

**Product Brief** 

# **Key Features**

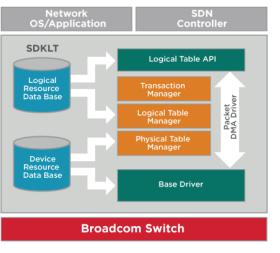
- Data-driven modular architecture
- Table-based programming
- Logical tables APIs
- Consistent and simple set of APIs
- Reliable Warmboot and ISSU
- Asynchronous API operations
- Batched or Atomic transactions
- Transaction rollback
- API execution replay for debug

# Key Benefits

- Ease-of-use
- Rapid development time
- Operational flexibility
- Faster configuration and boot time
- Ability to batch entry operations
- Monitoring of resource usage
- Packet I/O performance
- Easy to bug with relevant debug information

# SDKLT: Logical Table-Based Switch Development Kit

# Easy-to-Use, High Performance, Flexible, and Open


#### Description

Switch Development Kit Logical Tables (SDKLT) is purpose-built to support a data-driven programming model for next generation data centers and service providers.

The SDKLT supports table-based programming using Logical Table APIs, which support the new generation of switch programming models.

- Flexibility of the user to implement the device functions.
- Visibility into physical device resource usage.
- Ability to update multiple physical tables in a single transaction.

#### SDKLT Architectural Diagram



#### SDKLT Architecture

The SDKLT architecture shown in the figure above consists of several functional blocks that handle the operations associated with the Logical Table APIs as they are executed.

- Logical Table APIs (LT-APIs): Simple APIs enable access to logical tables.
- Transaction Manager (TRM): Parses logical table APIs and facilitates them as specified to the Logical Table Manager (LTM) or cache. It helps support sync, async APIs and batched or atomic transactions.
- Logical Table Manager (LTM): Manages logical table entry operations, and communicates with the Physical Table Manager.
- Physical Table Manager (PTM): Receives requests from the LTM, converts them into device-specific register/memory format.
- Base driver: Contains the driver for the internal I/O to program the chip.
- Packet DMA driver: Supports CMIC packet I/O.

# SDKLT Architecture (continued)

- Logical Resource Data Base (LRDB): Contains all the data necessary for logical tables and their mappings.
- Device Resource Data Base (DRDB): Contains information about device memories, registers, and embedded processor elements.

#### End-User Experience

- Simplified and reduced set of consistent APIs.
- APIs enable structured programming and code reuse.
- Common terminology between the hardware and software.
- Improved debug with diag-shell access to all logical and physical tables, event logging, playback, and history
- Common error handlers with relevant information.

### Usage Flexibility

- LT-APIs provide flexible access to any logical table.
- LT-APIs remain the same regardless of the tables or device.

The resource manager allows the user to query per-table capacity.

Transactions enable multiple table-entry operations to be combined or batched into a single transaction. Transactions can be atomic (all or none) or simple batches of table operations. Table operation ordering is preserved within a transaction.

Applications can register to receive asynchronous notification for any table update. Reliable In-Service Software Upgrade (ISSU) recovery is inherent in the database-driven programming model. The recovery of data structures after Warmboot is a very reliable, robust, warm-boot operation.

# Performance Optimization

Improved table update performance is enabled by software-modeled access to most physical tables and pipelined posted writes to the hardware. Lockless and lightweight SDK packet processing result in high packet I/O performance. Both asynchronous and synchronous API transactions can be used resulting in operational performance.

#### Data-Driven Modular Architecture

Support for devices and features is provided through a modular infrastructure. The devices and features reside in data files contained within the LRD and DRD. Features are implemented in a modular fashion across devices.

APIs are simple, uniform table management primitives across all devices. Table-based APIs are offered to manage devices and features. This results in faster configuration and boot time.

# Summary

The logical table-based SDKLT is a new approach in configuring switch devices that are architected around a data-driven programming model. It provides a complete solution for a scalable and modular development environment that benefits ease-of-use, programming flexibility, and performance optimization.



#### Visit the Broadcom website at: www.broadcom.com/products

Broadcom, the pulse logo, Connecting everything, the A logo, and Avago Technologies are among the trademarks of Broadcom. Copyright © 2018 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit **www.broadcom.com**. SDKI T-PBI00 012918