default onds to a 64-KB range. Starting with bit 16, as each successive bit ged to a value of 0, the range doubles. Value of 0 corresponds iB range, thereby causing PCI BAR2 to be disabled. PCI BAR2 a multiple of the range.	RW	Yes	FFFFh

Register 15-15. 40h BAR3CTL BAR3 Enhanced Control	
(USB Controller)	

Bit(s)		Description	Access	Serial EEPROM	Default
Note:	This reg	ister is visible/available only in Enhanced Adapter mode. Reserved in Le	gacy Adapter n	node.	
	{Endpo	int Number, Direction of Endpoint} for Quadrant 0 of BAR3			
	Bit(s)	Description/Function			
	0	Direction Indicates the IN/OUT direction of the GPEP <i>x</i> endpoint indicated by bits [3:1].			
3:0		Endpoint Number Indicates the GPEP <i>x</i> number to which Quadrant 0 of PCI BAR3 is mapped.	RW	Yes	Oh
	3:1	000b = GPEP0 001b = GPEP1 010b = GPEP2 011b = GPEP3			
		All other encodings are <i>reserved</i> .			
	{Endpo	int Number, Direction of Endpoint} for Quadrant 1 of BAR3			
	Bit(s)	Description/Function			
	4	Direction Indicates the IN/OUT direction of the GPEP <i>x</i> endpoint indicated by bits [7:5].	RW		
		Endpoint Number		Yes	
7:4		Indicates the GPEP <i>x</i> number to which Quadrant 1 of PCI BAR3 is mapped.			Oh
	7:5	000b = GPEP0 001b = GPEP1 010b = GPEP2 011b = GPEP3			
		All other encodings are <i>reserved</i> .			

Register 15-15. 40h BAR3CTL BAR3 Enhanced Control (USB Controller) (Cont.)

Bit(s)		Description	Access	Serial EEPROM	Default
	{Endpo	int Number, Direction of Endpoint} for Quadrant 2 of BAR3			
	Bit(s)	Description/Function			
	8	Direction Indicates the IN/OUT direction of the GPEP <i>x</i> endpoint indicated by bits [11:9].	-		
11:8	11:9	Endpoint Number Indicates the GPEP <i>x</i> number to which Quadrant 2 of PCI BAR3 is mapped. 000b = GPEP0 001b = GPEP1 010b = GPEP2 011b = GPEP3 All other encodings are <i>reserved</i> .	RW Yes		Oh
	{Endpo	int Number, Direction of Endpoint} for Quadrant 3 of BAR3			
	Bit(s)	Description/Function			
	12	Direction Indicates the IN/OUT direction of the GPEP <i>x</i> endpoint indicated by bits [15:13].			
15:12	15:13	Endpoint Number Indicates the GPEP <i>x</i> number to which Quadrant 3 of PCI BAR3 is mapped. 000b = GPEP0 001b = GPEP1 010b = GPEP2 011b = GPEP3 All other encodings are <i>reserved</i> .	RW Yes		Oh
31:16	PCI BAR3 Range Determines the PCI BAR3 range, in increments of 64 KB. The default corresponds to a 64-KB range. Starting with bit 16, as each successive bit is changed to a value of 0, the range doubles. Value of 0 corresponds to a 4-GB range, thereby causing PCI BAR3 to be disabled. PCI BAR3 must be a multiple of the range.		RW	Yes	FFFFh

Register 15-16. 50h GPIOCTRL GPIO Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	This register is reserved (has no function) when the Debug Control register LAN offset 1DCh[22]) is Set.	IE_GOOD#/GI	PIOx Pin Functi	ion Select bit
Bits [<mark>11</mark> respecti	1:8] can be used to mask their respective GPIO Status register GPIOx Interrupt b ively).	oit (USB Contro	oller, offset 54h	[3:0],
0	GPIO0 Data When the GPIO0 pin is programmed as an input (bit 4 is Cleared), reading this bit returns the value present on the GPIO0 pin. When the GPIO0 pin is programmed as an output (bit 4 is Set), values written to this bit appear on the GPIO0 pin. Reading this bit returns the previously written value.	RWU	Yes	0
1	GPIO1 Data When the GPIO1 pin is programmed as an input (bit 5 is Cleared), reading this bit returns the value present on the GPIO1 pin. When the GPIO1 pin is programmed as an output (bit 5 is Set), values written to this bit appear on the GPIO1 pin. Reading this bit returns the previously written value.	RWU	Yes	0
2	GPIO2 Data When the GPIO2 pin is programmed as an input (bit 6 is Cleared), reading this bit returns the value present on the GPIO2 pin. When the GPIO2 pin is programmed as an output (bit 6 is Set), values written to this bit appear on the GPIO2 pin. Reading this bit returns the previously written value.	RWU	Yes	0
3	GPIO3 Data When the GPIO3 pin is programmed as an input (bit 7 is Cleared), reading this bit returns the value present on the GPIO3 pin. When the GPIO3 pin is programmed as an output (bit 7 is Set), values written to this bit appear on the GPIO3 pin. Reading this bit returns the previously written value.	RWU	Yes	0
4	GPIO0 Output Enable 0 = GPIO0 pin is an input 1 = GPIO0 pin is an output	RWS	Yes	1
5	GPIO1 Output Enable 0 = GPIO1 pin is an input 1 = GPIO1 pin is an output	RWS	Yes	1
6	GPIO2 Output Enable 0 = GPIO2 pin is an input 1 = GPIO2 pin is an output	RWS	Yes	0
7	GPIO3 Output Enable 0 = GPIO3 pin is an input 1 = GPIO3 pin is an output	RWS	Yes	0

Register 15-16. 50h GPIOCTRL GPIO Control (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
8	GPIO0 Interrupt Enable 0 = Masks the ability for the GPIO0 input to generate an interrupt 1 = When the GPIO0 pin is programmed as an input (bit 4 is Cleared), changes on the GPIO0 pin are enabled to generate an interrupt	RW	Yes	0
9	GPIO1 Interrupt Enable 0 = Masks the ability for the GPIO1 input to generate an interrupt 1 = When the GPIO1 pin is programmed as an input (bit 5 is Cleared), changes on the GPIO1 pin are enabled to generate an interrupt	RW	Yes	0
10	GPIO2 Interrupt Enable 0 = Masks the ability for the GPIO2 input to generate an interrupt 1 = When the GPIO2 pin is programmed as an input (bit 6 is Cleared), changes on the GPIO2 pin are enabled to generate an interrupt	RW	Yes	0
11	GPIO3 Interrupt Enable 0 = Masks the ability for the GPIO3 input to generate an interrupt 1 = When the GPIO3 pin is programmed as an input (bit 7 is Cleared), changes on the GPIO3 pin are enabled to generate an interrupt	RW	Yes	0
12	GPIO3 LED Select Selects between GPIO3 and USB_LINK_ACTIVE function (default). 0 = USB_LINK_ACTIVE (default). USB_LINK_ACTIVE asserts High when the USB Link is transferring data. 1 = GPIO3 pin is driven High during USB activity. The GPIO3 pin must be programmed as an output (bit 7 is Set), for this feature to be available.	RW	Yes	1
15:13	Reserved	RsvdP	No	000b

Register 15-16. 50h GPIOCTRL GPIO Control (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
16	GPIO0 Input De-Bounce Enable 1 = When the GPIO0 pin is programmed as an input (bit 4 is Cleared), turns On the de-bounce circuit at GPIO0. The de-bounce time is 1.0 to 1.3 ms.	RW	Yes	0
17	GPIO1 Input De-Bounce Enable 1 = When the GPIO1 pin is programmed as an input (bit 5 is Cleared), turns On the de-bounce circuit at GPIO1. The de-bounce time is 1.0 to 1.3 ms.	RW	Yes	0
18	GPIO2 Input De-Bounce Enable 1 = When the GPIO2 pin is programmed as an input (bit 6 is Cleared), turns On the de-bounce circuit at GPIO2. The de-bounce time is 1.0 to 1.3 ms.	RW	Yes	0
19	GPIO3 Input De-Bounce Enable 1 = When the GPIO3 pin is programmed as an input (bit 7 is Cleared), turns On the de-bounce circuit at GPIO3. The de-bounce time is 1.0 to 1.3 ms.	RW	Yes	0
23:20	Reserved	RsvdP	No	Oh
24	GPIO0 PWM Enable 1 = When the GPIO0 pin is programmed as an output (bit 4 is Set), turns On the pulse-width-modulated (PWM) output at GPIO0	RW	Yes	0
25	GPIO1 PWM Enable 1 = When the GPIO1 pin is programmed as an output (bit 5 is Set), turns On the PWM output at GPIO1	RW	Yes	0
26	GPIO2 PWM Enable 1 = When the GPIO2 pin is programmed as an output (bit 6 is Set), turns On the PWM output at GPIO2	RW	Yes	0
27	GPIO3 PWM Enable 1 = When the GPIO3 pin is programmed as an output (bit 7 is Set), turns On the PWM output at GPIO3	RW	Yes	0
31:28	Reserved	RsvdP	No	0h

Register 15-17. 54h GPIOSTAT GPIO Status (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	This register is reserved (has no function) when the Debug Control register LAN offset 1DCh[22]) is Set.	E_GOOD#/GI	PIOx Pin Funct	ion Select bit
	0] can be masked by their respective GPIO Control register GPIOx Interrupt End Dh[11:8], respectively).	able bit (USB (Controller,	
	GPIO0 Interrupt			
0	Writing 1 Clears this bit. De-bounce delays Setting of this bit when the GPIO Control register <i>GPIOO Input De-Bounce Enable</i> bit (USB Controller, offset 50h[16]) is Set.	RW1C	Yes	PCFG
	1 = GPIO0 pin state changed from input, to output (GPIO Control register <i>GPIO0 Output Enable</i> bit (USB Controller, offset 50h[4]) is Set, after being programmed as input (Cleared))			
	GPIO1 Interrupt			
1	Writing 1 Clears this bit. De-bounce delays Setting of this bit when the GPIO Control register <i>GPIO1 Input De-Bounce Enable</i> bit (USB Controller, offset 50h[17]) is Set.	RW1C	Yes	PCFG
	1 = GPIO1 pin state changed from input, to output (GPIO Control register <i>GPIO1 Output Enable</i> bit (USB Controller, offset 50h[5]) is Set, after being programmed as input (Cleared))			
	GPIO2 Interrupt			
2	Writing 1 Clears this bit. De-bounce delays Setting of this bit when the GPIO Control register <i>GPIO2 Input De-Bounce Enable</i> bit (USB Controller, offset 50h[18]) is Set.	RW1C	Yes	PCFG
	1 = GPIO2 pin state changed from input, to output (GPIO Control register <i>GPIO2 Output Enable</i> bit (USB Controller, offset 50h[6]) is Set, after being programmed as input (Cleared))			
	GPIO3 Interrupt			
3	Writing 1 Clears this bit. De-bounce delays Setting of this bit when the GPIO Control register <i>GPIO3 Input De-Bounce Enable</i> bit (USB Controller, offset 50h[19]) is Set.	RW1C	Yes	PCFG
	1 = GPIO3 pin state changed from input, to output (GPIO Control register <i>GPIO3 Output Enable</i> bit (USB Controller, offset 50h[7]) is Set, after being programmed as input (Cleared))			
31:4	Reserved	RsvdP	No	0000_0001

Register 15-18. 58h PWMV GPIO PWM Value (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
steps in The PW	programmed into this register determine the quantity of steps (out of 256) that the PWM cycle, the output is driven Low. VM value for each GPIO can be incremented or decremented by one step every <i>n</i> med into the GPIO PWM Ramp Control register (USB Controller, offset 5Ch	PWM cycles, v	C	C
Note: (Port 0,	This register is reserved (has no function) when the Debug Control register LAD offset 1DCh[22]) is Set.	NE_GOOD#/GI	PIOx Pin Functi	on Select bit
	GPIO0 PWM Value			
	Programming <i>n</i> outputs a waveform with $n/255$ cycles High and $(255-n)/255$ steps Low.			
7:0	Writes of 0 to the GPIO Control register <i>GPIO0 Output Enable</i> bit (USB Controller, offset 50h[4]) program the value of this field to 00h.	RWU	Yes	00h
	Writes of 1 to the <i>GPIOO Output Enable</i> bit program the value of this field to FFh.			
	GPIO1 PWM Value			
	Programming <i>n</i> outputs a waveform with $n/255$ cycles High and $(255-n)/255$ steps Low.			
15:8	Writes of 0 to the GPIO Control register <i>GPIO1 Output Enable</i> bit (USB Controller, offset 50h[5]) program the value of this field to 00h.	RWU	Yes	00h
	Writes of 1 to the <i>GPIO1 Output Enable</i> bit program the value of this field to FFh.			
	GPIO2 PWM Value			
	Programming <i>n</i> outputs a waveform with $n/255$ cycles High and $(255-n)/255$ steps Low.			
23:16	Writes of 0 to the GPIO Control register <i>GPIO2 Output Enable</i> bit (USB Controller, offset 50h[6]) program the value of this field to 00h.	RWU	Yes	00h
	Writes of 1 to the <i>GPIO2 Output Enable</i> bit program the value of this field to FFh.			
	GPIO3 PWM Value			
	Programming <i>n</i> outputs a waveform with $n/255$ cycles High and $(255-n)/255$ steps Low.			
31:24	Writes of 0 to the GPIO Control register <i>GPIO3 Output Enable</i> bit (USB Controller, offset 50h[7]) program the value of this field to 00h.	RWU	Yes	00h
	Writes of 1 to the <i>GPIO3 Output Enable</i> bit program the value of this field to FFh.			

Register 15-19. 5Ch PWMRC GPIO PWM Ramp Control

(USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	amping starts when a value of $n=1$ to 255 is programmed, and ends when the PW as input to the GPIO PWM Value register (USB Controller, offset 58h).	M value reache	es 255 or 0. The	n value
Note: (Port 0,	This register is reserved (has no function) when the Debug Control register LAD offset 1DCh[22]) is Set.	NE_GOOD#/GI	PIOx Pin Funct	ion Select bit
	GPIO0 PWM Ramp Period			
6:0	For every Ramp Period (RP) of complete PWM cycles, the GPIO0 PWM value is increased/decreased by 1.	RW	Yes	00h
	00h = PWM ramp is disabled			
	GPIO0 PWM Ramp Sign Bit			
7	The value of 0/1 controls that the GPIO0 PWM value is incremented/ decremented after every "RP of complete PWM cycles."	RW	Yes	0
	GPIO1 PWM Ramp Period			
14:8	For every RP of complete PWM cycles, the GPIO1 PWM value is increased/ decreased by 1.	RW	Yes	00h
	00h = PWM ramp is disabled			
	GPIO1 PWM Ramp Sign Bit			
15	The value of 0/1 controls that the GPIO1 PWM value is incremented/ decremented after every "RP of complete PWM cycles."	RW	Yes	0
	GPIO2 PWM Ramp Period			
22:16	For every RP of complete PWM cycles, the GPIO2 PWM value is increased/ decreased by 1.	RW	Yes	00h
	00h = PWM ramp is disabled			
	GPIO2 PWM Ramp Sign Bit			
23	The value of 0/1 controls that the GPIO2 PWM value is incremented/ decremented after every "RP of complete PWM cycles."	RW	Yes	0
	GPIO3 PWM Ramp Period			
30:24	For every RP of complete PWM cycles, the GPIO3 PWM value is increased/ decreased by 1.	RW	Yes	00h
	00h = PWM ramp is disabled			
	GPIO3 PWM Ramp Sign Bit			
31	The value of 0/1 controls that the GPIO3 PWM value is incremented/ decremented after every "RP of complete PWM cycles."	RW	Yes	0

Register 15-20. 60h PWMFREQ GPIO PWM Clock Frequency (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
Note: (Port 0,	This register is reserved (has no function) when the Debug Control register LANE_GOOD#/GPIOx Pin Function Select bit 0, offset 1DCh[22]) is Set.			
	PWM Clock Divider			
7:0	Controls the PWM step frequency (duration of each step). PWM functions repeat in cycles of 256 steps. The value in this register divides an input clock of 62.5 MHz by a programmed value of 1 to 256 (where $0 = 256$). Because every PWM cycle has 256 steps, the fastest/slowest PWM base frequency is 245.1 KHz/1.908 KHz, respectively.	RW	Yes	00h
	00h = 1.908 KHz (slowest)			
	01h = 245.1 KHz (fastest)			
31:8	Reserved	RsvdP	No	0000_00h

Register 15-21. 78h Root Message Dispatch Root Message Dispatch 0/1 – RCIN/8051 FIFO (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
Note:	Valid only in Root Complex mode. Reserved in Adapter mode.			
0	Correctable Error Message Dispatch	RW	Yes	0
1	Non-Fatal Error Message Dispatch	RW	Yes	0
2	Fatal Error Message Dispatch	RW	Yes	0
3	MSI Dispatch	RW	Yes	0
4	INTA# Message Dispatch	RW	Yes	0
5	INTB# Message Dispatch	RW	Yes	0
6	INTC# Message Dispatch	RW	Yes	0
7	INTD# Message Dispatch	RW	Yes	0
8	PME Message Dispatch	RW	Yes	0
31:9	Reserved	RsvdP	No	0-0h

Register 15-22. 7Ch HUC Cursor Data HUC Cursor Data (USB Controller)

Bi	t(s)	Description	Access	Serial EEPROM	Default
3	1:0	HUC Cursor Data	RW	Yes	0000_0000h

15.6 USB Interface Control Registers

Table 15-5.	USB Interface Control Registers
-------------	---------------------------------

Offset (from BAR0)	Register	Description
80h	STDRSP	Standard Response Control
84h	PRODVENDID	Product and Vendor IDs
88h	RELNUM	Device Release Number
8Ch	USBCTL	USB Control
90h	USBSTAT	USB Status
94h	XCVRDIAG	USB Transceiver Diagnostic Control
98h	SETUPDW0	Setup DWord 0
9Ch	SETUPDW1	Setup DWord 1
A0h	Reserved	
A4h	OURADDR	Our USB Address
A8h	A8h	Our USB Configuration
ACh – B0h	Reserved	
B4h	USB_CLASS	USB Class, Sub-Class, Protocol
B8h	SS_SEL	SuperSpeed System Exit Latency
BCh	SS_DEL	SuperSpeed Device Exit Latency
C0h	USB2LPM	USB2 Link Power Management
C4h	USB3BELT	USB3 Best Effort Latency Tolerance
C8h	USBCTL2	USB Control 2
CCh	IN_TIMEOUT	IN Endpoint Credit Timeout
D0h	ISODELAY	Isochronous Delay
D4h – FFh	Reserved	

Register 15-23. 80h STDRSP Standard Response Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	Get Device Status 0 = Get Device Status Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
1	Get Interface Status 0 = Get Interface Status Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
2	Get Endpoint Status 0 = Get Endpoint Status Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
3	Get Device Descriptor 0 = Get Device Descriptor Request is passed to the CPU, through the Setup registers. 1 = Request is automatically handled, without notifying the CPU. Other Configuration registers in the USB 3380 determine the values in the Descriptor.	RW	Yes	1
4	Get Configuration Descriptor0 = Get Configuration Descriptor Request is passed to the CPU, through the Setup registers.1 = Request is automatically handled, without notifying the CPU. Other Configuration registers in the USB 3380 determine the values in the Descriptor.	RW	Yes	1
5	Get/Set Configuration 0 = Get/Set Configuration Requests are passed to the CPU, through the Setup registers 1 = Requests are automatically handled, without notifying the CPU	RW	Yes	1
6	Get/Set Interface 0 = Get/Set Interface Requests are passed to the CPU, through the Setup registers 1 = Requests are automatically handled without notifying the CPU	RW	Yes	1
7	Reserved	RW	Yes	1
8	Get String Descriptor 0 0 = Get String Descriptor 0 (Language ID) Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
9	Get String Descriptor 1 0 = Get String Descriptor 1 (Manufacturer ID) Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
10	Get String Descriptor 2 0 = Get String Descriptor 2 (Product ID) Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
11	Device SET/CLR Device Remote Wake-up 0 = Device SET/CLR Feature Requests for controlling Device Remote Wakeup Enable are passed to the CPU, through the Setup registers 1 = Requests are automatically handled, without notifying the CPU	RW	Yes	1

Register 15-23. 80h STDRSP Standard Response Control (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
12	Endpoint SET/CLR Halt 0 = Endpoint SET/CLR feature Requests for controlling the Halt condition are passed to the CPU, through the Setup registers 1 = Requests are automatically handled, without notifying the CPU	RW	Yes	1
13	Set Address 0 = Set Address Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
14	Get Device Qualifier 0 = Get Device Qualifier Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
15	Get Other Speed Configuration0 = Get Other Speed Configuration Descriptor Request is passed to the CPU, through the Setup registers1 = Request is handled automatically without notifying the CPU	RW	Yes	1
16	Set Test Mode 0 = Set Test Mode Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
17	SET/CLR Function Suspend 0 = Interface SET/CLR features Requests for controlling Function Suspend are passed to the CPU, through the Setup registers 1 = Requests are automatically handled, without notifying the CPU	RW	Yes	1
18	SET/CLR U1 Enable 0 = Device SET/CLR features Requests for controlling U1_Enable are passed to the CPU, through the Setup registers 1 = Requests are automatically handled, without notifying the CPU	RW	Yes	1
19	SET/CLR U2 Enable 0 = Device SET/CLR features Requests for controlling U2_Enable are passed to the CPU, through the Setup registers 1 = Requests are automatically handled, without notifying the CPU	RW	Yes	1

Register 15-23. 80h STDRSP Standard Response Control (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
20	SET/CLR LTM Enable 0 = Device SET/CLR features Requests for controlling Latency Tolerance Messages are passed to the CPU, through the Setup registers 1 = Requests are automatically handled, without notifying the CPU	RW	Yes	1
21	Get BOS Descriptor0 = Get Binary Device Object Store (BOS) Descriptor Request is passed to the CPU, through the Setup registers.1 = Request is automatically handled, without notifying the CPU. Other Configuration registers in the USB 3380 determine the values in the Descriptor.	RW	Yes	1
22	Set SEL 0 = Set "System Exit Latency" Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
23	Get String Descriptor 3 0 = Get String Descriptor 3 (Serial Number) Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	0
24	Set Isochronous Delay 0 = Set Isochronous Delay Request is passed to the CPU, through the Setup registers 1 = Request is automatically handled, without notifying the CPU	RW	Yes	1
30:25	Reserved	RsvdZ	Yes	0-0h
31	Stall Unsupported Requests 0 = Standard, Class, and Vendor Requests from the USB Host that are not included in bits [24:0] of this register are passed to the CPU firmware 1 = Standard, Class, and Vendor Requests from the USB Host that are not included in bits [24:0] of this register cause a STALL handshake, and EP 0 is halted	RW	Yes	1

Register 15-24. 84h PRODVENDID Product and Vendor IDs (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
15:0	Vendor ID Used only when the Get Device Descriptor Request is in Auto-Enumerate mode. Determines the Vendor ID during a Get Device Descriptor Request.	RW	Yes	0525h
31:16	Product IDUsed only when the Get Device Descriptor Request is in Auto-Enumerate mode.Determines the Product ID during a Get Device Descriptor Request.	RW	Yes	3380h

Register 15-25. 88h RELNUM Device Release Number (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
15:0	 Device Release Number Used only when the Get Device Descriptor Request is in Auto-Enumerate mode. Determines the USB 3380 Release Number during a Get Device Descriptor Request. Note: The default value of RELNUM is based upon the Silicon Revision, encoded as a four-digit binary-coded decimal (BCD) value. The value of RELNUM for the first USB 3380 release is 0101h. The two least-significant digits are incremented for mask changes, and the two most-significant digits are incremented for major revisions. This value can be changed by the 8051 to implement an application-specific Release Number. This value can also be modified by serial EEPROM and/or the PCI Express interface prior to USB enumeration. 	RW	Yes	0101hSilicon Revision AA: 0101h Silicon Revision AB: 0102h
31:16	Reserved	RsvdZ	Yes	0000h

Register 15-26. 8Ch USBCTL USB Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	Self-Powered Status Determines the value of the <i>Self-Powered</i> bit in the Device Status Request, when operating in Auto-Enumerate mode.	RW	Yes	1 (Adapter mode) 0 (Root Complex mode)
1	 Remote Wakeup Enable 1 = Enables the Device Remote Wakeup feature USB r2.0 This bit is controlled by the Device Remote Wakeup SET/CLR Standard Request, and is reported to the USB Host in the <i>GetStatus Device</i>, bit 1. USB r3.0 This bit is the Function Remote Wakeup. It is controlled by the <i>SET/CLR Feature Interface Suspend</i>, bit 1, and is reported to the USB Host in the <i>GetStatus Interface</i>, bit 1. 	RW	Yes	0
2	PCI Express Wakeup Enable 1 = Enables the PCI Express WAKE# pin or beacon, to wake up the USB 3380	RW	Yes	0
3	USB Detect Enable 0 = USB 3380 does not appear to be connected to the USB Host. 1 = USB 3380 appears to be connected to the USB Host. This bit should not be Set until the Configuration registers are programmed. This bit is automatically Set if Root Complex mode is selected, and a valid serial EEPROM is not detected at reset time.	RW	Yes	0
4	PME Polarity Not used in PCI Express environments.	RW	Yes	0
5	Remote Wakeup Support Indicates whether the USB 3380 supports Device Remote Wakeup. USB r2.0 Reported to the USB Host in the USB Configuration Descriptor's bmAttributes field, bit 5, during Auto-Enumerate mode. USB r3.0 Reported to the USB Host in the USB Configuration Descriptor's bmAttributes field, bit 5, during Auto-Enumerate mode. USB r3.0 Reported to the USB Host in the USB Configuration Descriptor's bmAttributes field, bit 5, during Auto-Enumerate mode. Also reported in the GetStatus Interface, bit 0.	RW	Yes	0
6	Self-Powered USB Device Reported to the USB Host in the USB Configuration Descriptor's <i>bmAttributes</i> field, bit 6, during Auto-Enumerate mode, and indicates whether the USB 3380 is self-powered.	RW	Yes	1 (Adapter mode) 0 (Root Complex mode)
7	Immediately Suspend 0 = IRQSTAT1 register <i>Suspend Request Interrupt Status</i> bit (USB Controller, offset 2Ch[3]) must be written to initiate the Suspend sequence 1 = Allows the USB 3380 to automatically enter the Suspend state when the USB is idle for 3 ms. Automatically Set if Root Complex mode is selected and a valid serial EEPROM is not detected at reset time.	RW	Yes	0

Register 15-26. 8Ch USBCTL USB Control (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
8	Reserved	RW	Yes	0
	Timed Disconnect			
9	When written, bit 3 (<i>USB Detect Enable</i>) is disabled after a 20-ms delay, effectively disconnecting the USB 3380 from the USB Host. After a 1s delay, bit 3 is Set again, re-connecting the USB 3380 to the USB Host.	RW1S	Yes	0
	VBUS Pin			
10	Indicates the USB_VBUS input state.	PIN	Yes	0
	1 = Indicates that the USB 3380 is connected to the USB Host			
11	USB Root Port Wakeup Enable 0 = Wakeup condition is not detected 1 = Root Port Wakeup condition is detected when activity is detected on the USB line interface	RW	Yes	1
	Vendor ID String Enable			
12	0 = Vendor String Index value in the Device Descriptor is Cleared, and the string Descriptor Read is acknowledged with a stall in Auto-Enumerate mode 1 = Allows the default Vendor String Descriptor to be returned to the Host in Auto-Enumerate mode	RW	Yes	1
	Product ID String Enable			
13	0 = Product String Index value in the Device Descriptor is Cleared, and the string Descriptor Read is acknowledged with a stall in Auto-Enumerate mode	RW	Yes	1
	1 = Allows the default Product String Descriptor to be returned to the Host in Auto-Enumerate mode			
31:14	Reserved	RsvdZ	Yes	0-0h

Register 15-27. 90h USBSTAT USB Status (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
3:0	Reserved	RsvdZ	Yes	Oh
4	Reserved	RO	Yes	0
5	Generate Resume Writing 1 initiates a Resume sequence to the Host, if Device Remote Wakeup is enabled (USBCTL register <i>Remote Wakeup Enable</i> bit (USB Controller, offset 8Ch[1]) is Set). This bit is self-Clearing, and always returns a value of 0.	RW1S	Yes	0
6	Full-Speed Mode 1 = USB 3380 is operating in Full-Speed mode (12 Mbps)	RO	Yes	0
7	High-Speed Mode 1 = USB 3380 is operating in High-Speed mode (480 Mbps)	RO	Yes	0
8	SuperSpeed Mode 1 = USB 3380 is operating in SuperSpeed mode (5 Gbps)	RO	Yes	0
9	Suspend Status Automatically Set when the USB 3380 enters the Suspend state. Writing 1 Clears this bit.	RW1C	Yes	0
10	 1 = Indicates that the USB 3380 was previously in the Suspend state Remote Wakeup Status Writing 1 Clears this bit. 1 = Indicates that a remote Wakeup beacon or WAKE# input was received from a PCI Express device. Causes a Function Wake Device Notification TP to be sent to the USB r3.0 Host when resume is finished and the Link has returned to the L0 Link PM state. 	RW1C	Yes	0
11	Enhanced Mode If programming this register from serial EEPROM, always write 0 to this bit. 0 = USB 3380 is operating in Legacy Adapter mode 1 = USB 3380 is operating in Enhanced Adapter mode	RO	Yes	0
12	Host Mode If programming this register from serial EEPROM, always write 0 to this bit. 0 = USB 3380 is operating in Adapter mode 1 = USB 3380 is operating in Root Complex mode (known as Host mode, in the legacy NET 2282)	RO	Yes	0
13	TP with Non-Zero Routing ID Is Received When a TP is received with a non-zero Tier 1 route string, this <i>Status</i> bit is Set. This bit is Cleared with a Hard Reset.	RO	Yes	0
14	TP with Deferred Bit Set Is Received When a TP is received with the <i>Deferred</i> bit set, this <i>Status</i> bit is Set. This bit is Cleared with a Hard Reset.	RO	Yes	0
31:15	Reserved	RsvdZ	Yes	0-0h

Register 15-28. 94h XCVRDIAG USB Transceiver Diagnostic Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	Termination Select	DO	N	0
0	0 = High-Speed termination is enabled 1 = Full-Speed termination is enabled	RO	Yes	0
	Transceiver Select			
1	0 = High-Speed transceiver is enabled 1 = Full-Speed transceiver is enabled	RO	Yes	0
	Transceiver Operation Mode			
	Indicates the Transceiver operation mode (OPMODE).			
3:2	00b = Normal 01b = Non-Driving 10b = Disable bit stuffing and NRZI encoding 11b = Reserved	RO	Yes	00Ь
15:4	Reserved	RsvdZ	Yes	000h
17:16	Line State 00b = SE0 01b = J 10b = K 11b = SE1	PIN	Yes	00Ь
23:18	Reserved	RsvdZ	Yes	0-0h
	USB Test Mode			
26:24	Valid only in High-Speed mode. 000b = Normal (default) 001b = Test J 010b = Test K 011b = Test SE0_NAK 100b = Test Packet 101b = Test Force Enable 110b, 111b = Reserved	RW	Yes	000Ь
29:27	Reserved	RsvdZ	Yes	000b
30	 Force Full-Speed Mode 1 = USB 3380 is forced into Full-Speed mode Note: Do not use this bit in standard operation. It is provided for testing purposes only. 	RW	Yes	0
31	 Force High-Speed Mode 1 = USB 3380 is forced into High-Speed mode Note: Do not use this bit in standard operation. It is provided for testing purposes only. 	RW	Yes	0

Register 15-29.	98h SETUPDW0 Setup DWord 0
(USB Controller)

Bit(s)		Description	Access	Serial EEPROM	Default
		Byte 0 s Byte 0 of the last Setup packet received. For a Standard Request, returns the <i>bmRequestType</i> information listed below.			
	Bit(s)	Description/Function			
7:0	4:0	Recipient $00h = Device$ $01h = Interface$ $02h = Endpoint$ $03h = Other$ $04h$ through $1Fh = Reserved$	RO	Yes	00h
	6:5	Type 00b = Standard 01b = Class 10b = Vendor 11b = <i>Reserved</i>			
	7	Direction 0 = Host to device 1 = Device to Host			
	Setup B	Byte 1			
15:8	Device is return 00h = C 01h = C 02h = R 03h = S 04h = R 05h = S 06h = C 07h = S 08h = C 09h = S 0Ah = C 0Bh = C 0Ch = S 30h = S 31h = S	ET_STATUS (default) ELEAR_FEATURE Eserved ET_FEATURE Eserved ET_ADDRESS ET_DESCRIPTOR ET_DESCRIPTOR ET_CONFIGURATION ET_CONFIGURATION ET_CONFIGURATION GET_INTERFACE GET_INTERFACE GET_INTERFACE SYNCH_FRAME ET_SEL ET_ISOCH_DELAY	RO	Yes	00h
23:16		s Byte 2 of the last Setup packet received. For a Standard Request, the least significant byte (LSB) of the <i>wValue</i> field	RO	Yes	OOh
31:24		s Byte 3 of the last Setup packet received. For a Standard Request, the most significant byte (MSB) of the <i>wValue</i> field	RO	Yes	00h

Register 15-30. 9Ch SETUPDW1 Setup DWord 1 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
7:0	Setup Byte 4 Provides Byte 4 of the last Setup packet received. For a Standard Device Request, the LSB of the <i>wIndex</i> field is returned.	RO	Yes	00h
15:8	Setup Byte 5 Provides Byte 5 of the last Setup packet received. For a Standard Device Request, the MSB of the <i>wIndex</i> field is returned.	RO	Yes	00h
23:16	Setup Byte 6 Provides Byte 6 of the last Setup packet received. For a Standard Device Request, the LSB of the <i>wIndex</i> field is returned.	RO	Yes	00h
31:24	Setup Byte 7 Provides Byte 7 of the last Setup packet received. For a Standard Device Request, the MSB of the <i>wIndex</i> field is returned.	RO	Yes	00h

Register 15-31. A4h OURADDR Our USB Address (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
6:0	Our USB Address Contains the USB 3380's current USB address. This field is Cleared when a Root Port Reset (Host Port Reset) is detected. When written, the actual USB address is not changed until a valid Status stage is received from the USB Host.	RW	Yes	0-0h
7	Force Immediate If Set when this register is being written, the USB 3380's USB address is immediately updated, without waiting for a valid Status stage from the USB Host.	RW	Yes	0
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-32. A8h OURCONFIG Our USB Configuration (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
7:0	Our USB Configuration Contains the USB 3380's current USB configuration. This field is Cleared when a Root Port Reset (Host Port Reset) is detected.	RW	Yes	00h
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-33. B4h USB_CLASS USB Class, Sub-Class, Protocol (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
7:0	Class Determines the <i>bDeviceClass</i> returned in the Device Descriptor during an auto-enumeration.	RW	Yes	FFh
15:8	Sub-Class Determines the <i>bDeviceSubClass</i> returned in the Device Descriptor during an auto-enumeration.	RW	Yes	00h
23:16	Protocol Determines the <i>bDeviceProtocol</i> returned in the Device Descriptor during an auto-enumeration.	RW	Yes	00h
31:24	Reserved	RsvdZ	Yes	00h

Register 15-34. B8h SS_SEL SuperSpeed System Exit Latency (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	U1 System Exit Latency Total latency to transition the entire paths of Links between the USB 3380 and Host, from the U1 to U0 Link state, under worst case circumstances, when the USB 3380 initiates the transition. 00h = Zero			
7:0	$01h = \text{Less than 1 } \mu \text{s}$ $02h = \text{Less than 2 } \mu \text{s}$ $03h = \text{Less than 3 } \mu \text{s}$ $04h = \text{Less than 4 } \mu \text{s}$ \dots $0Ah = \text{Less than 10 } \mu \text{s}$ $0Bh - \text{FFh} = Reserved$	RW	Yes	00h
23:8	U2 System Exit Latency Total latency to transition the entire paths of Links between the USB 3380 and Host, from the U2 to U0 Link state, under worst case circumstances, when the USB 3380 initiates the transition. 0000h = Zero 0001h = Less than 1 μs 0002h = Less than 2 μs 0003h = Less than 3 μs 0004h = Less than 4 μs 7FFh = Less than 2,047 μs 800h - FFFFh = Reserved	RW	Yes	0000h
31:24	Reserved	RsvdZ	Yes	00h

Register 15-35. BCh SS_DEL SuperSpeed Device Exit Latency (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
7:0	U1 Device Exit Latency Worst case latency to transition from the U1 to U0 Link state, assuming that the latency is limited only by the USB 3380, and not the USB 3380's Link partner. 00h = Zero $01h = Less than 1 \mu s$ $02h = Less than 2 \mu s$ $03h = Less than 3 \mu s$ $04h = Less than 4 \mu s$ $0Ah = Less than 10 \mu s$ 0Bh - FF = Reserved	RW	Yes	04h
23:8	U2 Device Exit Latency Worst case latency to transition from the U2 to U0 Link state, assuming that the latency is limited only by the USB 3380, and not the USB 3380's Link partner. 0000h = Zero $0001h = \text{Less than 1 } \mu \text{s}$ $0002h = \text{Less than 2 } \mu \text{s}$ $0003h = \text{Less than 3 } \mu \text{s}$ $0004h = \text{Less than 4 } \mu \text{s}$ 7FFh = Less than 2,047 μs 800h - FFFFh = Reserved	RW	Yes	0041h
31:24	Reserved	RsvdZ	Yes	00h

Register 15-36. C0h USB2LPM USB2 Link Power Management (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	USB L1 LPM Support This bit is returned in the USB r2.0 Extension Descriptor Link Power Management (LPM) bit, bit 1, and indicates that the USB 3380 supports the Link Power Management protocol.	RW	Yes	1
1	USB L1 LPM Remote Wake Enable This bit is Set/Cleared by bit 8 of an LPM Extended Transaction. It is used to enable Device Remote Wakeup in <i>USB r2.0</i> mode.	RO	Yes	0
5:2	USB L1 LPM Hird The Host-Initiated Resume Duration (Hird) indicates to the USB 3380 how long the Host will drive the Resume, when the Host initiates exit from the L1 Link PM state. The USB 3380 uses the Hird value to help determine which Power Optimization features it should use in response. Set by bits [7:4] of an LPM Extended Transaction.	RO	Yes	Oh
31:6	Reserved	RsvdZ	Yes	0-0h

Register 15-37. C4h USB3BELT USB3 Best Effort Latency Tolerance (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
9:0	Best Effort Latency Tolerance (BELT) Represents the length of time (in nanoseconds) that the USB 3380 can wait for service before experiencing unintended operation side effects. The BELT value can be modified by the multiplier indicated in field [11:10] (<i>BELT Multiplier</i>).	RW	Yes	1Fh
11:10	BELT Multiplier Provides a multiplier for field [9:0] (<i>Best Effort Latency Tolerance (BELT</i>)). 00b = Reserved $01b = 2^{10} (1,024)$ $10b = 2^{15} (32,768)$ $11b = 2^{20} (1,048,576)$	RO	Yes	10b
31:12	Reserved	RsvdZ	Yes	0000_0h

Register 15-38. C8h USBCTL2 USB Control 2 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	Serial Number String Enable			
0	0 = Serial String Index value in the Device Descriptor is Cleared, and the string Descriptor Read is acknowledged with a stall in Auto-Enumerate mode	RW	Yes	0
	1 = Allows the USB 3380 serial number String Descriptor to be returned to the Host in Auto-Enumerate mode			
1	Reserved	RsvdZ	Yes	0
2	USB2 Core Enable	DW	V	1
2	1 = Enables the USB r2.0 core to begin speed negotiations with the Host	RW	Yes	1
3	SB3 Core Enable RW		Yes	1
3	1 = Enables the USB r3.0 core to begin Link training with the Host	KW	ies	1
	Function Suspend			
4	This bit can be Set or Cleared with a USB Standard Request, as well as a direct register Write.	RW	Yes	0
	1 = USB 3380 is in a Suspended state			
	U1 Enable			
5	This bit can be Set or Cleared with a USB Standard Request, as well as a direct register Write.	RW	Yes	0
	1 = Allows the USB r3.0 Link to go to the U1 Link state			
	U2 Enable			
6	This bit can be Set or Cleared with a USB Standard Request, as well as a direct register Write.	RW	Yes	0
	1 = Allows the USB r3.0 Link to go to the U2 Link state			
	LTM Enable			
7	Used in conjunction with the USB3BELT register <i>Best Effort Latency Tolerance</i> (<i>BELT</i>) field (USB Controller, offset C4h[9:0]). (Refer to the <i>USB r3.0</i> , Section 8.5.6.5, for details.)	RW	Yes	0
	This bit can be Set or Cleared with a USB Standard Request, as well as a direct register Write.			
	1 = Allows the USB 3380 to generate Latency Tolerance Messaging (LTM) Messages			
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-39.	CCh IN	TIMEOUT	IN Endpoint	Credit Timeout
(USB Controller	r)			

Bit(s)	Description	Access	Serial EEPROM	Default
0	GPEP0 Timeout Enable 1 = Timeout timer runs when GPEP0 IN Packet data is not making progress, and data is not being received from the PCI Express interface	RW	Yes	0
3:1	GPEP0 Timeout Value 000b = 16 ms 001b = 32 ms 010b = 64 ms 011b = 1,024 ms All other encodings are <i>reserved</i> .	RW	Yes	000Ь
4	GPEP1 Timeout Enable 1 = Timeout timer runs when GPEP1 IN Packet data is not making progress, and data is not being received from the PCI Express interface	RW	Yes	0
7:5	GPEP1 Timeout Value $000b = 16 \text{ ms}$ $001b = 32 \text{ ms}$ $010b = 64 \text{ ms}$ $011b = 1,024 \text{ ms}$ All other encodings are <i>reserved</i> .	RW	Yes	000Ь
8	GPEP2 Timeout Enable 1 = Timeout timer runs when GPEP2 IN Packet data is not making progress, and data is not being received from the PCI Express interface	RW	Yes	0
11:9	GPEP2 Timeout Value $000b = 16 \text{ ms}$ $001b = 32 \text{ ms}$ $010b = 64 \text{ ms}$ $011b = 1,024 \text{ ms}$ All other encodings are <i>reserved</i> .	RW	Yes	000Ь
12	GPEP3 Timeout Enable 1 = A timeout timer runs when GPEP3 IN Packet data is not making progress, and data is not being received from the PCI Express interface	RW	Yes	0
15:13	GPEP3 Timeout Value 000b = 16 ms 001b = 32 ms 010b = 64 ms 011b = 1,024 ms All other encodings are <i>reserved</i> .	RW	Yes	000Ъ

Register 15-39. CCh IN_TIMEOUT IN Endpoint Credit Timeout (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
	GPEP0 Timeout			
16	Writing 1 Clears the bit.	RW1C	Yes	0
	1 = GPEP0 timeout occurred			
	GPEP1 Timeout			
17	Writing 1 Clears the bit.	RW1C	Yes	0
	1 = GPEP1 timeout occurred			
	GPEP2 Timeout			
18	Writing 1 Clears the bit.	RW1C	Yes	0
	1 = GPEP2 timeout occurred			
	GPEP3 Timeout			
19	Writing 1 Clears the bit.	RW1C	Yes	0
	1 = GPEP3 timeout occurred			
31:20	Reserved	RsvdZ	No	000h

Register 15-40. D0h ISODELAY Isochronous Delay (USB Controller)

Bit(s)	Description		Serial EEPROM	Default
15:0	Isochronous Delay This delay represents the time from when the Host starts transmitting the first framing symbol of the packet, to when the device receives the first framing symbol of that packet. The range is 0 to 65,535 ns.	RW	Yes	0000h
31:16	Reserved	RsvdZ	No	0000h

15.7 PCI Express/Configuration Cursor Registers

Note: USB accesses to the PCIOUT, PCIIN, CSROUT, and CSRIN Dedicated endpoints modify the values in these registers.

		-
Offset (from BAR0)	Register	Description
100h	PCIMSTCTL	PCI Master Control
104h	PCIMSTADDR	PCI Master Address
108h	PCIMSTDATA	PCI Master Data
10Ch	PCIMSTSTAT	PCI Express Master Status
110h	CSRCTL	CSR Control
114h	CSRDATA	CSR Data
118h	SEMAPHORE	General Semaphore
11Ch	PCIMSTMSG	PCI Master Message
120h – 17Fh	Reserved	

Table 15-6. PCI Express/Configuration Cursor Registers

Register 15-41. 100h PCIMSTCTL PCI Master Control (USB Controller)

Bit(s)		Description			Serial EEPROM	Default
3:0	PCI Express First Byte Enables Determines the first Byte Enables of a PCI Express transaction. For 1-DWord transactions, it can be any value. For multiple DWord transactions, only contiguous Byte Enables are allowed, or the endpoint is halted. This field is used directly in the <i>FBE</i> field of the PCI Express Header.			RW	Yes	Oh
	PCI Express Master Command Select When the USB 3380 performs PCI Express transactions initiated by the PCIOUT endpoint or 8051, determines the PCI Express Request type issued.					
	<i>Note:</i> The Configuration Type (Type 0 or Type 1) is determined by the PCI Master Address format.					
5:4	Value	Read Command	Write Command	RW	Yes	00Ъ
	00b	Memory Read	Memory Write			
	01b	I/O Read	I/O Write			
	10b	Configuration Read	Configuration Write			
	11b	Reserved	PCI Express Message			
6	 Writing 1 causes a PCI Write or Read transaction to start. This bit is Cleared when the PCI transaction is complete. For Write operations, determines when to start another Write. For Read operations, determines when the PCIMSTDATA register (USB Controller, offset 108h) contains valid data. This bit is automatically Cleared when a UR or CA occurs. 			RW1S	Yes	0
7	PCI Express Master Read/Write 0 = PCI Write transaction is selected. 1 = PCI Read transaction is selected. For 8051 Writes to the PCI Express interface, this bit must be Cleared before the PCIMSTDATA register (USB Controller, offset 108h) is written.			RW	Yes	0
15:8	Message Code This field defines the Message code, when the Command Select is PCI Express Message (field [5:4] is programmed to 11b, for a Write Command).			RW	Yes	00h
18:16		Message Routing Determines the Message routing mechanism used.			Yes	000b
19	Message T $0 = Msg$ $1 = MsgD$				Yes	0
20	Reserved	Reserved			No	0
23:21	Reserved	Reserved			Yes	000b
30:24	PCI Express DW Length Determines the DWord length of the PCI Express Write or Read Request. The maximum PCI Express TLP length is 64 DWords for PCIOUT transactions. This field is used directly in the <i>Length</i> field of the PCI Express Header. For 8051 PCI Express Writes, this field must always have a value of 01h.			RW	Yes	0-0h
31	Reserved			RsvdZ	Yes	Oh

Register 15-42. 104h PCIMSTADDR PCI Master Address (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
31:0	PCI Master Address Determines the PCI Express Master transaction target PCI DWord address. Bits [1:0] are ignored for Memory and I/O transactions, and are used only for Configuration and Message transactions.	RW	Yes	0000_0000h

Register 15-43. 108h PCIMSTDATA PCI Master Data (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
31:0	 PCI Master Data Data being transferred to and/or from the PCI Express interface is accessed through this register. For PCI Express Writes, the PCIMSTCTL register PCI Express Master Read/Write bit (USB Controller, offset 100h[7]) must be Cleared before this register is written. For PCI Express Reads, this register is valid when the PCIMSTCTL register PCI Express Master Start bit (USB Controller, offset 100h[6]) is Cleared. 	RW	Yes	0000_0000h

Register 15-44. 10Ch PCIMSTSTAT PCI Express Master Status (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	Root Complex Mode Reflects the STRAP_RC_MODE input status. 0 = USB 3380 operates in Adapter mode (STRAP_RC_MODE is pulled or tied Low to Ground) 1 = USB 3380 operates in Root Complex mode (STRAP_RC_MODE is pulled High to VDD_IO)	PIN	Yes	0
1	Reserved	RsvdZ	Yes	0
31:2	Reserved	RsvdZ	Yes	0-0h

Register 15-45. 110h CSRCTL CSR Control (USB Controller)

Bit(s)		Description		Serial EEPROM	Default
This reg	gister is a	automatically written when a USB packet arrives in the CSROUT endpo	int.		
	Determ	Enables applied to the CSR Write.			
	Bit	Byte	RW		
3:0	0	CSRDATA[7:0] (LSB)		Yes	Oh
	1	CSRDATA[15:8]			
	2	CSRDATA[23:16]	-		
	3	CSRDATA[31:24] (MSB)			
5:4	Determ $00b = H$	SR Space Select retermines which Address space is accessed. Ob = PCI Express Configuration registers R 1b = Memory-Mapped Configuration registers R	RW	Yes	00b
	10b = 8	8051 Program RAM Reserved			
6	Cleared For Wr For Rea	tart g 1 causes a Configuration Write or Read transaction to start. l when the CSR transaction is complete. ite operations, determines when to start another Write. ad operations, determines when the CSRDATA register (USB ller, offset 114h) contains valid data.	RW1S	Yes	0
7	0 = CS	lead/Write R Write transaction is selected R Read transaction is selected	RW	Yes	0
15:8	Reserv	ed	RsvdZ	Yes	00h
31:16	CSR A Determ <i>Note:</i>	ddress ines the CSR transaction's Destination address. Address must be DWord-aligned (bits [17:16] must be Cleared).	RW	Yes	0000h

Register 15-46. 114h CSRDATA CSR Data (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	CSR Data			
31:0	Data being transferred to and/or from the CSR, whose address is contained in the CSRCTL register <i>CSR Address</i> field (USB Controller, offset 110h[31:16]), is accessed through this register.	RW	Yes	0000_0000h
	For Reads, this register is valid when the CSRCTL register <i>CSR Start</i> bit (USB Controller, offset 110h[6]) is Cleared.			

Register 15-47. 118h SEMAPHORE General Semaphore (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	Semaphore This bit can be used by the USB Host and 8051, to determine which one acquires access to the on-chip CSRs. When this bit is read, the current value is returned, and the bit is automatically Set. Reading a value of 0 indicates that the device (USB Host or 8051) has permission to access CSRs. When the controlling device is finished using the resource, it writes a 0 to Clear the bit.	RWC	Yes	0
31:1	Reserved	RsvdZ	Yes	0-0h

Register 15-48. 11Ch PCIMSTMSG PCI Master Message (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
31:0	PCI Master Message When the USUSB Host or 8051 sends a PCI Express Message, this register provides the 4 th DWord of the Message Header. The other three DWords of the Message Header are derived from the PCIMSTCTL register (USB Controller, offset 100h).	RW	Yes	0000_0000h

15.8 DMA Registers

Table 15-7. DMA Registers

Derister		Offset (fro	om BAR0)	
Register	Channel 0	Channel 1	Channel 2	Channel 3
DMACTL	180h	1A0h	1C0h	1E0h
DMASTAT	184h	1A4h	1C4h	1E4h
Reserved	188h – 18Ch	1A8h – 1ACh	1C8h - 1CCh	1E8h – 1ECh
DMACOUNT	190h	1B0h	1D0h	1F0h
DMAADDR	194h	1B4h	1D4h	1F4h
DMADESC	198h	1B8h	1D8h	1F8h
Reserved	19Ch	1BCh	1DCh	1FCh
DMACOUNTP	680h	690h	6A0h	6B0h
DMAADDRP	684h	694h	6A4h	6B4h
DMADESCP	688h	698h	6A8h	6B8h
Reserved	68Ch	69Ch	6ACh	6BCh

Register 15-49. 180h, 1A0h, 1C0h, 1E0h DMACTL DMA Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	 DMA Address Constant 0 = PCI Express address is incremented for each successive PCI Express TLP 1 = Same PCI Express address is used for all TLPs issued during the DMA transfer 	RW	Yes	0
1	 DMA Enable If a DMA transfer is in progress when this bit is Cleared, the Data transfer and Descriptor processing are paused. This bit is automatically Cleared when the channel's DMASTAT register DMA Abort bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[1]), or a PCI Master or Target Abort occurs during a DMA transaction. 0 = DMA channel is disabled. Value read back is 1, until the DMA channel completes the Pause sequence. 	RWU	Yes	0
	 1 = DMA channel is enabled to transfer data and process DMA Descriptors. DMA FIFO Validate Valid only for Single or Descriptor DMA transfers. 			
2	0 = Last short packet is not automatically validated at the end of a DMA transfer. Auto-validation can be enabled during Descriptor transfers, by way of the channel's DMACOUNT register <i>DMA Descriptor FIFO Validate</i> bit(s) (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h[27]). 1 = Last short packet is automatically validated at the end of a DMA transfer.	RW	Yes	0
3	Reserved	RW	Yes	0
4	DMA OUT Auto Start Enable 1 = DMA channel automatically starts when an OUT packet is received	RW	Yes	0
7:5	DMA Requests Outstanding Determines the quantity of outstanding Write or Read Requests that a DMA channel can send, before a Request is de-allocated.	RW	Yes	110b
15:8	Reserved	RsvdP	No	00h

Register 15-49. 180h, 1A0h, 1C0h, 1E0h DMACTL DMA Control (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
16	DMA Descriptor Mode0 = Block mode. A single DMA operation is performed when the channel'sDMASTAT register DMA Start bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h,1E4h[0]) is Set. The channel's DMACOUNT (USB Controller, offset(s) 190h, 1B0h,1D0h, 1F0h) and DMAADDR (USB Controller, offset(s) 194h, 1B4h, 1D4h, 1F4h)registers define the transfer.1 = Descriptor mode. The DMA channel traverses a Linked list of Descriptors,each of which defines a DMA operation. The list of Descriptors is located in eitheroff-chip PCI Express System memory or on-chip 8051 memory.	RW	Yes	0
17	 DMA Valid Bit Enable 0 = DMA Descriptors are processed without regard to the channel's DMACOUNT register <i>Valid Bit</i> bit(s) (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h[31]). 1 = DMA Descriptors are processed only when the channel's <i>Valid Bit</i> bit(s) is Set. If a valid Descriptor with a 0-Byte Count is encountered for an: OUT endpoint, the USB 3380 moves on to the next Descriptor IN endpoint, and the channel's DMACTL register DMA FIFO Validate bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[2]) is not Set, the USB 3380 moves on to the next Descriptor IN endpoint, and the channel's DMA FIFO Validate bit(s) is Set, then a Zero-Length packet is written to the endpoint FIFO, before the USB 3380 moves on to the next Descriptor 	RW	Yes	0
18	 DMA Valid Bit Polling Enable Valid only if bits [17 and 16] (DMA Valid Bit Enable and DMA Descriptor Mode, respectively) for the channel are both Set. 0 = USB 3380 stops polling for valid Descriptors, if it encounters a channel's DMACOUNT register Valid Bit bit(s) (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h[31]) that is not Set 1 = USB 3380 continues polling the same Descriptor, if it encounters a channel's Valid Bit bit that is not Set 	RW	Yes	0
20:19	Descriptor Polling Rate Selects the polling rate when a channel's Cleared DMACOUNT register Valid Bit bit(s) (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h[31]) is detected. 00b = Continuous 01b = 1 μs 10b = 100 μs 11b = 1 ms	RW	Yes	01b

Register 15-49. 180h, 1A0h, 1C0h, 1E0h DMACTL DMA Control (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
21	DMA Clear Count Enable 0 = DMA Descriptor <i>Byte Counter</i> field is not changed at the end of a transfer 1 = Channel's DMACOUNT register <i>Valid Bit</i> bit(s) (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h[31]) is Cleared, and the current DMA Count is written to the same register's <i>DMA Transfer Length</i> field (field [23:0]) after the DMA transfer completes	RW	Yes	0
22	Prefetch Disable 0 = Descriptor Prefetch registers are loaded from memory. 1 = Descriptor Prefetch registers are not loaded from memory. In this case, the USB Host writes the Prefetch registers, using the CFGOUT endpoint.	RW	Yes	0
23	Pause Mode 0 = Immediate Pause mode. All PCI Express data and Descriptor Requests are stopped when the channel's DMACTL register DMA Enable bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[1]) is Cleared. 1 = Graceful Pause mode. The current Descriptor is allowed to finish; however, no new Descriptors are read when the channel's DMA Enable bit(s) is Cleared.	RW	Yes	0
24	Reserved	RsvdP	No	0
25	DMA Descriptor Done Interrupt Enable 1 = An interrupt generates when the last Descriptor in the Descriptor Linked list completes its transfer (channel's DMACOUNT register Last Descriptor bit(s) (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h[28]) is Set)	RW	Yes	0
26	DMA Pause Done Interrupt Enable 1 = An interrupt generates when the DMA Channel Pause sequence completes	RW	Yes	0
27	DMA Abort Done Interrupt Enable 1 = An interrupt generates when the DMA Channel Abort sequence completes	RW	Yes	0
31:28	Reserved	RsvdP	No	Oh

Register 15-50. 184h, 1A4h, 1C4h, 1E4h DMASTAT DMA Status (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	DMA Start Writing 1 causes the DMA channel to start. This bit is self-Clearing, and always returns a value of 0.	W1RZ	Yes	0
1	DMA Abort Writing 1 causes the DMA transfer to abort. When read, this bit remains Set until the Abort sequence completes.	W1R	Yes	0
23:2	Reserved	RO	No	0-0h
24	DMA Transaction Done Interrupt An OUT DMA is done when its Counter reaches 0, or when a short or ZLP OUT packet is received and the last PCI Express Write TLP has been ACKed. An IN DMA is done when its Counter reaches 0 and all partial Completions have been received by the USB 3380. Writing 1 Clears this status bit. 1 = Current DMA in progress completes its transfer, and the channel's DMACOUNT register <i>DMA Done Interrupt Enable</i> bit(s) (USB Controller, offset(s) 190h, 1B0h, 1D0h, 1F0h[29]) is Set.	RW1C	Yes	0
25	 DMA Last Descriptor Done Interrupt 1 = Last Descriptor in the Descriptor Linked list completed its transfer. Writing 1 Clears this status bit. 	RW1C	Yes	0
26	 DMA Pause Done Interrupt Writing 1 Clears this status bit. 1 = DMA Channel Pause sequence completed. The Pause sequence is initiated by Clearing the channel's DMACTL register DMA Enable bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[1]). 	RW1C	Yes	0
27	DMA Abort Done Interrupt Writing 1 Clears this status bit. 1 = DMA Channel Abort sequence completed. The Abort sequence is initiated by Setting the channel's DMASTAT register DMA Abort bit(s) (USB Controller, offset(s) 184h, 1A4h, 1C4h, 1E4h[1]).	RW1C	Yes	0
30:28	Reserved	Rsvd	No	000b
31	DMA Completion Sequence Error Status	RW1C	Yes	0

Register 15-51. 190h, 1B0h, 1D0h, 1F0h DMACOUNT DMA Transfer Length (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	DMA Transfer Length			
23:0	Determines the total quantity of bytes to be transferred. The maximum DMA transfer size is 16 MB. This register is decremented as data is transferred.	RWU	Yes	00_0000h
	DMA OUT Continue			
24	0 = When a short OUT packet is received, the endpoint's EP_STAT register <i>NAK</i> <i>Packets</i> bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[4]) is Set, if the endpoint's EP_RSP register <i>NAK OUT Packets Mode</i> <i>Set</i> and <i>NAK OUT Packets Mode Clear</i> bit(s) (USB Controller, offset(s) 304h, 324h/ 3E4h, 344h/404h, 364h/424h, 384h/444h[10 and 2], respectively) are also Set. Also, the Descriptor DMA channel stops if the DMA Counter did not reach 0.	RW	Yes	0
	1 = When a short OUT packet is received, the endpoint's <i>NAK Packets</i> bit(s) is Set, but is automatically Cleared when the DMA channel finishes transferring the short packet to the PCI Express interface. Also, the Descriptor Controller is then enabled to read the next Descriptor. When this bit is Set, the endpoint's <i>NAK OUT Packets</i> <i>Mode Set</i> and <i>NAK OUT Packets Mode Clear</i> bit(s) must also be Set.			
26:25	Reserved	RO	No	00b
	DMA Descriptor FIFO Validate			
	0 = Last short packet is not automatically validated at the end of a DMA transfer.			
27	1 = Last short packet is automatically validated at the end of a DMA transfer. The channel's DMACTL register <i>DMA FIFO Validate</i> bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[2]) takes precedence over this bit. If the <i>DMA FIFO Validate</i> bit is Set, all USB short packets are automatically validated at the end of each Descriptor DMA transfer.	RW	Yes	0
	Last Descriptor			
28	0 = There are additional DMA Descriptors following the current Descriptor being processed	RWU	Yes	0
	1 = This Descriptor is the last Descriptor in the Descriptor Linked list			
	DMA Done Interrupt Enable			
29	1 = An interrupt is generated when field [23:0] (<i>DMA Transfer Length</i>) for this Descriptor reaches 0	RWU	Yes	0
	DMA Direction			
20	0 = DMA channel transfers data from the USB to PCI Express interface	RWU	Yes	0
30	for OUT endpoints 1 = DMA channel transfers data from the PCI Express to USB interface for IN endpoints	RWU	ies	0
	Valid Bit			
21	Reflects the state of the Valid bit in the current DMA Descriptor.	DIVIT	v	0
31	0 = Not Valid $1 = Valid$	RWU	Yes	0

Register 15-52. 194h, 1B4h, 1D4h, 1F4h DMAADDR DMA Address (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
31:0	DMA Address Determines the PCI Express starting address of a DMA transfer. DMA starting addresses can be aligned on any Byte boundary. The DMA address might be incremented, depending upon the channel's DMACTL register <i>DMA Address</i> <i>Constant</i> bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[0]).	RWU	Yes	0000_0000h

Register 15-53. 198h, 1B8h, 1D8h, 1F8h DMADESC DMA Descriptor (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	On-Chip 0 = Descriptors are stored in off-chip PCI Express memory 1 = Descriptors are stored in on-chip 8051 memory	RW	Yes	0
1	Descriptor Port Select 0 = Off-chip Descriptor Requests are sent to PCI Express Port 0 1 = Reserved	Yes	0	
2	Data Port Select RW 0 = DMA channel Data Requests are sent to PCI Express Port 0 RW 1 = Reserved RW		Yes	0
3	Reserved	RsvdP	No	0
31:4	Next Descriptor Address Points to the next DMA Descriptor to be processed.		Yes	0000_000h

Register 15-54. 680h, 690h, 6A0h, 6B0h DMACOUNTP DMA Transfer Length (Prefetch) (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	DMA Transfer Length			
23:0	Determines the total quantity of bytes to be transferred. The maximum DMA transfer size is 16 MB. This register is decremented as data is transferred.	RWU	Yes	00_0000h
	DMA OUT Continue			
24	0 = When a short OUT packet is received, the endpoint's EP_STAT register <i>NAK</i> <i>Packets</i> bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[4]) is Set, if the endpoint's EP_RSP register <i>NAK OUT Packets Mode</i> <i>Set</i> and <i>NAK OUT Packets Mode Clear</i> bit(s) (USB Controller, offset(s) 304h, 324h/ 3E4h, 344h/404h, 364h/424h, 384h/444h[10 and 2], respectively) are also Set. Also, the Descriptor DMA channel stops if the DMA Counter did not reach 0. 1 = When a short OUT packet is received, the endpoint's <i>NAK Packets</i> bit(s) is Set, but is automatically Cleared when the DMA channel finishes transferring the short packet to the PCI Express interface. Also, the Descriptor Controller is then enabled to read the next Descriptor.	Yes	0	
	DMA ISO Extra Transaction Opportunity			
26:25	<i>Note:</i> These bits are loaded from the DMACOUNT word in the prefetched DMA Descriptor to the endpoint's <i>GPEP[3:0/Out/In]_HS_MAXPKT</i> register Additional Transaction Opportunities field(s) (USB Controller, Index 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h[12:11]).	RWU	Yes	00b
	DMA Descriptor FIFO Validate			
27	 0 = Last short packet is not automatically validated at the end of a DMA transfer. 1 = Last short packet is automatically validated at the end of a DMA transfer. The channel's DMACTL register DMA FIFO Validate bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[2]) takes precedence over this bit. If the DMA FIFO Validate bit is Set, all USB short packets are automatically validated at the end of each Descriptor DMA transfer. 		Yes	0
	Last Descriptor			
28	 0 = There are additional DMA Descriptors following the current Descriptor being processed 1 = This Descriptor is the last Descriptor in the Descriptor Linked list 	RWU	Yes	0
	DMA Done Interrupt Enable			
29	1 = An interrupt is generated when field [23:0] (<i>DMA Transfer Length</i>) for this Descriptor reaches 0	RWU	Yes	0
	DMA Direction			
30	 0 = DMA channel transfers data from the USB to PCI Express interface for OUT endpoints 1 = DMA channel transfers data from the PCI Express to USB interface for IN endpoints 	RWU	Yes	0
	Valid Bit			
31	Reflects the state of the Valid bit in the prefetched DMA Descriptor.	RWU	Yes	0
51	0 = Not Valid 1 = Valid		103	

Register 15-55. 684h, 694h, 6A4h, 6B4h DMAADDRP DMA Address (Prefetch) (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
31:0	DMA Address Determines the PCI Express starting address of a DMA transfer. DMA starting addresses can be aligned on any Byte boundary. The DMA address might be incremented, depending upon the channel's DMACTL register <i>DMA Address</i> <i>Constant</i> bit(s) (USB Controller, offset(s) 180h, 1A0h, 1C0h, 1E0h[0]).	RWU	Yes	0000_0000h

Register 15-56. 688h, 698h, 6A8h, 6B8h DMADESCP DMA Descriptor (Prefetch) (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	On-Chip 0 = Descriptors are stored in off-chip PCI Express memory 1 = Descriptors are stored in on-chip DMA Descriptor memory	RW	Yes	0
1	Descriptor Port Select 0 = Off-chip Descriptor Requests are sent to PCI Express Port 0 1 = <i>Reserved</i>	RW	Yes	0
2	Data Port Select 0 = DMA channel Data Requests are sent to PCI Express Port 0 1 = <i>Reserved</i>	RW	Yes	0
3	Reserved	RsvdP	No	0
31:4	Next Descriptor Address Points to the next DMA Descriptor to be processed.		Yes	0000_000h

15.9 Dedicated Endpoint Registers

Pagistar	Offset (from BAR0)							
Register	CSROUT	CSRIN	PCIOUT	PCIIN	STATIN	RCIN		
DEP_CFG	200h	210h	220h	230h	240h	250h		
DEP_RSP	204h	214h	224h	234h	244h	254h		
Reserved	208h – 20Ch, 218h – 21Ch, 228h – 22Ch, 238h – 23Ch, 248h – 24Ch							

Table 15-8. Dedicated Endpoint Registers

Register 15-57. 200h, 210h, 220h, 230h, 240h, 250h DEP_CFG Dedicated Endpoint Configuration for CSROUT, CSRIN, PCIOUT, PCIIN, STATIN, and RCIN (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
3:0	Endpoint Number Selects the endpoint number.	RW	Yes	RCIN = Ch, $CSROUT = Dh,$ $CSRIN = Dh,$ $PCIOUT = Eh,$ $PCIIN = Eh,$ $STATIN = Fh$
7:4	Reserved	RsvdZ	Yes	Oh
8	Endpoint Type 0 = STATIN or RCIN endpoint becomes a BULK endpoint. 1 = STATIN or RCIN endpoint becomes an INTERRUPT endpoint. Valid only for the STATIN or RCIN endpoint. All other endpoints are BULK.	RW	Yes	$\begin{aligned} \text{STATIN} &= 1, \\ \text{RCIN} &= 1, \\ \text{Others} &= 0 \end{aligned}$
9	Reserved	RsvdZ	Yes	0
10	Endpoint Enable 1 = Enables this endpoint	RW	Yes	RCIN = 0 in Adapter mode, Others = 1
15:11	Service Interval Determines the interrupt service interval for STATIN/RCIN endpoints in USB r3.0 mode.	RW	Yes	$\begin{aligned} \text{STATIN} &= 1, \\ \text{RCIN} &= 1, \\ \text{Others} &= 0 \end{aligned}$
31:16	Reserved	RsvdZ	Yes	0000h

Register 15-58. 204h, 214h, 224h, 234h, 244h, 254h DEP_RSP Dedicated Endpoint Response for CSROUT, CSRIN, PCIOUT, PCIIN, STATIN, and RCIN (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	Writing 1 to bits [7, 1:0] of this register Clears the corresponding register bits. Writing corresponding register bits. When this register is read, bits [7, 1:0] are duplicated on b			
	Endpoint Halt Clear			
0	Clears the <i>Endpoint Halt</i> bit. When an Endpoint Clear Feature Standard Request to the <i>Endpoint Halt</i> bit is detected by the CPU, the CPU must write 1 to this bit. Reading this bit returns the current state of the <i>Endpoint Halt</i> bit.	RW1C	Yes	0
	Endpoint Toggle Clear			
1	Clears the <i>Endpoint Toggle</i> bit. Reading this bit returns the current <i>Endpoint Toggle</i> bit state. The <i>Endpoint Toggle</i> bit automatically changes its state after each <i>USB r2.0</i> packet is successfully transferred. The CPU Clears the <i>Endpoint Toggle</i> bit only for Endpoint initialization events. Reading this bit returns the current state of the endpoint <i>Data</i> toggle bit.	RW1C	Yes	0
	Endpoint FIFO Flush			
2	Writing this bit flushes the endpoint's FIFO. Reading this bit always returns a value of 0.	RW1C	Yes	0
6:3	Reserved	RsvdZ	Yes	Oh
	NAK Packets Clear			
7	OUT Endpoints 1 = All OUT or PING packets cause a NAK/NRDY handshake to return to the USB Host	RW1C	Yes	0
	In Endpoints			
	1 = All IN tokens cause a NAK/NRDY handshake to return to the USB Host			
8	Endpoint Halt Set Refer to Note at beginning of this register.	RW1S	Yes	0
9	Endpoint Toggle Set Refer to Note at beginning of this register.	RW1S	Yes	0
	Endpoint FIFO Flush 2			
10	Writing this bit flushes the endpoint's FIFO. Reading this bit always returns a value of 0.	RW1C	Yes	0
14:11	Reserved	RsvdZ	Yes	Oh
15	NAK Packets Set Refer to Note at beginning of this register.	RW1S	Yes	0
31:16	Reserved	RsvdZ	Yes	0000h

15.10 EP 0 and GPEP*x* Registers

There is one **EP_CFG** register for EP 0, and one **EP_CFG** and **EP_VAL** register for each pair of General-Purpose Endpoints. For the remainder of the registers, there is one for EP 0 and one for each direction (IN and OUT) of the four General-Purpose endpoints.

Note: In Legacy Adapter mode, only the "OUT" register offset is used to access the corresponding register, although the endpoint can be programmed as IN or OUT.

Pagiatar	Offset (from BAR0)						
Register	EP 0	GPEP0 OUT/IN	GPEP1 OUT/IN	GPEP2 OUT/IN	GPEP3 OUT/IN		
EP_CFG	300h	320h	340h	360h	380h		
EP_RSP	304h	324h/3E4h	344h/404h	364h/424h	384h/444h		
EP_IRQENB	308h	328h/3E8h	348h/408h	368h/428h	388h/448h		
EP_STAT	30Ch	32Ch/3ECh	34Ch/40Ch	36Ch/42Ch	38Ch/44Ch		
EP_AVAIL	310h	330h/3F0h	350h/410h	370h/430h	390h/450h		
EP_DATA	314h	334h/3F4h	354h/414h	374h/434h	394h/454h		
EP_DATA1	318h	338h/3F8h	358h/418h	378h/438h	398h/458h		
EP_VAL	Reserved	33Ch	35Ch	37Ch	39Ch		
Reserved	3A0h – 3E0h. 3FCh – 400h, 41Ch – 420h, 43Ch – 440h						

Table 15-9. EP 0 and GPEPx Registers

Register 15-59. 300h EP_CFG Endpoint Configuration for EP 0 (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	Endpoint Number			
3:0	Selects the Endpoint Number. This field has no effect on EP 0, which always maintains an Endpoint Number of 0.	RO	Yes	Oh
6:4	Reserved	RsvdZ	Yes	000b
	Endpoint Direction			
7	Selects the endpoint direction. The direction is with respect to the USB Host point of view. This bit is automatically changed, according to the direction specified in the Setup packet.	RW	Yes	0
	0 = OUT			
	1 = IN			
	Endpoint Type			
	Selects the endpoint type. EP 0 is forced to a Control type.			
9:8	00b = Control	RO	Yes	00b
2.0	01b = Isochronous	no	105	000
	10b = Bulk			
	11b = Interrupt			
10	Endpoint Enable	RO	Yes	1
10	1 = Enables this endpoint. This bit has no effect on EP 0, which is always enabled.	ĸo	103	1
	Byte Packing Enable			
	0 = If de-asserted upper Byte Enables are detected on a PCI Express Write to an IN FIFO, the USB transfer is terminated, and the packet is marked with EOP in the FIFO.			
11	1 = If contiguous Byte Enables are detected on a PCI Express Write to an IN FIFO, the partial DWord is saved, until more bytes are received or the USB transfer is explicitly terminated. (Contiguous Byte Enables are defined as the absence of de-asserted Byte Enables, after an asserted Byte Enable is detected.) Field [18:16] (<i>EP FIFO Byte Count</i>) has no effect.	RW	Yes	0
	Contiguous Byte Enable examples – 1000b, 1100b, 1110b, 1111b			
	Non-contiguous Byte Enable examples – 0111b, 0101b, 0011b, 0001b			
15:12	Reserved	RsvdZ	Yes	Oh

Register 15-59. 300h EP_CFG Endpoint Configuration for EP 0 (USB Controller) (Cont.)

Bit(s)			Description	Access	Serial EEPROM	Default
	EP FIF	O Byte C	ount			
	using EF of 1 indi Followir If the va register	P 0's EP cates that ng the nex lue is less FIFO Wri	PCI Express Byte Enables for a 1-DWord Write to an EP 0 FIFO, DATA register (USB Controller, offset 314h). A <i>Mask</i> bit value the corresponding PCI Express Byte Enable is forced to 0. t FIFO Write transaction, this field is restored to its default value. than 100b, and Byte Packing is disabled, the next EP_DATA te transaction causes a short packet to be validated. This field its default value when the corresponding FIFO is flushed.			
	Encodings not listed are <i>reserved</i> .					
18:16	Value	Mask	Function	RW	Yes	000b
	000b	1111b	No bytes are written (default); all PCI Express Byte Enables are masked).			
	001b	1110b	Up to 1 byte is written.			
	010b	1100b	Up to 2 bytes are written.			
	011b	1000b	Up to 3 bytes are written.			
	100b	0000b	Up to 4 bytes are written; no PCI Express Byte Enables are masked.	1		
31:19	Reserved	Reserved		RsvdZ	Yes	0-0h

Register 15-60. 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h EP_RSP Endpoint Response for EP 0 and GPEP*x* (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
-	Writing 1 to bits [7:0] of this register Clears the corresponding register bits. Writing 1 onding register bits. When this register is read, bits [7:0] are duplicated on bits [15:8]. I and Clear bits, the Set bit has priority.			
	Endpoint Halt Clear			
	Clears the <i>Endpoint Halt</i> bit. When an Endpoint Clear Feature Standard Request to the <i>Endpoint Halt</i> bit is detected by the CPU, the CPU must write 1 to this bit.			
0	Reading this bit returns the current state of the <i>Endpoint Halt</i> bit. For EP 0:	DWIG	37	0
0	 <i>Endpoint Halt</i> bit is automatically Cleared when another Setup packet is received <i>Control Status Stage Handshake</i> bit should be Cleared when this bit is Set 	RW1C	Yes	0
	Writing this bit also Clears the <i>Endpoint Toggle</i> bit.			l
	Endpoint Toggle Clear			
1	Clears the <i>Endpoint Toggle</i> bit. The <i>Endpoint Toggle</i> bit automatically changes state after each <i>USB r2.0</i> or <i>USB r3.0</i> packet is successfully transferred.	RW1C	Yes	0
	Reading this bit returns the current state of the Endpoint Toggle bit.			
	Firmware Clears the <i>Endpoint Toggle</i> bit only for Endpoint initialization events.			
	NAK OUT Packets Mode Clear			
	Used only for OUT endpoints.			
2	Selects the response if the CPU did not process the previously received packet.	DW1C	Yes	1
2	0 = Non-Blocking mode. The USB 3380 accepts the OUT packet if there is sufficient space in the endpoint's FIFO.	RW1C		
	1 = Blocking mode. The USB 3380 responds to an OUT packet with a NAK/NRDY if the <i>NAK Packets</i> bit is Set.			
	Control Status Stage Handshake Clear			
	Used only for EP 0.			
3	This bit is automatically Set when a Setup packet is detected. After the bit is Cleared, the USB 3380 returns the proper response (NAK/NRDY) to the Host's Control Status stage (ACK for Control Reads and Zero-Length packets for Control Writes).	RW1C	Yes	0
	1 = Control Status stage is acknowledged with a NAK/NRDY			

Register 15-60. 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h EP_RSP Endpoint Response for EP 0 and GPEP*x* (USB Controller) *(Cont.)*

Bit(s)	Description	Access	Serial EEPROM	Default
4	Interrupt Mode Clear Valid only for INTERRUPT endpoints. 0 = Standard Interrupt data. Standard Data Toggle protocol is followed. 1 = Isochronous Rate Feedback mode. Interrupt endpoint is used for isochronous rate feedback information. In this mode, the endpoint <i>Data</i> toggle bit is changed after each packet is sent to the Host, without regard to handshaking. No packet Retries are performed in this mode.	RW1C	Yes	0
5	Endpoint Force CRC Error Clear 1 = All IN packets transmitted, and OUT packets received, by this endpoint are forced to incur a CRC error	RW1C	Yes	0
6	 EP Hide Status Stage Clear 1 = The following endpoint EP_STAT register bits (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch) are not Set for Control Status Stage packets: Data Packet Transmitted Interrupt (bit 2) Data Packet Received Interrupt (bit 3) Short OUT Packet Received Interrupt (bit 5) USB OUT ACK Sent (bit 16) USB OUT NAK Sent (bit 17) USB IN ACK Rcvd (bit 18) USB STALL Sent (bit 20) Timeout (bit 21) Notes: This bit is not used for standard operation, and is intended for use only with special applications. The endpoint's EP_STAT register Data OUT/PING Token Interrupt and Data IN Token Interrupt bits (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[1:0], respectively) remain Set, independent of this bit.	RW1C	Yes	0
7	NAK Packets Clear If this bit is Set and another OUT token is received, a NAK/NRDY is returned to the Host if another OUT packet is sent to this endpoint. This bit can be Cleared by a bit in the endpoint's EP_STAT register (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch). 1 = The endpoint received a short Data packet from the Host, and the <i>NAK OUT</i> <i>Packets Mode</i> bit is Set. For an IN endpoint, all IN tokens cause a NAK/NRDY handshake to be returned to the USB Host.	RW1C	Yes	0

Register 15-60. 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h EP_RSP Endpoint Response for EP 0 and GPEP*x* (USB Controller) *(Cont.)*

Bit(s)	Description	Access	Serial EEPROM	Default
8	Endpoint Halt Set Refer to Note at beginning of this register.	RW1S	Yes	0
9	Endpoint Toggle Set Refer to Note at beginning of this register.	RW1S	Yes	0
10	NAK OUT Packets Mode Set Refer to Note at beginning of this register.	RW1S	Yes	1
11	Control Status Stage Handshake Set Refer to Note at beginning of this register.	RW1S	Yes	0
12	Interrupt Mode Set Refer to Note at beginning of this register.	RW1S	Yes	0
13	Endpoint Force CRC Error Set Refer to Note at beginning of this register.	RW1S	Yes	0
14	EP Hide Status Stage Set Refer to Note at beginning of this register.	RW1S	Yes	0
15	NAK Packets Set Refer to Note at beginning of this register.	RW1S	Yes	0
31:16	Reserved	RsvdZ	Yes	0000h

Register 15-61. 308h, 328h/3E8h, 348h/408h, 368h/428h, 388h/448h EP_IRQENB Endpoint Interrupt Enable for EP 0 and GPEP*x* (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	Data IN Token Interrupt Enable 1 = Enables the endpoint's EP_STAT register <i>Data IN Token Interrupt</i> bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[0]), which enables an interrupt to be generated when a Data IN token is received from the Host	RW	Yes	0
1	Data OUT/PING Token Interrupt Enable 1 = Enables the endpoint's EP_STAT register <i>Data OUT/PING Token Interrupt</i> bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/ 44Ch[0]), which enables an interrupt to be generated when a Data OUT or PING token is received from the Host	RW	Yes	0
2	Data Packet Transmitted Interrupt Enable 1 = Enables the endpoint's EP_STAT register <i>Data Packet Transmitted Interrupt</i> bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/ 44Ch[2]), which enables an interrupt to be generated when a Data packet is transmitted to the Host	RW	Yes	0
3	Data Packet Received Interrupt Enable 1 = Enables the endpoint's EP_STAT register <i>Data Packet Received Interrupt</i> bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/ 44Ch[3]), which enables an interrupt to be generated when a Data packet is received from the Host	RW	Yes	0
4	Reserved	RW	Yes	0
5	Short OUT Packet Received Interrupt Enable 1 = Enables the endpoint's EP_STAT register <i>Short OUT Packet Received Interrupt</i> bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/ 44Ch[5]), which enables an interrupt to be generated when the length of the last OUT packet was less than the Maximum Packet Size (determined by the GPEP[3:0/Out/ In]_FS_MAXPKT, GPEP[3:0/Out/In]_HS_MAXPKT, or GPEP[3:0/Out/ In]_SS_MAXPKT register)	RW	Yes	0
6	Short OUT Packet Done Interrupt Enable 1 = Enables the endpoint's EP_STAT register <i>Short OUT Packet Done Interrupt</i> bit(s) (USB Controller, offset(s) 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/ 44Ch[6]), which enables an interrupt to be generated when an OUT FIFO becomes empty after a short (or zero-length) packet is received from the USB Host	RW	Yes	0
12:7	Reserved	RsvdZ	Yes	0-0h
13	ZLP Interrupt Enable 1 = Enables an interrupt to be generated when the endpoint receives a zero-length packet (ZLP)	RW	Yes	0
14	DMA Channel Interrupt Enable 1 = Enables an interrupt to be generated when the endpoint DMA channel interrupt is asserted	RW	Yes	0
31:15	Reserved	RsvdZ	Yes	0-0h

Register 15-62. 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch EP_STAT Endpoint Status for EP 0 and GPEP*x* (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
Notes:	When the Auto-Enumerate Controller is servicing EP 0 Standard Requests, this registe	r's Status bi	ts are not Set.	
Short O (up to 1	Distribution Considerations – Due to internal synchronization delays, bits [11, 10, 5, and UT Packet Received Interrupt, and Data Packet Received Interrupt, respectively) can che 00 ns apart). Implement firmware that avoids confusion due to interpreting combination the same register.	ange at slig	htly different t	imes
up to 60 this regi	mple, if the FIFO is empty and a new OUT packet is received, the Data Packet Received 00 ns before the FIFO Empty bit returns false and the Short OUT Packet Received Interru ister within that window might interpret this as an OUT packet with 0 bytes (because th 1), and not correctly as a short packet (because the Short OUT Packet Received Interrup	ıpt bit is Set. e FIFO Emj	Firmware rea ty bit is not ye	
	re polling for the above Status bits to change must read the register a second time, after ve consistent information.	r the bit stat	us has change	d,
	Data IN Token Interrupt			
0	Writing 1 Clears this bit.	RW1C	Yes	0
	1 = Endpoint received a Data IN token from the Host			
	Data OUT/PING Token Interrupt			
1	Writing 1 Clears this bit.	RW1C	Yes	0
	1 = Endpoint received a Data OUT or PING token from the Host			
	Data Packet Transmitted Interrupt			
2	Writing 1 Clears this bit.	RW1C	Yes	0
	1 = Endpoint transmitted a Data packet to the Host			
	Data Packet Received Interrupt			
3	Writing 1 Clears this bit.	RW1C	Yes	0
	1 = Endpoint received a Data packet from the Host			

Register 15-62. 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch EP_STAT Endpoint Status for EP 0 and GPEP*x* (USB Controller) *(Cont.)*

Bit(s)	Description	Access	Serial EEPROM	Default
4	NAK Packets This bit can also be controlled by the endpoint's EP_RSP register(s) (USB Controller, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h). Writing 1 Clears this status bit. 1 = Endpoint received a short Data packet from the Host, and the EP_RSP register NAK OUT Packets Mode bit is Set. When another OUT token is received, a NAK/	RW1C	Yes	0
	NRDY is returned to the Host when another OUT packet is sent to this endpoint. When Set for an IN endpoint, all IN tokens cause a NAK/NRDY handshake to be returned to the USB Host.			
	Short OUT Packet Received Interrupt			
5	1 = Length of the last OUT packet received was less than the Maximum Packet Size. Remains Set until a 1 is written to Clear the bit.	RW1C	Yes	0
	Short OUT Packet Done Interrupt			
	To Clear this bit, bit 5 (<i>Short OUT Packet Received Interrupt</i>) must also be Cleared (at the same time or earlier).			
6	1 = OUT FIFO became empty after a short (or zero-length) packet was received from the USB Host. Subsequent OUT packets (after the short packet) are prevented from entering the FIFO, by Setting the endpoint's EP_RSP register <i>NAK</i> <i>OUT Packets Mode</i> bit(s) (USB Controller, offset(s) 304h, 324h/3E4h, 344h/404h, 364h/424h, 384h/444h)	RW1C	Yes	0
	Short Packet Transferred Status			
7	0 = Length of the last packet was the Maximum Packet Size 1 = Length of the last IN or OUT packet was less than the Maximum Packet Size	RO	Yes	0
	FIFO Validate			
	Applies only to GPIOx IN endpoints.			
	Writing 1 causes invalidated data in the endpoint's FIFO to be validated. Invalidated data can be determined by the Endpoint "Length" Counter. If there is no invalidated data in the FIFO, a Zero-Length packet is written.			
8	If the last Write to the endpoint's FIFO had partial Byte Enables asserted, or the EP_CFG register <i>EP FIFO Byte Count</i> field(s) (USB Controller, offset(s) 320h, 340h, 360h, 380h[18:16]) was not a value of 100b, the next Write to this bit is ignored.	RW1S	Yes	0
	If the endpoint's FIFO is full when this bit is written, validation is delayed until space becomes available in the FIFO.			
	This bit is self-Clearing, and reading always returns a value of 0.			
	FIFO Flush			
9	Writing 1 causes the endpoint's FIFO to be flushed, and field [28:24] (<i>FIFO Valid Counter</i>) and the endpoint's EP_AVAIL register(s) (USB Controller, offset(s) 310h, 330h/3F0h, 350h/410h, 370h/430h, 390h/450h) to be Cleared.	RW1S	Yes	0
	This bit is self-Clearing, and reading always returns a value of 0.			
10	FIFO Empty	DO	Vac	1
10	1 = Endpoint's FIFO is empty	RO	Yes	1
		1	1	

Register 15-62. 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch EP_STAT Endpoint Status for EP 0 and GPEP*x* (USB Controller) (*Cont.*)

Bit(s)	Description	Access	Serial EEPROM	Default
12	Reserved	RsvdZ	Yes	0
13	ZLP Interrupt Writing 1 Clears this bit. 1 = Endpoint received a zero-length packet	RW1C	Yes	0
15:14	Reserved	RsvdZ	Yes	00b
16	USB OUT ACK Sent Writing 1 Clears this bit. 1 = Last USB OUT Data packet transferred was successfully acknowledged with an ACK to the Host	RW1C	Yes	0
17	USB OUT NAK Sent Writing 1 Clears this bit. 1 = Last USB OUT Data packet was not accepted, and a NAK/NRDY handshake was returned to the USB Host	RW1C	Yes	0
18	USB IN ACK Rcvd Writing 1 Clears this bit. 1 = Last USB IN Data packet transferred was successfully acknowledged with an ACK from the Host	RW1C	Yes	0
19	USB IN NAK Sent Writing 1 Clears this bit. 1 = Last USB IN packet was not provided, and a NAK/NRDY handshake was returned to the USB Host	RW1C	Yes	0

Register 15-62. 30Ch, 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch EP_STAT Endpoint Status for EP 0 and GPEP*x* (USB Controller) (*Cont.*)

Bit(s)	Description	Access	Serial EEPROM	Default
20	USB STALL Sent Writing 1 Clears this bit. 1 = Last USB packet was not accepted nor provided, and a STALL handshake was returned to the USB Host	RW1C	Yes	0
21	Timeout For an OUT endpoint, if the last USB packet received had a CRC or Bit-Stuffing error, and was not acknowledged by the USB 3380, the USB Host re-transmits the packet. For an IN endpoint, the last USB packet transmitted was not acknowledged by the USB Host, indicating a Bus error. The USB Host expects the same packet to be re-transmitted in response to the next IN token. Writing 1 Clears this bit.	RW1C	Yes	0
23:22	High-Bandwidth OUT Transaction PID Provides the PID of the last high-bandwidth OUT packet received. The PID is stable when bit 3 (<i>Data Packet Received Interrupt</i>) is Set, and remains stable until another OUT packet is received. 00b = DATA0 01b = DATA1 10b = DATA2 11b = MDATA	RO	Yes	00Ь
28:24	FIFO Valid Counter Provides the quantity of packets currently in the endpoint's IN FIFO. When the value is non-zero, returns a packet in response to IN tokens. The Counter is incremented when a short packet is validated, and decremented when a short packet is successfully sent to the Host. Automatically Cleared by a FIFO Flush operation, –or– when EP 0 receives a Setup packet. The maximum quantity of packets allowed in an IN FIFO is 16.	RO	Yes	0-0h
31:29	Reserved	RsvdZ	Yes	000b

Register 15-63. 310h, 330h/3F0h, 350h/410h, 370h/430h, 390h/450h EP_AVAIL Endpoint Available Count for EP 0 and GPEP*x* (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	Endpoint Available Counter			
	OUT Endpoints Returns the quantity of valid bytes in the OUT endpoint's FIFO. Values range from 0 (empty) to 4,096 (full). For EP 0, this field provides the FIFO Count only when data is being received from the Host.			
13:0	avail_bytes = [(wrptr_line - rdptr_line - 1) x 8] + (last_valid_byte +1) IN Endpoints Returns the quantity of empty bytes in the OUT endpoint's FIFO. Values range from 0 (full) to 4,096 (empty). For EP 0, this field provides the quantity of empty bytes in the FIFO when data is being sent to the Host. avail_space = (fifo_size / 8 - valid_lines) x 8	RO	Yes	0-0h
31:14	Reserved	RsvdZ	Yes	0-0h

Register 15-64. 314h, 334h/3F4h, 354h/414h, 374h/434h, 394h/454h EP_DATA Endpoint Data for EP 0 and GPEP*x* (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	Endpoint Data			
	OUT Endpoints Used by the CPU to read data from the OUT endpoint's FIFO.			
	IN Endpoints			
	Used by the CPU to write data to the endpoint's FIFO. The endpoint's FIFO can also be accessed through PCI BAR2 and/or PCI BAR3 .			0000_0000h
31:0	Writes to a full FIFO, or for an OUT endpoint, are silently dropped.	RW	Yes	
	Reads from an empty FIFO returns a Completion with Data = FFFF_FFFh if the FIFOCTL register <i>Ignore FIFO Availability</i> bit (USB Controller, offset 38h[3])is Set, or a Completion with Completer Abort status if the <i>Ignore</i> <i>FIFO Availability</i> bit is Cleared. (Refer to Section 8.5.1, "IN FIFO Writes," for further details.)			
	Reads from this register for an IN endpoint return a Completion with Completer Abort status.			L

Register 15-65. 318h, 338h/3F8h, 358h/418h, 378h/438h, 398h/458h EP_DATA1 Endpoint Data1 for EP 0 and GPEP*x* (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
2:0	Endpoint Data Last Valid Byte Returns the <i>Last Valid Byte</i> field corresponding to the FIFO line where the endpoint's EP_DATA register(s) (USB Controller, offset(s) 314h, 334h/3F4h, 354h/ 414h, 374h/434h, 394h/454h) is being read. This register must be read immediately after reading EP_DATA .	RO	Yes	000ь
3	Endpoint Data End of Packet Returns the <i>End of Packet</i> bit corresponding to the FIFO line where the endpoint's EP_DATA register(s) is being read. This register must be read immediately after reading EP_DATA.	RO	Yes	0
31:4	Reserved	RsvdZ	Yes	0000_000h

Register 15-66. 33Ch, 35Ch, 37Ch, 39Ch EP_VAL Endpoint Validate for GPEP*x* (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
31:0	Endpoint Validate Writing any value to this register causes a short packet to be validated in the endpoint's IN FIFO. Has the same effect as writing to the endpoint's EP_STAT register <i>FIFO Validate</i> bit(s) (USB Controller, offset(s) 32Ch/3ECh, 34Ch/40Ch, 36Ch/42Ch, 38Ch/44Ch[8]). Intended for use by an external DMA Controller that uses an extra Descriptor to write to this register, to validate a short packet. Reading this register always returns a value of 0000_0000h.	RW	Yes	0000_0000h

Register 15-67. 320h, 340h, 360h, 380h EP_CFG Endpoint Configuration for GPEP*x* Endpoints (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
U	<pre>ccy Adapter mode, each GPEPx EP_CFG register represents an endp anced Adapter mode, each GPEPx EP_CFG register represents an IN</pre>			or IN.
	Legacy Adapter Mode Endpoint Number Selects the Endpoint Number. Valid numbers are 1 to Fh.	RW	Yes	Oh
3:0	Enhanced Adapter Mode Endpoint Number Selects the Endpoint Number. Valid numbers are 1 to Fh.	RW	Yes	Adapter mode: Oh for all Root Complex mode: GPEP0 = 2h GPEP1 = 4h GPEP2 = 6h GPEP3 = 8h
6:4	Reserved	RsvdZ	Yes	000b
7	Legacy Adapter Mode Endpoint Direction Selects the endpoint direction. The direction is with respect to the USB Host point of view. A maximum of one OUT and IN endpoint is allowed for each Endpoint Number. 0 = OUT 1 = IN	RW	Yes	0
	Enhanced Adapter Mode Reserved	RsvdZ	Yes	0

Bit(s)	Description	Access	Serial EEPROM	Default
	Legacy Adapter Mode Endpoint Type Selects the endpoint type. 00b = Reserved	RW	Yes	10b
9:8	01b = Isochronous 10b = Bulk 11b = Interrupt			
	Enhanced Adapter Mode OUT Endpoint Type Selects the OUT endpoint type. 00b = <i>Reserved</i> 01b = Isochronous 10b = Bulk 11b = Interrupt	RW	Yes	10b
10	Legacy Adapter Mode Endpoint Enable 1 = Enables the endpoint	RW	Yes	0
10	Enhanced Adapter Mode OUT Endpoint Enable 1 = Enables this OUT endpoint	RW	Yes	0 (Adapter mode) 1 (Root Complex mode)
11	Byte Packing Enable 0 = If de-asserted upper Byte Enables are detected on a PCI Express Write to an IN FIFO, the USB transfer is terminated, and the packet is marked with EOP in the FIFO. 1 = If contiguous Byte Enables are detected on a PCI Express Write to an IN FIFO, the partial DWord is saved until more bytes are received or the USB transfer is explicitly terminated. (Contiguous Byte Enables are defined as the absence of de-asserted Byte Enables after an asserted Byte Enable is detected.) Field [18:16] (<i>EP FIFO Byte Count</i>) has no effect. Contiguous Byte Enable examples – 1000b, 1100b, 1110b, 1111b Non-contiguous Byte Enable examples – 0111b, 0101b, 0011b, 0001b	RW	Yes	0

Register 15-67. 320h, 340h, 360h, 380h EP_CFG Endpoint Configuration for GPEP*x* Endpoints (USB Controller) (*Cont.*)

Bit(s)	Description	Access	Serial EEPROM	Default
	Legacy Adapter Mode Reserved	RsvdZ	Yes	00b
13:12	Enhanced Adapter Mode IN Endpoint Type Selects the IN endpoint type. 00b = <i>Reserved</i> 01b = Isochronous 10b = Bulk 11b = Interrupt	RW	Yes	10b
	Legacy Adapter Mode <i>Reserved</i>	RsvdZ	Yes	0
14	Enhanced Adapter Mode IN Endpoint Enable 1 = Enables this IN endpoint	RW	Yes	0 (Adapter mode) 1 (Root Complex mode)
15	 IN EP Format Selects either Stream or Message format. 0 = Stream format is selected. In this mode, only the PCI Express Payload is written to an IN FIFO. 1 = Message format is selected. In this mode, the entire PCI Express packet is written to an IN FIFO. 	RW	Yes	0

Register 15-67. 320h, 340h, 360h, 380h EP_CFG Endpoint Configuration for GPEP*x* Endpoints (USB Controller) (*Cont.*)

Register 15-67. 320h, 340h, 360h, 380h EP_CFG Endpoint Configuration for GPEP*x* Endpoints (USB Controller) (*Cont.*)

Bit(s)		Des	scription	Access	Serial EEPROM	Default
18:16	Used to m to a GPEP (USB Con 394h/454h correspond Following to its defau Packing is transaction is program FIFO is flu	x FIFO, using the er troller, offset(s) 334 b). A <i>Mask</i> bit value ding PCI Express By the next FIFO Writ- ult value. If the value disabled, the next F n causes a short pack- umed to its default value	Byte Enables for a 1-DWord Write hdpoint's EP_DATA register(s) h/3F4h, 354h/414h, 374h/434h, of 1 indicates that the rte Enable is forced to 0. e transaction, this field is restored e is less than 100b, and Byte CP_DATA register FIFO Write tet to be validated. This field alue when the corresponding	RW	100b	
10.10	Value	Mask	Function	RW	Yes	1000
	000b	1111b	No bytes are written; all PCI Express Byte Enables are masked).			
	001b	1110b	Up to 1 byte is written.			
	010b	1100b	Up to 2 bytes are written.			
	011b	1000b	Up to 3 bytes are written.			
	100b	0000b	Up to 4 bytes are written (default); no PCI Express Byte Enables are masked.			
	Service In	terval				
23:19	Values mu		l for Periodic endpoints. ge of 1 to 16. The actual interval us.	RW	Yes	0-0h
27:24	receive, as the size of be greater	he quantity of packe part of a burst. The the endpoint's FIFC than the FIFO size.	ets that the endpoint can send or actual burst size used depends upon). The total burst length must not resenting burst sizes of 1 to 16.	RW	Yes	Oh
29:28		licates the supported synchronization nchronous ptive	synchronization types.	RW	Yes	00b
	Usage Typ	pe				
	If interrup	t and ISO, indicates	the supported usage types.			
	Value	Interrupt	ISO			
31:30	00b	Periodic	Data endpoint	RW	Yes	00b
	01b	Notification	Feedback endpoint			
	10b	Reserved	Implicit feedback data endpoint			
	11b	Reserved	Reserved			

15.11 FIFO Registers

The FIFO registers determine the size and location (Base address) of each USB endpoint FIFO within the USB Ingress and PCI Express Ingress RAM.

Table 15-10. FIFO Registers

Register	Offset (from BAR0) ^a							
Keyistei	EP 0	GPEP0	GPEP1	GPEP2	GPEP3	PCIOUT/PCIIN	RCIN	
EP_FIFO_SIZE_BASE	500h	520h	540h	560h	580h	5E0h	600h	

a. Offsets 504h through 514h, 524h through 534h, 544h through 554h, 564h through 574h, 584h through 594h, 5E4h through 5F4h, and 604h through 614h, are **Reserved** or **Factory Test Only**.

Register 15-68. 500h, 520h, 540h, 560h, 580h, 5E0h, 600h EP_FIFO_SIZE_BASE EP 0, GPEP0, GPEP1, GPEP2, GPEP3, PCIOUT/PCIIN, and RCIN FIFO Size and Base Address (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
PCIOU' from 64 on any 6 and is re The IN seven F the com fit entire	B Ingress RAM provides a total of 16-KB RAM for all OUT endpoints T. The size of each of these six FIFOs is determined by field [2:0] (<i>OUT</i> to 4,096 bytes; however, the combined size of the six FIFOs must be lef64-byte RAM boundary. The Base address of each FIFO is determined be elative to the start of the USB Ingress RAM. The Base address resolution FIFOs – EP 0, GPEP[3:0], PCIIN, and RCIN – are placed into two 4,974 IFOs is determined by field [18:16] (<i>IN FIFO Size</i>). The size for each FIFO bined size of the seven FIFOs must be less than 9,952 bytes. Each FIFO ely within one of the two RAM segments. The Base address of each FIFO; and is relative to the start of the PCI Express Ingress RAM. The Base	FIFO Size ss than 16,3 by field [14: n is 64 byte 6-byte RAM IFO can ran can be loca O is determ). The size for 384 bytes. Eac 6] (<i>OUT FIFC</i> s. <i>A</i> segments. T ge from 64 to ated on any 64 ined by field [each FIFO can range h FIFO can be located <i>D Base Address</i>), he size of each of these 4,096 bytes; however, -byte boundary, and must 30:22] (<i>IN FIFO Base</i>
	OUT FIFO Size			
2:0	Determines the endpoint's OUT FIFO size (in bytes). 000b = 64 001b = 128 010b = 256 011b = 512 100b = 1,024 101b = 2,048 110b = 4,096 111b = Reserved	RW	Yes	Adapter mode – Refer to Table 15-11 Root Complex mode – Refer to Table 15-12
5:3	Reserved	RsvdZ	Yes	000b
14:6	OUT FIFO Base Address Determines the endpoint's OUT FIFO Base address within the USB Ingress RAM. The address is aligned to a 64-byte boundary; therefore, this field represents Address bits [14:6].	RW	Yes	Adapter mode – Refer to Table 15-11 Root Complex mode – Refer to Table 15-12
15	Reserved	RsvdZ	Yes	0
18:16	IN FIFO Size Determines the endpoint's IN FIFO size (in bytes). 000b = 64 001b = 128 010b = 256 011b = 512 100b = 1,024 101b = 2,048 110b = 4,096 111b = Reserved	RW	Yes	Adapter mode – Refer to Table 15-11 Root Complex mode – Refer to Table 15-12
21:19	Reserved	RsvdZ	Yes	000b
30:22	IN FIFO Base Address Determines the endpoint's IN FIFO Base address within the PCI Express Ingress RAM. The address is aligned to a 64-byte boundary; therefore, this field represents Address bits [14:6].	RW	Yes	Adapter mode – Refer to Table 15-11 Root Complex mode – Refer to Table 15-12
		1	1	

15.11.1 FIFO Size and Base Address Defaults – Adapter Mode

The IN FIFO Base addresses listed in Table 15-11 are relative to the start of the 32-KB PCI Express interface Ingress RAM, in units of 64 bytes. The size value shown in parentheses is the FIFO size, in bytes.

The OUT FIFO Base addresses listed in Table 15-11 are relative to the start of the 32-KB USB interface Ingress RAM, in units of 64 bytes. The base value shown in parentheses is the Base address, in bytes.

Note: All IN FIFOs must have a gap between them of at least 64 bytes.

Table 15-11.FIFO Size and Base Address Defaults for Register Offset(s) 500h, 520h, 540h, 560h, 580h,
5E0h, 600h – Adapter Mode

	USB Device Endpoint							
Register	EP 0	GPEP0	GPEP1	GPEP2	GPEP3	PCIOUT/ PCIIN	RCIN	
EP_FIFOSIZE (OUT) ^a	3 (512)	6 (4K)	6 (4K)	5 (2K)	5 (2K)	2 (256)	_	
EP_FIFOSIZE (IN) ^a	3 (512)	5 (2K)	5 (2K)	5 (2K)	5 (2K)	2 (256)	_	
EP_FIFOBASE (OUT)	0	8 (200h)	48h (1200h)	88h (2200h)	A8h (2A00h)	CAh (3280h)	_	
EP_FIFOBASE (IN)	0	9 (240h)	2Ah (A80h)	180h (6000h)	1A1h (6840h)	1C4h (7100h)	_	

a. Unit of measure is in bytes.

15.11.2 FIFO Size and Base Address Defaults – Root Complex Mode

The IN FIFO Base addresses listed in Table 15-12 are relative to the start of the 32-KB PCI Express interface Ingress RAM, in units of 64 bytes. The size value shown in parentheses is the FIFO size, in bytes.

The OUT FIFO Base addresses listed in Table 15-12 are relative to the start of the 32-KB USB interface Ingress RAM, in units of 64 bytes. The base value shown in parentheses is the Base address, in bytes.

Note: All IN FIFOs must have a gap between them of at least 64 bytes.

Table 15-12.FIFO Size and Base Address Defaults for Register Offset(s) 500h, 520h,
540h, 560h, 580h, 5E0h, 600h – Root Complex Mode

	USB Device Endpoint								
Register	EP 0	GPEP0	GPEP1 ^a	GPEP2	GPEP3 ^a	PCIOUT/ PCIIN	RCIN		
EP_FIFOSIZE (OUT) ^b	3 (512)	6 (4K)	2 (256)	6 (4K)	2 (256)	2 (256)	-		
EP_FIFOSIZE (IN) ^b	3 (512)	5 (2K)	2 (256)	5 (2K)	2 (256)	2 (256)	3 (512)		
EP_FIFOBASE (OUT)	0	8 (200h)	48h (1200h)	4Ch (1300h)	8Ch (2300h)	B4h (2D00h)	-		
EP_FIFOBASE (IN)	0	9 (240h)	180h (6000h)	2Ah (A80h)	185h (6140h)	1B0h (6C00h)	1B5h (6D40h)		

a. If endpoints GPEP1 or GPEP3 are to be used for traffic that uses USB packets larger than 256 bytes, the default FIFO sizes for these endpoints must be increased.

b. Unit of measure is in bytes.

15.12 USB Power Management Registers

Offset (from BAR0)	Register	Description
6C0h	USBPM Control	USB Power Management Control
6C4h	USBPM Status	USB Power Management Status Register

Table 15-13. Power Management Registers

Register 15-69. 6C0h USBPM Control USB Power Management Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	USB Mode PME to ACK Send Enable 1 = In Adapter mode, enables PME TO ACK Message generation in response to a received PME_Turn_Off Message	RW	Yes	1
1	PME to ACK in Suspend Only 1 = In Adapter mode, enables PME to ACK generation only when the USB interface is in the Suspend state	RW	Yes	0
2	USB2 L1 STATIN Pending Device Remote Wakeup Enable 1 = USB r2.0 L1 Link PM state Remote Wakeup due to a pending STATIN Dedicated Endpoint interrupt. The USB 3380 returns a NYET handshake for L1 Requests, if a STATIN interrupt is pending.	RW	Yes	0
3	USB2 L1 USB IN FIFO Packet Pending Device Remote Wakeup Enable 1 = Enables <i>USB r2.0</i> L1 Link PM state Remote Wakeup due to a pending USB IN FIFO Data packet. The USB 3380 returns a NYET handshake for L1 Requests, if the USB IN FIFOs are not empty.	RW	Yes	0
4	USB Suspend STATIN Pending Device Remote Wakeup Enable 1 = Enables USB Suspend Device Remote Wakeup due to a pending STATIN interrupt	RW	Yes	0
5	USB Suspend IN FIFO Packet Pending Device Remote Wakeup Enable 1 = Enables USB Suspend Device Remote Wakeup due to a pending USB IN FIFO Data packet	RW	Yes	0
6	USB r3.0 U2 State Clock Stop Enable 1 = Enables main clock stop when in the USB r3.0 U2 Link state	RW	Yes	0
7	Suspend State Clock Stop Enable 1 = Enables main clock stop when in the USB Suspend state	RW	Yes	0

Register 15-69. 6C0h USBPM Control USB Power Management Control (USB Controller) (Cont.)

Bit(s)	Description	Access	Serial EEPROM	Default
0	USB r3.0 U2 State PLL Stop Enable	DW	V	0
8	1 = Enables PLL stop when in the USB r3.0 U2 Link state	RW	Yes	0
9	Suspend State PLL Stop Enable	RW	Yes	0
9	1 = Enables PLL stop when in the Suspend state		105	0
	USB Suspend Power Turn-Off Enable			
10	Enables switching Off the power when the USB 3380 in the Suspend state. In systems where power in the Vaux state is controlled by the PCI Express Host CPU, this bit should be Cleared. In systems where power to the USB 3380 in Vaux is controlled by the LANE_GOOD# pin, this bit should be Set.	RW	Yes	0
	GPIO0 Software Control			
11	Set this bit if software must allow control of the GPIO0/LANE_GOOD# signal (<i>such as</i> to program I/O or read Lane status).	RW	Yes	0
	1 = Allows GPIO0 software control in Bridge mode			
	PCIe L2L3 USB Disconnect Enable			
12	1 = In Adapter mode, the connection to the USB Host is removed, by Clearing the USBCTL register <i>USB Detect Enable</i> bit (USB Controller, offset 8Ch[3]), when Port 0 enters the L2/L3 Ready Link PM state and the USB side is not in the Suspend state	RW	Yes	1
10	WAKE PIN Suspend Remote Wake Enable	DW	V	0
13	1 = When in USB suspend, WAKE# Low assertion enables Remote Wakeup	RW	Yes	0
	SS Mode UTMI Suspend			
14	1 = When operating in SuperSpeed mode, enables shutting of the <i>USB r3.0</i> Transceiver Macrocell Interface (UTMI), to reduce power consumption	RW	Yes	1
15	VBUS Debounce Disable	RW	Yes	0
16	Bypass Suspend Immediate Timer	RW	Yes	0
10	1 = Bypasses the 500 µs Suspend Timer wait time, when going into the Suspend state	K VV	168	0
	USB Unconfigured PCIe PHY Hold Enable			
17	1 = Disables Port PHY training process from starting, until the USB 3380 is USB-configured. (Configuration value is not 0.)	RW	Yes	0
18	VBUS Change PCIe Host Wake Enable			
	1 = In the D3cold state, enables waking up the PCI Express Host through the WAKE# signal or beacon	RW	Yes	0
20:19	Not used	RW	Yes	00b
31:21	Reserved	RsvdP	No	0-0h

Register 15-70. 6C4h USBPM Status USB Power Management Status Register (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	Was Vaux Suspend			
0	1 = Indicates that the USB 3380 came out of the Vaux power-down state, after going into USB suspend	RW1C	Yes	0
	PCIe Link PM State P0			
	Port 0 PCI Express Link PM state.			
2:1	00b = PCI Express Power Management is not active (could be in the L0 Link PM state, or the Link is down)	RO	No	00b
	01b = ASPM L1 Link PM state			
	10b = PCI Express PM L1 Link PM state			
	11b = L2/L3 Ready Link PM state			
4:3	Reserved	RsvdP	No	00b
	USB Link PM State			
6.5	00b = USB Power Management is not active (could be in the U0 Link state, or the Link is down)	DO	N	001
6:5	01b = U1 Link state	RO	No	00b
	10b = U2 Link state/L1 Link PM state			
	11b = U3 Link state/L3 Link PM state			
31:7	Reserved	RsvdP	No	0-0h

15.13 Indexed Registers

Indexed registers are accessed by way of the USB Controller Memory-Mapped **IDXADDR** and **IDXDATA** registers (USB Controller, offsets 30h and 34h, respectively). *For example*, to access the **DIAG** register (Index 00h), software must first write the index value, 00h, to the **IDXADDR** register. Reads from the **IDXDATA** register then return the value for the Indexed register. Writes to the **IDXDATA** register update the indexed register.

Table 15-14. Indexed Registers

Index	Register	Description
Index 00h	DIAG	Diagnostic Control
Index 01h	PKTLEN	Packet Length
Index 02h	FRAME	Frame Counter
Index 03h	CHIPREV	Chip Revision
Index 04h	UFRAME	Micro Frame Counter
Index 05h	FRAME_COUNT	Frame Down Counter
Index 06h	HS_MAXPOWER	High-Speed Maximum Power
Index 07h	FS_MAXPOWER	Full-Speed Maximum Power
Index 08h	HS_INTPOLL_RATE	High-Speed Interrupt Polling Rate
Index 09h	FS_INTPOLL_RATE	Full-Speed Interrupt Polling Rate
Index 0Ah	HS_NAK_RATE	High-Speed NAK Rate
Index 0Bh	SCRATCH	Scratchpad
Index 0Ch – 1Fh	Reserved	
Index 20h + (<i>n</i> x 10h) Index 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h	GPEP[3:0/Out/In]_HS_MAXPKT	High-Speed Maximum Packet Size
21h + (n x 10h) Index 21h, 31h, 41h, 51h, 61h, 71h, 81h, 91h	GPEP[3:0/Out/In]_FS_MAXPKT	Full-Speed Maximum Packet Size
22h + (<i>n</i> x 10h) Index 22h, 32h, 42h, 52h, 62h, 72h, 82h, 92h	GPEP[3:0/Out/In]_SS_MAXPKT	SuperSpeed Maximum Packet Size
Index 23h - 2Fh $Index 33h - 3Fh$ $Index 43h - 4Fh$ $Index 53h - 5Fh$ $Index 63h - 6Fh$ $Index 73h - 7Fh$ $Index 83h$	Reserved	
Index 84h	STATIN_HS_INTPOLL_RATE	High-Speed Interrupt Polling Rate for STATIN
Index 85h	STATIN_FS_INTPOLL_RATE	Full-Speed Interrupt Polling Rate for STATIN
Index 86h	SS_MAXPOWER	SuperSpeed Maximum Power
Index 87h - 8Ch Index 93h - FFh	Reserved	

USB 3380-AA/AB PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller Data Book, v1.3 Copyright © 2012 by PLX Technology, Inc. All Rights Reserved

Register 15-71. Index 00h DIAG Diagnostic Control (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
0	Force Transmit CRC Error 1 = CRC error is forced on the next transmitted Data packet. Inverting the msb of the calculated CRC generates the CRC error. Automatically Cleared at the end of the next packet.	RW1S	Yes	0
1	Reserved	RsvdZ	Yes	0
2	Force Receive Error 1 = Error is forced on the next received Data packet. As a result, the packet is not acknowledged. Automatically Cleared at the end of the next packet.	RW1S	Yes	0
3	Reserved	RsvdZ	Yes	0
4	Fast Times 1 = Internal timers and Counters operate at a fast speed for <i>Factory Test Only</i>	RW	Yes	0
5	Illegal Byte Enables Writing 1 Clears this bit. 1 = External PCI Express agent performed a transaction to and/or from one of the endpoint FIFOs, and illegal First Byte Enables were detected. The only valid Byte Enable combinations are 0001b, 0011b, 0111b, and 1111b.	RW1C	Yes	0
7:6	Reserved	RsvdZ	Yes	00b
8	Force CPU Interrupt 1 = Forces an interrupt to the 8051	RW	Yes	0
9	Force USB Interrupt 1 = Forces a STATIN endpoint interrupt to generate	RW	Yes	0
10	Force PCI Express Interrupt 1 = In Adapter mode, forces an MSI to be sent to the PCI Express Root Complex	RW	Yes	0
11	Reserved	RW	Yes	0
12	USB RAM 1-Bit Soft Error Injection 1 = Every toggle injects a 1-bit error	RW	Yes	0
13	USB RAM 2-Bit Soft Error Injection 1 = Every toggle injects a 2-bit error	RW	Yes	0
14	USB RAM Error Injection Field Select 0 = Error injection is in the <i>ECC Code</i> field 1 = Error injection is in the <i>Data</i> field	RW	Yes	0
15	Reserved	RsvdZ	Yes	0
31:16	Retry Counter Accumulator of packet Retries. Cleared when written with a value.	RW1C	Yes	0000h

Register 15-72. Index 01h PKTLEN Packet Length (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
10:0	RX Packet Length Provides the last packet length received. This field is not updated when Setup packets are received, because they maintain a fixed length of 8. This field is intended for debugging purposes, and might be in the process of being updated by the USB Controller when being read. Read twice to verify the value.	RO	Yes	0-0h
15:11	Reserved	RsvdZ	Yes	0-0h
26:16	TX Packet Length Provides the last packet length transmitted. This field is intended for debugging purposes, and might be in the process of being updated by the USB section when being read. Read twice to verify the value.	RO	Yes	0-0h
31:27	Reserved	RsvdZ	Yes	0-0h

Register 15-73. Index 02h FRAME Frame Counter (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
10:0	Frame Counter Contains the Frame Counter from the most recent Start-of-Frame (SOF) packet.	RO	Yes	0-0h
31:11	Reserved	RsvdZ	Yes	0-0h

Register 15-74. Index 03h CHIPREV Chip Revision (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
15:0	Chip Revision Returns the current USB 3380 Silicon Revision.	RO	Yes	Silicon Revision AA: 00AAh Silicon Revision AB: 00ABh
31:16	Reserved	RsvdZ	Yes	0000h

Register 15-75. Index 04h UFRAME Micro Frame Counter (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
2:0	Micro Frame Counter Valid only in High-Speed mode. Contains the Micro Frame Counter from the most recent Micro Start-of-Frame (SOF) packet.	RO	Yes	000Ъ
4:3	Reserved	RsvdZ	Yes	00b
18:5	ITP Bus Interval Counter Valid only in SuperSpeed mode. Contains the Bus Interval Counter field from the most recent ITP.	RO	Yes	0-0h
31:19	ITP Delta Valid only in SuperSpeed mode. Contains the Delta field from the most recent ITP.	RO	Yes	0-0h

Register 15-76. Index 05h FRAME_COUNT Frame Down Counter (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
10:0	Frame Re-Load Contains the value that is automatically loaded into the Frame Downcount Counter when the Counter reaches a value of 0 and a new SOF or ITP is detected.	RW	Yes	0-0h
15:11	Reserved	RsvdZ	Yes	0-0h
26:16	Frame Downcount Contains a Down Counter that is decremented when an SOF or ITP is detected on the USB. When this Counter reflects a value of 0 and a new SOF or ITP is detected, the Counter is loaded with the value in field [10:0] (<i>Frame Re-Load</i>), and an interrupt is generated (IRQSTAT1 register <i>SOF Downcount Interrupt Status</i> bit (USB Controller, offset 2Ch[14]) is Set).	RW	Yes	0-0h
31:27	Reserved	RsvdZ	Yes	0-0h

Register 15-77. Index 06h HS_MAXPOWER High-Speed Maximum Power (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
7:0	High-Speed Maximum PowerUsed only when the Get Configuration DescriptorRequest is in Auto-Enumerate mode, and the USB 3380is operating in High-Speed mode.The amount of current drawn by the peripheral from the USBController, in increments of 2 mA. The USB 3380 reports thisvalue to the USB Host, in the Configuration Descriptor.	RW	Yes	0 PCI Express Lanes = 3Ch 1 PCI Express Lane = 44h
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-78. Index 07h FS_MAXPOWER Full-Speed Maximum Power (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
7:0	Full-Speed Maximum PowerUsed only when the Get Configuration Descriptor Requestis in Auto-Enumerate mode, and the USB 3380 is operatingin Full-Speed mode.The amount of current drawn by the peripheral from the USBController, in increments of 2 mA. The USB 3380 reports thisvalue to the USB Host, in the Configuration Descriptor.	RW	Yes	0 PCI Express Lanes – 3Ch 1 PCI Express Lane – 44h
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-79. Index 08h HS_INTPOLL_RATE High-Speed Interrupt Polling Rate (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
	High-Speed Interrupt Polling Rate			
7:0	Specifies the interrupt polling rate, in terms of microframes (125μ s). Returned as the last byte of all Interrupt Endpoint Descriptors, when the Get Configuration Descriptor is Set to Auto-Enumerate mode, and the USB 3380 is operating in High-Speed mode.	RW	Yes	FFh
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-80. Index 09h FS_INTPOLL_RATE Full-Speed Interrupt Polling Rate (USB Controller)

Bit(s)	Description Access		Serial EEPROM	Default
7:0	Full-Speed Interrupt Polling Rate Specifies the interrupt polling rate, in milliseconds. Returned as the last byte of all Interrupt Endpoint Descriptors, when the Get Configuration Descriptor is Set to Auto-Enumerate mode, and the USB 3380 is operating in Full-Speed mode.	RW	Yes	FFh
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-81. Index 0Ah HS_NAK_RATE High-Speed NAK Rate (USB Controller)

Bit(s)	Description		Serial EEPROM	Default
7:0	High-Speed NAK Rate Specifies the maximum NAK rate of High-Speed Bulk/Control endpoints, in response to OUT packets. A value of 0 indicates the endpoint never NAKs an OUT packet. Other values indicate, at most, 1 NAK each HS_NAK_RATE quantity of microframes. Value ranges from 0 to 255.		Yes	00h
31:8	Reserved		Yes	0000_00h

Register 15-82. Index 0Bh SCRATCH Scratchpad (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
31:0	Scratchpad General-purpose Scratchpad register.	RW	Yes	FEED_FACEh

15.13.1 Maximum Packet Size – GPEP*x* Index Registers

Even-numbered GPEPs are OUT endpoints, and odd-numbered GPEPs are IN endpoints. In Legacy mode, the values in the GPEP OUT registers are used for both the IN and OUT directions of a GPEP.

GPEP <i>x</i>	High-Speed Maximum Packet Index	Full-Speed Maximum Packet Index	SuperSpeed Maximum Packet Index
0 OUT	20h	21h	22h
1 OUT	30h	31h	32h
2 OUT	40h	41h	42h
3 OUT	50h	51h	52h
0 IN	60h	61h	62h
1 IN	70h	71h	72h
2 IN	80h	81h	82h
3 IN	90h	91h	92h

Table 15-15. GPEPx Index Register Summary

Register 15-83. Index 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h GPEP[3:0/Out/In]_HS_MAXPKT High-Speed Maximum Packet Size (USB Controller)

Bit(s)	Description		Serial EEPROM	Default
10:0	High-Speed Maximum Packet Size Determines the endpoint Maximum Packet Size, when operating in High-Speed mode. For Interrupt and Isochronous endpoints, the Maximum Packet Size must be a multiple of 8 bytes.		Yes	200h
12:11	Additional Transaction Opportunities Determines the quantity of additional transaction opportunities, per microframe, for High-Speed Isochronous and Interrupt endpoints. 00b = None (one transaction per microframe) 01b = One additional transaction opportunity (two per microframe) 10b = Two additional transaction opportunities (three per microframe) 11b = Reserved		Yes	00b
31:13	Reserved	RsvdZ	Yes	0-0h

Register 15-84. Index 21h, 31h, 41h, 51h, 61h, 71h, 81h, 91h GPEP[3:0/Out/In]_FS_MAXPKT Full-Speed Maximum Packet Size (USB Controller)

Bit(s)	Description		Serial EEPROM	Default
10:0	Full-Speed Maximum Packet Size Determines the endpoint Maximum Packet Size, when operating in Full-Speed mode. For Interrupt and Isochronous endpoints, the Maximum Packet Size must be a multiple of 8 bytes.		Yes	40h
31:11	Reserved		Yes	0-0h

Register 15-85. Index 22h, 32h, 42h, 52h, 62h, 72h, 82h, 92h GPEP[3:0/Out/In]_SS_MAXPKT SuperSpeed Maximum Packet Size (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
10:0	SuperSpeed Maximum Packet Size Determines the endpoint Maximum Packet Size, when operating in SuperSpeed mode. For Interrupt and Isochronous endpoints, the Maximum Packet Size must be a multiple of 8 bytes.		Yes	400h
12:11	Max Packets per Service IntervalDetermines the maximum quantity of packets within a service interval that this endpoint supports.Maximum quantity of packets = $bMaxBurst x$ (this field + 1) The maximum value for this field is 10b.		Yes	00ь
15:13	Reserved	RsvdZ	Yes	000b
31:16	Total Bytes per Service Interval 6 Valid only for Periodic endpoints. The total quantity of bytes that this endpoint transfers every service interval.		Yes	0000h

Register 15-86. Index 84h STATIN_HS_INTPOLL_RATE High-Speed Interrupt Polling Rate for STATIN (USB Controller)

Bit(s)	Description		Serial EEPROM	Default
7:0	STATIN High-Speed Interrupt Polling Rate Specifies the interrupt polling rate, in terms of microframes (125 µs). Returned as the last byte of the STATIN Interrupt Endpoint Descriptor, when the Get Configuration Descriptor is Set to Auto-Enumerate mode, and the USB 3380 is operating in High-Speed mode.	RW Yes		01h
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-87. Index 85h STATIN_FS_INTPOLL_RATE Full-Speed Interrupt Polling Rate for STATIN (USB Controller)

Bit(s)	Description		Serial EEPROM	Default
7:0	STATIN Full-Speed Interrupt Polling Rate Specifies the interrupt polling rate, in milliseconds. Returned as the last byte of the STATIN Interrupt Endpoint Descriptor, when the Get Configuration Descriptor is Set to Auto-Enumerate mode, and the USB 3380 is operating in Full-Speed mode.	RW	Yes	01h
31:8	Reserved	RsvdZ	Yes	0000_00h

Register 15-88. Index 86h SS_MAXPOWER SuperSpeed Maximum Power (USB Controller)

Bit(s)	Description	Access	Serial EEPROM	Default
7:0	SuperSpeed Maximum Power Used only when the Get Configuration Descriptor Request is in Auto-Enumerate mode and the USB 3380 is operating in SuperSpeed mode. Amount of current drawn by the peripheral from the USB Port, in increments of 8 mA. The USB 3380 reports this value to the USB Host in the Configuration Descriptor. The default for a PCI Express two-Lane configuration is 160 mA (14h x 8 mA).	RW	Yes	0 PCI Express Lanes – 0Fh 1 PCI Express Lanes – 11h
31:8	Reserved	RsvdZ	Yes	0000_00h

15.13.2 Maximum Packet Size – Non-GPEP*x* Endpoints

Table 15-16 lists the Maximum Packet Sizes for non-GPEPx endpoints.

Table 15-16. Maximum Packet Size (MPS) Constant Values for Non-GPEPx Endpoints^a

Endpoint	Full-Speed MPS	High-Speed MPS	SuperSpeed MPS	MaxPkts/ Interval	TotalBytes/ Interval	Additional Transaction Opportunities
EP 0	64	64	512	0	0	0
CSROUT	64	512	1,024	0	0	0
CSRIN	64	512	1,024	0	0	0
PCIOUT	64	512	1,024	0	0	0
PCIIN	64	512	1,024	0	0	0
STATIN (BULK)	64	512	1,024	0	8	0
STATIN (INTERRUPT)	8	8	8	0	8	0
RCIN (BULK)	64	512	1,024	0	16	0
RCIN (INTERRUPT)	16	16	16	0	16	0

a. The values listed here are decimal; however, the registers return hex values.

Chapter 16 Test and Debug

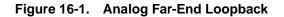
16.1 Introduction

This chapter describes the following test- and debug-related information:

- Physical Layer Loopback Operation
- User Test Pattern
- Pseudo-Random Bit Sequence
- Using the SerDes Diagnostic Data Register
- PHY Testability Features
- Lane Good Status LED

16.2 Physical Layer Loopback Operation

16.2.1 Overview


Physical Layer (PHY) Loopback functions are used to test the SerDes in the USB 3380, connections between devices, and SerDes of external devices, as well as various USB 3380 and external digital logic. The USB 3380 supports three types of Loopback operations, as described in Table 16-1. Additional information regarding each type is provided in the sections that follow.

Operation	Description
Analog Loopback Master Mode	This mode depends upon an external device or passive connection (<i>such as</i> a cable) to loopback the transmitted data to the USB 3380, without SKIP Ordered-Set clock compensation. If an external device is used, it must not include its Elastic buffer in the Slave Loopback data path, so that SKIP Ordered-Sets are not inserted. A device's re-transmitted Receive data must be sent back to the Master, synchronous to the Master's Transmit Reference Clock. <i>That is</i> , the Slave device re-serializes the Transmit data, using the recovered clock from the received data. In that mode, the PRBS generator and checker should be used to create and check the data pattern.
Digital Loopback Master Mode	This mode depends upon an external device to loopback the transmitted data that includes at least its Elastic buffer in the Loopback data path, allowing for reliable loopback testing, in case the two devices have asynchronous Reference Clock sources with Parts per Million (PPM) offsets. The Master's pattern generator inserts SKIP Ordered-Sets at regular intervals, and its received data checker can handle PPM offset clock compensation, by way of SKIP symbol addition or deletion. The USB 3380 provides a User Test Pattern generator and checker that can be used for Digital loopback testing.
Digital Loopback Slave Mode	The USB 3380 enters this mode when an external device transmits Training Sets with the <i>Loopback</i> Training Control Bit Set and the SKIP Ordered-Set Interval register <i>Analog Loopback Enable</i> bit (Port 0, offset 234h[6]) is Cleared. This is the default Loopback mode for the LTSSM Slave <i>Loopback.Active</i> substate. In this mode, the data is looped back at the 8-bit level, which includes the USB 3380's Elastic buffer, 8b/10b decoder, and 8b/10b encoder in the Slave Loopback data path. Asynchronous clock compensation can occur in the Elastic buffer through SKIP symbol addition or deletion, depending upon clock PPM offsets and fill threshold decoding. The Master data pattern checker must be able to handle the presence of SKIP Ordered-Sets and variations in their contents, when SKIP Ordered-Sets are transmitted.

Table 16-1. Loopback Operations

16.2.2 Analog Loopback Master Mode

Analog Loopback Master mode is typically used for Analog Far-End testing (refer to Figure 16-1), with a shallow Loopback path Slave device, to determine overall Bit Error rates. However, it can also be used for passive external serial loopback with a cable. Looping back with a cable includes the internal circuitry, package connections to bond pads, package pins, board traces, and any connectors that might be in the test data path, as illustrated in Figure 16-2. A PRBS pattern is typically used for this mode, because it is appropriate for bit error rate testing. A User Test Pattern (UTP) is *not* recommended for this application – refer to Section 16.3 for details.

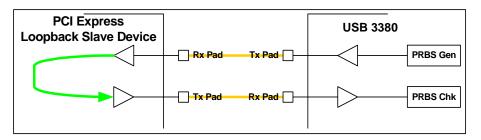
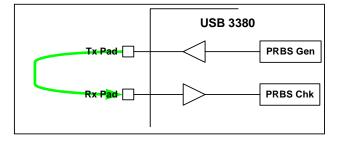



Figure 16-2. Cable Loopback

16.2.2.1 Initiating Far-End Analog Operations in USB 3380 Master Devices

One way to test Master Analog loopback with passive cables is to have Port 0 connected to a Root Complex, for Configuration Read/Write transactions that are used to Set and monitor the key device register bits. In that case, only downstream Port 2 would be test-capable, to avoid potential Deadlock conditions on Port 0.

Loopback cables can be attached before or after a standard power-up initialization sequence. If the cables are attached before power-up, use a serial EEPROM to program the Port/SuperSpeed USB's **Physical Layer Port/SuperSpeed USB Command** register *Port x/SuperSpeed USB Loopback Command* bit (Port 0, offset 230h[12, 8, 0]). The bit arms the Port/SuperSpeed USB to enter the Master *Loopback.Entry* substate. When written from a serial EEPROM, the bit's assertion is present before the Ports/SuperSpeed USB begin Link training. In that case, the Ports/SuperSpeed USB directly transition to the LTSSM *Loopback* state from the LTSSM *Configuration* state. The LTSSM exits the *Polling* state and enters the *Configuration.LinkWidth.Start* substate, then immediately transitions to the Master *Loopback.Entry* substate.

At this point, users can sample the Port/SuperSpeed USB's **Physical Layer Port/SuperSpeed USB Command** register *Port x/SuperSpeed USB Ready as Loopback Master* bit (Port 0, offset 230h[15, 11, 3]), to determine whether the bit is Set, which indicates that the Master has reached the LTSSM *Loopback.Active* substate. At this time, the PRBS engine can be enabled, by writing the **SerDes Test** register *SerDes x/SuperSpeed USB BIST Generator/Checker Enable* (PRBS Enable) bit(s) (Port 0, offset B88h[19:18, 16]), for the SerDes/SuperSpeed USB associated with the Port/SuperSpeed USB being tested, with the sequences listed in Table 16-2.

 Table 16-2.
 Sequence to Enable PRBS Transmission(SerDes Test Register (Port 0, offset B88h)

Data	Description
0000_3074h	Select 8/16-bit PRBS
000E_3034h	Disable comma pattern generator, enable error checker
000E_3035h	Reset error checker
000E_3034h	Clear reset

The PRBS Receive data checker first synchronizes the de-serialized parallel data words from the returned pattern with a reference PRBS pattern generator. Once synchronized, the PRBS checker looks for errors, on a continuous basis. Any errors detected are logged in one or more of the **SerDes Diagnostic Data** register RO bits (Port 0, offset 238h[30 and 23:0]). The errors can be retrieved, by reading the appropriate bit.

If the *Port x/SuperSpeed USB Loopback Command* bits are not Set through the serial EEPROM, the Ports'/SuperSpeed USB's Loopback Training Sets can be used to cause the Ports/SuperSpeed USB to linkup, by way of a Configuration cross-link track, resulting with the Ports/SuperSpeed USB being in the L0 Link PM state. This linkup of a Port/SuperSpeed USB, in response to its own Training Sets, works only if the Port/SuperSpeed USB's **Physical Layer Additional Status** register *Port x/SuperSpeed USB External Loopback Enable* bit (Port 0, offset 254h[19:18, 16]) is Set by serial EEPROM. After the Port/SuperSpeed USB is in the L0 Link PM state, Configuration Space register programming can then be performed manually, to invoke a Master Loopback operation.

After the Ports/SuperSpeed USB linkup, users can direct the Ports/SuperSpeed USB linkup into an Analog Loopback Master condition, by writing the **Physical Layer Port/SuperSpeed USB Command** register *Port x/SuperSpeed USB Loopback Command* bit(s), (Port 0, offset 230h[12, 8, 0]), through Port 0. However, this is not sufficient to initiate the LTSSM transition from the L0 Link PM state, to the *Loopback* state. The Link must pass through a *Recovery* substate, before the *Port x/SuperSpeed USB Loopback Command* bits can be sampled and allow the LTSSM to pass through the *Recovery* state to the *Loopback* state. To cause the Port/SuperSpeed USB to enter the *Recovery* state, users must Set the Port/SuperSpeed USB's **Link Control** register *Retrain Link* bit (Downstream Port, offset 78h[5]). At this point, users should monitor the Port/SuperSpeed USB's *Port x/SuperSpeed USB Ready as Loopback Master* bit(s), and when Set, the PRBS engine(s) can be enabled, as previously described.

If loopback cables are attached after the device powers up, those Ports whose Lanes are floating unconnected did not detect Receivers. Therefore, those Ports are not trained up to the L0 Link PM state.

If the Port/SuperSpeed USB's *Port x/SuperSpeed USB Loopback Command* and *External Loopback Enable* bits for downstream Port 2/SuperSpeed USB to be tested are written **before** the cables are attached, then once cabled, there is Receiver detection, the Port(s)/SuperSpeed USB go through Link training, and then exit the LTSSM *Configuration* state and directly enter the *Loopback* state.

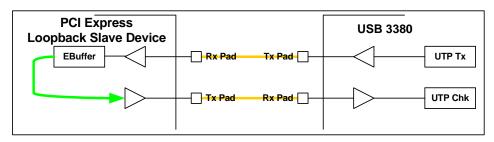
However, if the Port/SuperSpeed USB's *Port x/SuperSpeed USB Loopback Command* and *External Loopback Enable* bits are Set *after* the cables are attached, the Ports/SuperSpeed USB do not recognize their own Training Sets and will likely cycle back and forth between *Configuration* and *Detect*. Therefore, users must at least Set the *Port x/SuperSpeed USB External Loopback Enable* bit for the Port/SuperSpeed USB being tested, by way of serial EEPROM, if the USB 3380 is powered up before the cables are attached. Users can then program the Port/SuperSpeed USB's *Port x/SuperSpeed USB Loopback Command* bit(s). In addition to this, a forced retrain is also needed, to enter into the *Loopback* state through the *Recovery* state, as previously described.

16.2.3 Digital Loopback Master Mode

The only difference between Analog and Digital Loopback Master modes is that the external device is assumed to have at least an Elastic buffer in the Loopback data path. Because of this, SKIP Ordered-Sets must be included in the test data pattern, which precludes use of the PRBS engine.

Figure 16-3 illustrates a Far-End Digital Loopback Master connection and data path.

The USB 3380 provides a User Test Pattern engine on a per-Lane basis, for Digital Far-End Loopback testing. The user pattern itself, however, is common to all Lanes where it is enabled. Details on the use of the User Test Pattern registers and controls are described later in Section 16.5.


What is important to note about the data path (not shown in Figure 16-3) is that the pattern generators and checkers in the USB 3380 Digital Loopback Master have 8b/10b encode, 10b/8b decode, and Elastic buffers included in the Tx/Rx path. The scramblers and de-scramblers are disabled. Therefore, the Digital Loopback Slave device must not scramble the returning data. The 10-bit data can be decoded to 8-bit, and encoded back to 10-bit as an option, and will not affect the UTP pattern checker in the USB 3380, unless there is a coding error.

Digital Loopback Master mode is established by either programming method previously described in Section 16.2.2 for Analog Loopback Master mode. The Port/SuperSpeed USB's **Physical Layer Port/ SuperSpeed USB Command** register *Port x/SuperSpeed USB Loopback Command* bit (Port 0, offset 230h[12, 8, 0]) can be Set with a serial EEPROM, causing Loopback to be entered directly from the LTSSM *Configuration* state. Otherwise, the Port/SuperSpeed USB's *Port x/SuperSpeed USB*'s *Loopback Command* bit can be Set after linkup, and then the Port/SuperSpeed USB's Link Control register *Retrain Link* bit (Downstream Port, offset 78h[5]) can be used to move the Port/SuperSpeed USB to the *Loopback* state, through the LTSSM *Recovery* state.

After Digital Loopback Master mode is established, Configuration Space register Writes are used to establish a User Test Pattern transmission, as well as error checking, which are described later in Section 16.3.

The UTP is multiplexed, unconditionally, onto the Transmit data path, upon Setting one or more of the **Physical Layer Test** register *SerDes x/SuperSpeed USB User Test Pattern Enable* bit(s) (Port 0, offset 228h[31:30, 28]).

Note: It is important to verify that the LTSSM is in a Master Loopback. Active substate, before writing 1 to the SerDes x/SuperSpeed USB User Test Pattern Enable bits. Therefore, do not use the serial EEPROM to Set the SerDes x/SuperSpeed USB User Test Pattern Enable bits. (Refer to Section 16.4 for details.)

Figure 16-3. Digital Far-End Loopback

16.2.4 Digital Loopback Slave Mode

When a Port/the SuperSpeed USB is in the LTSSM Slave *Loopback.Active* substate, it automatically becomes a Digital Loopback Slave, by default. The Port/SuperSpeed USB enters this state after it receives Training Sets with the *Loopback* Training Control Bit Set.

When a Port/the SuperSpeed USB is a Digital Loopback Slave, it includes the Elastic buffer, 8b/10b decoder, and 8b/10b encoder in the Slave Loopback data path. The Loopback Master must provide the test data pattern and data pattern checker (*such as* a USB 3380 User Test Pattern). The Loopback Master must also transmit SKIP Ordered-Sets with the data pattern. Depending upon the USB 3380 Reference Clock source's PPM offset, the USB 3380 Digital Loopback Slave's Elastic buffers can compensate for the offset, by returning more or fewer SKIP symbols than the USB 3380 received from the Master. Therefore, the Master's data pattern checker must make provisions for this when decoding for errors.

This mode is *not* suitable for a PRBS pattern as transmitted from the Master, because neither device can compensate for Reference Clock offset differences, should they exist.

To force the Loopback path into Digital Loopback Slave mode, the Slave must be brought into the mode by a Master-connected device, through standard LTSSM tracks.

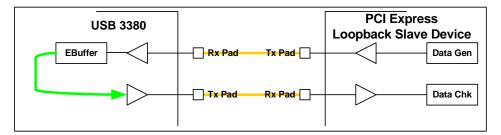


Figure 16-4. Digital Loopback Slave Mode

16.3 User Test Pattern

The USB 3380 provides a User Test Pattern (UTP) Transmit and Receive data checker, for Digital Far-End Loopback testing. (Refer to Figure 16-3.) After LTSSM Loopback Master mode is established, Configuration Writes are used to fill the Test Data Pattern registers.One or more **Physical Layer Test** register *SerDes x/SuperSpeed USB User Test Pattern Enable* bit(s) (Port 0, offset 228h[31:30, 28]) are used to start the UTP transmission, on the Lanes assigned to each bit. SKIP Ordered-Sets are inserted into the user's test data pattern, at the nearest data pattern boundary according to the programmed SKIP interval. That interval is determined by the **SKIP Ordered-Set Interval** register *SKIP Ordered-Set Interval* field (Port 0, offset 234h[11:0]). The default interval is 1,180 symbol times.

The Test Pattern checker ignores SKIP Ordered-Sets returned by the Loopback Slave, because the quantity of SKIP symbols received can be different from the quantity transmitted. All other data is compared to the transmitted data, and errors are logged in the **SerDes Diagnostic Data** register (Port 0, offset 238h).

The 16-byte UTP is loaded into the **Physical Layer User Test Pattern**, **Bytes** *x* **through** *y* registers (Port 0, offsets 210h through 21Ch). The pattern is common to all Lanes. Prior to transmission, the 8b/ 10b encoder converts the 16 bytes to 10-bit encoded data. Pattern bytes only go out as control symbols (k-bit set), if their corresponding **Physical Layer Command and Status** register *User Test Pattern K-Code Flag* bit (Port 0, offset 220h[31:16]) is Set.

Notice: Use care when Setting User Test Pattern K-Code Flag bits, because UTP logic does not check the validity of Control characters.

The UTP Transmitter logic does not immediately transmit the UTP bytes upon being enabled – a fixed, 8-byte sync pattern (314D_5243h) is transmitted first. The sync word detection validates the physical Loopback wiring and connected device Loopback path, to qualify the UTP transmission's initiation. The sync DWord allows the Pattern Checking logic to determine the starting boundary of the received pattern byte sequence. Sync detection also enables Received Data error checking and logging. There are no sync-acquired status bits in the Physical Layer (PHY) registers; however, the UTP Error Counter saturates at 255d, if the UTP checker does not receive the synchronization word.

Notes: The SerDes Diagnostic Data register UTP/PRBS Error Counter field (Port 0, offset 238h[23:16]) is the UTP Error Counter, when the register's PRBS Counter/ -UTP Counter bit (bit 30) is Cleared.

There are no explicit Control bits for deliberately injecting UTP errors into the transmission, to test the error checking ability. However, one way of testing the ability is to write a test pattern byte to a different value after the transmission has started. That usually causes a temporary unequal boundary condition, which will log an error. While not guaranteed to inject an error, this method is useful for testing error checking ability.

A UTP is not recommended for Master mode far-end cable testing, especially when initiated by way of serial EEPROM from a power-up sequence. If a UTP is enabled and looped back before Link training begins, the symbol framers will not have seen any COM symbols, and the true 10-bit symbol boundaries are unknown. The framer requires three COMs in a row, in the same bit position, to achieve symbol lock. Neither the sync pattern, nor the user pattern, would be detected in this case, and the test is certain to fail. In addition to the 16-byte pattern registers, the UTP is enabled on a per-Lane basis, by Setting one or more of the **Physical Layer Test** register *SerDes x/SuperSpeed USB User Test Pattern Enable* bit(s) (Port 0, offset 228h[31:30, 28]), for the SerDes/SuperSpeed USB associated with the Port/SuperSpeed USB being tested.

Note: The UTP is unconditionally multiplexed onto the Transmit data path, upon setting the SerDes x/ SuperSpeed USB User Test Pattern Enable bits. Therefore, it is necessary to verify that the LTSSM is in an LTSSM Master Loopback.Active substate before writing those Enable bits to a value of 1. Do not use a serial EEPROM to Set the SerDes x/SuperSpeed USB User Test Pattern Enable bits.

UTP testing results can be monitored in the **SerDes Diagnostic Data** register (Port 0, offset 238h). The register can be used to examine the Error Count in the *UTP/PRBS Error Counter* field [23:16], and expected/actual data of the first failing byte (fields [7:0 and 15:8], respectively). The *Status* bits are on a per-Lane/SuperSpeed USB basis. **The important field in this register is field [25:24]** (*SerDes Diagnostic Data Select*). When the Lane/SuperSpeed USB code is written to that field, the UTP status for that Lane/SuperSpeed USB appears in the *Status* fields. Bit 30 of the register (*PRBS Counter/-UTP Counter*) is a pattern type indicator, and is Cleared when UTP is enabled for a Lane/SuperSpeed USB.

The UTP and PRBS Enables (refer to Section 16.4) are mutually exclusive, and must not be concurrently Set. If both Enables are concurrently Set, the resulting operation is undefined. The UTP/PRBS Error Counter field continues to count, until it saturates at 255d. To Clear the Counter and allow it to begin logging errors again, write all zeros (0) to that field. Alternatively, the Counter status is Cleared if the SerDes x/SuperSpeed USB User Test Pattern Enable bit for that Lane/SuperSpeed USB is Cleared, and then Set again.

Notes: Any errors detected are logged in the **SerDes Diagnostic Data** register (Port 0, offset 238h). Use of this register is explained in Section 16.5.

16.4 Pseudo-Random Bit Sequence

A Pseudo-Random Bit Sequence (PRBS) generator and checker are useful as a diagnostic/debugging tool, and for measuring short- or long-term bit error rates in PCI Express systems. The USB 3380 also uses a specially enabled power-up self-test that runs after reset, as a wafer sort test for use on automated test equipment. PRBS pattern generators and checkers reside within the SerDes_rclk_blk modules, because they transmit and receive 10- or 20-bit data directly to/from the SerDes modules. Locating them in the modules helps ensure tight timing and short trace length on SerDes Tx and Rx parallel data.

The USB 3380 PRBS engine can be enabled, by writing the **SerDes Test** register *SerDes x/SuperSpeed USB BIST Generator/Checker Enable* (PRBS Enable) bit(s) (Port 0, offset B88h[19:18, 16]), for the SerDes/SuperSpeed USB associated with the Port/SuperSpeed USB being tested, with the sequences listed in Table 16-2. Prior to enabling PRBS, an externally connected PCI Express device must be in an LTSSM Slave *Loopback.Active* substate. Furthermore, the reference clocking between the two devices must be synchronous. (*That is*, the returning PRBS pattern must have its transmission clock source synchronous to the USB 3380 Reference Clock.) The USB 3380 PRBS pattern generator does not insert any SKIP Ordered-Sets, and, if the Slave device inserts SKIP Ordered-Sets into the returning pattern, they cannot be ignored by the PRBS checker (it causes an error). Alternatively, the PRBS pattern can be used to test an external cable Loopback, after the correct LTSSM Master *Loopback.Active* substate is reached, as described in Section 16.2.2.

After a Lane/SuperSpeed USB's PRBS engine is enabled, the PRBS engine immediately begins to transmit the PRBS pattern on that Lane/SuperSpeed USB. No 8b/10b encoding is performed. The PRBS pattern generator produces 10- or 20-bit symbols on every Clock cycle, depending upon the current Link speed. The symbols are written directly into the SerDes Tx data Port, for immediate transmission.

The PRBS Receive Data Checking logic first synchronizes the de-serialized 10- or 20-bit Parallel Data symbols from the SerDes Rx data Port, using a reference PRBS pattern generator. After pattern synchronization is achieved, the Receive data checker begins comparing the Rx data symbols on a continuous basis, to discover any mismatch between a symbol's expected and received values.

PRBS testing results can be monitored in the **SerDes Diagnostic Data** register (Port 0, offset 238h). The register can be used to examine the Error Count in the *UTP/PRBS Error Counter* field [23:16]. Expected and actual data is not available when PRBS is used. The *Status* bits are on a per-Lane/ SuperSpeed USB basis. **The important field in this register is field [25:24]** (*SerDes Diagnostic Data Select*). When the Lane/SuperSpeed USB code is written to that field, the PRBS status for that Lane/ SuperSpeed USB appears in the *Status* fields. Bit 30 of the register (*PRBS Counter/-UTP Counter*) is a pattern type indicator, and is Set when PRBS is enabled for a Lane/SuperSpeed USB.

Note: Any errors detected are logged in the SerDes Diagnostic Data register (Port 0, offset 238h). Use of this register is explained in Section 16.5.

The PRBS and UTP (refer to Section 16.3) Enables are mutually exclusive, and must not be concurrently Set. If both Enables are concurrently Set, the resulting operation is undefined. The UTP/PRBS Error Counter field continues to count, until it saturates at 255d. To Clear the Counter and allow it to begin logging errors again, write all zeros (0) to that field. Alternatively, the Counter status is Cleared if the SerDes x/SuperSpeed USB User Test Pattern Enable bit for that Lane/SuperSpeed USB is Cleared, and then Set again.

The PRBS Error Count does not necessarily represent a true Bit Error rate. The PRBS checker detects one or more mismatched bits in each examined symbol, on a symbol-per-core-clock basis. Therefore, the Error Counter advances one count for every symbol mismatch, regardless of how many bits are in error for that failing symbol.

16.5 Using the SerDes Diagnostic Data Register

The **SerDes Diagnostic Data** register (Port 0, offset 238h) contents reflect the performance of the SerDes/SuperSpeed USB selected by the register's *SerDes Diagnostic Data Select* field [25:24], as defined in Table 16-3. This control is specific to this register, which reports results of UTP and PRBS tests. For value 01b, because a SerDes module does not exist at that location, the bit is *Factory Test Only, reserved* (RsvdP), and not serial EEPROM.

Table 16-3.	SerDes Register	Contents	(Port 0, offset 238h))

SerDes Diagnostic Data Select Field [25:24] Value					
00b 01b 10b 11b					
SerDes 0	Factory Test Only	SerDes 2	SuperSpeed USB		

16.6 PHY Testability Features

The USB 3380 includes several Configuration bits to ease PHY testability. Features include:

- Full support of the standard and modified compliance patterns
- Register controllability of the common block and Lane-specific inputs of the SerDes

Table 16-4 describes the Configuration bits.

Table 16-4.	Configuration Bits to Ease PHY Tes	stability
-------------	------------------------------------	-----------

Register Bit(s)	Description
SerDes 0/SuperSpeed USB Mask Electrical Idle Detect Physical Layer Electrical Idle Detect Mask register (Port 0, offset 204h[3:2, 0])	Never Detect Electrical Idle Mask. When any one of these bits is Set, the Lane/SuperSpeed USB's <i>Electrical Idle</i> condition flag does not assert, regardless of the actual presence of Electrical Idle.
SerDes 0/SuperSpeed USB Mask Receiver Not Detected Physical Layer Receiver Not Detected Mask register (Port 0, offset 204h[19:18, 16])	Always Detect a Receiver Mask. When any one of these bits is Set, the PHY functions as if the Lane/SuperSpeed USB detected a Receiver, regardless of the actual presence of a Receiver.
<i>Test Pattern x</i> Physical Layer User Test Pattern, Bytes x through y registers (Port 0, offsets 210h through 21Ch)	A 16-byte test pattern can be written to these four registers. When UTP transmission is enabled, Byte 0 of register offset 210h is transmitted first and Byte 3 (Byte 15 of the UTP) of register offset 21Ch is transmitted last. (Refer to Section 16.2.3 for further details.) Every byte of the UTP can be a Control or Data character. Illegal Control characters can be specified.
Port 0/SuperSpeed USB Scrambler Disable Command Physical Layer Port/SuperSpeed USB Command register (Port 0, offset 230h[13, 9, 1])	Unconditionally disables the data scramblers on the Lanes of the corresponding Port/SuperSpeed USB, and causes the <i>Scrambler Disable</i> Training Control Bit to be Set in transmitted Training Sets. There is one bit for each Port/SuperSpeed USB.
Disable Port x/SuperSpeed USB Port and SuperSpeed USB Control register (Port 0, offset 234h[19:18, 16])	When Set, unconditionally disables the Port/SuperSpeed USB. This is different from the LTSSM <i>Disabled</i> state, in that the Port/SuperSpeed USB does not attempt to enter this state. If the Port/SuperSpeed USB is idle, it ceases attempting to detect a Receiver. If the Port/SuperSpeed USB is up, it immediately returns to the <i>Detect.Quiet</i> substate and remains there. No Electrical Idle Ordered-Set (EIOS) is sent, which could force any connected device to the <i>Recovery</i> state, and then to the LTSSM <i>Detect</i> state. The Port/SuperSpeed USB remains disabled until its <i>Disable</i> / <i>SuperSpeed USB</i> bit is Cleared. While the Port/SuperSpeed USB is disabled, the SerDes that belong to the disabled Port/SuperSpeed USB are placed into the P1 SerDes Power state.
Port x/SuperSpeed USB Quiet Port and SuperSpeed USB Control register (Port 0, offset 234h[23:22, 20])	When Set, the LTSSM remains in the <i>Detect.Quiet</i> substate on the Port/ SuperSpeed USB if it is currently in, or returns to, that substate. Once in the <i>Detect.Quiet</i> substate, Receiver termination is enabled and the Transmitters are placed into the P0 SerDes Power state. The Port/ SuperSpeed USB can now transmit test patterns (PRBS or UTP), with or without an attached device and without being in the <i>Loopback.Active</i> substate.
Port x/SuperSpeed USB Test Pattern x Rate Port and SuperSpeed USB Control register (Port 0, offset 234h[27:26, 24])	The Port/SuperSpeed USB transmits the selected test pattern (PRBS or UTP) at 5.0 GT/s, if the Port/SuperSpeed USB's <i>Port x/SuperSpeed USB</i> bit is also Set (manual rate selection is enabled only when the <i>Port x/SuperSpeed USB</i> bit is Set).
Port x/SuperSpeed USB Receiver Error Counter Port Receiver Error Counters register (Port 0, offset 248h)	Contains three 8-bit fields that, when read, return the quantity of Receiver errors detected by the corresponding Port. The Error Counter saturates at 255. The Counter is Cleared with any Write to the corresponding byte in this register; otherwise, this register is RO.

16.7 Lane Good Status LED

The USB 3380 provides a Lane Good output, LANE_GOOD#, that can be used to control external circuitry, *such as* LEDs, to provide visual indication that the PHY of each Lane/SuperSpeed USB's Link is trained to at least x1 width.

Note: For bridges, the default functionality of the LANE_GOOD# pin is GPIO0.

Software can determine:

- Which Lanes/SuperSpeed USB have completed PHY linkup, by performing a Memory Read of the **Software Lane Status** register *Lane x/SuperSpeed USB Up Status* bits (Port 0, offset 1F4h[3:2, 0], which correspond to Lanes [3, 2, 0], respectively).
- Whether the Port/SuperSpeed USB's Link has trained, by reading the **VC0 Resource Status** register *VC0 Negotiation Pending* bit (All Ports and USB Controller, offset 160h[17]) in each Port/SuperSpeed USB. If the *VC0 Negotiation Pending* bit is Cleared, the Link has completed Flow Control (FC) initialization.

The **VC0 Resource Status** register can be read by either a PCI Express Enhanced Configuration access or Memory Read.

• The negotiated Link width of Port 0, by reading the Link Status register *Negotiated Link Width* field (All Ports and USB Controller, offset 78h[25:20]) of Port 0. This register can be read by either a Configuration Request or Memory Read.

Table 16-5 describes the relationship of the LED On/Off patterns, as they relate to the Lane status indicated by LANE_GOOD#.

State	LED Pattern
Lane is disabled	Solid Off
Lane is enabled, 5.0 GT/s	Solid On
Lane is enabled, 2.5 GT/s	0.5 seconds On, 0.5 seconds Off

Table 16-5. LANE_GOOD# LED On/Off Patterns, by State

Chapter 17 Electrical Specifications

17.1 Introduction

This chapter provides the USB 3380 electrical specifications.

17.2 Power-Up/Power-Down Sequence

The USB 3380 does not have power-sequencing requirements. The power rails can be powered up and powered down, in any sequence.

17.3 Absolute Maximum Ratings

Notice: Maximum limits indicate the temperatures and voltages above which permanent damage can occur. Proper operation at these conditions is not guaranteed, and continuous operation of the USB 3380 at these limits is not recommended.

Item	Symbol	Absolute Maximum Rating	Units
SerDes Analog Supply Voltage	PEX_VDDA_P2 PEX_VDDA_P0 USB_VDDA	-0.5 to +4.6	v
SerDes Digital Supply Voltage	PEX_VDDD0_P2 PEX_VDDD0_P0 USB_VDDD0 PEX_VDDD1_P0 USB_VDDD1	-0.5 to +1.4	V
PLL Supply Voltage	PLL_AVDD	-0.5 to +1.4	V
Auxiliary Core (Logic) Supply Voltage	VAUX_CORE	-0.5 to +1.4	V
Auxiliary I/O (Logic) Supply Voltage	VAUX_IO	-0.5 to +4.6	V
Core (Logic) Supply Voltage	VDD_CORE	-0.5 to +1.4	V
I/O Interface Supply Voltage, 3.3V	VDD_IO USB_AVDD33 USB_VDD33	-0.5 to +4.6	V
Input Voltage (3.3V Interface)	VI	-0.5 to +4.6	V
Operating Ambient Temperature (Industrial)	T _A	-40 to +85	°C
Storage Temperature	T _{STG}	-65 to +125	°C

Table 17-1. Absolute Maximum Rating (All Voltages Referenced to VSS System Ground)

17.4 **Power Characteristics**

Symbol	Parameter	Min	Тур	Мах	Units
PEX_VDDA_P2 PEX_VDDA_P0 USB_VDDA	Analog SerDes Supply ^a	3.00	3.30	3.60	V
PEX_VDDD0_P2 PEX_VDDD0_P0 USB_VDDD0 PEX_VDDD1_P0 USB_VDDD1	Digital SerDes Supply	0.95	1.00	1.10	v
PLL_AVDD	Analog PLL Supply	0.95	1.00	1.10	V
VAUX_CORE	Auxiliary Digital Core Supply	0.95	1.00	1.10	V
VAUX_IO	Auxiliary I/O Supply	3.00	3.30	3.60	V
VDD_CORE	Digital Core Supply	0.95	1.00	1.10	V
VDD_IO USB_AVDD33 USB_VDD33	I/O Supply	3.00	3.30	3.60	V

 Table 17-2.
 Operating Condition Power Supply Rails

a. Must be the same voltage as VDD_IO.

17.5 Power Consumption Estimates

Table 17-3.	Power	Consumption	Estimates
-------------	-------	-------------	-----------

		Core I	_ogic ^a	SerDes	Analog ^b	SerDes	Digital ^c	I/C	0 ^d	То	tal
Lanes ^e	Ports ^e	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур ^f	Max ^g
		(milliWatts)									
		234	374	66	93	218	312	128	174	646	953
2	2	(milliAmps)									
		234	374	20	28	218	312	39	53	_	_

a. Core Logic supply consists of VDD_CORE.

- c. SerDes Digital supply consists of PEX_VDDD0_P2, PEX_VDDD0_P0, PEX_VDDD1_P0, PLL_AVDD, USB_VDDD1, and USB_VDDD0.
- d. I/O supply consists of VDD_IO and USB_VDD33.
- e. "Lanes" consist of one Lane of PCI Express (5.0 GT/s), plus one SuperSpeed USB Link (5 Gbps). From the PCI Express side, the USB 3380 provides one Lane (Port 0), capable of operating at Gen 2 (5 GT/s) data rates. The external Port 0 is part of a 2-Port PCI Express switch, the other side of which (internal Port 2) connects to the central RAM and USB Controller.
- *f.* Typical power based upon all Lanes active (L0 Link PM state), 100% traffic, typical voltages (1.00V, 3.30V), and room temperature (25°C).
- g. Maximum power based upon all Lanes active (L0 Link PM state), maximum traffic, maximum voltages (1.10V, 3.60V), maximum temperature (85°C) and Fast-Fast (FF) process corner silicon.

b. SerDes Analog supply consists of PEX_VDDA_P2 and PEX_VDDA_P0.

17.6 I/O Interface Signal Groupings

Table 17-4. Signal Group PCI Express Analog Interface

Signal Group	Signal Type	Signals	Notes
(a)	PCI Express Output	PEX_PETn,	Refer to Table 17-7
	(Transmit)	PEX_PETp	and Table 17-8
(b)	PCI Express Input	PEX_PERn,	Refer to Table 17-7
	(Receive)	PEX_PERp	and Table 17-9
(c)	PCI Express Differential	PEX_REFCLKn,	Refer to Table 17-7
	Clock Input	PEX_REFCLKp	and Table 17-10

Table 17-5. Signal Group USB Analog Interface

Signal Group	Signal Type	Signals	Notes
(d)	SuperSpeed USB r3.0 Output (Transmit)	USB_TXM, USB_TXP	Refer to Table 17-7 and Table 17-8
(e)	SuperSpeed USB r3.0 Input (Receive)	USB_RXM, USB_RXP	Refer to Table 17-7 and Table 17-9
(f)	USB r2.0 Input/Output	USB_DM, USB_DP	Refer to Table 17-7 and Table 17-10
(g)	External Reference Resistor	USB_RREF	$1.6K\Omega \pm 1\%$, and refer to Table 17-7

Signal Group	Signal Type	Signals	Note
(h)	Digital Input	CPU_RXD, USB_VBUS	Refer to Table 17-7
(i)	Digital Output	CPU_TXD, EE_WRDATA/EE_DI, PROCMON	Refer to Table 17-7
(j)	Digital Input with Internal 50KΩ Pull-Up Resistor ^a	PEX_PERST#, PWRON_RST#, STRAP_DEBUG_SEL#, STRAP_LEGACY, STRAP_PLL_BYPASS#, STRAP_PROBE_MODE#, STRAP_SERDES_MODE_EN#, STRAP_SSC_CENTER#, STRAP_TESTMODE[3, 1], STRAP_UPCFG_TIMER_EN#	Refer to Table 17-7
(k)	Digital Input with Internal 50KΩ Pull-Down Resistor	STRAP_RC_MODE, STRAP_TESTMODE[2, 0]	Refer to Table 17-7
(1)	Bidirectional I/O Buffer, 3.3V, with Internal 50KΩ Pull-Up Resistor	EE_CS#, EE_RDDATA/EE_DO, EE_CLK/ EE_SK, GPIO[3:1], LANE_GOOD#	Refer to Table 17-7
(m)	Bidirectional (Open Drain) with Internal 50KΩ Pull-Up Resistor	WAKE#	Refer to Table 17-7
(n)	Manufacturing Test Input with Internal Pull-down Resistor	MFG_AMC, MFG_TAPEN, MFG_TMC1, MFG_TMC2	Refer to Table 17-7
(0)	External Crystal Oscillator Input	XTAL_IN	Refer to Table 17-7
(p)	External Crystal Oscillator Output	XTAL_OUT	Refer to Table 17-7

Table 17-6. Signal Group Digital Interface

a. These signals must be pulled High to VDD_IO or Low to Ground, per the instructions provided in Section 2.4, "Signal Pin Descriptions."

Table 17-7.	7. Analog and Digital Interfaces (All Signal Groups) – DC E	lectrical Characteristics
-------------	---	---------------------------

Symbol	Signal Group(s)	Parameter	Min	Тур	Мах	Unit	Conditions
I _{OL}	i, l	Output Low Current at 3.3V	6.0	11.1	14.9	mA	$V_{OL} = 0.4 V$
I _{OH}	i, l	Output High Current at 3.3V	6.0	17.3	28.2	mA	$V_{OH} = 2.4 V$
V _{IL}	h, l	Input Low Voltage at 3.3V	-0.3		0.8	V	
V _{IH}	h, l	Input High Voltage at 3.3V	2.0		3.6	V	
C _{PIN}		Ball Capacitance			5	pF	
I _{LEAKAGE}		Input Leakage			±10	μΑ	
R _{PU}	1	Pull-Up Impedance	33.6K	50K	69.3K	Ω	
R _{PD}	1	Pull-Down Impedance	33.5K	50K	69.4K	Ω	

Symbol	Parameter	2.5 GT/s	5.0 GT/s	Units	Comments
UI	Unit Interval	399.88 (min) 400.12 (max)	199.94 (min) 200.06 (max)	ps	The specified UI is equivalent to a tolerance of ± 300 ppm. UI does not account for variations caused by Spread-Spectrum Clock (SSC). Refer to Note 1.
V _{TX-DIFF-PP}	Differential Peak-to-Peak Output Voltage	0.8 (min) 1.2 (max)	0.8 (min) 1.2 (max)	V	Measured with compliance test load. $V_{TX-DIFF-PP} = 2 \times V_{TX-D+} - V_{TX-D-} $
V _{TX-DIFF-PP-LOW}	Low Power Differential Peak-to-Peak Output Voltage	0.4 (min) 1.2 (max)	0.4 (min) 1.2 (max)	V	Measured with compliance test load. $V_{TX-DIFF-PP-LOW} = 2 \times V_{TX-D+} - V_{TX-D-} $ Must be implemented with no de-emphasis.
V _{TX-DE-RATIO-3.5dB}	Tx De-Emphasis Level Ratio	3.0 (min) 4.0 (max)	3.0 (min) 4.0 (max)	dB	Ratio of the $V_{TX-DIFF-PP}$ of the 2 nd and following bits after a transition, divided by the $V_{TX-DIFF-PP}$ of the 1 st bit after a transition. Refer to Note 2.
V _{TX-DE-RATIO-6dB}	Tx De-Emphasis Level Ratio	N/A	5.5 (min) 6.5 (max)	dB	Ratio of the $V_{TX-DIFF-PP}$ of the 2 nd and following bits after a transition, divided by the $V_{TX-DIFF-PP}$ of the 1 st bit after a transition. Refer to Note 2.
T _{MIN-PULSE}	Instantaneous Pulse Width (including all jitter sources)	Not specified	0.9 (min)	UI	Measured relative to rising/falling pulse. Refer to Note 3.
T _{TX-EYE}	Minimum Tx Eye Width	0.75 (min)	0.75 (min)	UI	Does not include SSC nor REFCLK jitter. Includes Rj at 10^{-12} . Refer to Notes 3 and 4.
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum Time between the Jitter Median and Maximum Deviation from the Median	0.125 (max)	Not specified	UI	Measured differentially at zero crossing points, after applying the 2.5 GT/s Clock Recovery function. Refer to Note 3.
T _{TX-HF-DJ-DD}	Tx Deterministic Jitter > 1.5 MHz	Not specified	0.15 (max)	UI	Deterministic jitter only. Refer to Note 3.
T _{TX-LF-RMS}	Tx RMS Jitter < 1.5 MHz	Not specified	3.0	ps RMS	Total energy measured over a 10-kHz to 1.5-MHz range.
T _{TX-RISE-FALL}	Tx Rise and Fall Time	0.125 (min)	0.15 (min)	UI	Measured differentially from 20 to 80% of swing. Refer to Note 3.
T _{RF-MISMATCH}	Tx Rise/Fall Mismatch	Not specified	0.1 (max)	UI	Measured from 20 to 80% differentially. Refer to Note 3.

Table 17-8.2.5 and 5.0 GT/s PCI Express Transmitter (Signal Group a) –AC and DC Characteristics

Table 17-8.2.5 and 5.0 GT/s PCI Express Transmitter (Signal Group a) –AC and DC Characteristics (Cont.)

Symbol	Parameter	2.5 GT/s	5.0 GT/s	Units	Comments
BW _{TX-PLL}	Maximum Tx PLL Bandwidth	22 (max)	16 (max)	MHz	Second Order PLL Jitter Transfer Bounding function. Refer to Note 5.
BW _{TX-PLL-LO-3DB}	Minimum Tx PLL Bandwidth for 3-dB Peaking	1.5 (min)	8 (min)	MHz	
BW _{TX-PLL-LO-1DB}	Minimum Tx PLL Bandwidth for 1-dB Peaking	Not specified	5 (min)	MHz	Second Order PLL Jitter Transfer Bounding function. Refer to Notes 5 and 7.
PKG _{TX-PLL1}	TX PLL Peaking with 8-MHz Minimum Bandwidth	Not specified	3.0 (max)	dB	
PKG _{TX-PLL2}	TX PLL peaking with 5-MHz Minimum Bandwidth	Not specified	1.0 (max)	dB	Refer to Note 7.
RL _{TX-DIFF}	TX Differential Return Loss (Package + Silicon)	10 (min)	10 (min) for 0.05 to 1.25 GHz 8 (min) for 1.25 to 2.5 GHz	dB	
RL _{TX-CM}	TX Common Mode Return Loss (Package + Silicon)	6 (min)	6 (min)	dB	S ₁₁ parameter. 2.5 GT/s – Measured over 0.05- to 1.25-GHz range. 5.0 GT/s – Measured over 0.05- to 2.5-GHz range.
Z _{TX-DIFF-DC}	DC Differential Tx Impedance	80 (min) 120 (max)	120 (max)	Ω	Tx DC Differential mode low impedance. Parameter is captured for 5.0 GHz by $RL_{TX-DIFF}$.
V _{TX-CM-AC-PP}	Tx AC Common Mode Voltage (5.0 GT/s)	Not specified	100 (max)	mVPP	Refer to Note 6.
V _{TX-CM-AC-P}	Tx AC Common Mode Voltage (2.5 GT/s)	20 (max)	Not specified	mVPP	Refer to Note 6.
I _{TX-SHORT}	Tx Short Circuit Current Limit	90 (max)	90 (max)	mA	Total current the Transmitter can provide when shorted to its ground.
V _{TX-DC-CM}	Tx DC Common Mode Voltage	0 (min) 3.6 (max)	0 (min) 3.6 (max)	V	Allowed DC common mode voltage, under any conditions.

Symbol	Parameter	2.5 GT/s	5.0 GT/s	Units	Comments
V _{TX-CM-DC-ACTIVE-} IDLE-DELTA	Absolute Delta of DC Common Mode Voltage during L0 Link PM state and Electrical Idle	0 (min) 100 (max)	0 (min) 100 (max)	mV	$ \begin{array}{l} \left V_{TX-CM-DC} \left[during \mbox{L0} \right] - V_{TX-CM-Idle-DC} \right. \\ \left[during \mbox{Electrical Idle} \right] \left \le 100 \mbox{ mV} \right. \\ \left. V_{TX-CM-DC} = \mbox{DC}_{(avg)} \mbox{ of } \right. \\ \left V_{TX-D+} + V_{TX-D-} \right \ / \ 2 \ \mbox{[L0]} \\ \left. V_{TX-CM-Idle-DC} = \mbox{DC}_{(avg)} \mbox{ of } \right. \\ \left V_{TX-D+} + V_{TX-D-} \right \ / \ 2 \\ \left. \mbox{[Electrical Idle]} \end{array} $
V _{TX} -cm-dc-line- delta	Absolute Delta of DC Common Mode Voltage between D+ and D-	0 (min) 25 (max)	0 (min) 25 (max)	mV	$ \begin{split} & \left V_{\text{TX-CM-DC-D+}} - V_{\text{TX-CM-DC-D-}} \right \ \leq \ 25 \ \text{mV} \\ & V_{\text{TX-CM-DC-D+}} = \ \text{DC}_{(\text{avg})} \ \text{of} \ \left V_{\text{TX-D+}} \right \\ & V_{\text{TX-CM-DC-D-}} = \ \text{DC}_{(\text{avg})} \ \text{of} \ \left V_{\text{TX-D-}} \right \end{split} $
V _{TX-IDLE} -DIFF-AC-p	Electrical Idle Differential Peak Output Voltage	0 (min) 20 (max)	0 (min) 20 (max)	mV	$V_{TX-IDLE-DIFFp} =$ $ V_{TX-Idle-D+} - V_{TX-Idle-D-} \le 20 \text{ mV}$ Voltage must be high-pass filtered, to remove any DC component.
V _{TX-IDLE-DIFF-DC}	DC Electrical Idle Differential Peak Output Voltage	Not specified	0 (min) 5 (max)	mV	$V_{TX-IDLE-DIFF-DC} =$ $ V_{TX-Idle-D+} - V_{TX-Idle-D-} \le 5 \text{ mV}$ Voltage must be high-pass filtered, to remove any AC component.
V _{TX-RCV-DETECT}	Amount of Voltage Change Allowed during Receiver Detection	600 (max)	600 (max)	mV	Total amount of voltage change that a Transmitter can apply, to sense whether a Low-Impedance Receiver is present.
T _{TX-IDLE-MIN}	Minimum Time Spent in Electrical Idle	20 (min)	20 (min)	ns	Minimum time a Transmitter must be in Electrical Idle. Used by the Receiver to start looking for an Electrical Idle Exit after successfully receiving an Electrical Idle Ordered-Set (EIOS).
T _{TX-IDLE-SET-} TO-IDLE	Maximum Time to Transition to a Valid Electrical Idle after Sending an Electrical Idle Ordered-Set	8 (max)	8 (max)	ns	After sending the required EIOS, the Transmitter must meet all Electrical Idle specifications within this time. This is measured from the end of the last UI of the last EIOS to the Tx in Electrical Idle.
T _{TX-IDLE-TO-} DIFF-DATA	Maximum Time to Transition to Valid Differential Signaling after Leaving Electrical Idle	8 (max)	8 (max)	ns	Maximum time to transition to valid differential signaling, after leaving Electrical Idle. This is considered a de-bounce time to the Tx.
T _{CROSSLINK}	Cross-Link Random Timeout	1.0 (max)	1.0 (max)	ms	Random timeout that helps resolve potential conflicts in the cross-link configuration.
L _{TX-SKEW}	Lane-to-Lane Output Skew	500 ps + 2 UI (max)	500 ps + 4 UI (max)	ps	Static skew between any two Lanes within a single Transmitter.
C _{TX}	AC-Coupling Capacitor	75 (min) 200 (max)	75 (min) 200 (max)	nF	All Transmitters shall be AC-coupled. The AC coupling is required either within the media, or within the transmitting component itself.

Table 17-8. 2.5 and 5.0 GT/s PCI Express Transmitter (Signal Group a) – AC and DC Characteristics (Cont.)

Notes:

- 1. SSC permits a +0, -5,000 ppm modulation of the clock frequency, at a modulation rate not to exceed 33 kHz.
- 2. Specified at the measurement point into a timing and voltage compliance test load, as illustrated in Figure 17-1.

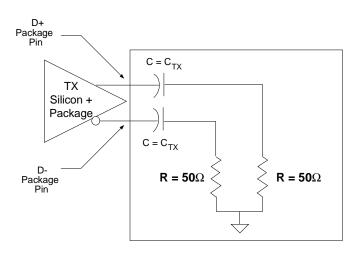


Figure 17-1. Compliance Test/Measurement Load

- 3. Measurements at 5.0 GT/s require an oscilloscope with a bandwidth of ≥12.5 GHz, or equivalent, while measurements made at 2.5 GT/s require a scope with at least 6.2 GHz bandwidth. Measurements at 5.0 GT/s must de-convolve effects of the compliance test board, to yield an effective measurement at the Tx balls. 2.5 GT/s can be measured within 200 mils of the Tx device's balls; however, de-convolution is recommended. At least 10⁶ UI of data must be acquired.
- **4.** Transmitter jitter is measured by driving the Tx under test with a low jitter "ideal" clock and connecting the device under test (DUT) to a reference load.
- 5. The Tx PLL bandwidth must lie between the minimum and maximum ranges listed in Table 17-8. PLL peaking must lie below the values listed in Table 17-8.

The PLL bandwidth extends from zero (0) up to the value(s) specified in Table 17-8.

- **6.** Measurement is made over at least 10^6 UI.
- 7. A single combination of PLL bandwidth and peaking is specified for 2.5 GT/s implementations. For 5.0 GT/s, two 20 combinations of PLL bandwidth and peaking are specified to permit designers to make a tradeoff between the two parameters. If the PLL's minimum bandwidth is \geq 8 MHz, then up to 3.0 dB of peaking is permitted. If the PLL's minimum bandwidth is relaxed to \geq 5.0 MHz, then a tighter peaking value of 1.0 dB must be met. In both cases, the maximum PLL bandwidth is 16 MHz.

Symbol	Parameter	2.5 GT/s	5.0 GT/s	Units	Comments	
UI	Unit Interval	399.88 (min) 400.12 (max)	199.94 (min) 200.06 (max)	ps	UI does not account for variations caused by SSC.	
V _{RX-DIFF-PP-CC}	Differential Rx Peak-to-Peak Voltage for Common REFCLK Rx Architecture	0.175 (min) 1.2 (max)	0.125 (min) 1.2 (max)	V	$V_{RX-DIFF-PP} = 2 \times V_{RX-D+} - V_{RX-D-} $	
T _{RX-EYE}	Receiver Eye Time Opening	0.40 (min)	N/A	UI	Minimum eye time at Rx pins to yield a 10^{-12} Bit Error Rate. Receiver eye margins are defined into a 2 x 50 Ω reference load.	
T _{RX-TJ-CC}	Maximum Rx Inherent Timing Error	N/A	0.40 (max)	UI	Maximum Rx inherent total timing error for common REFCLK Rx architecture. Refer to Note 1.	
T _{RX-DJ-DD-CC}	Maximum Rx Inherent Deterministic Timing Error	N/A	0.30 (max)	UI	Maximum Rx inherent deterministic timing error for common REFCLK Rx architecture. Refer to Note 1.	
T _{RX-EYE-MEDIAN-to-} MAX-JITTER	Maximum Time Delta between the Median and Deviation from the Median	0.3 (max)	Not specified	UI		
T _{RX-MIN-PULSE}	Minimum Width Pulse at Rx	Not specified	0.6 (min)	UI	Measured to account for worst Tj at 10 ⁻¹² Bit Error Rate.	
V _{RX-MAX-} MIN-RATIO	Minimum/ Maximum Pulse Voltage on Consecutive UI	Not specified	5 (max)	Ratio	Rx eye must simultaneously meet V _{RX-EYE} limits.	
BW _{RX-PLL-HI}	Maximum Rx PLL Bandwidth	22 (max)	16 (max)	MHz		
BW _{RX-PLL-LO-3DB}	Minimum Rx PLL Bandwidth for 3-dB Peaking	1.5 min	8 (min)	MHz		
BW _{RX-PLL-LO-1DB}	Minimum Rx PLL Bandwidth for 1-dB Peaking	Not specified	5 (min)	MHz	Second Order PLL Jitter Transfer Bounding function. Refer to Note 2.	
PKG _{RX-PLL1}	Rx PLL Peaking with 8-MHz Minimum Bandwidth	Not specified	3.0	dB		
PKG _{RX-PLL2}	Rx PLL Peaking with 5-MHz Minimum Bandwidth	Not specified	1.0	dB		

Table 17-9.2.5 and 5.0 GT/s PCI Express Receiver (Signal Group b) –AC and DC Characteristics

Table 17-9.2.5 and 5.0 GT/s PCI Express Receiver (Signal Group b) –AC and DC Characteristics (Cont.)

Symbol	Parameter	2.5 GT/s	5.0 GT/s	Units	Comments
RL _{RX-DIFF}	Rx Differential Return Loss (Package + Silicon)	10 (min)	10 (min) for 0.05 to 1.25 GHz 8 (min) for 1.25 to 2.5 GHz	dB	Refer to Note 3.
RL _{RX-CM}	Common Mode Return Loss	6 (min)	6 (min)	dB	Refer to Note 3.
Z _{RX-DC}	Rx DC Single-Ended Impedance	40 (min) 60 (max)	40 (min) 60 (max)	Ω	Required Rx D+ and D- DC impedance (50 Ω ±20% tolerance). Refer to Note 4.
Z _{RX-DIFF-DC}	DC Differential Rx Impedance	80 (min) 120 (max)	Not specified	Ω	Rx DC Differential mode impedance. Parameter is captured for 5.0 GHz by RL _{RX-DIFF} . Refer to Note 4.
V _{RX-CM-AC-P}	Rx AC Common Mode Voltage	150 (max)	150 (max)	mVP	Measured at Rx pins, into a pair of 50Ω terminations into Ground. Refer to Note 5.
Z _{RX-HIGH-IMP-} DC-POS	DC Input Common Mode Input Impedance for Voltage >0 during Reset or Power-Down	50K (min)	50K (min)	Ω	Rx DC common mode impedance with the Rx terminations not powered, measured over the range 0 to 200 mV (with respect to Ground). Refer to Note 6.
Z _{RX-HIGH-IMP-} DC-NEG	DC Input Common Mode Input Impedance for Voltage <0 during Reset or Power-Down	1.0K (min)	1.0K (min)	Ω	Rx DC common mode impedance with the Rx terminations not powered, measured over the range -150 to 0 mV (with respect to Ground). Refer to Note 6.
V _{RX-IDLE-DET-} DIFFp-p	Electrical Idle Detect Threshold	65 (min) 175 (max)	65 (min) 175 (max)	mV	$V_{RX-IDLE-DET-DIFFp-p} =$ 2 x $ V_{RX-D+} - V_{RX-D-} $ Measured at the Receiver's package pins.
T _{RX} -idle-det- diff-entertime	Unexpected Electrical Idle Enter Idle Detect Threshold Integration Time	10 (max)	10 (max)	ms	An un-expected Electrical Idle $(V_{RX-DIFFp-p} < V_{RX-IDLE-DET-DIFFp-p})$ must be recognized no longer than $T_{RX-IDLE-DET-DIFF-ENTERTIME}$ to signal an unexpected idle condition.
L _{RX-SKEW}	Total Lane-to- Lane Skew	20 (max)	8 (max)	ns	Across all Lanes on a Port. Includes variation in the length of a SKIP Ordered-Set at the Rx, as well as any delay differences arising from the interconnect itself. Refer to Note 7.

Notes:

- **1.** The four inherent timing error parameters are defined for the convenience of Rx designers, and they are measured during Receiver tolerancing.
- 2. Two combinations of PLL bandwidth and peaking are specified at 5.0 GT/s, to permit designers to make trade-offs between the two parameters. If the PLL's minimum bandwidth is ≥ 8 MHz, then up to 3.0 dB of peaking is permitted. If the PLL's minimum bandwidth is relaxed to ≥ 5.0 MHz, then a tighter peaking value of 1.0 dB must be met.

A PLL bandwidth extends from zero up to the value(s) defined as the minimum or maximum in Table 17-9. For 2.5 GT/s, a single PLL bandwidth and peaking value of 1.5 to 22 MHz and 3.0 dB are defined.

- 3. Measurements must be made for both common mode and differential return loss. In both cases, the DUT must be powered up and DC-isolated, and its D+/D- inputs must be in the low-Z state.
- **4.** The Rx DC single-ended impedance must be present when the Receiver terminations are first enabled, to ensure that the Receiver Detect occurs properly. Compensation of this impedance can start immediately, and the Rx single-ended impedance (constrained by RL_{RX-CM} to $50\Omega \pm 20\%$) must be within the specified range by the time Detect is entered.
- 5. Common mode peak voltage is defined by the expression:

 $max\{ | (Vd+ - Vd-) - V-CMDC | \}$

- 6. $Z_{RX-HIGH-IMP-DC-NEG}$ and $Z_{RX-HIGH-IMP-DC-POS}$ are defined, respectively, for negative and positive voltages at the input of the Receiver. Transmitter designers must comprehend the large difference between >0 and <0 Rx impedances when designing Receiver detect circuits.
- 7. The $L_{RX-SKEW}$ parameter exists to handle repeaters that re-generate REFCLK and introduce differing numbers of skips on different Lanes.

Symbol	Parameter	Min	Тур	Max	Unit	Notes
F _{REFCLK}	Reference Clock Frequency			100	MHz	1
V _{SW}	Differential Voltage Swing (Peak-to-Peak)	125		1,200	mV	
DC _{REFCLK}	Input Clock Duty Cycle	40		60	%	
R _{TERM}	Input Parallel Termination (Differential)		100		Ω	
VI	Input Voltage Range	-0.3		VDDA	V	
V _{IH}	Input High-Level Voltage	0.3		VDDA	V	
V _{IL}	Input Low-Level Voltage	-0.3		VDDA - 0.30	V	
V _{ID}	Input Differential Voltage	0.2		2.2	V _{PP}	
V _{CM}	Common Mode Voltage	0.25		VDDA - 0.25	V	
Z _{IN}	Differential Input Impedance	80		120	Ω	

Table 17-10. PCI Express Differential Clock Input (Signal Group c) – AC and DC Characteristics

Notes:

1. *PEX_REFCLKn/p* do not require AC coupling capacitors, when driven from a High-Speed Current Steering Logic (HCSL) source. Use with other Clock driver types (such as LVDS or LVPECL) has not been characterized.

Parameter	Parameter	Min	Тур	Max	Unit	Notes
I _{OH}	Output High-Level Current	11	14	20	mA	
I _{OL}	Output Low-Level Current	-11	-14	-20	mA	
I _{OZH}	Output High Leakage Current	-10	_	10	μΑ	
I _{OZL}	Output Low Leakage Current	-10	_	10	μΑ	

Table 17-11. PEX_REFCLKOUT – DC Electrical Characteristics

Table 17-12. PEX_REFCLKOUT – AC Electrical Characteristics

Parameter	Parameter	Min	Тур	Max	Unit	Notes
V _{OH}	High-Level Output Voltage (Single-Ended)	0.44	0.7 V	1.1	v	
V _{OL}	Low-Level Output Voltage (Single-Ended)	-0.06	0.0 V	0.04	v	
V _{CROSS}	Output Cross-Point Voltage	0.25	0.35	0.55	V	
T _{OR}	Output Rising Edge Rate	0.58	2.5	4.0	V/ns	
T _{OF}	Output Falling Edge Rate	0.58	2.5	4.0	V/ns	
V _{MAX}	Absolute Maximum Output Voltage, Including Overshoot	_	_	1.15	v	
V _{MIN}	Absolute Minimum Output Voltage, Including Undershoot	-0.3	_	_	v	

17.7 USB Electrical Specifications

17.7.1 USB Full- and High-Speed AC/DC Specifications

Symbol	Parameter	Conditions	Waveform	Min	Мах	Units
T _{FR}	Full-Speed Rise Time	10% to 90%, $C_L = 50 \text{ pF}$	Figure 17-2 Figure 17-3	4	20	ns
T _{FF}	Full-Speed Fall Time	90% to 10%, $C_L = 50 \text{ pF}$	Figure 17-2 Figure 17-3	4	20	ns
T _{FRFM}	Differential Rise and Fall Time Matching	(T_{FR} / T_{FF}) , Refer to Note 10	Figure 17-2 Figure 17-3	90	110	%
Z _{DRV}	Driver Output Resistance	Steady-State Drive		10	15	Ω
T _{FDRATHS}	Full-Speed Data Rate			11.994	12.006	Mbps
T _{DJ1}	Source Differential Driver Jitter to Next Transition	Refer to Notes 7, 8, 10, 12	Figure 17-4	-2	2	ms
T _{DJ2}	Source Differential Driver for Paired Transitions	Refer to Notes 7, 8, 10, 12	Figure 17-4	-1	1	ms
T _{FDEOP}	Source Jitter for Differential Transition to SE0 Transition	Refer to Notes 8, 11	Figure 17-5	-2	5	ms
T _{JR1}	Receiver Data Jitter Tolerance to Next Transition	Refer to Note 8	Figure 17-6	-18.5	18.5	ns
T _{JR2}	Receiver Data Jitter Tolerance for Paired Transitions	Refer to Note 8	Figure 17-6	-9	9	ns
T _{FEOPT}	Source SE0 Interval of EOP		Figure 17-5	160	175	ns
T _{FEOPR}	Receiver SE0 Interval of EOP	Refer to Note 13	Figure 17-5	82		ns
T _{FST}	Width of SE0 Interval during Differential Transition			14		ns

Table 17-13. USB Full-Speed AC Specifications (Signal Group f)

Table 17-14.	USB Full-Speed DC Specifications (Signal Group f)
--------------	---

Symbol	Parameter	Conditions	Min	Max	Units
V _{IH}	Input High Level (Driven)	Refer to Note 4	2.0		V
V _{IHZ}	Input High Level (Floating)	Refer to Note 4	2.7	3.6	V
V _{IL}	Input Low Level	Refer to Note 4		0.8	V
V _{DI}	Differential Input Sensitivity	(D+) - (D-)	0.2		V
V _{CM}	Differential Common Mode Range	Includes VDI range	0.8	2.5	v
V _{OL}	Output Low Level	Refer to Notes 4, 5	0.0	0.3	v
V _{OH}	Output High Level (Driven)	Refer to Notes 4, 6	2.8	3.6	V
V _{SE1}	Single-Ended One		0.8		V
V _{CRS}	Output Signal Crossover Voltage	Refer to Note 10	1.3	2.0	v
C _{IO}	I/O Capacitance	Pin to Ground		20	pF

Symbol	Parameter	Conditions	Min	Max	Units	
T _{HSR}	High-Speed Rise Time	10% to 90%	500		ps	
T _{HSF}	High-Speed Fall Time	90% to 10%	500		ps	
	Driver Waveform Requirements	Specified by eye pattern template. Refer to the USB r2.0, Figure 7-17 (Template 5)				
Z _{DRV}	Driver Output Resistance	Steady-State Drive	10	15	Ω	
T _{HSDRV}	High-Speed Data Rate		479.760	480.240	Mbps	
	Data Source Jitter	Source and receiver jitter specified by eye pattern t		battern temp	lates	
	Receiver Jitter Tolerance	in the USB r2.0,	2.2			

Table 17-15. USB High-Speed AC Specifications (Signal Group f)

Table 17-16. USB High-Speed DC Specifications (Signal Group f)

Symbol	Parameter	Conditions	Min	Max	Units
V _{HSSQ}	High-Speed Squelch Detection Threshold (Differential Signal Amplitude		100	150	mV
V _{HSDSC}	High-Speed Disconnect Detection Threshold (Differential Signal Amplitude)		525	625	mV
V _{HSCM}	High-Speed Data Signalling Common Mode Voltage Range		-50	500	mV
V _{HSOI}	High-Speed Idle Level		-10	10	mV
V _{HSOH}	High-Speeed Data Signalling High		360	440	mV
V _{HSOL}	High-Speed Data Signalling Low		-10	10	mV
V _{CHRIPJ}	Chirp J Level (Differential Voltage)		700	1100	mV
V _{CHIRPK}	Chirp K Level (Differential Voltage)		-900	-500	mV
C _{IO}	I/O Capacitance	Pin to Ground		20	pF

17.7.1.1 USB High/Full Speed AC/DC Specification Notes

The following notes are referenced by the tables provided in Section 17.7.1.

Notes:

- **1.** *Measured at A plug.*
- 2. Measured at A receptacle.
- **3.** *Measured at B receptacle.*
- 4. Measured at A or B connector.
- 5. Measured with R_L of 1.425K Ω to 3.6V.
- **6.** Measured with R_L of 14.25K Ω to Ground.
- 7. Timing difference between the Differential Data signals.
- 8. Measured at the crossover point of the Differential Data signals.
- **9.** The maximum load specification is the maximum effective capacitive load allowed that meets the Target hub VBUS drop of 330 mV.
- **10.** Excluding the first transition from the Idle state.
- **11.** *The two transitions should be a (nominal) bit time apart.*
- 12. For both transitions of differential signaling.
- 13. Must accept as a valid EOP.
- **14.** Single-ended capacitance of D+ or D- is the capacitance of D+/D- to all other conductors and, if present, shield in the cable. That is, to measure the single-ended capacitance of D+, short D-, VBUS, Ground, and the shield line together and measure the capacitance of D+ to other conductors.
- **15.** For high-power devices (non-hubs), when enabled for Remote Wakeup.

17.7.2 USB Full-Speed Port AC Waveforms

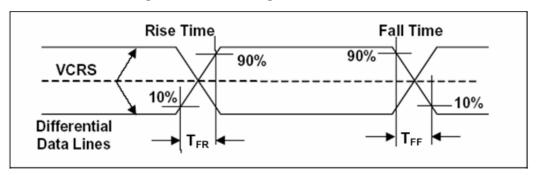


Figure 17-2. Data Signal Rise and Fall Time

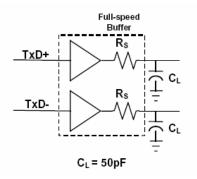
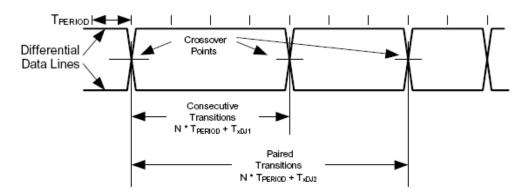



Figure 17-4. Source Differential Driver Jitter

USB 3380-AA/AB PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller Data Book, v1.3 Copyright © 2012 by PLX Technology, Inc. All Rights Reserved

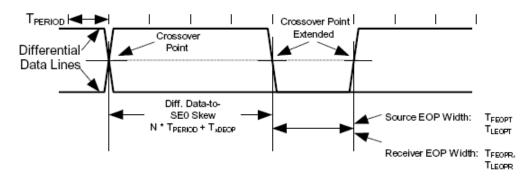
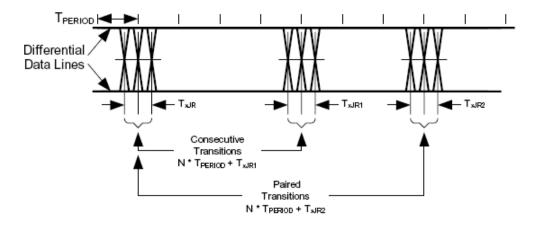



Figure 17-5. Differential to EOP Transition Skew and EOP Width

17.7.3 SuperSpeed USB Interface Specifications

The USB 3380 SuperSpeed USB interface is conformant to the USB r3.0. (Refer to the USB r3.0 for further details.)

Table 17-17. SuperSpeed USB Transmitter Normative Electrical Parameters at 5.0 GT/s (Signal Group d)

Symbol	Parameter	Min	Max	Units	Comments
UI	Unit Interval	199.94	200.06	ps	The specified UI is equivalent to a tolerance of ± 300 ppm for each device. Period does not account for SSC-induced variations.
V _{TX-DIFF-PP}	Differential p-p Tx Voltage Swing	0.4	1.2	V	Nominal is 1V p-p.
V _{TX-DIFF-PP-LOW}	Low-Power Differential p-p Tx Voltage Swing	0.4	1.2	V	Refer to the <i>USB r3.0</i> , Section 6.7.2. There is no de-emphasis requirement in this mode. De-emphasis is implementation-specific for this mode.
V _{TX-DE-RATIO}	Tx De-Emphasis	3.0	4.0	dB	Nominal is 3.5 dB.
R _{TX-DIFF-DC}	DC Differential Impedance	80	120	Ω	
V _{TX-RCV-DETECT}	Amount of Voltage Change Allowed during Receiver Detection	N/A	0.6	V	Detect voltage transition should be an increase in voltage on the pin looking at the Detect signal, to avoid a high-impedance requirement when an "off" Receiver's input goes below ground.
C _{AC-COUPLING}	AC Coupling Capacitance	75	200	nF	All Transmitters should be AC-coupled. The AC coupling is required either within the media or within the transmitting component itself.
T _{CDR_SLEW_MAX}	Maximum Slew Rate		10	ms/s	

Symbol	Parameter	Min	Max	Units	Comments	
t _{MIN-PULSE-DJ}	Deterministic Minimum Pulse	0.96		UI	Tx pulse width variation that is deterministic.	
t _{MIN-PULSE-TJ}	Tx Minimum Pulse	0.90		UI	Minimum Tx pulse at 10 ⁻¹² , including Dj and Rj.	
t _{TX-EYE}	Transmitter Eye	0.625		UI	Includes all jitter sources.	
t _{TX-DJ-DD}	Tx Deterministic Jitter		0.205	UI	Deterministic jitter only assuming the Dual Dirac distribution.	
C _{TX-PARASITIC}	Tx Input Capacitance for Return Loss		1.25	pF	Parasitic capacitance to Ground.	
R _{TX-DC}	Transmitter DC Common Mode Impedance	18	30	Ω	DC impedance limits to guarantee receiver detect behavior. Measured with respect to AC Ground over a voltage of 0 to 500 mV.	
I _{TX-SHORT}	Transmitter Short-Circuit Current Limit		60	mA	Total current that the Transmitter can source when shorted to Ground.	
V _{TX-DC-CM}	Transmitter DC Common Mode Voltage	0	2.2	v	Instantaneous allowed DC common-mode voltages at the USB connector side of the AC-coupling capacitors.	
V _{TX-CM-AC-} PP_ACTIVE	Tx AC Common Mode Voltage Active		100	mV _{p-p}	Maximum mismatch from Txp + Txn for both time and amplitude.	
V _{TX-CM-DC-} ACTIVE-IDLE- DELTA	Absolute DC Common Mode Voltage between U1 and U0		200	mV		
V _{TX-IDLE-DIFF-} AC-pp	Electrical Idle Differential Peak-to-Peak Output Voltage	0	10	mV		
V _{TX-IDLE-DIFF-DC}	DC Electrical Idle Differential Output Voltage	0	10	mV	Voltage must be low-pass filtered to remove any AC component. This limits the Common Mode error when resuming U1 to U0.	
T_SDD22	Differential Output Return Loss		-8	dB		
T_SCC22	Common Mode Return Loss		-6	dB		

Table 17-18. SuperSpeed USB Transmitter Informative Electrical Parameters at 5.0 GT/s (Signal Group d)

	_				
Symbol	Parameter	Min	Max	Units	Comments
UI	Unit Interval	199.94	200.06	ps	UI does not account for SSC-induced variations.
R _{RX-DC}	Receiver DC Common Mode Impedance	18	30	Ω	DC impedance limits are needed to guarantee Receiver detect. Measured with respect to ground over a voltage of 500-mV maximum.
R _{RX-DIFF-DC}	DC Differential Impedance	80	120	Ω	
Z _{RX-HIGH-IMP-} DC-POS	DC Input Common Mode Input Impedance for V>0 during Reset or Power-Down	25		KΩ	Rx DC common mode impedance with the Rx terminations not powered, measured over the range 0 to 500 mV, with respect to Ground. Refer to Note 1.
V _{RX-LFPS-DET-} DIFFp-p	LFPS Detect Threshold	100	300	mV	Below the minimum, is noise. Must wakeup above the maximum.

Table 17-19. SuperSpeed USB Receiver Normative Electrical Parameters at 5.0 GT/s (Signal Group e)

Notes:

1. Only DC input CM input impedance for V > 0 is specified. DC input CM input impedance for V < 0 is not guaranteed, and could be as low as 0Ω

Table 17-20.	SuperSpeed USB Receiver Informative Electrical Parameters at 5.0 GT/s
	(Signal Group e)

Symbol	Parameter	Min	Max	Units	Comments
V _{RX-DIFF-PP-} POST-EQ	Differential Rx Peak-to-Peak Voltage	30		mV	Measured after the Rx EQ function. Refer to the USB r3.0, Section 6.8.2.
t _{RX-TJ}	Max Rx Inherent Timing Error		0.45	UI	Measured after the Rx EQ function. Refer to the <i>USB r3.0</i> , Section 6.8.2.
t _{RX-DJ-DD}	Max Rx Inherent Deterministic Timing Error		0.285	UI	Maximum Rx inherent deterministic timing error.
R_TJ	Total Jitter		0.46	UI	
C _{RX-PARASITIC}	Rx Input Capacitance for Return Loss		1.1	pF	
V _{RX-CM-AC-P}	Rx AC Common Mode Voltage		150	mV peak	Measured at Rx pins into a pair of 50Ω terminations into Ground. Includes Tx and channel conversion, AC range up to 5 GHz.
V _{RX-CM-DC-} ACTIVE-IDLE- DELTA_P	Rx AC Common Mode Voltage during the U1 to U0 Transition		200	mV peak	Measured at Rx pins into a pair of 50Ω terminations into Ground. Includes Tx and channel conversion, AC range up to 5 GHz.

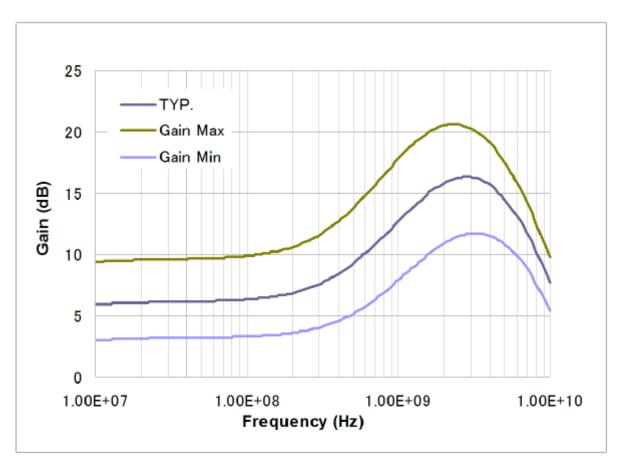


Figure 17-7. 720700 EQ Transfer Function (EQ=2)

THIS PAGE INTENTIONALLY LEFT BLANK.

Chapter 18 Thermal and Mechanical Specifications

18.1 Thermal Characteristics

Table 18-1 lists sample thermal data for the USB 3380 at Industrial temperature (ambient temperature from -40 to $+85^{\circ}$ C).

Table 18-1. Sample Thermal Data^a

⊖ _{JA} (°C/W)			Psi _{jt} b (°C/W)	^{. Ө} лс (°С/W)	
0 m/s	1 m/s	2 m/s	(C/W)	(0/11)	
24.3	19.6	18.4	0.08	4.9	

- a. Heat flow path (estimated):
 - *Heat dissipated from PCB 80%*
 - *Heat dissipated from package top* -8%
 - *Heat dissipated from others 12%*
- b. Junction-to-top-bottom thermal characterization parameter. Used for estimating the junction temperature, by measuring TT in an actual environment.

$$Psi_{jt} = (TJ - TT) / PH$$

where:

- *TT* = *Temperature at the bottom-center of the package*
- *PH* = *Power dissipation*
- *TJ* = *Junction temperature*

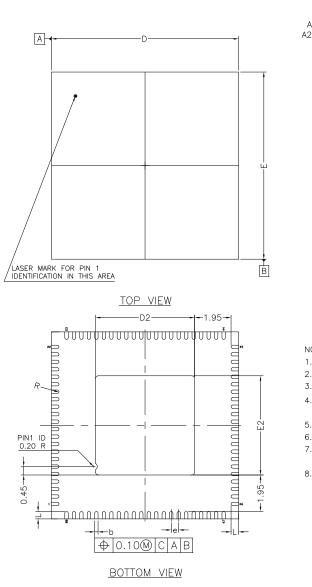

18.2 General Package Specifications

Table 18-2 lists general package specifications. For a more complete list, refer to Figure 18-1.

Table 18-2. General Package Specifications

Parameter	Specification		
Package Type	QFN		
Quantity of Pins	88		
Package Dimensions	10 x 10 mm ²		
Thermal Ground	$5.30 \text{ x} 5.30 \text{ mm}^2 \pm 0.10 \text{ Center pad}$		
Height	0.85 mm ±0.05 mm		
Pitch	0.40 mm		

18.3 Mechanical Dimensions

Figure 18-1. Mechanical Dimensions (10 x 10 mm² QFN Package)

A A3 A1 0.10 0.10 0.10 0.10
SIDE VIEW

SYMBOL	MIL	LIMETE	R	INCH			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.80	0.85	0.90	0.031	0.033	0.035	
A1	0.00	0.025	0.05	0.000	0.001	0.002	
A2	0.60	0.65	0.70	0.024	0.026	0.028	
A3	0.203 REF.			0.008 REF.			
b	0.13	0.18	0.23	0.005	0.007	0.009	
D	10.00 bsc			0.394 bsc			
D2	5.20	5.30	5.40	0.205	0.209	0.213	
Е	10.00 bsc			0.394 bsc			
E2	5.20 5.30		5.40	0.205	0.209	0.213	
L	0.30	0.40	0.50	0.012	0.016	0.020	
е	0.40 bsc			0.016 bsc			
R	R 0.065			0.003			
TOL	0110			I AND POSITION			
aaa				0.004			
bbb				0.004			
ссс		0.05			0.002		

* CONTROLLING DIMENSION : MM

NOTES : 1.ALL DIMENSIONS ARE IN MILLIMETERS.

2.DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM(.012 INCHES MAXIMUM) 3.DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. -1994.

4.THE PIN #1 IDENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE

PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY. 5.EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.

6.PACKAGE WARPAGE MAX 0.08 mm.

7.APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.

8.APPLIED ONLY TO TERMINALS.

Appendix A General Information

A.1 Product Ordering Information

Contact your local <u>PLX Sales Representative</u> for ordering information.

Table A-1. Product Ordering Information

Part Numbers	Description	
USB3380-AA50NI G USB3380-AB50NI G	USB 3380 PCI Express Gen 2 to USB 3.0 SuperSpeed Peripheral Controller, 10 x 10 mm ² 88-pin QFN package	
where	USB-USB Express Product Family3380-Part NumberAA, AB-Silicon Revision50-Signaling Rate (5.0 GT/s)N-QFN PackageI-Industrial Temperature (if available)G-Lead-Free, ROHS 6/6- and Green-compliant Packaging (if available)	
USB3380-AA EVK	USB 3380 Rapid Development Kit, configured as PCI Express x1 Add-in Card	
USB3380-AA EVK-RC USB3380-AB EVK-RC	USB 3380 Rapid Development Kit, configured as PCI Express x1 Root Complex	

A.2 United States and International Representatives and Distributors

PLX Technology, Inc., representatives and distributors are listed at www.plxtech.com.

A.3 Technical Support

PLX Technology, Inc., technical support information is listed at <u>www.plxtech.com/support</u>, or call 800 759-3735 (domestic only) or 408 774-9060.