

Brocade[®] Fabric OS[®] Extension User Guide, 8.2.x

User Guide 19 April 2021

Table of Contents

Copyright Statement	9
Introduction	10
About This Document	10
Supported Hardware and Software	
Contacting Technical Support for Your Brocade $^{\circ}$ Product	10
Document Feedback	11
Extension Concepts and Features	12
Brocade Extension Concepts	12
Extension Trunks, Tunnels, Circuits, and Interfaces	13
VE_Ports and VEX_Ports	14
Gigabit Ethernet Interfaces	15
Ethernet Interfaces	15
Virtual Circuits and Tunnels	16
FCIP Extension	17
IP Extension	
Extension Trunking	20
Redundancy and Fault Tolerance	20
Failover Circuits and Groups	20
Spillover Circuits	
Service-Level Agreement	21
Considerations for Multiple Tunnel Use with Protocol Optimization	21
IP WAN Network Considerations	22
IP LAN Network Considerations	22
Extension Hot Code Load	
Extension HCL Operation	
Extension HCL Limitations and Considerations	
Extension HCL Enhancements in Fabric OS 8.2.X	26
Fibre Channel SAN Considerations	27
Adaptive Rate Limiting	
Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade Support for ARL	
Brocade FX8-24 Blade Support for the ARL Backoff Algorithm	
FSPF Link Cost Calculation with Rate Limiting	
ARL Considerations	
Compression Options	
Compression Options for the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade	
Compression Options for the Brocade FX8-24 Blade	31

FastWrite and Open Systems Tape Pipelining	31
FICON Acceleration	
VM Insight	33
NVMe Support over Extension	
IP Security Encryption	
IPsec for Extension Switches and Blades	
Limitations Using IPsec over Tunnels	
IPv6 Addressing	
Memory Use Limitations for Large-Device Tunnel Configurations	
Control Blocks Created during FCP Traffic Flows	
Control Blocks Created during FICON Traffic Flows	
Considerations for Tunnel Control Block Memory and Device Configuration	40
Firmware Downloads	42
Extension Platforms and Features	43
Overview of Extension Platforms and Features	
Overview of Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade	45
Brocade 7840 Switch Ports	
Brocade 7810 Switch Ports	
Brocade SX6 Blade Ports	48
Ethernet Port Groups	
Fibre Channel Port Groups	
Network DP Components	51
10VE and 20VE Port Distribution	54
10GbE and 40GbE Port and Circuit Considerations	54
Brocade 7840 Switch License Options	55
Brocade 7810 Switch License Options	55
Brocade SX6 License Options	
Brocade FX8-24 Blade Overview	56
Brocade FX8-24 Blade Operating Modes	57
Brocade FX8-24 Blade Data Processor Complexes	57
Removing the Brocade FX8-24 Blade	57
Brocade FX8-24 Blade License Options	58
Brocade FX8-24 Blade Multi-Gigabit Circuits	58
Crossports and Failover	59
Bandwidth Allocation and Restrictions	59
Front-End and Back-End Bandwidth	59
Calculating Back-End Bandwidth	60
Calculating Front-End Bandwidth	60
Calculating Crossport Bandwidth	60
ARL Limits	61

Failover Circuits and Groups	61
Bandwidth Allocation Example	61
Tunnel and Circuit Requirements for Brocade Extension Platforms	
Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade Requirements	62
Brocade FX8-24 Blade Requirements	64
Brocade IP Extension	65
Tunnels and Hybrid Mode	
Out-of-Order Delivery on a Tunnel	
IP Extension and Traffic Control Lists	
Nonterminated TCL	70
IP Extension and QoS	70
IP Extension and Compression	
IP Extension and IP LAN Deployment	71
IP Extension Limitations and Considerations	73
Extension Platform and L2 Protocols	
Trunking on LAN Ports Using LACP	
Neighbour Discovery on GbE Ports using LLDP	
The KAP Support for LACP and LLDP	
Upgrade and Downgrade Considerations for LAG and LLDP	
Extension Hot Code Load for the Brocade 7840 Switch and the Brocade SX6 Blade	
Path MTU Discovery	
Circuit Failover	
Circuit Failover Grouping	
Circuit Failover Considerations and Limitations	
Examples of Circuit Failover in Groups	
Bandwidth Calculation during Failover	
10GbE Lossless Link Loss (FX8-24 Blade)	
Circuit Spillover	
Understanding Circuit Spillover Utilization	
Circuit Spillover Considerations	
Service-Level Agreement	
Configuring Extension Features	
Configuration Overview	
Configuration Prerequisites	
Configuring Platform Modes	
Configuring FCIP or Hybrid Mode	
Configuring VE Mode	
Clearing the Brocade SX6 Blade Configuration	
Configuring GE Mode on the Brocade 7810 Switch	
Configuring GbE Mode on the Brocade FX8-24 Blade	

Configuring VEX_Ports on the Brocade FX8-24 Blade	94
Configuring Port Speed	94
Configuring Layer 2 Protocols	95
Configuring Global LLDP Parameters	95
Configuring and Activating an LLDP Profile for a Group of Ports	96
Configuring Static and Dynamic LAGs Using LACP	
Configuring IPIF and IP	
Configuring IPIF	100
Configuring IP Route	103
Configuring VLANs	104
Verifying IP Connectivity	
Configuring a Service-Level Agreement	106
Configuring IPsec	110
Configuring IPsec on the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade	111
IPsec IKE Authentication Failures	115
Configuring IPsec on the Brocade FX8-24 Blade	116
Brocade FX8-24 Blade Authentication Tag Error Monitor	117
Configuring Extension Tunnels for FCIP	118
Configuring VE_Ports to Persistently Disable	118
Configuring Tunnels	120
Keep-Alive Timeout Values for Different FC Protocols	122
Configuring Emulation Features on Tunnels	124
Configuring Compression Options	
Configuring WAN on Tunnels	126
Configuring ARL	126
Configuring QoS Priorities over a Tunnel	128
Modifying QoS Default Priority Values on a Brocade FX8-24 Blade	131
Configuring DSCP	132
Configuring Layer 2 Class of Service	133
Configuring Both DSCP and Layer 2 Class of Service	133
Configuring Failover	134
Active-Active Configuration	
Active-Passive Configuration	135
Configuring Failover Groups	
Configuring Spillover	138
Configuring VE_Ports to Persistently Enable	140
Verifying Tunnel Configuration	
Configuring Extension Hot Code Load	144
Configuring DP Complexes and eHCL Tunnels	
Configuring IP Extension	149

Configuration Steps for IP Extension Features	
Configuring Hybrid Mode for IP Extension Features	151
Configuring an IP interface for IP Extension	
Configuring a WAN IP Route for IP Extension	152
Configuring a Tunnel to Support IP Extension	
Configuring Bandwidth Distribution	
Configuring a LAN IP Route for IP Extension and Policy-Based Routing	
Configuring Tunnel Compression	159
Configuring a Tunnel and Circuits for IP Extension	160
Configuring Ethernet Interfaces (GbE Port) for IP Extension LAN Features	162
Configuring a LAN Gateway (SVI) for IP Extension	
Configuring Traffic Control Lists for IP Extension	165
Configuring TCL for Multiple Tunnels	
Configuring Traffic Control Lists for a Single Tunnel	168
Configuring Traffic Control Lists for Non-Terminated traffic	170
Configuring an App-Type for a Traffic Control List	171
Example of an IP Extension Configuration	172
Configuring Brocade FX8-24 Blade Crossport Features	177
Configuring Crossports on the Brocade FX8-24 Blade	
Crossports and Failover	
Configuring Lossless Failover with Crossports on a Brocade FX8-24 Blade	179
Configuring IP Routes with Crossports	180
Configuring VLAN Tags with Crossports	181
Displaying VLAN the Tag Configuration Using the portshow vlantag Command	
Using ping with Crossports	
Using Traceroute with Crossports	182
Using Logical Switches	
Logical Switch Overview	
Default Logical Switch	
Creating Logical Switches	183
Port Assignment	
Logical Switches and Fabric IDs	
Logical Switch Contexts	184
Connecting Logical Switches	
More Information on Virtual Fabrics	
Considerations for Logical Switches	
Ethernet Port Sharing	
Moving Ports Between Logical Switches	191
Displaying Logical Switch Configurations	
Brocade 7840 Switch, and Brocade SX6 Considerations and Limitations	194

Brocade FX8-24 Blade Considerations and Limitations	
Enabling XISL for VE_Ports (Brocade FX8-24 Blade/7840 Switch/SX6 Blade)	
Traffic Isolation Zoning	
Zoning	
IP Extension Flow Monitor Overview	
Monitoring Traffic Flows	
Monitoring IP Pairs	
Using IP Extension Flow Monitor	200
Configuring a Port-Based Flow	
Configuring an IP Address Flow	
Configuring a TCP Port Flow	205
Configuring a Flow Using Logical Operators	
Displaying Historical Flow Statistics	
Displaying IP Pair Detail	210
Displaying IP Pair History	
Resetting IP Pair Statistics	213
Troubleshooting Tools	215
In-band Management	215
IP Routing	215
Configuring IP Addresses and Routes	
Example of a Management Station on the Same Subnet	216
Example of a Management Station on a Different Subnet	217
Example of Redundant Connections to the Management Stations	218
VLAN Tagging Support	219
IP Forwarding Support	219
Using the ipfilter Command	
WAN Analysis Tools	221
The tperf Option	
Using ping to Test a Connection	
Using Traceroute	
Using WAN Tool	
WAN Tool Commands	
Configuring a WAN Tool Session and Displaying Results	
Resolving Test Session Problems	
Using the portshow Command	
Displaying IP Interfaces	
Displaying IP Routes	
Displaying Switch Mode Information with the extncfg Command	
Displaying GbE Port Information with the portcfgge Command	

Listing the MAC Addresses of LAN and GE Ports	235
Displaying LAG Information	
Displaying Tunnel HCL Information	
Displaying TCL Information	239
Displaying IP Extension LAN Statistics	
Displaying Performance Statistics	
Displaying QoS Statistics	241
Displaying Configuration Details	241
Filtering portshow Display Output	241
Displaying Tunnel Status	
Displaying Tunnel Information	243
Displaying a Tunnel with Circuit Information	
Displaying Tunnel Performance	245
Displaying Tunnel TCP Statistics	245
Displaying Circuits	246
Displaying a Single Circuit	246
Displaying TCP Statistics for Circuits	
Displaying Circuit Performance	246
Displaying GbE Port Performance	246
Displaying QoS Prioritization for a Circuit	
Displaying Tunnel Information (Brocade FX8-24 Blade)	
Tunnel Issues	250
Tunnel Does Not Come Online	250
Tunnel Goes Online and Offline	
Troubleshooting Extension Links	252
Using FTRACE	254
FTRACE Configuration	254
Brocade 7840 Switch, Brocade 7810 Switch, and the Brocade SX6 Blade	254
Brocade FX8-24 Blade	
Changing Configuration Settings	
Changing FTRACE Configuration Settings on a Brocade 7840 Switch	256
Displaying FTRACE Status on a DP Complex	257
Brocade 7840 Switch Example	258
Brocade FX8-24 Blade Example	
Revision History	

Copyright Statement

Copyright © 2018–2021 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Brocade, the stylized B logo, Fabric OS, and SANnav are among the trademarks of Broadcom in the United States, the EU, and/or other countries. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

The product described by this document may contain open source software covered by the GNU General Public License or other open source license agreements. To find out which open source software is included in Brocade products, to view the licensing terms applicable to the open source software, and to obtain a copy of the programming source code, please download the open source disclosure documents in the Broadcom Customer Support Portal (CSP). If you do not have a CSP account or are unable to log in, please contact your support provider for this information.

Introduction

About This Document

This document describes the Fabric OS[®] Extension feature, the platforms involved, and the configuration steps that you need to perform.

Supported Hardware and Software

The following hardware platforms support Brocade Extension (Fibre Channel over IP features and IP Extension features) as described in this user guide:

- Brocade DCX 8510-4 Backbone and Brocade DCX 8510-8 Backbone with one or more Brocade FX8-24 Extension Blades
- Brocade X6-4 Director and Brocade X6-8 Director with one or more Brocade SX6 Extension Blades
- Brocade 7810 Extension Switch (supported in Fabric OS 8.2.1 and higher releases)
- Brocade 7840 Extension Switch

As described in this user guide, the software supported is Brocade Fabric OS 8.2.x.

Contacting Technical Support for Your Brocade[®] Product

For product support information and the latest information on contacting the Technical Assistance Center, go to https:// www.broadcom.com/support/fibre-channel-networking/. If you have purchased Brocade[®] product support directly from Broadcom, use one of the following methods to contact the Technical Assistance Center 24x7.

Online	Telephone
 For nonurgent issues, the preferred method is to log in to myBroadcom at https://www.broadcom.com/mybroadcom. (You must initially register to gain access to the Customer Support Portal.) Once there, select Customer Support Portal > Support Portal. You will now be able to navigate to the following sites: Knowledge Search: Clicking the top-right magnifying glass brings up a search bar. Case Management: The legacy MyBrocade case management tool (MyCases) has been replaced with the Fibre Channel Networking case management tool. DocSafe: You can download software and documentation. Other Resources: Licensing Portal (top), SAN Health (top and bottom), Communities (top), Education (top). 	Required for Severity 1 (critical) issues: Please call Fibre Channel Networking Global Support at one of the numbers listed at https://www.broadcom.com/support/fibre- channel-networking/.

If you purchased Brocade product support from a Broadcom OEM/solution provider, contact your OEM/solution provider for all your product support needs.

- OEM/solution providers are trained and certified by Broadcom to support Brocade products.
- Broadcom provides backline support for issues that cannot be resolved by the OEM/solution provider.
- Brocade Supplemental Support augments your existing OEM support contract, providing direct access to Brocade expertise. For more information on this option, contact Broadcom or your OEM.
- For questions regarding service levels and response times, contact your OEM/solution provider.

Document Feedback

Quality is our first concern. We have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission or if you think that a topic needs further development, we want to hear from you. Send your feedback to documentation.pdl@broadcom.com. Provide the publication title, publication number, topic heading, page number, and as much detail as possible.

Extension Concepts and Features

Brocade Extension Concepts

Brocade Extension switches and blades for the Brocade director families provide a fast and reliable network infrastructure to address the requirements of storage area networks (SANs) that are extended beyond the traditional reaches of Fibre Channel (FC) communications. Without some form of distance extension, the distance between the source and the destination in a SAN is limited to a few kilometers.

Brocade 7840 Switch and Brocade SX6 Blade Extension products support both FC/FICON-based data flows and IPbased storage data flows. Brocade Extension solutions maximize replication and backup throughput over distance, using data compression, disk and tape protocol acceleration, and WAN-optimized TCP. Brocade Extension supports applications such as remote data replication (RDR), centralized backup, and data migration.

Brocade Extension uses the existing IP wide area network (WAN) infrastructure to connect Fibre Channel and IP fabrics between distant endpoints that are either impractical or costly using native Fibre Channel or IP connections. The basis of the connection is the extension tunnel, built on a physical connection between two extension switches or blades. Extension tunnels allow Fibre Channel and IP traffic to pass through the IP WAN. The extension tunnel connections ensure lossless transmission and that FC and IP frames are delivered in the correct order. The Fibre Channel fabric and all targets and initiators, whether FC or IP, are unaware of the presence of the IP WAN.

The extension tunnel provides load balancing across separate network paths, optimization for extended links, rate limiting to ensure optimal performance, and lossless link loss (LLL) recovery.

The two Brocade protocol technologies implemented in Brocade Extension products are FCIP and IP Extension.

FCIP, or Fibre Channel over IP, is a tunneling protocol to link Fibre Channel over distance on standard IP networks. Used primarily for remote replication, backup, and storage access, FCIP provides Fibre Channel connectivity over IP networks between Fibre Channel devices or fabrics. The FCIP link is an inter-switch link (ISL) that transports FC control and data frames between switches. The following table outlines FCIP.

Table 1: FCIP Protocol

Network	WAN/MAN
Transport	FCIP/TCP/IP/Ethernet
	Brocade encapsulates Fibre Channel data sequences into compressed batches. Those batches fill TCP segments to their maximum size and then form IP datagrams.
IP-routable	Yes

Brocade IP Extension is used primarily for IP storage applications, such as remote host-based or database-based replication, NAS replication, IP backups, and tape grids. IP Extension uses the same VE_Ports and circuits that FCIP uses, or it can use its own. The following table outlines IP Extension.

Table 2: IP Extension Protocol

Network	WAN/MAN
Transport	IP Extension/TCP/IP/Ethernet

	Brocade encapsulates IP data flows (also called "streams") into compressed batches. Those batches fill TCP segments to their maximum size and then form IP datagrams.
IP-routable	Yes

For additional information about implementation and technical details of Brocade Extension technology, refer to the Brocade white paper Extension Trunking.

Extension Trunks, Tunnels, Circuits, and Interfaces

An extension tunnel is a conduit that contains one or more circuits. When a tunnel contains multiple circuits, it is also called an extension trunk because multiple circuits are trunked together. An extension tunnel, or extension trunk, is a single inter-switch link (ISL). Circuits are individual extension connections within the trunk, each with its own unique source and destination IP interface (IPIF) address.

To understand tunnels, you must understand the relationship between tunnels and VE_Ports. Because an extension tunnel is an ISL, each end of the tunnel requires its own Virtual E_Port (VE_Port). For example, the Brocade SX6 Blade supports a number of VE_Ports. The available VE_Ports on the Brocade SX6 Blade are numbered 16 to 35. Tunnels are more complicated than this, but the point is that each end of the tunnel is identified by number, and that number is directly associated with a VE_Port on the extension platform. Tunnels are frequently created between different VE_Ports, so from a configuration point of view, the tunnel number can be different at each end. Each extension platform, such as the Brocade 7810 Switch, Brocade SX6 Blade, Brocade 7840 Switch, and Brocade FX8-24 Blade, has a different numbering scheme for its VE_Ports.

Circuits exist within tunnels. A circuit is a connection between a pair of IP addresses that is defined within an extension tunnel. Circuits provide the links for traffic flow between the source and destination interfaces that are located on either end of the tunnel. Each tunnel can contain a single circuit or multiple circuits.

NOTE

In this publication, the "source" or "local" is the switch that you are configuring, whereas the "destination" or "remote" is the switch on the other end of the tunnel or circuit. The local switch and the remote switch will depend on which side of the tunnel you are configuring.

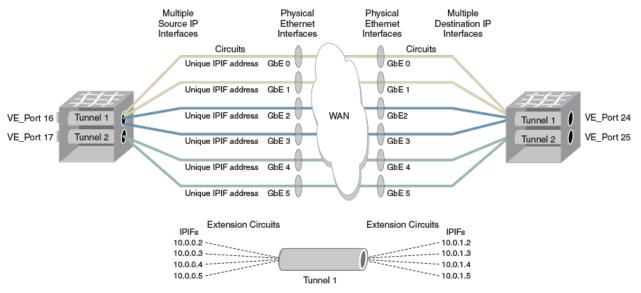
You must configure unique IPIFs as the local and remote endpoints of each circuit. On the local side, a circuit is configured with a source IPIF address and a destination address. On the remote side of the circuit, its source IPIF address is the same as the local-side destination address. Similarly, on the remote side of the circuit, its IPIF destination address points to the local-side source address. Multiple IPIFs can be configured on each physical Ethernet interface.

NOTE

On the Brocade FX8-24 Blade, the IP address (or IPIF) for each local and remote address must be individually unique. However, on the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade, each address pair must be unique. For example, the following address pairs use the same source address in each pair, but the destination addresses are different. For the Brocade FX8-24 Blade, these addresses are not unique. For the Brocade 7810 Switch, and Brocade SX6 Blade, each address are brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade, these addresses are unique.

- --local-ip 10.0.1.10 --remote-ip 10.1.1.10
- --local-ip 10.0.1.10 --remote-ip 10.1.1.11

The circuit configuration parameters on the local and remote sides of the circuits and tunnel must match, in addition to the source and destination IPIF addresses pointing to each other. For example, if you configure IPsec on a tunnel, each end of the tunnel must be configured to use the same IPsec parameters. Other parameters for each circuit must match, such as MTU size, bandwidth allocation, QoS, VLAN ID, and keepalive values.


You must configure a gateway IP route for the circuit to the destination network when the remote IPIF is not on the same subnet as the local IPIF. You can define a specific number of routes per IPIF based on the extension platform. See Tunnel and Circuit Requirements for Brocade Extension Platforms for specifications.

ATTENTION

When using Brocade IP Extension, the local and remote LAN subnet addresses must be different.

The following figure shows an example of two extension tunnels. The first tunnel is a trunk of four circuits, and the second tunnel is a trunk of two circuits. Each circuit is assigned a unique IPIF address. Those IPIFs are, in turn, assigned to Ethernet interfaces. In the figure, each IPIF is assigned to a different Ethernet interface. This is not required. Ethernet interface assignment is flexible depending on the environment's needs, and assignments can be made as desired. For instance, multiple IP interfaces can be assigned to a single Ethernet interface. The circuit flows from IP interface to IP interface through the assigned Ethernet interfaces.

Figure 1: Extension Tunnel and Circuits

For specifications and restrictions on tunnels, circuits, and trunks for the Brocade 7810 Switch, Brocade 7840 Switch, Brocade SX6 Blade, and Brocade FX8-24 Blade, see the Extension Platforms and Features chapter in this guide.

VE Ports and VEX Ports

When Fibre Channel communications between switches includes fabric services, they must occur by means of an interswitch link (ISL). ISLs are supported on E Ports. Because an extension tunnel is an ISL, each end of that tunnel requires its own E Port. There are various types of E Ports:

- E Port
- EX Port
- VE Port (virtual E Port)
- VEX Port (virtual EX Port)

VE Ports and VEX Ports are virtual because they face the extension tunnel and thus enable communication across an extension tunnel. Extension Trunking—multiple circuits in a tunnel—operates the same whether the virtual port is a VE Port or a VEX Port.

NOTE

VEX ports are supported only on the Brocade FX8-24 Blade. The Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade do not support VEX Ports.

EX and VEX ports are FC-routed (FCR) ports. Routed ports are the demarcation point of fabric services for a fabric. Fabric services do not extend beyond an EX or VEX port. Remote edge fabrics are edge fabrics connected through a WAN connection and VEX Port.

14

Table 3: VE_Ports and VEX_Ports

E_Port Types	No FCR	FCR
Native FC	E_Port	EX_Port
Extended over tunnel	VE_Port	VEX_Port (on FX8-24 only)

Because an extension trunk is logically a *single* tunnel, only a single VE_Port or VEX_Port is used for each end of the tunnel, even though more than one circuit can be contained within the tunnel.

Once the tunnels are configured and the WAN-optimized TCP (WO-TCP) connections are made for a circuit, a logical inter-switch link is established between the switches. VE_Ports operate like E_Ports for all fabric services and Fabric OS operations, except that VE_Ports use TCP/IP and Ethernet as the transport instead of FC.

From the point of view of a Remote Edge Fabric, a VEX_Port appears as a normal E_Port. It follows the same Fibre Channel protocol as other E_Ports. However, VEX_Ports terminate the attached fabric at the port and do not allow fabrics to merge by propagating fabric services or routing topology information across the WAN to the Remote Edge Fabric. This provides edge-fabric or remote-edge-fabric isolation outward from the EX_Port or VEX_Port, respectively.

NOTE

VE_Ports or VEX_Ports cannot connect in parallel to the same domain at the same time as Fibre Channel E_Ports or EX_Ports.

An extension tunnel is assigned to a VE_Port or VEX_Port on the switch or blade at each end of the tunnel. Because multiple VE_Ports are supported on the extension switch or blade, you can create multiple tunnels on a switch or blade. There is no requirement for VE_Port numbers to be identical on each end of a tunnel.

Fibre Channel frames enter an extension tunnel through the VE_Ports (or VEX_Ports) and are encapsulated and passed to TCP layer connections. A data processing (DP) complex on the switch or blade handles the FC frame encapsulation, de-encapsulation, and transmission to the TCP link.

Gigabit Ethernet Interfaces

On the Brocade Extension platforms, the Ethernet interfaces are abstracted from the IP interfaces, and extension tunnels and trunks. This means that the Ethernet interfaces are not fixed to the IP interfaces, or extension tunnels and trunks. Depending on the platform, you have access to a combination of 1GbE, 10GbE, and 40GbE interfaces.

A Gigabit Ethernet (GbE) interface can be configured for WAN operations or LAN operations on platforms that support Brocade IP Extension. A GbE interface is used for WAN operation when it functions as the endpoint of a circuit. The interface is WAN-facing, and you create the tunnels and circuits, assigning ipifs (the circuit endpoints) to the GbE interface you desire to use. WAN is the only allowed GbE interface mode when a platform is configured for FCIP-only operation.

A GbE interface is used for WAN operation when it functions to pass circuits through it.

When a platform is configured for Hybrid mode, which supports both FCIP and IP Extension, you configure certain LANfacing GbE ports for LAN mode operation. When GbE ports are in LAN mode, they can be members of a static link aggregation group (LAG) or dynamic LAG.

Ethernet Interfaces

Ethernet interfaces are assigned by associating them with IP interfaces (IPIFs).

IP interfaces on the extension platforms are virtual entities within the platform. The IPIFs, via their IP addresses, are assigned to circuits by designating the source IP address when creating the circuit. The circuit is grouped into an extension trunk by designating the VE_Port (or VEX_Port) to which it belongs. Tunnels/trunks are identified by their VE_Port number. If an extension trunk already exists, you can create an additional circuit and include it in the tunnel.

Each Ethernet interface on the Brocade SX6 Blade, Brocade 7840 Switch, Brocade 7810 Switch, and Brocade FX8-24 Blade can be used by circuits from multiple VE/VEX_Ports. Multiple VEs in different FIDs can share a Ge port provided it is in the default switch. If a Ge port is part of a nondefault switch, however, then it can only be shared by VEs in that FID.

Each VE/VEX_Port can use multiple Ethernet ports. Each VE/VEX_Port can have multiple IP interfaces, or circuits. Each IP interface or circuit in a VE/VEX_Port is associated with an IP address. In turn, those IP addresses are assigned to specific Ethernet interfaces. However, a single circuit cannot span multiple Ethernet interfaces.

For Brocade Extension Trunking, the data processor (DP) that owns the VE_Port controls all member circuits. There is no distributed processing, load sharing, or LLL across DPs. Failover between DPs is done at the FC level by the Brocade FC switching ASIC, provided that the configuration permits it. The only components that can be shared are the Ethernet interfaces.

The IP network routes the circuits over separate network paths and WAN links based on the destination IP addresses, VLAN tagging, and possibly other Layer 2 and Layer 3 header attributes. Ethernet interfaces on the Brocade 7840 Switch, Brocade 7810 Switch, Brocade SX6 Blade, and Brocade FX8-24 Blade provide a single convenient connection to the data center LAN for one to many circuits.

Virtual Circuits and Tunnels

Upon creation, an extension tunnel consists of one or more circuits that are configured within the same tunnel. A VE_Port is a tunnel endpoint and a virtual tunnel is an actual object for transporting data of a particular traffic class.

When an extension platform is configured to operate in Hybrid mode, which supports, both FCIP and IP Extension, high, medium, and low data virtual-tunnels are created for both protocols. Created within each circuit member of the tunnel are four (FCIP only) or seven (FCIP and IP Extension) virtual-tunnels (the F-Class tunnel, three IP Extension QoS data virtual-tunnels, and three FCIP QoS data virtual-tunnels).

A tunnel consists of these virtual-tunnels:

- **Control virtual-tunnel**, which includes F-Class traffic. The control tunnel is "higher" priority and has no guaranteed minimum bandwidth. As needed, it can use all available bandwidth up to the maximum configured bandwidth rate although this traffic utilizes little bandwidth.
- **High priority data virtual-tunnel**. The high data tunnel is for high-priority QoS data, and through Per-Priority-TCP-QoS has its own WO-TCP for this traffic class.
- **Medium priority data virtual-tunnel**. The medium data tunnel is for medium-priority QoS data, and through Per-Priority-TCP-QoS has its own WO-TCP for this traffic class.
- Low priority data virtual-tunnel. The low data tunnel is for low-priority QoS data, and through Per-Priority-TCP-QoS has its own WO-TCP for this traffic class.

QoS settings define the allotment of bandwidth during times of contention. The default settings are 50/50% between FCIP/ IP Extension, and within each of those, there are the default allocation settings of 50/30/20% (the minimum configuration) respectively. You can change these settings as needed. If the contention is absent, bandwidth to the virtual-tunnels is unrestricted; the available bandwidth can be used by any virtual-tunnel requesting it. These configurable bandwidth allotments apply only when the data waiting to be sent exceeds the available bandwidth to send it (termed "contention in the egress queue").

Data virtual-tunnels adhere to the minimum bandwidth configurations and will always receive those amounts. For example, a 10Gb/s circuit that is used for both FCIP and IP Extension and experiencing contention would by default reserve 1.5Gb/s for a medium FCIP virtual-tunnel ($10Gb/s \times 50\% \times 30\% = 1.5Gb/s$). The lesson is that bandwidth allocations are not oversubscribed. Virtual-tunnels can consume at most the maximum communication rate that is configured on the circuit provided other virtual-tunnels are not currently using their allotted bandwidth.

NOTE

The Brocade FX8-24 Blade does not support IP Extension; it creates only four FCIP virtual-tunnels (1 control and 3 data).

An additional tunnel group is created for high availability (HA) when eHCL is configured on the Brocade SX6 or Brocade 7840. That tunnel group contains a main tunnel, a local backup tunnel (LBT), and a remote backup tunnel (RBT). When eHCL is active; the high, medium, and low QoS data tunnels collapse into a single QoS data tunnel during the eHCL update. For additional information, refer to Extension Hot Code Load (Extension HCL).

FCIP Extension

FCIP, or Fibre Channel over IP, is a tunneling protocol to link Fibre Channel over distance on standard IP networks. Used primarily for remote replication, backup, and storage access, FCIP Extension provides Fibre Channel connectivity over IP networks between Fibre Channel devices or fabrics. The FCIP link is an inter-switch link (ISL) that transports FC control and data frames between switches. FCIP Extension is supported on all Brocade Extension platforms.

FCIP Extension provides the following:

- Adds protocol optimizations for extended distance performance for both FICON and FCP/SCSI flows that can be enabled on an extension tunnel.
- Network resiliency using Extension Trunking, which is a single logical tunnel comprised of one or more individual circuits
- Efficient use of VE_Ports
- High performance for high-speed WAN links (one or more 10Gb/s and 40Gb/s links)
- TCP Acceleration with WAN Optimized TCP (WO-TCP)
- Aggregation of circuit bandwidth
- Failover/failback
- Failover groups and metrics
- Spillover
- Use of disparate characteristic WAN paths
- Non disruptive link loss
- Lossless link loss (LLL)
- Adaptive Rate Limiting (ARL)
- In-Order Delivery (IOD)
- Deterministic path for protocol acceleration
- · WAN bandwidth pooling—pool bandwidth from multiple links/providers
- High-speed compression using deflate
- High-speed IPsec (AES 256)
- Diagnostic and troubleshooting tools: SAN Health and WAN Tool
- QoS for FCIP with DSCP and/or 802.1P marking and enforcement
- 9216-byte jumbo frame support on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade

Within the architecture of the Brocade 7840 Switch, Brocade 7810 Switch, Brocade SX6 Blade, and Brocade FX8-24 Blade, you find Brocade FC application-specific integrated circuits (ASICs) that know only the FC protocol. The VE/ VEX_Ports are logical representations of actual FC ports. VE/VEX_Ports are not part of the ASICs. Multiple FC ports feed a VE/VEX_Port, permitting high data rates well above 8 gigabits per second (Gb/s), 16Gb/s, and 32Gb/s, which is necessary for feeding the compression engine at high data rates and for high-speed trunks.

On the WAN side

- The Brocade 7840 Switch and the Brocade SX6 Blade support 10GbE and 40GbE interfaces.
- The Brocade 7810 Switch support up to six 1/10GbE optical interfaces or two 1GbE Copper interfaces and four 1/10GbE optical interfaces.
- The Brocade FX8-24 Blade supports 10GbE and 1GbE interfaces.

Think of VE and VEX_Ports as the transition point from the FC world to the TCP/IP world inside the extension devices.

IP Extension

The IP Extension feature provides enterprise-class support for IP storage applications, using existing IP wide area network (WAN) infrastructure. IP Extension features are offered only on the Brocade 7810 Switch and Brocade SX6 Blade platforms.

The Brocade SX6 Blade supports IP-based storage data flows as well as FCP/SCSI and FICON-based data flow. The Brocade 7810 Switch supports IP-based storage data flows as well as FC-based data flows but does not support FICON-based data flows.

IP data flows across Brocade tunnels are referred to as IP Extension, which enables you to use existing IP WAN infrastructure to connect IP storage. Additionally, IP Extension gives you visibility into and control of flows using various diagnostic tools, IPsec, compression, QoS, Extension Trunking, and lossless tunnel resiliency. IP Extension supports applications such as array-native IP remote data replication (RDR), IP-based centralized backup, and VM replication. In addition, IP Extension supports host-based and database replication over IP, NAS head replication between data centers, and data migration between data centers.

Brocade WAN Optimized TCP (WO-TCP) ensures in-order lossless transmission of IP Extension data. IP Extension establishes a proxy TCP endpoint for local devices. Local devices are unaware and unaffected by the latency and quality of the IP WAN. This accelerates end device native TCP. IP Extension data across the IP WAN uses WO-TCP, a highly efficient and aggressive TCP stack for moving data between data centers.

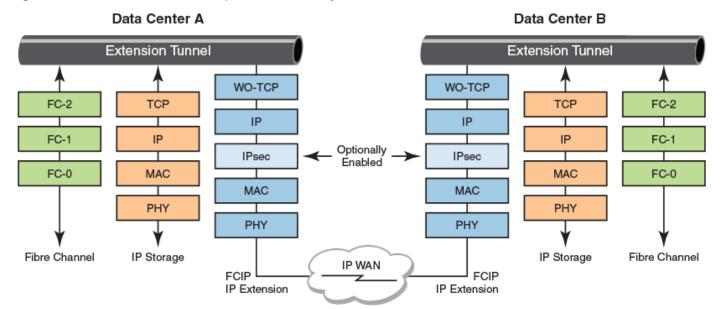
IP Extension provides the following advantages:

- Data center interconnect (DCI): Unified support and management of both FC/FICON and IP
- · Storage administrators: Provision once and over time connect many devices
- High performance for high-speed WAN links (one or more 10Gb/s on the Brocade 7810 Switch; 10Gb/s and 40Gb/s links on the Brocade SX6 Blade)
- WAN bandwidth pooling: pool bandwidth from multiple links/providers
- Lossless link loss (LLL)
- Adaptive rate limiting (ARL)
- Network resiliency using extension trunking
- · Efficient protocol transport: negligible added overhead
- TCP Acceleration with WAN optimized TCP
- Streams: Virtual windows on WAN optimized TCP to eliminate the head of line blocking (HoLB)
- · High-speed compression using deflate
- High-speed IPsec (AES 256)
- Diagnostic and troubleshooting tools: SAN Health and WAN Tool
- Separate QoS for both FCIP and IP Extension with DSCP and/or 802.1P marking and enforcement
- Internal prioritization of FC traffic versus IP traffic with QoS distribution
- 9216-byte jumbo frame support for LAN and WAN networks

IP Extension and IP Networking

The following are key points to understand about IP Extension and IP networking:

- IP Extension extends only Layer 3 networking; it does not extend Layer 2 networking.
- IP Extension requires different broadcast domains on each end of the extension tunnel. This means that a single subnet cannot span an IP Extension tunnel.
- The Brocade 7810 Switch and Brocade SX6 Blade act as a next-hop gateway for IP data flows traversing two data centers. This is managed by creating the IP Extension LAN interfaces plus configuring (on the end-devices) specific routes for the remote subnet that points to the IP Extension gateway interface (ipif).
- The LAN interfaces are on the local side of the network in which the end-devices are attached, typically via a local Ethernet data center switch.
- In contrast, WAN interfaces are on the side of the network that sends traffic outside of the data center potentially communicating with multiple routers before arriving at the final destination. In the following illustration, Data Center A and Data Center B are examples of LANs that communicate through a WAN.
- IP Extension supports dynamic and static link aggregation groups (LAGs) on the LAN interface. A LAG is a group of physical Ethernet interfaces that are treated as a single logical interface.
- Beginning with Fabric OS 8.2.x, IP Extension supports neighbor discovery through Link Level Discovery Protocol (LLDP) on the GbE interfaces. This applies to both the WAN and LAN interfaces.
- Beginning with Fabric OS 8.0.x, IP Extension supports policy-based routing (PBR), which allows a router to be connected to the LAN side of an IP extension platform.
- IP Extension uses traffic control lists (TCLs) to filter traffic to the correct destination. (A default TCL is created when the switch comes up in extension mode. The default action for that TCL is to deny all traffic.) Configuring TCLs on each extension switch or blade allows traffic to pass from endpoint to endpoint through a designated tunnel.


NOTE

Creating a TCL is critical, even if only a single tunnel (VE_Port) is being implemented. IP Extension will not function without a configured TCL at each end of the FCIP link.

NOTE

IP Extension does not allow FIPS mode, and when a platform is operating in FIPS mode, IP Extension is disallowed. This restriction does not apply to the Brocade 7810 Switch because FIPS is supported on the CP side and this switch supports single-applicable Hybrid mode (includes IP Extension).

Figure 2: Extension Tunnel Concept and TCP/IP Layers for FCIP and IP Extension

IP Extension forwarding and processing are done within the extension platform, then field-programmable gate arrays (FPGAs), and the data processors (DPs). The VE_Port is a logical endpoint for a tunnel, and IP Extension uses them as well, even if no FC or FICON traffic is being transported. IP Extension uses switch virtual interfaces (SVIs) on each DP

as a communication port with the IP storage end devices. The SVI becomes the gateway IP interface for data flows that are headed toward the remote data center. At the SVI, end-device TCP sessions are locally terminated and reformed on the remote side (termed *TCP proxying*). This process has the advantage of providing local acknowledgments and acceleration. WAN-optimized TCP (WO-TCP) is used as the transport between data centers, not to the storage end devices.

Which side is considered the local or remote depends on where the TCP session initiates.

Extension Trunking

Extension Trunking is an advanced feature of the Brocade Extension platforms for both FCIP and IP Extension that enables bandwidth aggregation and lossless failover for increased resiliency over IP WANs. It is a way of managing the use of WAN bandwidth and provides redundant paths over the WAN that can protect against transmission loss due to WAN failure. Furthermore, Extension Trunking provides granular load balancing per batch weighted round-robin.

Trunking is enabled by creating multiple circuits within a tunnel, members of a single VE_Port. The tunnel will utilize multiple circuits to carry data between a source and destination data center. For circuit capacities on Brocade Extension switches and blades, see Tunnel and circuit requirements for Brocade Extension platforms.

Redundancy and Fault Tolerance

Multiple extension tunnels can be defined between pairs of extension switches or blades, but doing so defeats the benefits of a single multiple-circuit extension tunnel. Defining two tunnels between a pair of switches or blades is not as redundant or fault-tolerant as having multiple circuits in one tunnel.

Extension Trunking provides lossless link loss (LLL). LLL ensures that all data lost in flight is retransmitted and reordered before being delivered to upper-layer protocols. This is an essential feature to prevent interface control checks (IFCCs) on mainframes that use FICON and SCSI timeouts for open-system-based replication. For more information about LLL on specific Brocade Extension switches and blades, see Circuit Failover.

NOTE

When you create multiple parallel tunnels between the same switch domains, you must set static link costs on the VEs and enable lossless dynamic load sharing (DLS). This minimizes FC frame loss due to bandwidth updates that are caused by extension circuit bounces in the tunnels. These bandwidth updates may result in link cost and route changes in the fabric. You can avoid link cost and route changes by setting the static link costs. Bandwidth updates also result in Dynamic Path Selection (DPS) rebalancing the workload across the parallel tunnels. This may result in some FC frame loss as exchanges are moved. Enabling lossless DLS helps minimize these events, but frame loss may still occur.

Failover Circuits and Groups

Failover circuits and groups are a feature supported on the Brocade 7810 Switch, Brocade 7840 Switch, Brocade FX8-24 Blade, and Brocade SX6 Blade. Failover groups allow you to define a set of metric 0 and metric 1 circuits that are part of a failover group.

When all metric 0 circuits in the group fail, metric 1 circuits take over the operation, even if there are metric 0 circuit still active in other failover groups. All metric 0 circuits in a group must fail before a metric 1 circuit is used.

For additional information about circuit failover configuration, see Circuit Failover.

Spillover Circuits

The spillover feature is supported on the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade. Spillover lets you configure a set of primary circuits to use all the time and a set of secondary circuits to use only during highutilization periods. When a tunnel is configured for spillover, it will run over the lower metric circuits (metric 0) until the bandwidth utilization is reached on those circuits. When the lower metric bandwidth is exceeded, the remaining traffic is sent over the higher metric 1 circuits.

For example, consider three 1Gb/s circuits that are configured on a tunnel.

- Two circuits are metric 0 circuits.
- One circuit is a metric 1 circuit.
- Each circuit supports a maximum of 1Gb/s.

In this configuration, if host traffic is started at 2Gb/s, it runs over the metric 0 circuits. If the host traffic increases to 2.5Gb/ s, the additional 500Mb/s of traffic runs over the metric 1 circuit and the metric 0 circuits continue to support the 2Gb/s traffic.

For more information about spillover circuit configuration, refer to Configuring Spillover.

NOTE

Failover groups are not used when the tunnel is configured for spillover, and any failover groups that are defined will be ignored. Spillover behavior is similar to failover behavior, in that if metric 0 circuits are not available, metric 1 circuits are used.

Service-Level Agreement

The service-level agreement (SLA) feature provides automated testing of a circuit before it is put into service. An SLA works with the existing WAN Tool, which is supported on the Brocade 7810 Switch, Brocade 7840 Switch, and the Brocade SX6 Blade. When using an SLA, you can define a set of network service-level parameters, such as packet loss, and make certain that the network meets those parameters before bringing the circuit into service.

When configured, the SLA automatically invokes WAN Tool and runs the test on the circuit. WAN Tool uses the same circuit configuration parameters to verify the network path condition, so no additional configuration is needed. After the network parameters are met, the WAN Tool session stops and the circuit is enabled and placed into service. If the circuit goes down (bounces), it reverts to test mode and the SLA parameters must be met before the circuit is enabled again and placed in service.

For more information about SLA configuration, see Configuring Service Level Agreement (SLA).

Considerations for Multiple Tunnel Use with Protocol Optimization

If you want to use multiple extension tunnels within the same switch with protocol optimization features, you can use either Virtual Fabric Logical Switch/Logical Fabric (LS/LF) configurations (best practice) or traffic isolation (TI) zones (not recommended).

Protocol optimization features include the following:

- FastWrite
- Open Systems Tape Pipelining (OSTP)
- FICON Acceleration (Brocade SX6 Blade only)

These features require deterministic FC frame routing between initiators and targets when multiple tunnels or VE_Ports exist. TI zones and LS/LF configurations provide deterministic flows between the switches. Noncontrolled, parallel (equal-cost multipath) tunnels are not supported between domains when protocol optimization is enabled on one or more tunnels unless you limit the routing of source ID and destination ID (SID/DID) pairs to a specific tunnel by using TI zones or Virtual Fabric (VF) LS/LF configurations.

Note the following additional restrictions:

- The recommended best practice is to have identical Fabric OS versions at both ends of an extension tunnel.
- When planning Fabric OS upgrades or downgrades, it is recommended that you upgrade or downgrade both endpoints of an extension tunnel with the same Fabric OS version.
- When configuring tunnels to support large numbers of devices, consider the memory limitations of the Brocade Extension switch or blade if you are enabling any protocol optimization feature. If too many devices are present or activated at one time, protocol optimization, such as FICON Acceleration, can be negatively impacted. Refer to Memory Use Limitations for Large_Device Tunnel Configurations.
- We strongly discourage use of Traffic Isolation Zones when they include VE ports with advanced features enabled (FICON XRC, FICON Tape, OSTP, or FW).

IP WAN Network Considerations

Because Brocade Extension tunnels use TCP connections over an existing wide area network (WAN), consult with the WAN carrier and IP network administrator to ensure that the network hardware and software equipment operating in the data path can properly support the TCP connections. Keep the following considerations in mind:

- Routers and firewalls that are in the data path must be configured to pass traffic through a specific TCP port on the switch.
 - On the Brocade 7840 Switch, Brocade SX6 Blade, and Brocade FX8-24 Blade, if IPsec is used, the network must allow both Encapsulating Security Payload (ESP) traffic and UDP port 500 (IKE) traffic to pass through.
 - On the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade, the Brocade WO-TCP implementation selects a port between 49152 and 65535 as the ephemeral (or initiating) port to open up to port 3225 and 3226.
- Ensure that these flags are not dropped or modified from ports 3225 and 3226.
- The Brocade FX8-24 Blade uses TCP port 3225.
- The Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade use TCP ports 3225 and 3226.
- To enable recovery from a WAN failure or outage, be sure that diverse, redundant network paths are available across the WAN.
- Be sure that the underlying WAN infrastructure can support the redundancy and performance expected in your implementation.
- If you use jumbo frames on the Brocade 7810 Switch, Brocade 7840 Switch, or Brocade SX6 Blade, ensure that the WAN network will support it.

NOTE

The IP DF (Do Not Fragment) bit is set on Brocade Extension Tunnels due to the inefficiency of fragmentation.

• Use AUTO MTU to avoid any unexpected tunnel behavior, which might occur when the WAN network does not support hard set MTU values for the IPIF.

IP LAN Network Considerations

The following considerations apply when configuring the extension platform for IP Extension support:

- The LAN interface functions as a virtual switch, or gateway. That is why it is referred to as a switch virtual interface (SVI).
- IP Extension forms an extension tunnel through the WAN to allow the local LAN to communicate with the remote LAN.
- The SVI on the local extension platform and remote extension platform must be on different subnets. Otherwise, the IP traffic will not be forwarded.
- When configuring the IP route on the extension platform, the SVI is the next-hop gateway.
- IP Extension optimizes the TCP traffic. However, if you are doing UDP forwarding or using IPsec in your LAN, such traffic will not be optimized.
- Double VLAN tagging (sometimes referred to as nested VLAN tagging or QinQ) is not supported.

Extension Hot Code Load

Extension Hot Code Load (eHCL) tunnels are supported on the Brocade 7840 Switch and the Brocade SX6 Blade.

An eHCL tunnel provides high-availability (HA) support and allows nondisruptive firmware updates. eHCL tunnels require four IP addresses per circuit, two at each endpoint. Each IP address has its own IP Interface (IPIF). The four addresses are the traditional local and remote IP addresses for the production circuit and the local and remote HA IP addresses used by eHCL during firmware updates. Typically, the local pair of IP addresses are included in the same subnet, and the remote pair of IP addresses is included in the same subnet, although this is not a requirement. All IP addresses must be able to communicate across the IP infrastructure.

As the Brocade 7810 Switch has only one DP, it does not support eHCL on itself. However, if a Brocade 7810 Switch is connected to a Brocade 7840 Switch or Brocade SX6 Blade, the Brocade SX6 Blade will support eHCL although the Brocade 7840 Switch will not.

NOTE

Consequently, the --local-ha-ip option for portcfg fciptunnel|fcipcircuit will not be configurable on a Brocade 7810 Switch. However, you can still use the --remote-ha-ip option to allow a Brocade 7810 Switch to connect to a Brocade 7840 Switch or Brocade SX6 Blade for remote eHCL. When the Brocade 7810 Switch is configured for an attached Brocade 7840 Switch or Brocade SX6 Blade, only the --local-ha-ip option should be used. If you use the --remote-ha-ip option on the Brocade 7840 Switch or the Brocade SX6 Blade, the tunnel will never reach an ONLINE state, remaining in a DEGRADED state. Only the main tunnel (MT) group and remote-backup tunnel (RBT) group will appear on the Brocade 7810 Switch, and only the main tunnel (MT) group and local-backup tunnel (LBT) group will be found on the connected Brocade 7840 Switch or Brocade SX6 Blade.

Please be aware that the portshow fciptunnel --hcl-status command functions on a Brocade 7810 Switch even though it does not support eHCL. This command on the Brocade 7810 Switch provides DP connectivity information for the MT and RBT groups.

Extension HCL Operation

eHCL allows nondisruptive firmware updates on the Brocade 7840 Switch and the Brocade SX6 Blade for FCIP and IP extension traffic over extension tunnels configured for HA. eHCL benefits mainframe environments by supporting nonstop connectivity for applications such as replication and tape grids. eHCL maintains extension connectivity across the WAN during firmware updates without disrupting active I/O, the loss of data, or allowing data to become out of order. eHCL is not supported on the Brocade 7810 Switch or Brocade FX8-24 Blade.

eHCL supports serial upgrades. A recommended practice is to perform firmware upgrades on switches at the local site, followed by upgrades on the switches at the remote site. Beginning with Fabric OS 8.2.x, concurrent (or parallel) eHCL is supported on Gen 6 chassis. Refer to Extension HCL Enhancements in 8.2.X for additional information.

NOTE

When using Hybrid mode in Fabric OS releases prior to Fabric OS 8.1.x, eHCL is disruptive to IP extension traffic and non disruptive to FCIP traffic.

The Brocade 7840 Switch and the Brocade SX6 Blade each have two data processor (DP) complexes, referred to as DP0 and DP1. (See Network DP Components). An Extension HCL firmware update occurs on one DP complex at a time. When initiated, the update always starts on DP0. Before DP0 is updated to the new firmware, traffic fails over to DP1 to maintain communication between the local and remote switch. The failover process guarantees no loss and in-order delivery of data.

eHCL uses three tunnel groups contained within the extension tunnel to perform the nondisruptive update. Consider the main data center "local" and the DR site as "remote." The perspective in this section stays location consistent. The local backup tunnels (LBTs) and remote backup tunnels (RBTs) are automatically created when you configure an eHCL HA circuit. There is no requirement for all circuits within a tunnel to be eHCL-enabled. Some circuits can be eHCL-enabled and some might not.

To create the circuits for a tunnel, you must configure IP addresses on ipif (IP interfaces) for both the local DP0 and DP1, and for the remote DP0 and DP1. The ipifs you create are for the main tunnel (local DP0 to remote DP0), the local backup tunnel (local DP1 to remote DP0), and the remote backup tunnel (local DP0 to remote DP1). You create the production circuit and the ipifs, not the backup circuits. When you configure these circuits, you designate which IP addresses to use with high availability (HA) via arguments in the portcfg command. This collection of circuits and tunnels form the *HA tunnel group*.

When eHCL is properly configured and the main tunnel exists between local DP0 and remote DP0.the following events occur during the firmware upgrade.

NOTE

All FCIP and IP extension traffic is maintained without interruption during the upgrade process.

- The main tunnel (MT) group provides connectivity during normal operations.
- A local backup tunnel (LBT) group maintains connectivity from the local switch DP1 to the remote switch DP0 while the former is upgrading. This tunnel, dormant during non-eHCL, is created automatically on the local DP1.
- A remote backup tunnel (RBT) maintains connectivity from remote switch DP1 to the local switch DP0 while the remote switch DP0 is upgrading. This tunnel group, dormant during non-eHCL operation, is created automatically on the remote DP1 when the corresponding local HA IP address is defined.

Creating the extension tunnel (with the port cfg fciptunnel command) creates the main tunnel (MT), which carries traffic through the extension tunnel to the remote switch. The LBT is created upon specifying the local HA IP address for the circuit, whereas the RBT is created upon specifying the remote HA IP address for the circuit. All three tunnel groups (MT, LBT, and RBT) are associated with the same VE_Port on the local and remote DP complexes. When an extension tunnel is configured to be eHCL capable, the LBT and RBT tunnel groups are always present. These connections are established when a tunnel and its circuit(s) are created or upon the switch booting if they already exist.

NOTE

The QoS traffic for high, medium, and low priorities is collapsed into a single QoS tunnel for the duration of eHCL operation. QoS priorities are restored when the eHCL operation completes. If the tunnel is configured for Differentiated Services Code Point (DSCP), all traffic is tagged with medium DSCP when it enters the WAN.

These tunnel groups are utilized in the following Extension HCL upgrade process:

- 1. The firmware writes to the backup partition of the control processor.
- 2. The control processor reboots from the backup partition with the new firmware.
- 3. The local DP0 is updated with the new firmware using the following process.
 - a. Perform feature disable processing on the MT on DP0.
 - b. Traffic from the MT on DP0 is rerouted to DP1 through the LBT to the remote switch. In-order data delivery is maintained.
 - c. DP0 reboots with the new firmware, and the configuration is reloaded.
 - d. Traffic from the LBT is failed-back to DP0 through the MT.
- 4. The local DP1 is updated with new firmware using the following process.
 - a. Perform feature disable processing on the MT on DP1.
 - b. Traffic from the MT on DP1 is rerouted to DP0 through the LBT so that data traffic can continue between the switches. In-order data delivery is maintained.
 - c. DP1 reboots with the new firmware, and the configuration is reloaded.
 - d. Traffic from the LBT is failed-back to DP1 through the MT.
- 5. After the firmware is updated on DP1 and all MTs, the LBT, and the RBT are online, the Extension HCL firmware update is complete.

During the update process, tunnels and trunks change state (up or down). The MT provides connectivity during normal operations. It is up during normal operation and down only during the eHCL process. The RBT and LBT are normally up during normal operation but do not handle non-HA production traffic. They operate to handle traffic only during the eHCL

process. RBT handles traffic when the remote switch DP0 undergoes the eHCL process. The RBT is visible as a backup tunnel on local DP0.

To configure Extension HCL, refer to Configuring Extension Hot Code Load.

Extension HCL Limitations and Considerations

The following are the limitations and considerations for an eHCL:

- An eHCL is exclusive to the Brocade 7840 Switch and the Brocade SX6 Blade. It is incompatible with the Brocade FX8-24 Extension blade.
- Although the Brocade 7810 Switch is compatible with eHCL, because it has a single DP, it does not support eHCL itself. However, if the Brocade 7810 Switch is connected to a Brocade 7840 Switch or Brocade SX6 Blade, it will support remote eHCL for the connected switch. Consequently, you cannot configure the --local-ha-ip <ip-addr> option for the portcfg fciptunnel|fcipcircuit command on the Brocade 7810 Switch. However, you can still use the --remote-ha-ip <ip-addr> option. When you intend to use such a configuration for an attached Brocade 7840 Switch or Brocade SX6 Blade, use only the --local-ha-ip <ip-addr> option. (Else, if you use -- remote-ha-ip <ip-addr> on Brocade 7840 Switch or Brocade 586 Blade.

NOTE

The portshow fciptunnel --hcl-status command is available for the Brocade 7810 Switch even though it does not support eHCL. You can use the output of this command to view the DP connection information.

- No configuration changes are permitted during the eHCL process. This includes modifying tunnel or circuit parameters. New device connections that require "zone checking" may experience timeouts during the CP reboot phase of the firmware download. The CP performs all zone checking and so must be active to process new SID/DID connection requests like PLOGIs.
- eHCL supports Virtual Fabrics (VF) and FC Routing (FCR with the IR license) and all existing features.
- eHCL was designed for all environments including mainframe FICON XRC and tape and open systems disk replication (EMC SRDF, HDS Universal Replicator, IBM Global Mirror, HP Remote Copy, and others). eHCL supports asynchronous and synchronous environments as well as IP Extension.
- The Brocade 7840 switch and the Brocade SX6 Blade have two data processor (DP) complexes: DP0 and DP1. (This
 discussion does not apply to the Brocade 7810 Switch, as it has only one data processor.) During the eHCL process,
 each DP reloads sequentially, while the other DP remains operational. Consider the following for planning and use of
 the switch during this process:
 - Because only one DP complex remains operational at a time, the total switch capacity is temporarily diminished by up to 50 percent.
 - FCIP and IP Extension data is not lost and remains in-order. eHCL does not cause FICON interface control check (IFCC).
 - Implementation of eHCL requires proper planning. Considerable bandwidth may be available based on licensing and compression to the Fibre Channel (FC) and FICON side of the extension switches. Furthermore, there are typically A and B paths in redundant replication networks, which provide additional bandwidth during firmware updates. Deployment planning may include apportioning one of the two DP complexes to HA or limiting maximum

use to 50 percent of the licensed capacity across both DP complexes to reserve adequate bandwidth for highavailability operations.

- Although most firmware updates for Fabric OS 7.4.x supports eHCL, not every Fabric OS the release will guarantee firmware capable of using this feature. Refer to the Fabric OS release notes for details.
- The firmware on the switch at each end of the tunnel must be compatible. Start with the same version of Fabric OS and upgrade to the same version on both ends. If not, you might either introduce instability and aberrant behavior or prevent successful tunnel formation when the main tunnel attempts to come back online.
- eHCL does not require any additional communication paths. For the normal operation of data replication and/or tape backup, you will have an existing extension tunnel (MT) connected across the WAN. The two backup tunnels will exist alongside the main tunnel.
- eHCL leverages RASlog warnings and error messages (WARN/ERROR).
- If parallel tunnels (VE_Ports) are configured between local and remote sites, if each tunnel has multiple circuits, you must set the VE link cost to static. Else, FC traffic might be disrupted during eHCL activity.
- When Teradata Emulation is enabled on an Extension tunnel, eHCL is not supported. You must perform a disruptive firmware update.
- Do not configure certain pairs of VE ports in different logical switches with different traffic routing policies. For example, on a Brocade 7840 Switch, one logical switch has Exchange-Based Routing (EBR) and the other has Port-Based Routing (PBR), which may be common in mainframe environments. VE_Ports 24 and 34 are used in the different logical switches. During eHCL, these VEs share backend virtual channels (VCs) when the VE is on the HA path. This configuration can cause unexpected results. The following table shows the VE_Port pairs to avoid. On the Brocade SX6 Blade, the pairing restriction is per blade.

Brocade 7840 VE_Port		Brocade SX6 VE_Port	
DP0	DP1	DP0	DP1
24	34	16	26
25	35	17	27
26	36	18	28
27	37	19	29
28	38	20	30
29	39	21	31
30	40	22	32
31	41	23	33
32	42	24	34
33	43	25	35

Table 4: VE_Port Pairs and Differing LS Traffic Policies

Extension HCL Enhancements in Fabric OS 8.2.X

Brocade Fabric OS 8.2.x includes enhancements to the Extension HCL feature.

Non-terminated TCP (NTTCP) Traffic

In Fabric OS 8.2.x, NTTCP traffic is queued during the failover/failback cycles of the firmware upgrade instead of being dropped. Some traffic loss can occur if the amount of NTTCP data received during the failover/failback exceeds the

available queue size. In addition, a WAN flush is performed on the non-terminated streams that carry NTTCP, UDP, or ICMP traffic. This action reduces the probability of application I/O timeouts during the failover/failback cycle.

The NTTCP traffic is queued and non-terminated WAN streams are flushed only when all participating DPs on a VE_Port are running Fabric OS 8.2.x.

Independent Resumption of LAN TCP Connections

Prior to Fabric OS 8.2.x, traffic resumed on an LAN TCP connection after all LAN connections on a VE_Port failed over. In instances of a slow-draining LAN connection, all other LAN connections on that VE_Port were delayed until the slow-draining device completed its failover. In Fabric OS 8.2.x, the failover sequence of a LAN TCP connection consists of the following phases:

- WAN flush complete, which indicates the data for the LAN connection is flushed on the WAN in both directions.
- LAN Tx complete, which indicates the data for a LAN connection is flushed on the LAN in both directions.

After receiving the WAN flush complete indication for all LAN connections on a VE_Port, each LAN TCP connection can be independently resumed as soon as its LAN Tx is complete. This action decouples having to wait on a slow-draining LAN connection before all LAN connections can be resumed on a given VE_Port. All participating DPs on a VE_Port must be running Fabric OS 8.2.x.

Concurrent eHCL Support on Gen 6 Chassis

In Fabric OS 8.2.x, concurrent (or parallel) HCL is supported on a Gen 6 chassis, for example, the Brocade X6 platform. Concurrent eHCL means that between two Gen 6 chassis running Fabric OS 8.2.x and configured for eHCL support, you can initiate firmware upgrades at the local site and remote site at the same time.

ARL Protocol Rollover Management

From Fabric OS 8.2.x onwards, the management of ARL protocol rollover during eHCL is now handled on a VE_Port basis. ARL is temporarily disabled when a VE_Port begins the failover process and no other VE_Ports on a DP are affected. When failover/failback is complete, ARL protocol rollover is enabled for that VE_Port.

Fibre Channel SAN Considerations

There are many considerations in the implementation and design of a Fibre Channel storage area network (FC SAN). For detailed information, refer to the Brocade white paper, SAN Design and Best Practices.

Adaptive Rate Limiting

Adaptive Rate Limiting (ARL) is performed on circuits to change the rate at which the tunnel transmits data through the IP network.

ARL uses information from the TCP connections to determine and adjust the rate limit for the circuit dynamically. This allows connections to utilize the maximum available bandwidth while providing a minimum bandwidth guarantee. ARL is configured on a per-circuit basis because each circuit can have available different amounts of bandwidth. Any single circuit is limited to 10Gb/s unless the hardware imposes a lower bandwidth. The following list identifies ports and available bandwidth:

- XGE (10GbE) ports on the Brocade FX8-24 Blade (xge0 and xge1)
- 10G (1/10GbE) ports on the Brocade 7840 Switch (ge2-ge17)
- 10G (1/10GbE) ports on the Brocade SX6 Blade (ge2-ge17)
- 40GbE ports on the Brocade 7840 Switch (ge0 and ge1)
- 1GbE ports on the Brocade 7810 Switch (ge0-ge1)
- 10G (1/10G-GbE) ports on the Brocade 7810 Switch (ge2-ge7)
- 40GbE ports on the Brocade SX6 Blade (ge0 and ge1)
- 1GbE ports on the Brocade FX8-24 Blade (ge0-ge9)

Brocade ARL always maintains at least the minimum configured bandwidth, and it never tries to exceed the maximum level. Everything in between is adaptive. Brocade ARL tries to increase the rate limit up to the maximum until it detects that no more bandwidth is available, and ARL is not at the maximum, it continues to periodically test for more bandwidth. If ARL determines that more bandwidth is available, it continues to climb toward the maximum. On the other hand, if congestion events are encountered, Brocade ARL reduces the rate based on the selected back-off algorithm. ARL never attempts to exceed the maximum configured value and reserves at least the minimum configured value.

For additional information and details of ARL, refer to the Brocade white paper, Brocade Adaptive Rate Limiting.

Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade Support for ARL

ARL accommodates shared bandwidth; however, the amount of storage data using Extension connections continues to grow and consume larger and faster links. On supported Gen 5 and Gen 6 platforms (Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade), the enhanced response time of ARL provides faster rate limiting adaptation, which permits optimized throughput of not only the extension traffic but also the competing flows.

The back-off mechanism implemented by ARL is optimized to increase overall throughput. ARL dynamically preserves bandwidth and evaluates network conditions to see whether additional back-offs are required.

ARL maintains round-trip-time (RTT) stateful information to better predict network conditions and to allow intelligent and granular decisions about proper adaptive rate limiting. When ARL encounters a network error, it looks back at prior stateful information, which will be different relative to the current state. Rate-limit decisions are then modified using the ARL algorithm. When configured for automatic selection, ARL will dynamically determine which algorithm to use based on the changing network conditions.

On the Brocade SX6 Blade, Brocade 7810 Switch, and Brocade 7840 Switch, you can configure the type of ARL algorithm that is used for backing off the traffic. The default is automatic, and the ARL logic determines the best approach. The ARL choices for these platforms are as follow:

- Automatic (default)
- Static reset
- Modified multiplicative decrease (MMD), or step-down
- · Time-based decrease, or timed step-down

Brocade FX8-24 Blade Support for the ARL Backoff Algorithm

ARL on the Brocade FX8-24 Blade uses a single backoff algorithm, which is "reset to floor." This means that when congestion is detected at the current bandwidth, it resets to the minimum configured bandwidth for the circuit and restarts the climb toward maximum bandwidth.

FSPF Link Cost Calculation with Rate Limiting

Fabric Shortest Path First (FSPF) is a link-state path selection protocol that directs traffic along the shortest path between the source and the destination based on the link cost. The link cost is calculated based on the sum of the maximum traffic rates of all established, currently active low-metric circuits in the tunnel. The following formulas are used:

- If the bandwidth is greater than or equal to 2Gb/s, the link cost is 500.
- If the bandwidth is less than 2Gb/s but greater than or equal to 1Gb/s, the link cost is 1,000,000 divided by the bandwidth in Mb/s.
- If the bandwidth is less than 1Gb/s, the link cost is 2000 minus the bandwidth in Mb/s.

If multiple parallel tunnels are used, set identical static link costs for the VE ports and configure lossless DLS. This action helps to minimize FC frame loss during bandwidth updates caused by circuit bounces in VEs.

NOTE

Multiple parallel tunnels are supported, but their use is not recommended.

ARL Considerations

Consider the following limitations when configuring ARL:

- As a best practice, the aggregate of the maximum-rate bandwidth setting through a tunnel should not exceed the bandwidth of the WAN link. For example, given a 2Gb/s WAN link, the aggregate of the ARL maximum rates connected to that WAN link can be no more than 2Gb/s. For ingress rates, there is no limit because the FC flow control (BBC) rate-limits the incoming data.
- The aggregate of the minimum configured values cannot exceed the speed of the Ethernet interface, which is 1Gb/s for GbE ports or 10Gb/s for 10GbE ports, and 40Gb/s for 40GbE ports.
- Configure minimum rates of all tunnels so that the combined rate does not exceed the specifications listed for the extension product in the Tunnel and Circuit Requirements for Brocade Extension Platforms.
- For 1GbE, 10GbE, and 40GbE ports, the ratio between the minimum committed rate and the maximum committed rate for a single circuit cannot exceed five times the minimum. For example, if the minimum is set to 1Gb/s, the maximum for that circuit cannot exceed 5Gb/s. This limit is enforced in software.
- The ratio between any two circuits on the same tunnel should not exceed four times the lower circuit. For example, if one circuit is configured to 1Gb/s, any other circuit in that same tunnel should not exceed 4Gb/s. This limit is *not* enforced in software, but is strongly recommended.
- For any circuit, the minimum bandwidth values must match on both the local side and the remote side, and so must the maximum bandwidth values.
- ARL is invoked only when the minimum and maximum bandwidth values on a circuit differ. In other words, if you configure both the minimum and maximum bandwidth values on a circuit, say, to 1,000,000 (1Gb/s), ARL is not used.

Compression Options

Brocade Fabric OS software provides an advanced compression architecture that supports multiple modes to optimize compression ratios for various throughput requirements.

The available modes include hardware-based compression and software-based compression. The compression mode available depends on the Brocade Extension platform and the protocol (FCIP or IP Extension).

NOTE

Throughput for all compression modes depends on the compression ratio achievable for the data pattern. Brocade makes no promises, guarantees, or assumptions about the compression ratio that any application may achieve.

Compression Options for the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade

The following compression options are available for the Brocade 7840 Switch and the Brocade SX6 Blade.

- None: No compression.
- Fast deflate: Hardware-based compression. This mode initiates a deflate-based algorithm to compress data before it enters the DP and to decompress the data after it leaves the DP. It provides the highest throughput at 40Gb/s per DP before compression, but it provides the least amount of compression. Because fast deflate is hardware-based, this mode is appropriate for synchronous applications. The Brocade 7810 Switch does not support fast deflate.
- Deflate: Processor-based compression. This mode initiates the processor compression engine in deflate mode with a
 preference for 16Gb/s total speed per DP before compression. It provides a lower speed than fast deflate, but a faster
 speed than aggressive deflate. Deflate compression provides more compression than fast deflate, but is typically not
 as much compression as aggressive deflate. The Brocade 7810 Switch provides up to 10Gb/s of total DP throughput
 before compression.
- Aggressive deflate: Processor-based compression. This mode initiates the processor engine in deflate mode with a preference for compression. This mode is the slowest at 10Gb/s before compression, but it typically provides the highest level of compression. The Brocade 7810 Switch provides up to 6.5Gb/s of total DP throughput before compression.

Follow the guidelines for assigning explicit compression levels for tunnels in the following table.

Table 5: Assigning Compression Levels for the Brocade 7840 Switch and the Brocade SX6 Blade

Total tunnel bandwidth on a DP	Compression level
More than 4Gb/s	Fast deflate
2Gb/s to 4Gb/s	Deflate
Less than 2Gb/s	Aggressive deflate

Table 6: Assigning Compression Levels for Brocade 7810 Switch

Total tunnel bandwidth on a DP	Compression level
Greater than 1.5Gb/s	Deflate
1.5Gb/s or less	Aggressive deflate

The enhancements for IP Extension allow you to configure compression on the tunnel at a protocol level. The compression options override the main tunnel compression level and set the compression for the specified protocol to the desired mode. The available modes depend on the protocol, FC or IP.

Table 7: Extension Hybrid Mode Protocol Compression Choices

Compression level	FC protocol support	IP protocol support
Deflate	Yes	Yes
Fast deflate	Yes	No
Aggressive deflate	Yes	Yes

Compression Options for the Brocade FX8-24 Blade

The following compression options are available for the Brocade FX8-24 Blade:

- None: No compression.
- Standard: Hardware compression mode.
- Moderate: A combination of hardware and software compression that provides more compression than hardware compression alone. This option supports up to 8Gb/s of FC traffic.
- Aggressive: Processor-based compression that provides a more aggressive algorithm than that used for the standard and moderate options. This option supports up to 2.5Gb/s of FC traffic.
- Auto: Allows the system to set the best compression mode based on the tunnel's configured bandwidth and the aggregate bandwidth of all tunnels in the extension blade.

Follow the guidelines for assigning explicit compression levels for tunnels, as shown in the following table.

Table 8: Assigning Compression Levels

Total Tunnel Bandwidth on a DP	Compression Level
More than 2Gb/s	Standard
More than 512Mb/s and less than or equal to 2Gb/s	Moderate
Equal to or less than 512Mb/s	Aggressive

FastWrite and Open Systems Tape Pipelining

Brocade FastWrite is an algorithm that reduces the number of round trips required to complete a SCSI write operation. FastWrite can maintain throughput levels over links that have significant latency. The RDR (Remote Data Replication) application still experiences latency; however, reduced throughput due to that latency is minimized for asynchronous applications, and response time is reduced by up to 50 percent for synchronous applications.

Open Systems Tape Pipelining (OSTP) enhances open systems SCSI tape read and write I/O performance. When the extension link is the part of the network with the longest latency, OSTP can provide accelerated speeds for tape read and write I/O over tunnels. To use OSTP, you must also enable FastWrite.

OSTP accelerates SCSI read and write I/O to sequential devices (such as tape drives) over extension links, which reduces the number of round-trip times needed to complete the I/O over the IP network and speeds up the process.

For FastWrite and OSTP to work, both ends of a tunnel must have matching FastWrite and OSTP configurations. You enable FastWrite and OSTP during the tunnel configuration process. They are enabled on a per tunnel basis.

FastWrite and OSTP Network Configurations

The Fibre Channel Protocol (FCP) features used in FastWrite and OSTP require a single deterministic path between initiators and targets when multiple tunnels exist. If there are Equal-Cost Multi-Path (ECMP) tunnels between the same SID/DID pairs, protocol optimization will fail when a command is routed over one tunnel and the response is returned over a different tunnel.

The following figures show network configurations supported by FastWrite and OSTP. Neither configuration contains multiple ECMP paths. The first figure shows a single tunnel with FastWrite and OSTP enabled. The second figure shows multiple tunnels, but none of them creates multiple ECMP paths.

NOTE

Only one emulating tunnel is supported between an initiator port and a peer device port.

Brocade Extension devices can distinguish between storage flows that use protocol optimization and those that do not use protocol optimization. For example, SAN Volume Controller (SVC) from IBM Corporation does not use FastWrite, but Asynchronous Symmetrix Remote Data Facility (SRDF/A) from EMC Corporation does use FastWrite.

Both applications functioning over the connection are fully supported for FastWrite because FastWrite will not engage with the IBM SVC flows yet will engage with the SRDF/A flows across the same VE_Port. This is also true when using OSTP with IBM SVC. Both flows can utilize the same VE_Port with FastWrite and OSTP enabled.

Figure 3: Single Tunnel with FastWrite and OSTP Enabled

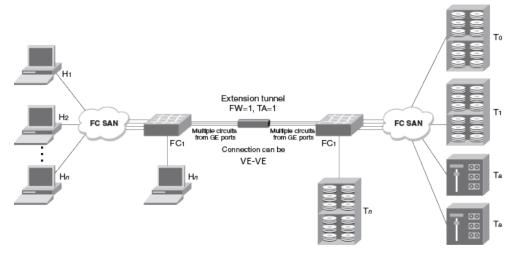
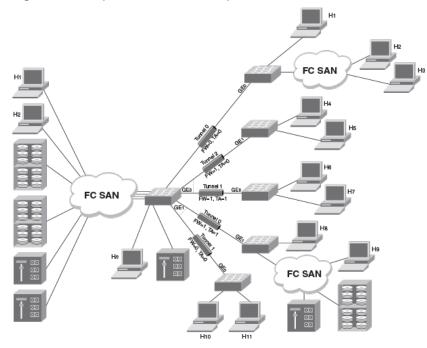



Figure 4: Multiple Tunnels to Multiple Ports with FastWrite and OSTP Enabled on a Per-Tunnel, Per-Port Basis

In some cases, VF LS/LF or Traffic Isolation (TI) Zoning configurations can be used to control the routing of SID/DID pairs to individual tunnels.

NOTE

However, TI Zoning is not advised.

This provides deterministic flows between the switches and allows the use of ECMP. Refer to the *Brocade Fabric OS Administration Guide* for more information about Traffic Isolation Zoning.

FICON Acceleration

FICON Acceleration provides specialized data management techniques and automated intelligence to accelerate FICON tape read and write and IBM Global Mirror data replication operations over distance while maintaining the integrity of command and acknowledgment sequences.

To use the features of FICON Acceleration, you must obtain the Advanced FICON Acceleration license, which allows interoperability for the following features:

- Write and read tape pipelining
- IBM z/OS Global Mirror emulation
- Teradata emulation

FICON Acceleration licenses are available on the Brocade 7840 Switch and the Brocade DCX 8510 family for the Brocade FX8-24 Blade on an individual slot basis.

NOTE

This license is not required on Brocade Gen 6 platforms with a Brocade SX6 Blade.

NOTE

The Brocade 7810 Switch supports not FICON or mainframe applications.

As part of FOS 8.2.1, support for the Brocade 7840 Switch and the Brocade SX6 Blade configurations, FICON Emulation supports Exchange-Based Routing policy.

This support comprises two major changes.

- VT and Egress VC assignments occur at the start of each FICON exchange.
- FICON Emulation processing creates a new internal object that is called an *exchange*. The exchange object is created when a new sequence (OXID) is received from either the channel or the control unit and exists during the active sequences. The exchange control block is similar to the FCP/SCSI TWB structure, but for FICON flows.

This change should improve FICON over FCIP performance improvements as FICON flows will not all be mapped to the same VT or VC (therefore head of line blocking will be avoided in both the WAN path and the FC egress path processing).

NOTE

EBR support is limited to a subset of FICON channels and devices. Only enable EBR in the configurations where IBM (or other FICON device provider) indicates support for Exchange-Based Routing.

For additional information about FICON configuring and administration, refer to the *Brocade Fabric OS FICON User Guide*. In addition, you can refer to the eBook, *Brocade Mainframe Connectivity Solutions*.

VM Insight

VM Insight is a feature implemented in Fabric OS 8.1.x allows flows between virtual machines (VMs) to be tracked and identified with greater granularity.

VM instances can include an optional header that contains a VMID that identifies the specific VM instance that is initiating the I/O. The VMID header is supported with all emulated FCP I/O sequences. If the server added the optional VMID header, the header will be used between the FCIP complex and the target device and will be included in FCP sequences back to the initiator.

Support of this feature requires that the drivers for HBA and storage vendors support the VMID frame-tagging method that identifies each subflow through the fabric.

The following table shows VM Insight support.

Table 9: VM Insight Supported Platforms

	FX8-24 (all Fabric OS)	7840/SX6 (before Fabric OS 8.1.x)	7840/SX6 (Fabric OS 8.1.x)	7810 (Fabric OS 8.2.1)
Non-emulated tunnels	Supported	Supported	Supported	Supported
FCP emulated tunnels (FastWrite, OSTP)	Not supported	Not supported	Supported	Supported
FICON-emulated tunnels	Not supported	Not supported	Not supported	Not Supported

For more information, refer to the Brocade Flow Vision Configuration Guide, the Brocade Fabric OS MAPS User Guide.

NVMe Support over Extension

NVMe is supported over FCIP tunnels on the Brocade 7810 Switch, Brocade 7840 Switch, Brocade SX6 Blade and Brocade FX8-24 Blade.

IP Security Encryption

Internet Protocol security (IPsec) of in-flight data employs cryptographic security to ensure private, secure communications over Internet Protocol (IP) networks.

IPsec supports network-level data integrity, data confidentiality, data origin authentication, and replay protection. It helps secure your extension traffic against network-based attacks from untrusted computers.

The following sequence of events invokes the IPsec protocol.

 IPsec and Internet Key Exchange (IKE) policies are created and assigned on peer switches or blades on both ends of the tunnel.

NOTE

On the Brocade FX8-24 Blade, you enable IPsec and provide a preshared key inline on the tunnel. There is no specific policy creation.

- IKE exchanges policy information on each end of the connection. If the policy information does not match, the connection does not come online. Some of the exchanged security association (SA) parameters include encryption and authentication algorithms, Diffie-Hellman key exchange, and SAs.
- Data is transferred between IPsec peers based on the IPsec parameters and keys stored in the SA database.
- When authentication and IKE negotiations are complete, the IPsec SA is ready for data traffic.
- SA lifetimes terminate through deletion or by timing out. An SA lifetime equates to approximately two billion frames of traffic that are passed through the SA or after a set time interval has passed.
- When the SA is about to expire, an IKE rekey occurs to create a set of SAs on both sides and data start using the new SA. IKE and SA re-keys are nondisruptive.

On Brocade 7840 Switch and Brocade SX6 Blade, IPsec support in Fabric OS 8.1.x and subsequent releases support Suite B Cryptographic Suites for IPsec. This enables configuration of the Elliptic Curve Diffie-Hellman (ECDH) for key agreement and Elliptic Curve Digital Signature Algorithm (ECDSA) for peer authentication. Suite B configuration requires the generation and importation of Suite B-compliant X.509 end-entity certificates, as well as the issuing CA certificates, used to sign them.

The following table shows the algorithm selection for a Suite B compliant configuration as against the configurations supported in prior Fabric OS releases.

Attribute	Prior to Fabric OS 8.1.x	Suite B in Fabric OS 8.1.x
Authentication	Shared key	ECDSA-P384
Diffie-Hellman	MODP-2048	ECDH-P384
PRF	PRF-HMAC-512	PRF-HMAC-384
Integrity	None	HMAC-384-192
Encryption	AES-256-GCM	AES-256-CBC (IKE connection) AES-256-GCM (data connection)

Table 10: IPsec Suite B Comparison on the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade

NOTE

Brocade 7810 Switch was introduced with Fabric OS 8.2.1, so please interpret the table accordingly.

As part of Suite B support, you can use digital certificates and third-party certificate authority (CA) to verify the identity of the certificates. This requires each end of the secure connection to have access or a means to look up the CA certificate for verification purposes. X.509 Certificate Revocation Lists (CRLs) are not supported.

When you define an IPsec policy, you can select between two profiles. The preshared key profile allows you to specify the key when IPsec is configured. The public key infrastructure (PKI) profile uses CA certificates.

IPsec for Extension Switches and Blades

Advanced Encryption Standard, Galois/Counter Mode, Encapsulating Security Payload (AES-GCM-ESP) is used as a single, predefined mode of operation for protecting all TCP traffic over a tunnel. AES-GCM-ESP is described in RFC 4106. The following list contains key features of AES-GCM-ESP:

- Encryption is provided by AES with 256-bit keys.
- Data integrity is provided by GCM with a 128-bit integrity check value.
- The IKEv2 key exchange protocol is used by peer switches and blades for key agreement.
- IKEv2 uses UDP port 500 to communicate between the peer switches or blades.
- All IKEv2 traffic is protected using AES-256 encryption.
- A 128-bit GCM or 192-bit hash message authentication code (HMAC) is used to check data integrity and detect thirdparty tampering.
- Pseudorandom function (PRF) is used to generate multiple security keys, using 384-bit or 512-bit HMAC.
- A 2048-bit Modular Exponential (MODP) or 384-bit Elliptic Curve Diffie-Hellman group is used for both IKEv2 and IPsec key generation.
- No encryption key is used for more than 4 hours or 2 billion frames, whichever comes first. When the SA lifetime expires, a new key is generated, limiting the amount of time an attacker has to decipher a key. Depending on the length of time expired or the number of frames being transferred, parts of a message might be protected by different keys generated as the SA lifetime expires.

After the key lifetime of 4 hours or 2 billion frames has been reached, new keys are generated and the old keys are discarded, This process of rekeying is nondisruptive.

- Encapsulating Security Payload (ESP) is used as the transport mode. ESP uses a hash algorithm to calculate and verify an authentication value, and it encrypts only the TCP header and TCP payload.
- A circuit in a nonsecure tunnel can use the same Ethernet interface as a circuit in a secure tunnel.
- Brocade IPsec is a hardware implementation that does not degrade or impact performance.
- Brocade IPsec does not preclude the use of compression or QoS.
- Unlike AES-GCM, AES-CBC does not have an integrated integrity algorithm. Therefore, HMAC-384-192 provides integrity.

Limitations Using IPsec over Tunnels

The following limitations apply to use IPsec:

- Network Address Translation (NAT) is not supported.
- Authentication Header (AH) is not supported.
- IPsec-specific statistics are not supported on the Brocade FX8-24 Blade; however, the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade do provide statistics.
- On the Brocade FX8-24 Blade, IPsec is configurable only on IPv4-based tunnels; however, the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade support IPsec on IPv6 as well as IPv4-based tunnels.
- Older versions of the Brocade FX8-24 Blade do not support IPsec on VE_Ports 22 through 31. For these blades, a RASlog warning message displays saying that the blade is not at the correct version to support IPsec-enabled tunnels on VE_Ports 22 through 31.
- On the Brocade FX8-24 Blade, a tunnel using IPsec in Fabric OS 7.0.x must use the --legacy tunnel option if connecting to a peer running a version prior to Fabric OS 7.0.x.
- IPsec is not allowed with the --connection-type tunnel option set to anything other than the default.

IPv6 Addressing

This implementation of IPv6 uses unicast addresses for the interfaces with circuits. The link-local unicast address is automatically configured on the interface, but using the link-local address space for circuit endpoints is not allowed. Site-local unicast addresses are not allowed as circuit endpoints.

NOTE

IPv6 addresses can exist with IPv4 addresses on the same interface, but the circuits must be configured as IPv6-to-IPv6 and IPv4-to-IPv4 connections. IPv6-to-IPv4 connections are not supported.

Note the following IPv6 addressing points:

- Anycast addresses are not used. Each IPv6 interface has a unique unicast address, and addresses configured are assumed to be unicast.
- Multicast addresses cannot be configured for an IPv6 interface with circuits.
- The IPv6 8-bit Traffic Class field is defined by the configured Differentiated Services field for IPv6 (RFC 2474). This
 configuration is done on the circuit using the Differentiated Services Code Point (DSCP) parameters to fill the 6-bit
 DSCP field.
- The IPv6 optional Extension Headers are not supported.
- Parts of the Neighbor Discovery protocol (RFC 4861) are used in this implementation.
 - Hop limits (such as Time to Live (TTL)) are learned from the Neighbor Advertisement packet.
 - The link-local addresses of neighbors are learned from the Neighbor Advertisement.
 - The IPv6 link-local address for each GE interface is configured at startup and advertised to neighbors. The user does not configure the interface link-local address.
- IPv6 addresses and routes must be statically configured by the user. Router advertisements and IPv6 stateless address autoconfiguration (RFC 2462) are not supported.
- ICMPv6 message types in RFC 4443 and ICMPv6 message types used for Neighbor Discovery (ND) are supported.
- Path MTU discovery
 - For the Brocade 7810 Switch, Brocade 7840 Switch and Brocade SX6 Blade, PMTU discovery is supported. See Path Maximum Transmission Unit Discovery.
 - For the Brocade FX8-24 Blade, path MTU (PMTU) discovery is not supported. The MTU option in the portcfg ipif command is optional. If not configured, an MTU of 1500 bytes is used. The maximum IP MTU supported is 1500 bytes (including the 40-byte fixed IPv6 header), the same as for IPv4. The minimum IP MTU allowed is 1280 bytes, including the 40-byte fixed IPv6 header. Any network used for IPv6 circuits must support an IP MTU of 1280

bytes or larger. IPv6 fragmentation is not supported. The Layer 4 protocol ensures that the PDU is less than the IP MTU (including headers).

- IPv6 addressing with IPsec
 - For the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade, IPv6 addressing can be used when implementing IPsec.
 - For the Brocade FX8-24 Blade, IPv6 addressing cannot be used when implementing IPsec.

IPv6 with Embedded IPv4 Addresses

When using IPv6 within an IPv4 network, only IPv4-compatible IPv6 addresses are supported. Only the low-order 32 bits of the address can be used as an IPv4 address (the high-order 96 bits must be all zeros). This allows IPv6 addresses to be used on an IPv4 routing infrastructure that supports IPv6 tunneling over the network. Both endpoints of the circuit must be configured with IPv4-compatible IPv6 addresses. IPv4-to-IPv6 connections are not supported. IPv4-mapped IPv6 addresses are not supported because they are intended for nodes that support IPv4 only when mapped to an IPv6 node.

Memory Use Limitations for Large-Device Tunnel Configurations

The data processing layer on a Brocade Extension switch and blade data processing (DP) complex have access to reserved memory used for control block structure allocations.

The following are related specifications for the Brocade Extension switches and blades.

Product	DP VE_Ports	DP DRAM Pool Size
Brocade 7840 Switch	DP0: 24–33 DP1: 34–43	2.4 GB 2.4 GB
Brocade 7810 Switch	DP0: 12–15	256 MB
Brocade SX6 Blade	DP0:16–25 DP1: 26–35	2.4 GB 2.4 GB
Brocade FX8-24 Blade	DP0: 22–31 DP1: 12–21	536 MB 536 MB

Table 11: VE_Ports and DRAM Pool Sizes for Brocade Extension Products

Tunnel processing will create more control blocks when any type of emulation feature is enabled, such as FCP/SCSI Fast Write, Open Systems Tape Pipelining, or FICON. In those cases, be sure not to include too many devices running over the tunnel. If too many devices are present or activated at one time, emulation operations can be negatively impacted. Even without emulation enabled, too many devices running over the tunnel may impact operations at some point because of memory consumption.

NOTE

A configuration that works without an emulation feature, such as FICON Acceleration, FastWrite, or Open Systems Tape Pipelining (OSTP), may not work when emulation features are enabled.

Displaying the Control Block Memory Pool

Use the portshow xtun *slot/ve* -dram2 command to display the current consumption of the tunnel DP complex control block memory pool. The following example shows the command output and displays the total DRAM2 pool size and current consumption for a Brocade 7840 Switch, VE_Port 28. (The Brocade 7840 Switch has no blade slots.)

```
switch:admin> portshow xtun 28 -dram2
Dram2 Pool Info:
```

Dram2 Cacheable: 0x8000000500d57300 - 0x80000005a0d572ff (2684354560)

pMaster=0x012517be00 heap_free=2676601216 heap_alloc=7753344 defrags=0 failedAllocs=0

Fast Free Usage=3070 Fast Free Allocates=15763317 Merged & Defrag'd Queues:

	U Derrag U	ser	MAX					
Q SegSi	ze Al	loc	UserA	Alloc'd	Returnd	Max	Current	Bytes
1 0x008) 32	13	3213	3213	0	275	275	0x00008980
2 0x010	6 0	03	603	603	0	40	6	0x00000600
3 0x018) 3	06	306	306	0	43	43	0x00004080
4 0x020) 1	05	105	105	0	99	65	0x00008200
5 0x028) 16	81	1681	1681	0	4	3	0x00000780
6 0x030) З	96	396	396	0	1	0	0x00000000
7 0x038	C	12	12	12	0	5	0	0x00000000
8 0x040	2 2	67	267	267	0	33	0	0x00000000
9 0x048	3 3	35	335	335	0	21	0	0x00000000
11 0x05	30	50	50	50	0	18	0	0x00000000
12 0x06	0 4	19	419	419	0	1	0	0x00000000
13 0x06	30	37	37	37	0	9	0	0x00000000
15 0x07	30 2	94	294	294	0	1	0	0x00000000
18 0x09	00	2	2	2	0	1	0	0x00000000
19 0x09	30	1	1	1	0	2	0	0x00000000
22 0x0b	00	16	16	16	0	3	0	0x00000000
24 0x0c	00	50	50	50	0	35	0	0x00000000
25 0x0c	30	5	5	5	0	1	0	0x00000000
28 0x0e	0 0	3	3	3	0	1	0	0x00000000
29 0x0e	30	16	16	16	0	1	0	0x00000000
30 0x0f	0 5	34	534	534	0	1	0	0x00000000
32 0x10	00	18	18	18	0	2	0	0x00000000
33 0x10	30	7	7	7	0	1	0	0x00000000
34 0x11	0 0	1	1	1	0	5	0	0x00000000
40 0x14	00	66	66	66	0	1	0	0x00000000
42 0x15	00	3	3	3	0	1	0	0x00000000
43 0x15	30	2	2	2	0	1	0	0x00000000
44 0x16	00	34	34	34	0	2	0	0x00000000
48 0x18	00	48	48	48	0	2	1	0x00001800
51 0x19	30	9	9	9	0	1	0	0x00000000
53 0x1a	30	5	5	5	0	1	0	0x00000000
56 0x1c	00	4	4	4	0	4	0	0x00000000
59 0x1d	30	2	2	2	0	2	0	0x00000000
64 0x20	00	23	42	45	22	327680	326722	0x9f884000

Fast Free Queues:

Q	SegSz/dec.	Allocs	Frees	Max	Current	Bytes
===	======/====	=				
1	0x0080/128	19681	21610	3058	1929	0x0003c480
2	0x0100/256	132687	132692	155	5	0x00000500
3	0x0180/384	124	124	62	0	0x00000000
4	0x0200/512	351	361	62	10	0x00001400
5	0x0280/640	131	466	335	335	0x00034580
6	0x0300/768	569	571	27	2	0x00000600
8	0x0400/1024	9785262	9785460	263	198	0x00031800
9	0x0480/1152	0	335	335	335	0x0005e380

1	.1 0x058	0/1408	1265810	1265860	50	50	0x00011300
1	.3 0x068	0/1664	0	15	15	15	0x00006180
1	.5 0x078	0/1920	131	185	54	54	0x00019500
2	24 0x0c0	0/3072	1265810	1265860	50	50	0x00025800
2	25 0x0c8	0/3200	126581	126586	5	5	0x00003e80
3	30 0x0f0	0/3840	3039599	3039653	54	54	0x00032a00
3	3 0x108	0/4224	126581	126586	5	5	0x00005280
4	8 0x180	0/6144	0	14	14	14	0x00015000
5	51 0x198	0/6528	0	9	9	9	0x0000e580
			1576331	7		3070	0x001B7680
1	otal By	tes in	DRAM2 Pool	: 2678401024	4 (free)	1799808	(fastfreed)
1	Total DRAM Bytes Allocated: 7753344 (in use)						

switch:admin>

Control Blocks Created during FCP Traffic Flows

For FCP/SCSI traffic flows, tunnel processing creates control block structures based upon the SID/DID pairs used between initiators and devices. When either FastWrite or OSTP (read or write) is enabled, additional structures and control blocks are created for each logical unit number (LUN) on a SID/DID-pair basis. FCP processing in an emulated tunnel configuration will create multiple control blocks for each LUN if there are multiple SID/DID pairs that can be used to access that same LUN. The following structures and control blocks are created:

- Initiator, target, nexus (ITN) structure: Each FCP-identified SID/DID flow will be recorded in an ITN structure.
- Initiator, target, LUN (ITL) control block: Each specific LUN on a SID/DID flow will have an ITL control block created for the flow.
- Turbo write block (TWB) structure: FCP emulation processing also creates a TWB structure for each outstanding FC exchange.

Control Blocks Created during FICON Traffic Flows

For FICON traffic flows, tunnel processing creates a control block structure based upon the SID/DID pairs called a FICON device path block (FDPB). If any FICON emulation feature is enabled, additional control blocks are created for each SID/DID pair, logical partition (LPAR) number (FICON channel block structure), LCU number (FICON control unit block structure), and each individual FICON device address on those LCUs (FICON device control block structure). FICON Exchange control blocks are also created if the switch is operating in EBR mode at FOS 8.2.1 or higher.

NOTE

The Brocade 7810 Extension switch supports neither FICON Emulation nor FICON SANs.

The total number of FICON device control blocks (FDCBs) that will be created over a FICON emulating tunnel is represented by the following equation:

FDCBs = Host Ports x Device Ports x LPARs x LCUs x FICON Devices per LCU

This number grows quickly in extended direct-attached storage device (DASD) configurations, such as those used in IBM z/OS Global Mirror, also known as Extended Remote Copy (XRC).

FDCBs Example

The following example assumes that the tunnel is used to extend two-channel paths (CHPIDs) from a System Data Mover (SDM) site to a production site. It also assumes that there are two SDM-extended LPARs, that the IBM DS8000 production controllers have 32 LCUs per chassis, and that each LCU has 256 device addresses. Using the preceding equation, the number of extended FICON device control block images created would be the following: 2 Host Ports x 2 Device Ports * 2 LPARs * 32 LCUs * 256 Devices per LCU = 56,536 FDCBs.

Considerations for Tunnel Control Block Memory and Device Configuration

The portshow xtun *slot/ve_port* -fcp -port -stats command displays current usage and control block sizes per tunnel once control blocks have been allocated. Use the output from this command to determine the unique characteristics of a specific tunnel configuration.

The highlighted text in the following example shows statistics for the control block structures created for FCP and FICON traffic flows during tunnel processing.

The following example shows the FICON VE_Port output.

```
switch:admin> portshow xtun 36 -fcp -port -stats
Slot(0.dp1) VePort(36) Port Stats:
  Global Queue Stats:
   Name, cnt, max, usage, size, total size
   Data, 0, 2, 4182, 8192, 0
   Message, 0, 1, 2091, 7448, 0
   Stat, 0, 0, 0, 1152, 0
   Stat Cache, 0, 0, 0, 0, 0
   Global stats, 0, 0, 0, 0, 23832
  Port Queue Stats:
   Name, cnt, max, usage, size, total size
   Image, 9, 9, 9, 0, 0
   SRB,0,0,0,0,0
   TWB, 1, 1, 8, 0, 0
  Port Struct Allocation Stats:
   Name, cnt, max, usage, size
   IMAGE, 9, 9, 9, 6104
   FDPB,9,0,0,6528
   OXTBL, 21, 0, 0, 8192
   FCHB, 15, 0, 0, 1544
   FCUB, 54, 0, 0, 1816
   FDCB, 352, 0, 0, 1128
  Global Buffer Stats:
   Name, current, min, max
   Write Data Storage,0,0,0
   Read Data Storage, 0, 0, 0
   XBAR % avail,100,100,100
   WIRE % avail, 99, 99, 100
   SWCOMP % avail,100,100,100
```

The following example shows the FCP/SCSI VE_Port output.

```
switch:admin> portshow xtun 24 -fcp -port -stats
Slot(0.dp0) VePort(24) Port Stats:
Global Queue Stats:
Name,cnt,max,usage,size,total size
Data,10,12,4794,8192,81920
Message,1,2,2374,7448,7448
Stat,0,0,0,1152,0
Stat Cache,0,0,0,0,0
```

Global stats, 0, 0, 0, 0, 113200 Port Queue Stats: Name, cnt, max, usage, size, total size Image, 4, 4, 4, 0, 0 SRB,2,4,7781217,0,0 TWB, 3, 102, 26746084, 0, 0 Port Struct Allocation Stats: Name, cnt, max, usage, size IMAGE, 4, 4, 4, 6104 ITN,4,0,0,5608 OXTBL, 11, 0, 0, 8192 ITL, 32, 0, 0, 5048 TWB, 4, 102, 26746086, 1008 Global Buffer Stats: Name, current, min, max Write Data Storage, 18544, 0, 3063052 Read Data Storage, 0, 0, 0 XBAR % avail,100,100,100 WIRE % avail,99,99,100 SWCOMP % avail, 100, 100, 100

Use output from portshow xtun *slot/ve_port* -fcp -port -stats command in conjunction with output from the portshow xtun *slot/ve_port* -dram2 command to determine how a tunnel configuration is affecting tunnel control block memory. As a rule of thumb, no more than 80 percent of the tunnel DP complex control block memory pool (dram2) should be allocated for SID/DID pair-related control blocks (ITNs, ITLs, FDPBs, FCHBs, FCUBs, and FDCBs). When more than 80 percent of the pool is allocated, consider redesigning the tunnel configuration to ensure continuous operation. When you redesign the tunnel configuration, examine the existing number of SID/DID pairs in the configuration, and determine whether new switches, chassis, or blades are needed to reduce the impact on DRAM2.

For Fabric OS releases before 7.4.x, RASlog message XTUN-1008 provides notification of DRAM2 memory usage. The message is generated by the DP complex when significant memory thresholds are reached. The following thresholds are shown for the Brocade FX8-24 Blade:

- 66%
- 33%
- 17%
- 8%
- 0.07%

From Fabric OS 8.0.x, each Brocade FX8-24 Blade, Brocade SX6 Blade DP complex, and Brocade 7840 Switch DP complex generates the XTUN-1008 RASlog message when the following percentages of the DRAM memory pool are available:

- 50%
- 25%
- 12.5%
- 6.25%
- 0.05%

RASlog messages include the amount of allocated memory from the pool, the amount of free memory in the pool, and the total pool size. Refer to RASlog messages to determine if you need to reduce the size of the extended configuration or to plan for additional switch resources.

Brocade switches and blade DPs are expected to support no more than the number of FICON device control blocks (FDCBs) and extended LUNs (ITLs) noted in the following table.

Table 12: FDCBs and ITLs Per Product DP

Product	FDCBs	ITLs
Brocade 7840 Switch	512,000	200,000
Brocade 7810 Switch	0	30,000
Brocade SX6 Blade	512,000	200,000
Brocade FX8-24 Blade	160,000	65,000

The following applies to the Brocade 7840 Switch and the Brocade SX6 Blade.

During Extension Hot Code Load (eHCL) operations, duplicated emulation and non-emulation control blocks are created on the same DP for the high-availability portion of the tunnel. That means that at one point in time during the eHCL process, twice the normal memory requirements are consumed. This duplication process occurs on the remote non-eHCL DP when the primary local DP is undergoing feature disable processing.

The amount of DRAM2 memory on the Brocade 7840 Switch and the Brocade SX6 Blade should be able to support eHCL operations with approximately 512K FICON devices active through the VE_Ports on that DP.

Because each customer configuration is unique, the supported number and types of devices will be different. In large configurations, the administrator should review memory usage periodically to ensure continued, reliable operations of the tunnel and emulation features.

Firmware Downloads

For the Brocade FX8-24 Blade, if Fibre Channel traffic or FCIP traffic is active on Fibre Channel ports, the traffic will be disrupted during a firmware download. Similarly, firmware download on a Brocade 7810 Switch will be disruptive during upgrade or downgrade (FCIP and IP Extension datapath traffic is disrupted), but native FC-FC traffic will not be disrupted during firmware download.

The Brocade 7840 Switch and the Brocade SX6 Blade support the Extension Hot Code Load (eHCL) feature. During an eHCL action, traffic is failed over to one DP complex while the firmware upgrades in the other DP complex. With eHCL, active FC traffic on Fibre Channel ports and VE_Ports is not disrupted during a firmware download. For more information on this process, see Extension Hot Code Load (HCL).

You must configure eHCL if you want to perform non disruptive firmware downloads. Otherwise, all traffic is disrupted during the download.

ATTENTION

When Teradata Emulation is enabled on an extension tunnel, eHCL is not supported. Any Teradata connections are disrupted by a firmware download even when eHCL is configured.

The best practice is to update the switch or blade at both ends of the tunnel with the same maintenance release of Fabric OS software.

For details on downloading firmware, refer to the chapter on installing and maintaining firmware in the *Brocade Fabric OS Administration Guide*.

Extension Platforms and Features

Overview of Extension Platforms and Features

The following platforms support Brocade Extension features in Fabric OS software:

- Brocade 7810 Switch
- Brocade 7840 Switch
- Brocade SX6 Blade in the following chassis:
 - Brocade X6-4 Director
 - Brocade X6-8 Director
- Brocade FX8-24 Blade in the following chassis:
 - Brocade DCX 8510-4
 - Brocade DCX 8510-8

Some features may require additional Fabric OS licenses to operate. For information about available Fabric OS licenses, refer to the *Brocade Fabric OS Software Licensing User Guide*.

Tunnel compatibility across extension platforms is outlined below.

Table 13: Compatibility Across Platforms

Platforms	Brocade 7840 Switch	Brocade 7810 Switch	Brocade SX6 Blade	Brocade FX8-24 Blade
7840	Yes	Yes	Yes	No
7810	Yes	Yes	Yes	No
SX6	Yes	Yes	Yes	No
FX8-24	No	No	No	Yes

NOTE

Extension connections are not supported between the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade and previous generation products like Brocade 7800/7500 Switches and Brocade FX8-24/ FR4-18i Blades.

The following table provides details about extension platform capabilities.

Table 14: Extension Capabilities by Platform

Capability	Brocade 7840	Brocade 7810	Brocade SX6	Brocade FX8-24
Extension Trunking	Yes	Yes	Yes	Yes
Adaptive Rate Limiting	Yes	Yes	Yes	Yes
1GbE and 10GbE Ports	Yes (1/10Gb/s)	Yes (1/10Gb/s) No additional license is required.	Yes (1/10Gb/s)	Yes (1Gb/s and 10Gb/s optional)
40GbE Ports	Yes Enabled using the 7840 WAN Rate Upgrade 2 license.	No	Yes No additional license is required.	No

Capability	Brocade 7840	Brocade 7810	Brocade SX6	Brocade FX8-24
FC Ports	Yes (2, 4, 8, 16Gb/s)	Yes (4, 8, 16, 32Gb/s)	Yes (4, 8, 16, 32Gb/s)	Yes (1, 2, 4, 8Gb/s)
Compression	Yes Deflate Aggressive deflate Fast deflate 	Yes Deflate Aggressive deflate 	Yes Deflate Aggressive deflate Fast deflate 	Yes LZ and deflate
Protocol Acceleration FastWrite Open Systems Tape Pipelining OSTP Read OSTP Write 	Yes	Yes	Yes	Yes
QoS Marking DSCP Marking 802.1P - VLAN Tagging	Yes	Yes	Yes	Yes
 FICON Extension IBM z/OS Global Mirror Acceleration Tape Read Acceleration Tape Write Acceleration Teradata Emulation 	Yes	No	Yes	Yes
IPsec • AES-256-GCM • SHA-512 HMAC • IKEv2	Yes Transport mode encrypted data transfer (ESP) method	Yes Transport mode encrypted data transfer (ESP) method	Yes Transport mode encrypted data transfer (ESP) method	Yes Transport mode encrypted data transfer (ESP) method
VEX_Ports	No	No	No	Yes
Support for Third-Party WAN Optimization Hardware	No	No	No	Yes Support is limited to Silver Peak for Fabric OS 7.1.0b and to Riverbed for Fabric OS 6.4.x.
IPv6 Addresses for Extension Tunnels	Yes	Yes	Yes	Yes ¹
Support for Jumbo Frames	Yes An IP MTU of 9216 is the maximum.	Yes An IP MTU of 9216 is the maximum.	Yes An IP MTU of 9216 is the maximum.	No An IP MTU of 1500 is the maximum.
Path Maximum Transmission Unit (PMTU) Discovery	Yes The maximum discoverable size is 9100 bytes.	Yes The maximum discoverable size is 9100 bytes.	Yes The maximum discoverable size is 9100 bytes.	No
Extension Hot Code Load (eHCL)	Yes	No	Yes	No

Capability	Brocade 7840	Brocade 7810	Brocade SX6	Brocade FX8-24
WAN Tool Service- Level Agreement (SLA) Support	Yes	Yes	Yes	No
Link Level Discovery Protocol (LLDP)	Yes All Ethernet interfaces	Yes All Ethernet interfaces	Yes All Ethernet interfaces	No
Support Modes	Hybrid mode and FCIP mode	Hybrid	Hybrid mode and FCIP mode	FCIP mode The Brocade FX8-24 Blade has 10G, 1G, and Dual modes.
Keepalive Packets (KAPs) for LACP and LLDP	Yes	Yes	Yes	No

The following note applies to the preceding table:

1. IPv6 addressing is not supported with IPsec.

The following table shows IP Extension capabilities on supported platforms.

Table 15: IP Extension Capabilities by Platform

Capability	Brocade 7840	Brocade 7810	Brocade SX6
Hybrid Mode (FCIP and IP Extension)	Yes	Yes	Yes
Link Aggregation Group (Static and Dynamic LAG)	Yes Only in Hybrid mode 1GbE and 10GbE ports	Yes Only in Hybrid mode 1GbE and 10GbE ports	Yes Only in Hybrid mode 1GbE and 10GbE ports
Switch Virtual Interface (SVI) IP interface (IPIF)	IP traffic through a Brocade Extension Tunnel	IP traffic through a Brocade Extension Tunnel	IP traffic through a Brocade Extension Tunnel
IP Extension Compression	Deflate, aggressive deflate, and fast deflate	Deflate and aggressive deflate	Deflate, aggressive deflate, and fast deflate
Traffic Control List (TCL)	Yes	Yes	Yes
LAN-Side Jumbo Frames	Yes	Yes	Yes
Policy-Based Routing (PBR)	Yes	Yes	Yes

Overview of Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade

The Brocade 7810 Switch, Brocade 7840 Extension Switch, and Brocade SX6 Blade share a number of design features. However, because the internal hardware architecture and design of the Brocade 7810 Switch is analogous to a "single DP" Brocade 7840 Switch, there are some key differences.

Brocade 7840 Switch and Brocade SX6 Blade

- Two data processor (DP) complexes, DP0 and DP1
- Up to 20 VE_Ports
- Two 40GbE ports
- Sixteen 1/10GbE ports

The following table shows the Ethernet interface properties on the Brocade 7840 Switch and the Brocade SX6 Blade.

Table 16: Brocade 7840 Switch and Brocade SX6 Blade

Ethernet Interface Properties	Data Processor 0	Data Processor 1
10GbE Interfaces	Sixteen 1/10GbE interfaces shared by both DPs	Sixteen 1/10GbE interfaces shared by both DPs
40GbE Interfaces (WAN side only)	Two 40GbE interfaces shared by both DPs	Two 40GbE interfaces shared by both DPs
Maximum Bandwidth per VE Port	20Gb/s	20Gb/s
Maximum WAN Bandwidth per DP	20Gb/s	20Gb/s
Maximum IP Extension Bandwidth per DP	20/20Gb/s Requires 2:1 compression using fast deflate LAN/WAN	20/20Gb/s Requires 2:1 compression using fast deflate LAN/WAN
Maximum FCIP Bandwidth per DP	40Gb/s FC in (to the DP); 20Gb/s IP out (to the DP)	40Gb/s FC in (to the DP); 20Gb/s IP out (to the DP)
Maximum Number of VE_Ports	No VEX_Ports Default 5 per DP at 20Gb/s VE_Port maximum bandwidth 10 per DP at 10Gb/s VE_Port maximum bandwidth	No VEX_Ports Default 5 per DP at 20Gb/s VE_Port maximum bandwidth 10 per DP at 10Gb/s VE_Port maximum bandwidth
Maximum FCIP Bandwidth in FCIP Mode per DP without Fast Deflate Compression	20Gb/s	20Gb/s
Maximum FCIP Bandwidth in FCIP Mode per DP with Fast Deflate Compression and 2:1 Compression	40Gb/s	40Gb/s
Maximum FCIP Bandwidth in Hybrid Mode per DP without Fast Deflate Compression	10Gb/s	10Gb/s
Maximum FCIP Bandwidth in Hybrid Mode per DP with Fast Deflate Compression and 2:1 Compression	20Gb/s	20Gb/s

NOTE

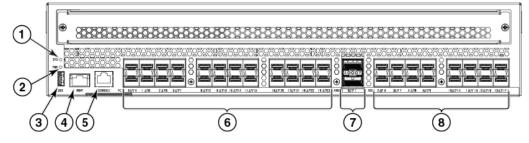
Extension tunnels created on a Brocade 7840 Switch or Brocade SX6 Blade cannot connect to the FX8-24 Blade.

Brocade 7810 Switch

The Brocade 7810 Extension Switch has only one DP and the following table of Ethernet interface properties reflects this difference.

Table 17: Brocade 7810 Switch

Ethernet Interface Properties	Data Processor 0
1/10GbE Interfaces (1G is the default; 10G with advanced license)	6
RJ-45 Ports	2
Maximum Bandwidth per VE	2.5Gb/s
Maximum WAN Bandwidth	2.5Gb/s
Maximum IP Extension Bandwidth	10Gb/s
Maximum Number of VE_Ports	4 VE_Ports (no VEX_Ports)
FCIP Bandwidth without Compression	2.5Gb/s
FCIP Bandwidth with 2:1 Compression	5Gb/s
FCIP Bandwidth with 4:1 Compression	10Gb/s


Brocade 7840 Switch Ports

NOTE

You cannot connect extension tunnels that are created on a Brocade 7840 Switch to interfaces on a Brocade FX8-24 Blade (not supported in FOS 9.0.x). However, the Brocade 7840 Switch can connect with another Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade in a Brocade X6 Director chassis.

The following figure illustrates the FC ports, 10/1GbE ports, and 40GbE ports on the Brocade 7840 Switch or Brocade 7810 Switch.

Figure 5: Brocade 7840 Switch Ports and Status Indicators

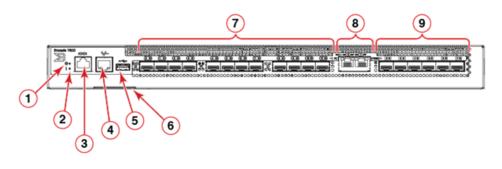
- 1. System (SYS) status LED
- 2. Power (PWR) LED
- 3. USB port
- 4. Ethernet management (mgmt) port
- 5. Serial console management port
- 6. FC ports 0 through 23
- 7. 40GbE ports 0 and 1
- 8. 1/10GbE ports 2 through 17

Brocade 7840 Switch provides the following on the switch:

- 24 16Gb/s FC ports (FC0-FC23) numbered 0 through 23
- Two 40GbE ports (ge0-ge1) numbered 0 through 1
- 16 1/10GbE ports (ge2–ge17) numbered 2 through 17
- Up to 20 VE_Ports are supported for tunnel configurations. Typically, only one VE_Port is needed per remote site.

NOTE

IP Extension is not supported in 20VE mode, only in 10VE mode (the default).


NOTE

The 40GbE ports are enabled with the Brocade 7840 Switch Upgrade 2 license.

Brocade 7810 Switch Ports

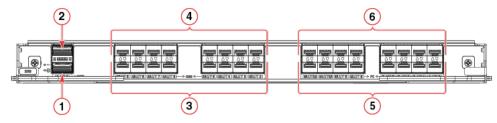
The following illustration identifies system LEDs and ports on the port-side view of the Brocade 7810 Extension Switch.

Figure 6: Brocade 7810 Switch Port Numbering

- 1. System power LED
- 2. System status LED
- 3. Serial console port (RJ-45)
- 4. Ethernet management port (RJ-45)
- 5. USB port
- 6. Serial number pull-out tab
- 7. 32Gb/s SFP+ FC ports (0-11)
- 8. 1GbE copper (RJ-45) ports (0-1)
- 9. 1/10GbE SFP+ ports (2-7)

NOTE

All the ports are connected to a single Gen 6 ASIC.


Brocade SX6 Blade Ports

NOTE

You cannot connect extension tunnels created on a Brocade SX6 Blade to interfaces on a Brocade FX8-24 Blade (not supported in FOS 9.0.0). The Brocade SX6 Blade can connect with a Brocade SX6 Blade in another Brocade X6 Director chassis or with a Brocade 7840 Switch or Brocade 7810 Switch.

The following figure illustrates the FC ports, 10/1GbE ports, and 40GbE ports on the Brocade SX6 Extension Blade.

Figure 7: Brocade SX6 Blade Port Numbering

- 1. 40GbE port 0
- 2. 40GbE port 1
- 3. 10/1GbE ports 2 through 9 (right to left)
- 4. 10/1GbE ports 10 through 17 (right to left)
- 5. FC ports 0, 1, 2, 3, 8, 9, 10, 11 (right to left)
- 6. FC ports 4, 5, 6, 7, 12, 13, 14, 15 (right to left)

The Brocade SX6 Blade has the following external ports:

- Sixteen Fibre Channel (FC) SFP+ ports that support Fibre Channel Routing services and connection to FC devices for the Brocade Extension feature. These ports support 32Gb/s transceivers operating at 8, 16, or 32Gb/s or 16Gb/s transceivers operating at 4, 8, or 16Gb/s. The ports also support 10Gb/s transceivers. Supported port speed depends on the installed transceiver. FC ports can auto-negotiate speeds with connecting ports.
- Sixteen 10/1GbE SFP+ and two 40GbE QSFP ports. These ports allow the connection of blades to IP WANs and allow Fibre Channel and IP I/O to pass through the IP WAN using extension tunnels. The 10/1GbE ports operate at 10Gb/ s or 1Gb/s fixed speeds with appropriate 10Gb/s or 1Gb/s transceivers installed. The 40GbE QSFP ports operate at a 40Gb/s fixed speed.

Ethernet Port Groups

This section describes the numbered Ethernet ports on a Brocade 7810 Switch, Brocade 7840 Switch, or Brocade SX6 Blade platform.

Brocade 7840 Switch and Brocade SX6 Blade

The Brocade 7840 Switch and the Brocade SX6 Blade support eight groups of Ethernet ports. Specific recommendations can be applied to ports within a group to help alleviate traffic congestion problems.

NOTE

For a Brocade 7810 Switch, each Ethernet port is its own group. So, the rest of this discussion does not apply.

Switch Ethernet ports are numbered with the 40GbE ports as 0 through 1. The 10GbE ports are numbered 2 through 17. See Brocade 7840 Extension Switch Ports and Brocade SX6 Extension Blade Ports for illustrations of the port numbering. Port numbers contained in the Ethernet port groups are shown in the following table.

Table 18: Brocade 7840 and Brocade SX6 Ethernet Port Groups

Port Number	Port Group
0, 1, 13, 17	1
2, 6	2
3, 7	3
4, 8	4
5, 9	5

Port Number	Port Group
10, 14	6
11, 15	7
12, 16	8

Note that port group 1 contains the two 40GbE ports (0 and 1) and 10GbE ports 13 and 17. The remaining port groups contain the 10GbE ports from 2 to 16. Consider the following when using ports from these port groups:

- A port can block any port in its port group, but it cannot block a port outside of its port group.
- A port could affect another port in the same group due to differences in port speed or if the port is back-pressured due to the Ethernet pause from an external switch. A blocked port may result from a slow-draining device or other congestion.

To avoid these effects on ports within the same port group, it is best that you do not mix speeds for ports within the group. Recommendations for the port groups are as follows:

- In port group 1, because the 40GbE ports are fixed at 40Gb/s, use either the 40GbE ports or the 10GbE ports at 10Gb/ s or 1Gb/s.
- In port groups 2 through 8, which contain all 10GbE ports, configure the ports at either 10Gb/s or 1Gb/s.

NOTE

The table applies to ports configured in WAN mode. If the ports are configured as LAN ports, the grouping and blocking do not apply. As a recommended best practice, allocate a LAN port out of the same group as a WAN port.

Fibre Channel Port Groups

All Fibre Channel (FC) ports in a Brocade trunk must be in a single port group. The Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade provide FC port groups for configuring ISL trunk groups or Brocade trunks. Each port group contains eight FC ports.

Brocade 7840 Switch FC Port Groups

The trunk port groups on the Brocade 7840 Switch are as follows:

- Port group 0: ports 0-7
- Port group 1: ports 8–15
- Port group 2: ports 16–23

Brocade 7810 Switch FC Port Groups

The trunk port groups on the Brocade 7810 Switch are as follows:

- Port group 0: ports 0-7
- Port group 1: ports 8-11

Brocade SX6 Blade FC Port Groups

The trunk port groups on the Brocade SX6 Blade are as follows:

- Port group 0: ports 0–7
- Port group 1: ports 8–15

FC Port Group Considerations

The following requirements apply to forming trunk groups for the FC ports:

- All ports in a trunk group must belong to the same port group. For example, to form an 8-port trunk, select all eight ports from FC port group 0 or port group 1. You cannot use ports from each port group for the trunk.
- You can use from one to eight ports in a port group to form a trunk.
- Ports must be running at the same speed.
- Ports must be configured for the same distance.
- Ports must have the same encryption, compression, QoS, and FEC settings.
- Trunk groups must be created between Brocade switches (or Brocade adapters in the case of F_Port trunking). Brocade trunking is proprietary and is not supported on M-EOS or third-party switches.
- A direct connection must exist between participating switches.

For full details on trunking requirements and configuration, refer to the Brocade Fabric OS Administration Guide.

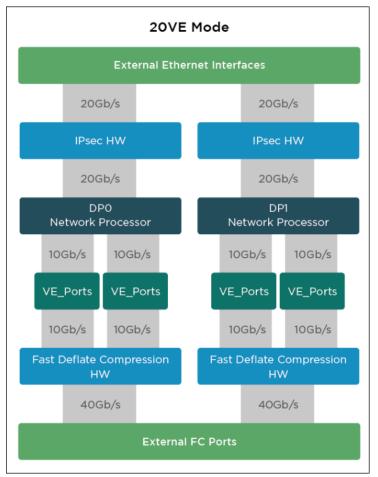
Network DP Components

The Brocade 7840 Switch and the Brocade SX6 Blade share a similar design architecture. The following information discusses platform operation in FCIP mode, not Hybrid mode, which is when both FCIP and IP extension are enabled.

NOTE

The Brocade 7810 Switch operates only in Hybrid mode.

The following figures illustrate the components and connections for each data processing (DP) complex when the platform is enabled in 10VE or 20VE modes. All 10Gb/s, 20Gb/s, and 40Gb/s connections shown in the illustrations are full-duplex and internal to the platform. For more information about 10VE and 20VE port modes, see 10VE and 20VE Port Distribution.


NOTE

The following figures apply to the extension platform when it is in FCIP mode and not Hybrid mode.

10VE Mode External Ethernet Interfaces 20Gb/s 20Gb/s IPsec HW IPsec HW 20Gb/s 20Gb/s DPO DP1 Network Processor Network Processor 10Gb/s 10Gb/s 10Gb/s 10Gb/s VE_Ports VE_Ports 10Gb/s 10Gb/s 10Gb/s 10Gb/s Fast Deflate Compression Fast Deflate Compression 40Gb/s 40Gb/s **External FC Ports**

Figure 8: DP Components and VE_Port Distribution in 10VE Mode

Figure 9: Brocade 7840 Switch DP Components and VE_Port Distribution in 20VE Mode

As shown in the illustrations:

- There is a 40Gb/s full-duplex connection between the FC switching ASIC and external FC ports and each DP. On the Brocade 7840 Switch, the external FC ports are Gen 5 (16Gb/s), and on the Brocade SX6 Blade, they are Gen 6 (32Gb/s).
- Fibre Channel (FC) frames can be compressed with the fast deflate compression hardware. Other software-based compression options can be configured.
- The maximum bandwidth size of any one tunnel across the internal connections can be no more than 10Gb/s.
- From the network processors, data can be encrypted by the IPsec hardware using high-speed, low-latency, hardwarebased encryptors. Each DP network processor can produce 20Gb/s of data flow going toward or coming from the external Ethernet interfaces and the WAN.
- In 10VE mode, each DP complex supports a total of five VE_Ports. 10VE mode is required for Hybrid mode operation.
- In 20VE mode, each DP complex supports a total of ten VE_Ports. 20VE mode is allowed in FCIP mode only.

If a 2:1 compression ratio is achieved using fast deflate compression, 40Gb/s per DP and 80Gb/s per platform is available to external FC ports (applicable to the Brocade 7840 Switch and the Brocade SX6 Blade but not the Brocade 7810 Switch).

The maximum compression ratio depends on a number of factors and is not guaranteed.

NOTE

Typical deflate compression may achieve different compression ratios. Brocade makes no promises as to the achievable compression ratios for customer-specific data.

The Adaptive Rate Limiting (ARL) aggregate of all circuit maximum values on a single DP complex cannot exceed 40Gb/ s. The ARL aggregate of all circuit minimum values for a single DP complex cannot exceed 20Gb/s. All circuits include all circuits from all tunnels, not just all circuits from a single tunnel. ARL is used only when minimum and maximum bandwidth values are configured for a circuit.

Specific VE_Ports are associated with each DP complex. The VE_Port that you configure for a tunnel also selects the DP complex that is used for processing. See 10VE and 20VE Port Distribution for more information.

For additional specifications and requirements for switch ports, tunnels, and circuits, see Tunnel and Circuit Requirement for Brocade Extension Platforms.

10VE and 20VE Port Distribution

In the Brocade 7840 Switch and the Brocade SX6 Blade, each data processor (DP) complex, DP0 and DP1, can support either five or ten VE_Ports depending on how the VE mode is configured. In 10VE mode, each DP supports five VE_Ports, for a total of ten VE_Ports per switch or blade. In 20VE mode, each DP supports up to ten VE_Ports, for a total of twenty VE_Ports per switch or blade. The following table shows the VE_Ports supported in 10VE and 20VE mode. The VE_Port number is used when you configure a tunnel. The number of tunnels that you can configure per switch or blade is determined, in part, by the VE mode and the VE_Ports supported by each DP.

Extension Platform	VE Mode	DP0/DP1	Supported VE_Ports
Brocade SX6 Blade	VE10	DP0	16–20
		DP1	26–30
	VE20	DP0	16–25
		DP1	26–35
Brocade 7840 Switch	VE10	DP0	24–28
		DP1	34–38
	VE20	DP0	24–33
		DP1	34–43

Table 19: 10VE and 20VE Port Distribution

In 10VE mode, a VE_Port (and the total bandwidth of its circuits) can use all Fibre Channel bandwidth available to the DP complex where it resides, a maximum of 20Gb/s.

In 20VE mode, a single VE_Port (and the total bandwidth of its circuits) on a DP complex can use half the Fibre Channel bandwidth available to the DP complex where it resides, to a maximum of 10Gb/s. This option allows you to use more VE_Ports, but at a lower maximum bandwidth.

10GbE and 40GbE Port and Circuit Considerations

Enhanced 10GbE and 40GbE port operations require special considerations when configuring circuits, tunnels, failover operations, and bandwidth.

On a single VE port on a Brocade 7840 Switch or Brocade SX6 Blade, each tunnel that you create is limited to a maximum of ten circuits. (The limit on a Brocade 7810 Switch is six circuits.) The maximum committed rate of a single circuit is 10Gb/s, whether configured on a 10GbE or 40GbE port.

For a complete list of the tunnel, circuit, and IP address requirements and capacities, see Tunnel and Circuit Requirement for Brocade Extension Platforms.

Brocade 7840 Switch License Options

Important Brocade Extension features and FICON extension capabilities of the Brocade 7840 Switch require the feature licenses shown in the following table. Use the licenseshow command to display license keys and licenses currently installed.

Table 20: Brocade	7840 Switch	h Feature Licenses	
-------------------	-------------	--------------------	--

Feature	Purpose	License (licenseShow Output)
WAN Rate Upgrade 1	Increases bandwidth available to all extension tunnels configured on the switch from 5Gb/s for the base hardware to 10Gb/ s.	WAN Rate Upgrade 1 license
WAN Rate Upgrade 2	Allows unlimited bandwidth for all tunnels configured on the switch. This also enables the 40GbE ports so that they can be used for configuring IP addresses. You must have a WAN Rate Upgrade 1 license to activate the WAN Rate Upgrade 2 license.	WAN Rate Upgrade 2 license
Advanced FICON acceleration	Enables accelerated tape read/write, IBM z/ OS Global Mirror, and Teradata emulation features in FICON environments. Slot- based license.	Advanced FICON Acceleration (FTR_AFA) license
Advanced Extension License	This is enabled on the Brocade 7840 Switch at the factory. Required for multiple- circuit tunnels, Trunking, and ARL.	Advanced Extension (FTR_AE) license

For complete information about the licenses described in the preceding table and additional licenses available for the Brocade 7840 Switch, refer to the Brocade Fabric OS Software Licensing User Guide.

Brocade 7810 Switch License Options

The Brocade 7810 Switch supports a base model that you can upgrade with an upgrade license. Prior to the Fabric OS 8.2.1 release, the available licenses are distinct licenses (Upgrade 1 and Upgrade 2), an Advanced Extension license, and an Advanced FICON Acceleration license. These licenses are applicable for the Brocade 7840. With the Fabric OS 8.2.1 release, a single upgrade license is introduced for the Brocade 7810. The base model and the base model with an upgrade license support the following.

NOTE

With the simplified process, the base model with an upgrade license is identical to a fully configured model.

Functionality	Base Brocade 7810 Switch	Base Brocade 7810 Switch with an Upgrade License
FC Port Limits	4	12
VE Port Limits	2	4
GE WAN Port Limits	2	6
GE LAN Port LImits	4	4
WAN Bandwidth Limit	1Gb/s	2.5Gb/s

Table 21: Brocade 7810 License Options

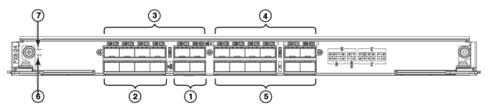
Functionality	Base Brocade 7810 Switch	Base Brocade 7810 Switch with an Upgrade License
Max IP Extension flows (LAN TCP connections)	128	128
Max UDP connections	32	32
IPsec Support	Yes	Yes
Compression Support	Yes	Yes
FC Trunking	No	Yes Yes
Extension Trunking	No	Yes
Fabric Vision	No	Yes
Adaptive Rate Limiting	Yes	Yes
FICON Support	No	No
FC Routing	No	Yes
Extended Fabrics	No	Yes

Brocade SX6 License Options

The Brocade SX6 Blade is supported in the Brocade X6 Director platform. The Brocade X6-4 and X6-8 Directors support the following licenses:

- Extended Fabrics
- FC Trunking
- FICON Management Server
- Inter Chassis Link
- Integrated Routing Ports on Demand
- Fabric Vision and IO Insight

For complete information about the licenses available for the Brocade X6 Director, refer to the *Brocade Fabric OS Software Licensing User Guide*.


Brocade FX8-24 Blade Overview

This section provides information on ports, circuits, and tunnels specific to the Brocade FX8-24 Blade.

The blade can be installed in a Brocade DCX 8510-8 or DCX 8510-4 chassis.

The following figure shows the FC ports, GbE ports, and 10GbE ports on the Brocade FX8-24 Blade. There are 12 FC ports, numbered 0 through 11. The FC ports can operate at 1, 2, 4, or 8Gb/s. There are ten GbE ports, numbered 0 through 9. Ports xge0 and xge1 are 10GbE ports.

Figure 10: Brocade FX8-24 Blade

1. 10GbE XGE ports 0–1 (right to left)

2. 1GbE ports 0-3 (right to left)

- 3. 1GbE ports 4-9 (right to left)
- 4. FC ports 6–11 (right to left)
- 5. FC ports 0-5 (right to left)
- 6. Power LED
- 7. Status LED

Brocade FX8-24 Blade Operating Modes

The Brocade FX8-24 Blade operates in one of three modes. Depending on the mode, different combinations of ports and speeds are available. The three modes are:

- 1Gb/s mode: You can use all ten GbE ports (0 through 9). Both XGE ports are disabled.
- 10Gb/s mode: You can use the xge0 and xge1 ports. GbE ports (0 through 9) are disabled.
- Dual mode: You can use GbE ports 0 through 9 and port xge0. The xge1 port is disabled.

Brocade FX8-24 Blade Data Processor Complexes

The Brocade FX8-24 Blade contains two FCIP data processor (DP) complexes, DP0 and DP1. With two DP complexes, you can configure one tunnel on each DP and achieve a maximum of 20Gb/s full-duplex bandwidth for tunnel connections on each blade. Each DP complex has an associated local 10GbE XGE port. Each DP complex controls a specific range of GbE and VE_Ports.

The DP0 interface and ports are as follows:

- 10GbE XGE port 0
- VE_Ports 22 through 31
- 10Gb/s maximum bandwidth
- Operates in 10Gb/s mode and dual mode

The DP1 interface and ports are as follows:

- 10GbE XGE port 1 (10Gb/s mode only)
- VE_Ports 12 through 21
- 10Gb/s maximum bandwidth
- GbE ports 0 through 9 while operating in 1Gb/s mode and dual mode

Removing the Brocade FX8-24 Blade

You must perform the following steps before removing or changing the location of a Brocade FX8-24 Blade in a chassis. Otherwise, unexpected results might occur.

ATTENTION

If you are permanently removing a blade from a Brocade DCX, DCX-4S, DCX 8510-8, or DCX 8510-4 chassis to relocate to another slot in the chassis or if you are removing the blade from the chassis entirely, you must follow these procedures *before removing the blade*.

- 1. Delete all fciptunnel configurations. Use the portcfg fciptunnel *slot/ve port* command.
- 2. Delete all IP routes defined on the blade. Use the portcfg iproute command.
- 3. Delete all IPIFs defined on the blade. Use the portcfg ipif [slot/geX] | xgxX command.
- 4. If logical switches are used on the switch, move all Brocade FX8-24 Blade ports to the default logical switch. Use the lscfg --config *FID slot/port* command.
- 5. Remove the blade from the chassis.

Brocade FX8-24 Blade License Options

Important capabilities of the Brocade FX8-24 Blade require the feature licenses shown in the following table. Use the licenseShow command to display license keys and licenses currently installed.

Feature	Purpose	License (licenseShow output)
10GbE support	Allows 10Gb/s operation on 10GbE ports. Slot-based license.	10Gigabit FCIP/Fibre Channel (FTR_10G) license
Advanced FICON acceleration	Enables accelerated tape read/write, IBM z/ OS Global Mirror, and Teradata features in FICON environments. Slot-based license.	Advanced FICON Acceleration (FTR_AFA) license
Integrated routing (IR)	Required to configure EX_Ports and VEX_Ports to support Fibre Channel Routing (FCR). Chassis-based license.	Integrated Routing license
Advanced extension	Required for multiple-circuit tunnels, trunking, Adaptive Rate Limiting (ARL), and other features. Slot-based license.	Advanced Extension (FTR_AE) license

Table 22: Brocade FX8-24 Blade Feature Licenses

For complete information about the licenses described in the preceding table and additional licenses available for the switch, refer to the *Brocade Fabric OS Software Licensing User Guide*.

Brocade FX8-24 Blade Multi-Gigabit Circuits

For each 10GbE XGE port on a Brocade FX8-24 Blade, you can configure multi-gigabit circuits. You can allocate bandwidth for each circuit in 1Gb/s increments up to the maximum number of circuits and bandwidth allowed. For example, you can configure one 10GbE XGE port with two 5Gb/s circuits or a single 10Gb/s circuit. A maximum of ten circuits can be configured on a single XGE port. The maximum committed rate for a circuit between 10GbE XGE ports is 10Gb/s. The Brocade FX8-24 Blade at each end of the tunnel must be running the same version of Fabric OS 7.0.x if the committed rate for circuits exceeds 1Gb/s.

To use both 10GbE XGE ports, the Brocade FX8-24 Blade must be in 10Gb/s mode. When the blade is in dual mode, you can use port xge0 for multi-gigabit circuits, but not port xge1. When the blade is in 1Gb/s mode, the 10GbE ports are not available.

NOTE

There is no difference in latency or throughput performance for single or multi-gigabit circuits.

Crossports and Failover

A cross-port is the non-local DP XGE port. The Brocade FX8-24 Blade provides two data processing (DP) complexes that are identified as DP0 and DP1. Each DP has a local 10Gb/s XGE port, xge0, and xge1 that corresponds to DP0 and DP1. You can configure a DP to use its non-local XGE port, which is done to provide an alternate traffic path if the local XGE port fails for some reason. Cross-ports are supported only on the Brocade FX8-24 Blade and are available when the blade is configured for 10Gb/s mode.

For DP0 and its local xge0 port, the cross-port is xge1. Likewise, for DP1 and its local xge1 port, the cross-port is xge0.

Typically, IP interface addresses (IPIFs) used by ge0 through ge9 and xge1 are used for any circuits that use VE_Ports 12 through 21. The xge1 port is the local XGE interface for VE_Ports 12 through 21. Likewise, IP addresses configured for xge0 are used by circuits for VE_Ports 22 through 31.

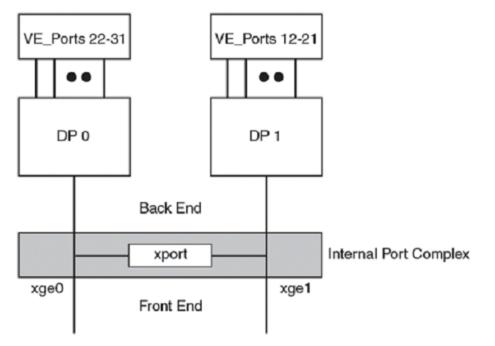
Configure a cross-port by assigning an IP address to the remote XGE port that can be used by the local XGE port. For example, assigning an IP address to xge0 as a cross-port makes the address available on the remote xge0 for VE_Ports 12 through 21 on the local xge1.

You can also assign IP routes (iproutes) used by the local port, VLAN tagging, and circuits with metrics to the remote XGE port to allow failover to the cross-ports.

Cross-ports contain the IPIFs and IP routes that belong to the remote interface. To use crossports, both XGE ports must be configured in 10Gb/s mode.

Bandwidth Allocation and Restrictions

There are specific bandwidth allocations and restrictions for the Brocade FX8-24 Blade that are important to review when configuring tunnels and circuits.


Front-End and Back-End Bandwidth

The Brocade FX8-24 Blade contains an internal port complex with 1Gb/s ports to support the blade's VE_Port groups, data processor (DP) complexes, GbE ports, and XGE ports.

Each DP complex has 10Gb/s (full-duplex) of available bandwidth. Therefore, each VE_Port group (VE_Port 22-31 and VE_Port 12-21) has 10Gb/s of bandwidth available to the internal port complex back-end ports. When the tunnels using VE_Ports in a specific VE_Port group consume the group's back-end bandwidth, additional circuits cannot be created for those tunnels. The port complex has 10Gb/s of front-end bandwidth available for each of the XGE ports. Tunnels (VE_Ports) cannot consume more than 10Gb/s of bandwidth over an XGE port. The internal port complex has another 10Gb/s of bandwidth available for the cross-port.

The following figure illustrates the internal DP complex with VE_Port groups, internal port complex, front-end, and backend port areas, and the cross-port (xport) on a Brocade FCX8-24 Blade.

Figure 11: Internal Port and DP Complexes on a Brocade FX8-24 Blade

Calculating Back-End Bandwidth

The following are the ways to configure the back-end bandwidth for a tunnel and DP complex:

- To calculate the consumed bandwidth for a tunnel, round the maximum committed rates for all metric 0 circuits up to the next whole rate (for example 1.5Gb/s becomes 2Gb/s) and add them up. Then add the rounded-up maximum committed rates for all metric 1 circuits. The greater of the two values is the consumed bandwidth for a tunnel.
- To calculate the total consumed back-end port bandwidth for a DP complex, add the consumed bandwidth for each tunnel in the DP complex VE_Port group. The total cannot exceed 10Gb/s.
- Back-end bandwidths are always rounded up for each VE_Port group. For example, a circuit defined as 1.5Gb/s will consume 2Gb/s of back-end bandwidth.

Calculating Front-End Bandwidth

The following are the ways to calculate the front-end bandwidth for a tunnel and a XGE port:

- To calculate the front-end bandwidth usage on a per-tunnel and per-XGE port basis, add the consumed bandwidth for all metric 0 circuits for a tunnel using xge0 or xge1. Add the total consumed bandwidth for all metric 1 circuits for the tunnel. The greater of the two values is the total front-end port bandwidth usage for an xge0 or xge1 tunnel. See Circuit Failover for more information on assigning metrics to circuits.
- Each XGE port is allocated 10Gb/s of front-end bandwidth. The total consumed front-end port bandwidth cannot exceed 10Gb/s per XGE port.

Calculating Crossport Bandwidth

The DP complexes share only one cross-port, so the total available bandwidth is 10Gb/s for all VE_Ports on the blade, regardless of the DP complex to which the VE_Ports belong. For more information on cross-ports, see Crossports and Failover.

- To calculate the bandwidth consumed by a cross-port on a per-tunnel basis, add the consumed bandwidth for all metric 0 circuits in the tunnel that use the cross port. Add the total consumed bandwidth for all metric 1 circuits in the tunnel that use the cross-port. The greater of the two values is the total cross-port-consumed bandwidth for the tunnel.
- The total crossport-consumed bandwidth is the total of the bandwidth for the tunnels using VE_Ports 12 through 31. The total cross-port-consumed bandwidth cannot exceed 10Gb/s.

ARL Limits

Bandwidth allocations are subject to the minimum committed rate (-b) and maximum committed rate (-B) set for circuits and tunnels using the Adaptive Rate Limiting (ARL) feature. For more information on ARL and ARL restrictions, refer to Adaptive Rate Limiting.

Failover Circuits and Groups

When considering the 10Gb/s bandwidth limit for each DP complex on a Brocade FX8-24 Blade, you must also consider failover circuits configured for VE_Ports in each complex. For example, you cannot create a circuit to use an address for a cross-port if a 10Gb/s failover circuit is assigned to the VE_Port on that cross-port. If the failover circuit were to come online, there would be no available bandwidth for the new circuit.

Failover groups allow you to define a set of metric 0 and metric 1 circuits that are part of a failover group. When all metric 0 circuits in the group fail, metric 1 circuits take over the operation, even if there are metric 0 circuits still active in other failover groups. Typically, you would configure only one metric 0 circuits in a failover group. For detailed information, see Circuit Failover.

When calculating total bandwidth usage for a tunnel, you must also add the total bandwidth usage per failover group.

To calculate the total bandwidth usage for the failover group in the tunnel, for each failover group (0 through 9), perform the following steps:

- 1. Add the consumed bandwidth for all metric 0 circuits in the failover group.
- 2. Add the total consumed bandwidth for all metric 1 circuits in the failover group.

The greater of the two values is the total bandwidth usage for the failover group in the tunnel.

Bandwidth Allocation Example

The basis for all bandwidth calculations is determining how much bandwidth a given tunnel is consuming. The next step is determining where the tunnel is consuming that bandwidth. You must consider the 10Gb/s limits for back-end ports, frontend ports, and cross-ports. A tunnel, at the least, uses back-end and front-end port bandwidth. If cross-port circuits are configured, then the tunnel uses cross-port bandwidth as well.

For example, suppose that two 10Gb/s circuits are configured for a tunnel on VE_Port 12. Circuit 0 has a metric of 0 on xge1, and circuit 1 is a failover circuit with a metric of 1 on xge0 (refer to the figure under Front-End and Back-End Bandwidth). Note that configuring circuit 1 on xge0 is a cross-port configuration. Although this configuration is allowed, you cannot create additional circuits for VE_Port group 12 through 21 or group 22 through 31 for the following reasons:

- For VE_Port group 12 through 21, VE_Port 12 is consuming the maximum 10Gb/s of allocated back-end port bandwidth. See Calculating Crossport Bandwidth.
- You cannot create a cross-port so that VE_Ports 22 through 31 use xge1 because VE_Port 12 is consuming the maximum 10Gb/s of cross-port bandwidth for its failover circuit. See Calculating Crossport Bandwidth.
- If VE_Port 12 fails, all 10Gb/s traffic will flow over the cross-port and the xge0 front-end port. If additional circuits were
 already configured for the VE_Port 22 through 31 group, the front-end port bandwidth would exceed the 10Gb/s limit
 for xge0. See Calculating Front-End Bandwidth.

Tunnel and Circuit Requirements for Brocade Extension Platforms

Each Brocade Extension platform has specific considerations for tunnel and circuit requirements. The general tunnel and circuit requirements that apply to Brocade Extension platforms are as follow:

- You can define multiple addresses on Ethernet ports to configure multiple circuits. Multiple circuits can be configured as a trunk, which provides multiple sources and destination addresses to route traffic across an IP network, provide load leveling, and provide failover capabilities.
- The committed rate for a circuit associated with a physical port cannot exceed the rate of the port, or 10Gb/s, whichever is lower.
- In a scenario where a tunnel has multiple circuits of different metrics (0 or 1), circuits with higher metrics (1) are treated as standby circuits and are only used when all lower metric (0) circuits fail. Using Circuit Failover Grouping, you can better control which metric 1 circuits will be activated if a metric 0 circuit fails.
- When the spillover is configured, circuit metrics determine which metric 1 circuits to use when capacity exceeds the metric 0 circuits.
- A circuit defines source and destination IP addresses on each end of a tunnel.
- If the circuit source and destination IP addresses are not on the same subnet, an IP static route (iproute) must be defined on both sides of the tunnels that designates the gateway IP addresses.
- As a best practice, all tunnel and circuit settings should be identical on both sides of the tunnel. This includes committed bandwidth, IPsec, compression, ARL minimum, and maximum, Fastwrite, OSTP, FICON tunnel, and keepalive timeout values (KATOV). You must configure the tunnel and circuit parameters correctly on both sides of the network, otherwise the tunnel or circuit will fail to come online.
- VE_Ports or VEX_Ports cannot connect in parallel to the same domain at the same time as Fibre Channel E_Ports or EX_Ports.
- When load-leveling across multiple circuits, the difference between the ARL minimum data rate set on the slowest circuit in the trunk and the fastest circuit should be no greater than a factor of four. For example, a 100Mb/s circuit and a 400Mb/s circuit will work, but a 10Mb/s and 400Mb/s circuit will not work. This ensures that the entire bandwidth of the trunk can be utilized. If you configure circuits with the committed rates that differ by more than a factor of four, the entire bandwidth of the trunk might not be fully utilized.
- If the settings are not the same on both sides of the tunnel, Op Status displays UpWarn as shown in the following example:

switch:	admin> po	rtshow fc:	iptunnel a	all -c					
Tunnel	Circuit	OpStatus	Flags	Uptime	TxMBps	RxMBps	ConnCn	nt CommRt M	let/G
8/12	-	Up	i-	2d54m	0.00	0.00	4	-	-/-
8/12	0 8/xgel	UpWarn	4s	2d54m	0.00	0.00	4	5000/5000	0/-
8/24	-	Empty		0s	0.00	0.00	0	-	-/-
Flags:	tunnel:	-	ssion m=mc		-		·	ve compress F=FICON	ion
		T=TPerf :	L=IPSec l=	=IPSec Le	gacy				
Flags:	circuit:	s=sack v=	=VLAN Tago	ged x=cro	ssport 4	=IPv4 6=	=IPv6		
		L=Listene	er I=Initi	Lator					

Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade Requirements

This section lists requirements and specifications for tunnels, circuits, and ports on the Brocade 7840 Extension Switch, the Brocade 7810 Extension Switch, and the Brocade SX6 Blade.

IP addresses and routes:

- You can configure maximum 60 IP addresses per DP complex.
- You can define up to 128 routes per GbE port; however, you can define only 120 IP routes per DP. For example, you can configure 64 IP routes defined on ge2.dp0 and another 64 IP routes defined on ge2.dp1.

VE_Ports and VE_Port groups:

NOTE

When the extension platform operates in Hybrid mode, 20VE mode is not allowed.

NOTE

VE mode is not supported on the Brocade 7810 Extension Switch.

Table 23: 10VE and 20VE Port Distribution

Extension platform	VE mode	DP0/DP1	Supported VE_Ports
Brocade 7840 Switch	VE10	DP0	24–28
		DP1	34–38
	VE20	DP0	24–33
		DP1	34–43
Brocade SX6 Blade	VE10	DP0	16–20

NOTE

- You can have a maximum 20 VE_Ports on the switch. In the default 10VE mode, only 10 VE_Ports are enabled. In 20VE mode, all 20 VE_Ports are enabled.
- On the Brocade 7840 Switch, there are two VE_Port groups in 10VE mode. Each port group can share 20Gb/s.
 - DP0 controls VE_Ports 24-28.
 - DP1 controls VE_Ports 34-38.
 - The remaining VE_Ports 29-33 and 39-43 are disabled.
- In 20VE mode on the Brocade 7840 Switch , there are four VE_Port groups. Each port group can share 10Gb/s.
 - DP0 controls VE_Ports 24-28 and VE_Ports 29-33.
 - DP1 controls VE_Ports 34-38 and VE_Ports 39-43.
- On the Brocade SX6 Blade, there are two VE_Port groups in 10VE mode. Each port group can share 20Gb/s.
 - DP0 controls VE_Ports 16-20.
 - DP1 controls VE_Ports 26-30.
 - The remaining VE_Ports 21-25 and 31-35 are disabled.
- In 20VE mode on a Brocade SX6 Blade, there are four VE_Port groups. Each port group can share 10Gb/s.
 - DP0 controls VE_Ports 16-20 and VE_Ports 21-25.
 - DP1 controls VE_Ports 26-30 and VE_Ports 31-35.
- On a Brocade 7810 Switch, DP0 controls VE_Ports, 12-15.
- VE_Ports are not associated with a particular Ethernet port.
- As a best practice, do not utilize multiple VE_Ports between the same domains. Instead, create a single tunnel (one VE_Port) with multiple circuits between the domains.
- As a best practice, do not mix VE_Ports and E_Ports (or VEX_Ports and EX_Ports) between the same domains.
- VEX_Ports are not supported.

Bandwidths, maximum and minimum rates:

- For a VE_Port group, the sum of the minimum committed rates of that group's circuits cannot exceed 10Gb/s when the switch is in 20VE mode and 20Gb/s when the switch is in 10VE mode.
- The minimum committed rate for all VE_Ports in one DP complex cannot exceed 20Gb/s. The maximum rate for all VE_Ports in one DP complex cannot exceed 40Gb/s.
- The minimum committed rate for a circuit is 20Mb/s.
- The maximum committed rate for a circuit is 10Gb/s.
- With compression, total bandwidth cannot exceed 80Gb/s (40Gb/s per DP) on the Fibre Channel side.
- The difference between the guaranteed (minimum) and maximum bandwidth for a tunnel cannot exceed the 5:1 ratio.
- The Brocade 7810 Switch allows a maximum of 2.5Gb/s across all VEs.

Circuits:

- The number of circuits that you can configure on an Ethernet port is limited only by the number of IP address pairs available and how the addresses are allocated. Each circuit requires a unique IP address pair. A unique pair means that one of the two addresses (local IPIF and remote IPIF) be unique in the pair. For example, the following address pairs use the same source address in each pair but the destination addresses are different, therefore each pair is unique:
 - --local-ip 10.0.1.10 --remote-ip 10.1.1.10
 - --local-ip 10.0.1.10 --remote-ip 10.1.1.11
- You can configure a maximum of 10 circuits for a trunk (VE_Port).
- You can configure a maximum of 40 circuits per DP.
- The Brocade 7810 Switch allows a maximum of 6 circuits per tunnel.

Brocade FX8-24 Blade Requirements

The Brocade FX8-24 Blade has the following requirements and specifications for tunnels, circuits, and ports.

IP addresses and routes:

- You can define up to 10 IP addresses for a 10GbE port and an additional 10 addresses on crossports when operating in 10Gb/s mode.
- You can define up to eight IP addresses for a 1GbE port.

VE_Ports, VE_Port groups, VEX_Ports:

- A Brocade FX8-24 Blade can support 20 VE_Ports, and therefore 20 extension tunnels.
- There are two VE_Port groups. DP1 controls ports numbered 12 through 21 and DP0 controls ports numbered and 22 through 31.
- Each tunnel is identified with a VE_Port number.
- VE_Ports are not associated with a particular Ethernet port.
- The blade also supports VEX_Ports to avoid the need to merge fabrics.
- VE_Port versus Ethernet port usage depends on the blade operating mode as follows:
 - 1Gb/s mode: VE_Ports 12 through 21 are available to use GbE ports 0 through 9. VE_Ports 22 through 31, xge0, and xge1 are not available.
 - In 10Gb/s mode, VE_Ports 12 through 21 are available to use xge1; VE_Ports 22 through 31 are available to use xge0. GbE ports 0 through 9 are not available.
 - In 10Gb/s mode, you can also configure VE_Ports 12 through 21 to use port xge0 as a crossport and VE_Ports 22 through 31 to use port xge1 as a crossport.
 - In dual mode, VE_Ports 12 through 21 are available to use GbE ports 0 through 9; VE_Ports 22 through 31 are available to use xge0. Port xge1 is not available.

Circuits:

- A limit of 20 circuits can be configured per VE_Port group (12 through 21 or 22 through 31) when using a 10GbE port. For the 20 circuits, 10 are configured on local ports and 10 on crossports.
- You can configure up to 10 circuits for a trunk (VE_Port).
- The Brocade FX8-24 Blade contains two 10GbE ports. You can define up to 10 circuits per trunk spread across the 10GbE ports.
- A limit of 10 circuits can be configured on a single 10GbE port. Each circuit requires a unique IP address.
- The blade contains ten 1GbE ports. You can define up to 10 circuits per trunk spread across the GbE ports.
- A limit of four circuits can be configured on a single 1GbE port. Each circuit requires a unique IP address.
- On the Brocade FX8-24 Blade, a unique pair means that **both** of the addresses (local IPIF and remote IPIF) must be unique and cannot be reused. For example, the following address pairs use the same source address in each pair, only the destination addresses are different. Because the source addresses are the same, the pair is not unique:
 - --local-ip 10.0.1.10 --remote-ip 10.1.1.10
 - --local-ip 10.0.1.10 --remote-ip 10.1.1.11

Bandwidths, maximum and minimum rates:

- For a Brocade FX8-24 Blade with a VE_Port group on a 10GbE port, the sum of the maximum committed rates of that group's circuits cannot exceed 10Gb/s.
- For ARL, configure minimum rates of all the tunnels so that the combined rate does not exceed 20Gb/s for all VE_Ports on the blade.
- For ARL, you can configure maximum rate of 10Gb/s for all tunnels over a single 10GbE port and 10Gb/s for any single circuit.
- The minimum committed rate for a circuit is 10Mb/s.
- A circuit between 1GbE ports cannot exceed the 1Gb/s capacity of the interfaces rate.

Brocade IP Extension

Brocade IP Extension is supported on the following platforms:

- Brocade 7810 Switch
- Brocade 7840 Switch
- Brocade SX6 Blade installed in a supported platform, such as the Brocade X6-4 Director or Brocade X6-8 Director

IP Extension provides Layer 3 extension for IP storage replication. The IP extension platform acts as the gateway for the LAN, but there is no Layer 2 extension, which means each side of the network must be on a different subnet.

The extended IP traffic receives the same benefits as does traditional FCIP traffic:

- Compression
- High speed encryption
- · Frame based load leveling and lossless failover
- · Network bandwidth management through rate shaping and QoS

IP Extension requires that you configure the switch or blade to operate in Hybrid mode, which only supports 10VE mode. Configuring Hybrid mode is disruptive because a reboot is required to load the hybrid mode image.

NOTE

This is not applicable to the Brocade 7810 Extension Switch, which is always in Hybrid mode.

Internal connections are re-mapped to provide 20Gb/s of LAN traffic,10Gb/s of FC traffic, and a maximum of 20Gb/s of WAN traffic on the Brocade 7840 Switch and the Brocade SX6 Blade, and 10Gb/s of LAN traffic, 20Gb/s of FC traffic, and a maximum of 2.5Gb/s of WAN traffic on the Brocade 7810 Switch

When in Hybrid mode, the switch or blades allows up to eight of the 10GbE ports to be configured as LAN ports. LAN ports are not grouped, as opposed to WAN ports which are grouped. In general, LAN ports do not block each other, and

LAN ports do not block WAN ports. The recommended best practice is to pick one port from each port group to be a LAN port.

Tunnels and Hybrid Mode

A tunnel on a VE_Port must be configured to enable IP Extension. A tunnel that supports IP traffic provides additional QoS priorities for IP Extension. The tunnel can carry both FC and IP traffic. When a tunnel is running in FC-only mode, it is compatible with a Brocade 7840 Switch or Brocade SX6 Blade running in FCIP mode (that is, not in Hybrid mode). FC traffic will be limited to 10Gb/s. The Brocade 7810 Switch provides only Hybrid mode and FC traffic is limited to 10Gb/s.

Compression is supported on a tunnel in Hybrid mode. With FC traffic, all compression modes are supported: fast deflate, aggressive deflate, and deflate compression. IP traffic is limited to two compression modes: aggressive deflate and deflate compression.

NOTE

The Brocade 7810 Switch supports only aggressive deflate and deflate for FC and IP traffic.

Out-of-Order Delivery on a Tunnel

Head of line blocking (HoLB) is mitigated for the extended IP flows through the tunnel. Each flow in a TCP connection receives an independent stream in the tunnel. The data must be delivered in-order for the stream; however, data can be delivered out-of-order for the tunnel. This allows the WAN to pass up any data that is received out of order because packet loss recovery is isolated on the WAN to the impacted stream, or connection, that the lost data belongs to.

IP Extension and Traffic Control Lists

A traffic control list (TCL) defines how LAN traffic is mapped to specific tunnels. When you create a TCL, you create a rule that identifies specific characteristics of the LAN traffic. Examples of these characteristics include but are not limited to IP addresses, layer 4 protocols and ports, and VLAN tags. Each rule functions as an input filter for the DP and can either allow or deny a specific traffic flow from being passed through the IP extension tunnel. Multiple TCL rules, arranged by priority, provide a high level of control over the LAN traffic flow through a particular DP.

NOTE

Limits on the maximum-allowed TCLs differ among extension platforms. Brocade 7840 Switch and Brocade SX6 Blade provide 1024 Defined and 128 per DP (total of 256) Active TCLs whereas the Brocade 7810 Switch provides 256 Defined and 32 Active TCLs.

NOTE

TCL rules must be configured. One default rule exists, which is to deny all traffic (that is, if no other rule is created, all traffic is stopped). This default rule cannot be removed or modified. To have traffic over an IP extension tunnel, you must configure one or more rules that allow traffic to pass through.

Each TCL rule is identified by a name assigned to the rule when it is created. Thereafter, rules are modified or deleted by name. A TCL name contains 31 or fewer alphanumeric characters. Each name must be unique within the IP extension platform (such as the Brocade 7810 Switch, Brocade 7840 Switch, or Brocade SX6 Blade). Rules are local to each platform and are not shared across platforms.

When traffic is allowed, the TCL rule specifies which tunnel and which QoS to use for that traffic type. When the rule denies traffic, it applies to both DP complexes unless a specific DP complex is selected.

The TCL priority number provides an order of precedence to the TCL rule within the overall TCL list. The priority value must be a unique integer. It is the lowest priority rule, 65535, so it will be the last rule enforced. Smaller numbers are higher priority and larger numbers are lower priority. You can modify the priority to reposition the TCL rule to a different location within the list. When removing a rule, or even when creating a new rule, you can leave gaps in the priority numbers to allow subsequent in-between entries.

NOTE

The priority value must be unique across all active TCL rules within an IP extension platform. For example, if a chassis has multiple Brocade SX6 Blades installed, the priority must be unique across all blades. If a TCL is defined as priority 10, that same priority cannot be used for another TCL rule, even if that rule would be assigned to another DP. A check is performed when the rule is enabled to ensure the priority value is unique.

The TCL input filter inspects a set of parameters to help identify the input traffic. It is based on several of the fields found in the IP, TCP, and Ethernet headers. The TCL input filter identifies a particular host, device, or application by means of the Layer 4 protocol encapsulated within IP, Layer 4 destination ports, Layer 3 source or destination IP addresses and subnets, DSCP/802.1P QoS values, or VLAN tagging.

When defining a TCL rule, the TCL action and TCL target will determine the behavior with regard to the DPs. For the TCL action, the following actions are possible:

- When the action is set to "allow," the target must be an IP Extension-enabled VE_Port tunnel.
- TCL rules consist of either two or three main parts depending on if it is an "allow" or "deny" action.

Filter parameter	Action	Action
Priority number	Allow	Deny
Filter definition	Allow	Deny
Tunnel target	Allow	N/A

The "allow" priority rules are activated on the DP that is associated with the selected VE_Port target.

DP complex	Brocade 7840 Switch	Brocade SX6 Blade
	Native VE_Ports	Native VE_Ports
	10VE mode	10VE mode
DP0	24–28	16–20
DP1	34–38	26–30

NOTE

For Brocade 7810 Switch, DP0 comprises ports 12-15. DP1 is not applicable.

- When the action is set to "deny" the rule is pushed to both DPs to deny matching traffic. No target should be supplied in a deny priority rule because the traffic will ultimately not be sent to any tunnel.
- Deny rules are pushed to both DPs, thus accounting for traffic that may arrive at either DP. Traffic not specifically
 destined for one of the unicast LAN IPIF addresses cannot be internally forwarded to a specific DP LAN IPIF. For
 example, BUM (Broadcast, Unknown unicast, and Multicast) traffic has no specific known destination, which means
 the specific DP LAN IPIF to forward the traffic to is unknown. Because the LAN ports cannot determine which IPIF to
 forward such traffic to, both DPs receive the TCL "deny" rule. If no particular LAN IPIF can be determined, both DPs
 must be capable of handling this type of traffic.
- If you must select a specific DP for a deny rule, you can configure the deny rule for that specific DP. The rule is pushed to the specified DP, denying any matching traffic on that DP only.

After traffic is matched to a TCL rule, it is sent to the tunnel, and further TCL processing stops for that traffic. The TCL target parameter specifies which VE_Port tunnel the matched traffic will be sent to. Optionally, you can specify a traffic priority. For example, when configuring the TCL rule, specify --target 24 or--target 24-high. If no priority is specified, the input traffic is sent over the IP extension medium-priority QoS on the target tunnel. IP Extension traffic priorities are scheduled separately from the FCIP traffic priorities. Each traffic type has its own set of QoS priorities in the egress scheduler.

The TCL is evaluated to allow and deny actions one time only when a TCP stream performs its handshake to form the traffic stream. If you make any changes to the TCL, including changes to priority rules or disabled rules, the particular stream those changes apply to will have no effect on the existing streams. There is no effect on an existing stream because that stream is already formed and the TCL is no longer being evaluated. If you do not see any traffic changes

after changing a TCL, it is because the traffic stream is already formed. Newly established streams that do match changed priority rules will be affected.

Before TCL changes can take effect on established traffic streams, one of the following actions must occur:

- The end-device must reset its TCP stream, forming a new stream. Disabling and enabling an end-device interface resets its TCP streams.
- The tunnel VE_Port must be disabled and re-enabled. Disabling a VE_Port disrupts all traffic passing through the tunnel (FCIP and IP Extension).
- The LAN interfaces must be disabled and re-enabled.

A recommended approach is to configure the fewest number of "allow" rules that will pass specific traffic. Unmatched traffic will encounter the default "deny-all" rule. You can prevent a subset of the allowed traffic by an "allow" rule with a "deny" rule. For example, you can deny a smaller IP subnet that is within a larger allowed subnet.

When IP routes on the end-device are configured correctly, no undesired traffic should appear for the TCL to process. However, you can configure specific "deny" rules to ensure that certain devices or addresses cannot communicate across the IP extension tunnel. Always limit how you use "deny" rules. Configuring (and trouble-shooting) complex sets of "deny" rules results in more work and more chance of error.

In some situations, all traffic that appears at the IP Extension LAN interface is intended to pass through the tunnel:

- Directly connected end-device ports in which all the traffic from the end-device is intended for the remote data center.
- IP routes on the end-devices are closely managed such that only desired traffic is allowed to use the IP extension LAN gateway

In these cases, the simplest solution is to configure an "allow" rule that allows all traffic to pass through.

NOTE

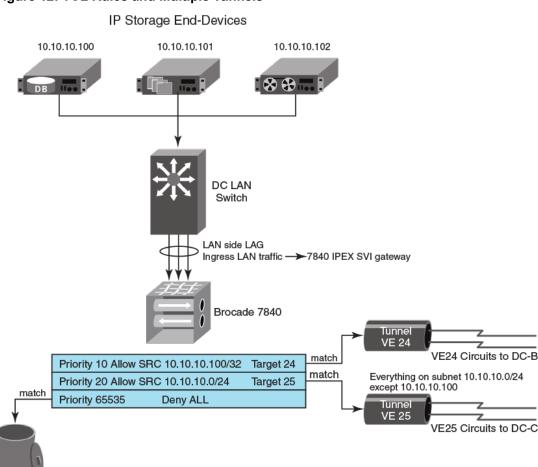
When using Virtual Fabric Logical Switches (VF LS), it is important to know that the IP extension LAN Ethernet interfaces must be in the default switch. IP extension LAN Ethernet interfaces cannot be separated and assigned to different logical switches. The lan.dp0 and lan.dp1 IPIFs behind the IP extension LAN Ethernet interfaces are not part of VF LS contexts and cannot be assigned to an LS. If a datagram arrives at an IP extension LAN IPIF, it will be processed and is subject to the TCL.

Even though a VE_Port can reside within a VF LS, there is no requirement for the IP extension LAN Ethernet interfaces to also reside within that VF LS. In fact, the IP extension LAN Ethernet interfaces must remain in the default switch. The TCL directs traffic to the specified VE_Port regardless of the VF LS in which it resides. The VE_Port must be native to the DP hosting the lan.dp0 or lan.dp1. If the VE specified in the TCL is not native to DP hosting the LAN IPIF, the TCL will not find a match and the traffic will be dropped.

Matching IP Extension Traffic to Multiple VE_Ports

Multiple tunnels are typically used to go to multiple data centers. Normally, only one tunnel is used per data center between two IP extension platforms (such as a pair of Brocade 7840 Switches or Brocade SX6 Blades). A single tunnel can leverage Extension Trunking for aggregated bandwidth using multiple circuits, failover and failback, lossless link loss (LLL), and other benefits.

You can configure TCL rules that allow traffic to go to a specific tunnel when more than one tunnel exists.


The following figure shows three local IP storage applications communicating to two remote data centers. The DB application (10.10.10.100) is destined for DC-B. The NAS and tape applications (10.10.10.101 and 10.10.10.102 respectively) are destined for DC-C. The target specified in the matching TCL rule directs traffic to the correct tunnel. Extension tunnels are point-to-point, therefore, pointing matched traffic to a particular tunnel sends that traffic to the desired data center. When traffic encounters the first matching TCL "allow" rule, that action is performed and no additional TCL processing occurs for that particular traffic stream. Any subsequent rules in the TCL are not evaluated.

As shown in the figure, the first rule is for a specific host source IP address of 10.10.10.100. When there is a match, all traffic sourced from 10.10.10.100 is sent to tunnel 24. The TCL looks just for this specific host IP address because the

prefix length has been set to 32 (subnet mask 255.255.255), which indicates that all bits in the address must match. It is a host address and not a subnet address. If the traffic is not sourced from 10.10.10.100 then it will fall through to the next priority in the TCL.

The IP addresses 10.10.10.10.101 and 10.10.10.2 do not match priority rule 10 (as shown in the figure). Priority rule 20 is evaluated next. That rule allows IP address 10.10.10.0 with a prefix length of 24 (subnet mask 255.255.255.0), which means that the first 24 bits of the IP address are significant and must match. The last 8 bits are not significant and can vary. If the incoming traffic is sourced from 10.10.10.4 mays, it matches this rule and is sent to tunnel 25.

All traffic that does not match the first two priority rules (10 and 20) encounters the final default priority rule 65535. The final rule, which cannot be altered or removed, is to deny all traffic. Any traffic processed by this final priority is dropped.

Figure 12: TCL Rules and Multiple Tunnels

You can use the portshow tcl command to display the configured TCL rules.

switch:admin> portshow tcl

Pri	Name	Flgs Src-Addr	Target	L2COS	VLAN Dst-A		Proto	Port	Hit
*10	DC1	AI 10.10.10.		ANY	ANY ANY	ANY	ANY	ANY	0

FOS-821-Ext-UG105 User Guide

*20	DC2	AI 10.10.10.0/		ANY	ANY ANY	ANY	ANY	ANY	0
*65535	default	D ANY	-	ANY	ANY ANY	ANY	ANY	ANY	0
 Flags: *	=Enabled=Na	ame Truncate	ed (see	-detail	L for i				

A=Allow D=Deny I=IP-Ext P=Segment Preservation R=End-to-End RST Propagation N=Non-terminated.

Nonterminated TCL

You can create a TCL rule for traffic that does not terminate at the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade. The nonterminated TCL option allows TCP traffic to be sent as-is to the other endpoint over a tunnel. This traffic is unlike terminated TCP traffic in that it does not count as one of the allowed 512 TCP connections at the DP for the Brocade 7840 Switch and the Brocade SX6 Blade or the allowed 128 TCP connections for the Brocade 7810 Switch.

The nonterminated TCL option is meant for use by low bandwidth control-type connections. It is recommended that you use the highest TCL priority value possible for the nonterminated traffic based the traffic handling requirements. This option can be enabled or disabled. However, you must stop and restart the traffic from the application or host to ensure proper handling after the TCL is updated.

IP Extension and QoS

Three fabric QoS priorities are supported for FC, which are high, medium, and low. You can configure a custom QoS distribution or use the default distribution of 50 percent for high, 30 percent for medium, and 20 percent for low.

For LAN traffic through IP Extension, three additional QoS priorities are created and default distributions are provided. The three priorities are IP-High, IP-Medium, and IP-Low. The QoS is added when a tunnel is enabled for IP Extension. Again, you can change the QoS configuration or use the default.

With IP Extension introduced in Fabric OS 7.4.0, the second level of QoS is introduced, called QoS groups. The IP group is for IP extension traffic. The FC group is for Fibre Channel (or FCIP) traffic. This allows you to prioritize your traffic between FC and IP as needed. For example, you can specify a QoS distribution group ratio of 60 percent FC and 40 percent IP. The default group distribution is 50 percent FC and 50 percent IP. In other words, QoS distributions are specified separately for FC traffic and IP traffic when the Brocade 7840 Switch or Brocade SX6 Blade are operating in Hybrid mode.

NOTE

The minimum allocation for a single QoS type (high, medium, or low) should be 10 percent. QoS allocations within a group must total 100 percent. In addition, the allocation for either FC or IP cannot exceed 90 percent.

IP Extension and Compression

The Brocade 7840 Switch and the Brocade SX6 Blade support four compression levels:

- None
- Fast deflate (not supported for IP traffic in Hybrid mode)
- Deflate
- Aggressive deflate

The Brocade 7810 Switch supports three compression levels.

- None
- Deflate
- Aggressive deflate

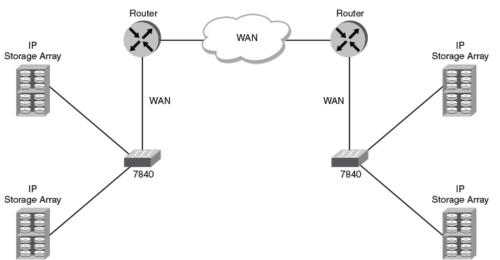
Compression can be configured at the QoS group/protocol level when the switch or blade is operating in the Hybrid mode. Different compressions can be applied to FC extension traffic and IP extension traffic in the same tunnel. With the protocol selection, you can use fast deflate for FC traffic while the IP traffic is using deflate or aggressive deflate compression.

Compression is configured at the tunnel level, for all traffic on FC and IP protocols, but you can override the tunnel settings and select different compression at the QoS group/protocol level.

IP Extension and IP LAN Deployment

IP Extension is supported in policy-based routing (PBR) topologies and topologies with directly-connected devices on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade. This allows you to connect IP storage to the LAN ports directly or thru Layer 2 switches.

Link aggregation groups (LAGs) are supported between the LAN ports and a Layer 2 Switch.


In Fabric OS 7.4.x, NIC teaming or other similar methods are not supported.

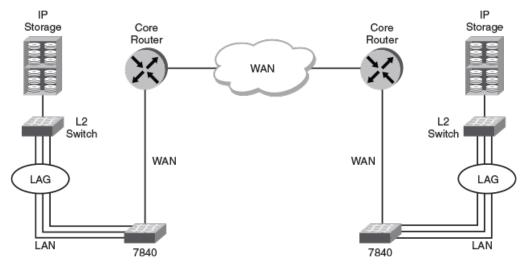
In Fabric OS 8.0.x, policy-based routing redirection is supported for LAN interfaces.

When using IP storage arrays, the IP storage can be connected either to a Layer 2 switch or directly to a Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade.

In the following figures, we use the Brocade 7840 Switch to illustrate LAN deployment as a direct connect and as a Layer 2 switch connect.

As a guideline, configure the IP storage array with the SVI on one of the DP complexes as the next-hop gateway. Based on the next-hop configuration, the storage device will learn the MAC address of the Brocade 7840 Switch SVI IP address through an ARP or Neighbor Discovery (ND) protocol request.

When IP storage devices are connected to a Layer 2 switch, as shown in the following figure, you can use LAGs to connect to the Brocade 7840 Switch LAN ports. The maximum number of ports in a LAG group is four. The maximum number of LAG groups is eight. Make sure that there is only one path between a single Layer 2 domain and the Brocade 7840 Switch.


NOTE

These maximum values apply to the Brocade SX6 Blade as well. For the Brocade 7810 Switch, however, the maximum values are 2 and 2, respectively.

NOTE

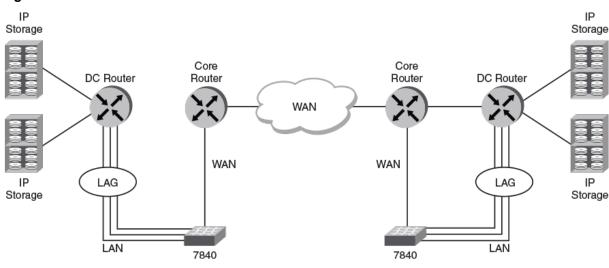

Beginning with the Fabric OS 7.4.x, static LAG is supported.

Figure 14: IP Extension Direct Connect to Layer 2 Switch

As shown in the figure, the Brocade 7840 Switch ports are connected to the IP storage array by means of the Layer 2 switch, and the WAN ports are connected to the WAN gateway. You must configure at least one SVI LAN IP address for each DP complex that is used. The router can be used as the WAN gateway, but it cannot be used on the LAN unless it is acting as a Layer 2 device.

The following figure shows IP Extension used with a router that is configured with PBR to direct specific traffic to the Brocade 7840 Switch. This allows a data center router to support WAN traffic and to take advantage of the IP Extension features for IP storage arrays. The PBR configuration simplifies the IP storage array and Brocade 7840 Blade connectivity. With the PBR configuration, the IP storage array and a Brocade 7840 Switch SVI IP address can be in different subnets. Configuration in a data center can keep existing IP address and router configurations. The data center router configuration is modified to add policy-based routing to send specific traffic to the Brocade 7840 Switch instead of the WAN core router.

Figure 15: IP Extension PBR Connect

IP Extension Limitations and Considerations

For TCP traffic, the following considerations apply:

- Flow control for the LAN TCP sessions is handled by means of internal management of the receive window. The
 receive window allows up to 256 KB of data onto the LAN. However, the window will degrade to 0 if the WAN becomes
 congested or the target device experiences slow draining.
- TCP connections are limited to 512 terminated or accelerated connections per DP complex. Additional connection requests are dropped. A RASIog message is displayed when 500 connections are up and active.

NOTE

The Brocade 7810 Switch only supports 128 connections. A RASlog message is displayed when 116 connections are up and active.

- For the Brocade 7840 Switch and the Brocade SX6 Blade, up to 512 TCP open connection requests per second are allowed. For the Brocade 7810 Switch, up to 128 TCP open connection requests per second are allowed. Additional open connection requests are dropped. By limiting the number of connection requests per second, this helps prevent Denial of Service (DoS) attacks.
- Statistics are available for the number of dropped connections.

Extension Platform and L2 Protocols

Trunking on LAN Ports Using LACP

IP Extension supports up to eight IP addresses per DP complex for LAN traffic. IPv4 and IPv6 traffic are supported. Each DP complex keeps its own LAN interface as well as its own MAC for LAN traffic. In this manner, the DP complex acts as a switch virtual interface (SVI) for the LAN.

All GbE ports that are configured as LAN ports can access the SVI addresses of each DP complex. This allows for multiple GbE ports to access a single IP gateway. In addition, link aggregation groups (LAGs) are supported. A single LAG can contain up to four ports. A total of eight LAGs are supported. The eight supported LAGs can be any combination of static and dynamic.

Platform	Max Static LAGs	Max Dynamic Lags	Max LAGs Supported (Hard Limit)	Max Number of GbE Ports per LAG	Max LAGs per Brocade SX6 s/ot	Max LAN Ports per Brocade Blade/ Brocade Switch	Max Brocade SX6 Blades per Chassis
Brocade 7840 Switch	8	8	8 (combination of static and dynamic)	4	N/A	8	N/A
Brocade 7810 Switch	2	2	2	2	N/A	4	N/A
Brocade X6 Director	32	96 (0 to 32) on Brocade SX6 Blade) (64 to 96) on Brocade FC32-64 Port Blade)	96 (a combination of static and dynamic)	4	8	8	4

Table 24: Maximum Supported LAGs for Default Switch Configuration

NOTE

In the Fabric OS 7.4.x release through Fabric OS 8.1.x, only static LAGs are supported. From Fabric OS 8.2.x release onward, both dynamic and static LAGs are supported.

Other considerations for LAN and WAN ports:

- Link Level Discovery Protocol (LLDP) is supported with Fabric OS 8.2.x. With LLDP, network devices advertise their identity, capabilities, and configuration on an IEEE 802 LAN.
- Jumbo frames are supported for LAN traffic. A jumbo frame can be up to 9216 bytes.
- VLAN tagging is supported in IP Extension. Stacked tagging (IEE802.1ad) is not supported.

Neighbour Discovery on GbE Ports using LLDP

LLDP (Link Level Discovery Protocol) is a Layer 2 protocol used by devices to advertise their identities, capabilities and configurations to directly connected peers and to learn and store information about the peers. It is a vendor-neutral protocol and formally referred to as IEEE standard 802.1AB-2009. LLDP is supported in both FCIP and Hybrid modes on the GbE ports on the following extension platforms:

- Brocade 7840 Switch
- Brocade 7810 Switch
- Brocade X6 with the Brocade SX6 Blade

The KAP Support for LACP and LLDP

From Fabric OS 8.2.x, the control processor (CP) uses a keepalive procedure to control the transmission of keepalive packets (KAP) on a per-port basis for LACP and LLDP.

The following table shows the timeout values and transmission intervals for LACP and LLDP protocols. The timeout values are the target recovery time from Extension Hot Code Load (eHCL) events to ensure non-disruptive upgrades. Keepalive support is designed to minimize the time during which no KAP is sent.

The following table shows the timeout values and transmission intervals for LACP and LLDP protocols.

Table 25: LACP and LLDP Timeout Values

Protocol	Timeout Counter	Hello Interval (minimum)	Minimum Timeout	Hello Interval (maximum)	Maximum Timeout	Default Hello Interval
LACP	3	1 sec (short)	3 sec	30 sec (long)	90 sec	30 sec (long)
LLDP	4 (2 to 10)	4 sec	8 sec	180 sec	1800 sec	30 sec

NOTE

Although the KAP timeout interval and count for the Brocade 7810 Switch matches that for Brocade 7840 Switch or Brocade SX6 Blade, the KAP on the Brocade 7810 Switch cannot send keep-alive frames through an eHCL. So, the Brocade 7810 Switch cannot support HA for IP traffic on LAG.

Upgrade and Downgrade Considerations for LAG and LLDP

From Fabric OS 8.2.x, there are considerations for firmware upgrade and downgrade.

NOTE

The Brocade 7810 Extension Switch requires FOS 8.2.1 or later.

Link Aggregation Group (LAG) Considerations

When upgrading to Fabric OS 8.2.x from an earlier release, consider the following:

• Firmware migration from an earlier release to Fabric OS 8.2.x is non-disruptive. Static LAG configurations are migrated and configuration information is transformed to the Fabric OS 8.2.x CLI. The portcfg lag and portshow lag commands are deprecated from Fabric OS 8.2.x and replaced with the portchannel command for LAG settings.

When downgrading from Fabric OS 8.2.x to an earlier release, consider the following:

- Firmware migration to an earlier release is non-disruptive.
- Firmware migration to an earlier release is not allowed if the Fabric OS 8.2.x contains dynamic LAG configurations. All dynamic LAG configurations must be removed before downgrade can occur.
- You must not download a configuration file for Fabric OS 8.2.x firmware to a switch running a lower version firmware, for example, Fabric OS 8.1.x.
- When a valid configuration file is downloaded, a reboot is mandatory for the new configuration file to be applied.
- You must enter the switchdisable command before downloading a configuration file. A configuration file must be downloaded only when the platform is in switchdisable mode.

Link Level Discovery Protocol (LLDP) Considerations

When upgrading to Fabric OS 8.2.x from an earlier release, consider the following:

- Firmware migration from an earlier release to Fabric OS 8.2.x is nondisruptive.
- After migrating to Fabric OS 8.2.x, LLDP functionality is available.

When downgrading from Fabric OS 8.2.x to an earlier release, consider the following:

- Firmware migration to an earlier release is non-disruptive.
- Firmware migration to an earlier release is not allowed if the Fabric OS 8.2.x contains nondefault or user-defined LLDP configurations. All LLDP configurations must be removed before downgrade can occur.
- You must not download a configuration file for Fabric OS 8.2.x firmware to a switch running a lower version firmware, for example Fabric OS 8.1.x.
- When a valid configuration file is downloaded, a reboot is mandatory for the new configuration file to be applied.
- You must enter the switchdisable command before downloading a configuration file. A configuration file must be downloaded only when the platform is in switchdisable mode.

Extension Hot Code Load for the Brocade 7840 Switch and the Brocade SX6 Blade

The Brocade 7840 Switch and the Brocade SX6 Blade support Extension Hot Code Load (eHCL). (The Brocade 7810 Switch does not.) Extension HCL allows non disruptive firmware updates over the extension tunnels. eHCL benefits mainframe environments by supporting nonstop applications such as data replication and tape backups. Extension HCL maintains device to mainframe connectivity while the firmware downloads, without disrupting active I/O. eHCL operates in both FCIP mode and Hybrid mode. For information about eHCL operation, see Extension HCL Operation. Refer to the *Configuring Extension Features* chapter for configuration information.

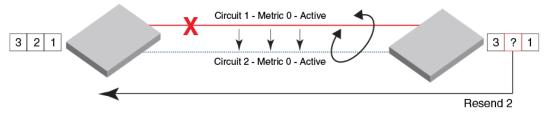
Path MTU Discovery

Path maximum transmission unit (PMTU) discovery is supported on the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade. PMTU is the process of sending Internet Control Message Protocol (ICMP) datagrams of various known sizes across an IP network to determine the supported maximum datagram size.

Based on the largest ICMP Echo Reply datagram received, the PMTU discovery process sets the IP MTU for that circuit's IP interface (ipif). Each circuit initiates the PMTU discovery process prior to coming online. This is required because

the circuit may have gone offline due to a link failure, rerouted to a new path, and now has a different MTU. If a circuit bounces, the PMTU discovery process will be initiated when attempting to re-establish the circuit. The PMTU discovery process can result in more time for the circuit establishment. The smallest supported MTU size is 1280 bytes. On the Brocade 7840 Switch, Brocade 7810 Switch, and the Brocade SX6 Blade, the largest supported IP MTU size is 9216 bytes; however, PMTU discovery will not discover an MTU greater than 9100 bytes. If the IP network's MTU is known, the best practice is to set it manually in the portcfg ipif command. This will avoid values determined by PMTU discovery that are less than the exact MTU of the IP network.

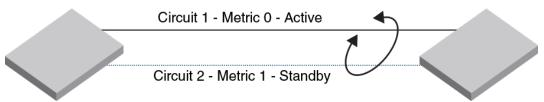
PMTU requires that ICMP is permitted across all IP network devices and the WAN. A rudimentary check would be if you could ping devices across this network. Brocade PMTU discovery uses ICMP Echo Requests. If there are no firewalls most likely ICMP is free to traverse the network. If PMTU discovery cannot communicate with the peer switch, the circuit will not be established.


Enable PMTU discovery by setting the MTU value to "auto" when configuring the ipif for a circuit using the <code>portcfg</code> ipif command to show the configuration of the MTU parameter and <code>portshow</code> fcipcircuit --detail command to display the actual discovered PMTU value being used. You can also initiate PMTU discovery using the <code>portcmd --pmtu</code> command.

Circuit Failover

Circuit failover provides an orderly means to recover from circuit failures. To manage failover, each circuit is assigned a metric value, either 0 or 1, which is used in managing failover from one circuit to another.

Trunking with metrics uses lossless link loss (LLL), and no in-flight data is lost during the failover. If a circuit fails, Trunking first tries to retransmit any pending send traffic over another lowest metric circuit. In the following figure, circuit 1 and circuit 2 are both the lowest metric circuits. Circuit 1 has failed, and transmission fails over to circuit 2, which has the same metric. Traffic that was pending at the time of failure is retransmitted over-circuit 2. In-order delivery is ensured by the receiving extension switch or blade.



NOTE

Modifying a circuit metric disrupts traffic.

In the following figure, circuit 1 is assigned a metric of 0, and circuit 2 is assigned a metric of 1. Both circuits are in the same tunnel. In this case, circuit 2 is not used until no lowest metric circuits are available. If all lowest metric circuits fail, then the pending send traffic is retransmitted over any available circuits with the higher metric. Failover between like metric circuits or between different metric circuits is lossless.

Figure 17: Failover to a Higher Metric Standby Circuit

Only when all metric 0 circuits fail do available metric 1 circuits cover data transfer. If the metric 1 circuits are not identical in configuration to the metric 0 circuits, then the metric 1 circuits will exhibit different behavior. Additionally, if the metric

1 WAN path has different characteristics, these characteristics define the behavior across the metric 1 circuits. Consider configuring circuit failover groups to avoid this problem.

Circuit Failover Grouping

With circuit failover groups, you can better control which metric 1 circuit is activated if a metric 0 circuit fails. To create circuit failover groups, you define a set of metric 0 and metric 1 circuit that is part of the same failover group. When all metric 0 circuit in the group fails, metric 1 circuit takes over data transfer, even if there are metric 0 circuit still active in other failover groups.

Typically, you would only define one metric 0 circuit in the group so that a specific metric 1 circuit takes over data transfer when the metric 0 circuit fails. This configuration prevents the problem of the tunnel operating in a degraded mode, with fewer than the defined circuit, before multiple metric 0 circuit fails.

Circuit Failover Considerations and Limitations

Circuit failover groups operate under the following conditions:

- Each failover group is independent and operates autonomously.
- All metric 0 circuits in a group must fail before the metric 1 circuits in that failover group are used.
- All metric 1 circuits in a group are used if all metric 0 circuits in the group fail or there is no metric 0 circuit in the group.
- Circuits can be part of only one failover group.
- Both ends of the tunnel must have the same circuit failover groups defined.
- Tunnel and circuit states will indicate a misconfiguration error if circuit failover group configurations are not valid.
- Modifying of the failover group ID is a disruptive operation, similar to modifying the metric.
- Circuit failover groups are not used to define load balancing over metric 0 circuits (only failover rules).
- When no circuit failover groups are defined, failover reverts to the default operation: all metric 0 circuits must fail before failing over to metric 1 circuits.
- A valid failover group requires at least one metric 0 circuit and at least one metric 1 circuit; otherwise, a warning is displayed.
- The number of valid failover groups defined per tunnel is limited by the number of circuits that you can create for the switch model as follows:
 - For a Brocade 7840 Switch, you can configure up to 5 valid groups on a 10-circuit tunnel.
 - For a Brocade 7810 Switch, you can configure up to 3 valid groups on a 6-circuit tunnel.
 - For a Brocade SX6 Blade, you can configure up to 5 valid groups on a 10-circuit tunnel.
 - For a Brocade FX8-24 Blade, you can configure up to 5 valid groups on a 10-circuit tunnel.
- Consider available WAN bandwidth requirements when configuring failover circuit groups. See Bandwidth Calculation during Failover.

Examples of Circuit Failover in Groups

The following table illustrates circuit failover in a tunnel with two failover groups, each with two circuits. All data through the tunnel is initially load-balanced over-circuit 1 and 2. The following occurs during circuit failover:

- If circuit 1 fails, circuit 3 becomes active and data is load-balanced over circuits 2 and 3.
- If circuit 2 fails, circuit 4 becomes active and data is load-balanced over circuits 1 and 4.
- If both circuits 1 and 2 fail, circuits 3 and 4 become active and data is load-balanced over both circuits.

Circuits in Tunnel	Failover Group ID	Tunnel Bandwidth	FSPF Link Cost if Circuit goes Offline	In Use for Tunnel Data
Circuit 1 Metric 0	1	500Mb	1,500	If active, yes.
Circuit 2 Metric 0	2	1000Mb	1,000	If active, yes.
Circuit 3 Metric 1	1	500Mb	1,500	Only when circuit 1 fails.
Circuit 4 Metric 1	2	1000Mb	1,000	Only when circuit 2 fails.

Table 26: Tunnel with Two Failover Groups with Two Circuits

The following table illustrates circuit failover in a tunnel with circuits in failover groups and circuits that are not part of failover groups. In this configuration, all data is initially load-balanced over circuit 1, circuit 2, and circuit 3 (when they are all active). The following occurs during circuit failover:

- If circuit 1 fails, circuit 4 becomes active and data is load-balanced over-circuit 2, circuit 3, and circuit 4. Reason: Circuit 1 fails over to circuit 4 (both are in failover group 1) and circuits 2 and 3 are active with 500Mb bandwidth.
- If circuit 2 fails, data is load-balanced over-circuit 1 and circuit 3, and no other circuit becomes active.
 Reason: Circuits 1 and 3 are the only active circuits, because circuits 4 and 5 only become active when circuits 1 or 3 fail.
- If circuit 2 and circuit 3 fail, circuit 5 becomes active and data is load-balanced over-circuit 1 and circuit 5. Reason: Ungrouped circuits 2 and 3 failover to ungrouped circuit 5, which has a metric of 0.
- If circuit 1, circuit 2, and circuit 3 fail, circuit 4 and circuit 5 become active and data is load-balanced over both.
 Reason: Circuit 1 fails over to circuit 4, which is the failover circuit for group 1 with a metric of 0. Ungrouped circuit 5 is the failover circuit for ungrouped, failed circuits 2 and 3.

Table 27: Tunnel with Failover Groups and Non-grouped Circuits

Circuits in Tunnel	Failover Group ID	Tunnel Bandwidth	FSPF Link Cost if Circuit goes Offline	In Use for Tunnel Data
Circuit 1 Metric 0	1	500Mb	1,500	If active, yes.
Circuit 2 Metric 0	Not defined.	500Mb	1,500	If active, yes.
Circuit 3 Metric 0	Not defined.	500Mb	1,500	If active, yes.
Circuit 4 Metric 1	1	500Mb	1,500	Only when circuit 1 fails.
Circuit 5 Metric 1	Not defined.	1000Mb	1,000	Only when circuits 2 and 3 fail.

Bandwidth Calculation during Failover

The bandwidth of higher metric circuits is not calculated as available bandwidth on a tunnel until all the lowest metric circuits have failed.

Assume the following configurations for circuits 0 through 3:

- Circuits 0 and 1 are created with a metric of 0. Circuit 0 is created with a maximum transmission rate of 1Gb/s, and circuit 1 is created with a maximum transmission rate of 500Mb/s. Together, circuits 0 and 1 provide an available bandwidth of 1.5Gb/s.
- Circuits 2 and 3 are created with a metric of 1. Both circuits are created with a maximum transmission rate of 1Gb/s, for a total of 2Gb/s. This bandwidth is held in reserve.

The following actions occur during circuit failures:

- If either circuit 0 or circuit 1 fails, traffic flows over the remaining circuit while the failed circuit is being recovered. The available bandwidth is still considered to be 1.5Gb/s.
- If both circuit 0 and circuit 1 fail, there is a failover to circuits 2 and 3, and the available bandwidth is updated to 2Gb/s.
- If a low metric circuit becomes available again, the high metric circuits return to standby status, and the available bandwidth is updated again as each circuit comes online. For example, if circuit 0 is recovered, the available bandwidth is updated to 1Gb/s. If circuit 1 is also recovered, the available bandwidth is updated to 1.5Gb/s.

10GbE Lossless Link Loss (FX8-24 Blade)

Circuit failover, or lossless link loss (LLL), is supported between 10GbE circuits on FX8-24 blades when both 10GbE ports are on the same logical switch and are operating in 10Gb/s mode. You can configure higher metric circuits for failover from lower metric circuits (see Circuit Failover). You can also configure IP addresses for a failover crossport. Crossports are IP addresses (and routes) that belong to the other 10GbE port's VE group. The crossport for xge0 is xge1 and the crossport for xge1 is xge0. For more information on crossports and configuring crossports, see Crossports and Failover.

LLL is supported per VE_Port on the VE_Port's DP complex. Because a VE_Port cannot span GbE and 10GbE interfaces, neither can LLL. LLL is supported on both GbE and 10GbE interfaces, just not together.

Benefits and limitations of 10GbE lossless link loss (LLL) failover include the following:

- LLL provides failover to protect against link or network failure and 10GbE port disable.
- Data will not be lost due to failover.
- Failover supports active-passive and active-active configurations.
- Dual mode is not supported for 10GbE port failover.
- Failover does not protect against failure of a DP complex.
- Disabling a VE_Port will not use LLL. In this case, route failover will occur at the FC level based on APT policy, if there is another route available, and may cause loss of FC frames.

NOTE

All circuits and data must belong to a single VE_Port to benefit from LLL.

Circuit Spillover

Circuit spillover is a load-balancing method that is introduced in Fabric OS 8.0.x release. This feature allows you to define circuits that are used only when there is congestion or a period of high-bandwidth utilization. Circuit spillover is configured on QoS tunnels on a VE_Port.

You must specify a set of primary circuits to use all the time and a set of secondary circuits (spillover circuits) that are used during high utilization or congestion periods. Primary and secondary circuits are controlled using the metric field of the circuit configuration. For example, when a tunnel is configured for spillover, traffic uses the metric 0 circuit until bandwidth utilization is reached on those circuits. When bandwidth in metric 0 circuit is exceeded, the metric 1 circuit is used. Conversely, when the utilization drops, the metric 1 spillover circuit is no longer used.

The failover behavior of a tunnel remains intact regarding the lower metric circuits. If a tunnel is configured for spillover and the lower metric circuits become unavailable, the higher metric circuits function as the backup circuits. Metric 1 circuit always behaves as a backup circuit whether configured for spillover or failover.

Failover load balancing, in comparison to spillover, requires that all lower metric circuits become unavailable before the higher metric circuits are used. When you have multiple lower metric circuits, this means that all of them must fail before any of the higher metric circuits are used.

Circuit failover groups can still be configured and will behave as before, however, only the metric value determines whether a circuit is considered a spillover circuit or a primary circuit. For example, if a tunnel is configured with four circuits, with two metric 0 and two metric 1 circuits in two separate failover groups, both metric 0 circuits are used, and only when they become saturated are the metric 1 circuits used. The failover grouping is used for failover scenarios only.

Because of how spillover is implemented, the observed behavior might not appear as expected. For example, consider QoS traffic flows of high, medium, and low with a bandwidth percentage assigned to each priority. QoS traffic is carried by the active circuits according to the percentage allocated to each priority. If the QoS low priority traffic reaches saturation before hitting its bandwidth allocation limit, it spills over from a metric 0 circuit to a metric 1 circuit.

For example, consider QoS traffic flows designated as high, medium, and low. The high QoS traffic flow can be assigned to metric 1 circuits, while the medium and low QoS traffic flow can be assigned to metric 0 circuits. In this instance, the spillover circuit (metric 1) is used even though the metric 0 circuits are not saturated. When the metric 0 circuits are saturated, additional traffic will spillover to the metric 1 circuit.

Using the portshow fciptunnel and portshow fcipcircuit commands with the --qos and --perf options display more details.

NOTE

In the flag list for both tunnel and circuit output, a spillover flag (s = Spillover) is listed. The spillover flag applies only to output for the portshow fciptunnel command.

If one end of the spillover circuit is using a version of Fabric OS software prior to FOS 8.0.x, the mismatch is identified and the circuit behavior defaults to circuit failover.

Understanding Circuit Spillover Utilization

To verify spillover usage of metric 1 circuits, you can view the protocol data unit (PDU) and byte count information that is maintained for each circuit.

The following portshow commands can be used to verify spillover usage of metric 1 circuits. Using and -qos/-q option provides more detail about which QoS tunnel the spillover is occurring on. Some commands provide PDU/byte counts, and others provide throughput information:

```
portshow fciptunnel -c
portshow fciptunnel -c -q
portshow fciptunnel 24 -c
portshow fcipcircuit 24 -c [-q]
portshow fciptunnel 24 -scq --perf
```

Use the portshow fciptunnel and portshow fcipcircuit commands with and -perf option to display the main utilization values used by the spillover algorithm. An example header and flag table for these commands are as follows:

Some understanding of how resources are allocated helps to understand the utilization numbers. A VE has multiple QoS tunnels. Each of the tunnels can be separated internally into independent resource groups, each with its own instantiation of the configured circuits on the VE, the TCP connections, and the prorated bandwidth allocations. The number of resource allocations is based primarily on the configured bandwidth.

The TxWAN and TxQ utilizations numbers that are shown in the output are calculated over a 10-second period for each individual resource group. TxWAN represents the average utilization of all primary TCP connections within the group. TxQ represents the average use of the buffering mechanism that is provided by the group. TxQ provides a close estimate of

the amount of data the host application is sending and data that is readily available (buffered) when bandwidth becomes available on the WAN. If utilization is present, it most likely indicates that some push up back to the host is occurring.

The values that are displayed for the tunnel and circuit represent the highest level that is measured within that object.

The values that are displayed for the QoS tunnel level represent the range of these measurements, lowest, and highest measured.

In general, the WAN utilization of 96 percent or greater must be sustained for approximately 15 to 20 seconds before spillover is activated and the metric 1 circuits become spillover eligible. When the metric 1 circuits are activated/eligible, they are used only if all the data cannot be sent over the metric 0 circuits.

The utilization numbers might not be an exact value because they depend on the timing of how the data is collected. For example, a circuit might show 94 percent whereas the tunnel might show 93 percent high utilization. The circuit utilization is measured independently across all resource groups and the tunnel utilization is measured as a single resource group.

To accurately see why or why not throughput spillover is active, use the --qos option. By looking at the displayed utilization range, you can determine if the resources are being evenly used, or which QoS is being used or not. If the low-high utilization range is tight, it means that the resource groups are being evenly used for that QoS.

Examples

The following series of various --perf options show the utilization reaching the spillover thresholds for one QoS and not for others that have traffic flowing over them.

switch:admin> portshow fciptunnel 24 -s --perf

Tunnel	Circuit	St	Flg	TxMBps	RxMBps	CmpRtio	RTTms	ReTx	TxWAN%	TxQ%/BW	Met/G
24	-	Up	s	1138.8	6.2	-	-	0	99	0	-

switch:admin> portshow fciptunnel 24 -sc --perf

Tunne	el Circuit	St F	'lg TxMB	3ps 1	RxMBps	CmpRtio	RTTms	ReTx	TxWAN%	TxQ%/BW	Met/G
24	-	Up -	-s 1138	3.2	6.2	-	-	0	99	0	-
24	0 ge0	Up -	990	.4	6.2	-	1	0	99	9500/9500	0/-
24	1 gel	Up -	147	.9	0.0	-	1	0	13	9500/9500	1/-

switch:admin> portshow fciptunnel 24 -scq --perf

Tunnel	Circuit	St	Flg	TxMBps	RxMBps	CmpRtio	RTTms	ReTx	TxWAN%	TxQ%∕BW	Met/G
24		 qU		0.0	0.0			0	0-0	0-0	
24	0 ge0	Up		0.0	0.0	-	1	0	0-0	0/9500	0/-
24	l gel	Up		0.0	0.0	-	1	0	0-0	0/9500	1/-
24 .	-	Up	h-s	712.6	0.7	-	-	0	99-99	0-0	-
24	0 ge0	Up		564.4	0.7	-	1	0	99-99	2375/9500	0/-
24	l gel	Up		148.2	0.0	-	1	0	12-13	2375/9500	1/-
24 .	-	Up	m-s	0.0	0.0	-	-	0	0-0	0-0	-
24	0 ge0	Up		0.0	0.0	-	1	0	0-0	1425/9500	0/-
24	l gel	Up		0.0	0.0	-	1	0	0-0	1425/9500	1/-
24 .	-	Up	l-s	0.0	0.0	-	-	0	0-0	0-0	-
24 (0 ge0	Up		0.0	0.0	-	1	0	0-0	950/9500	0/-

24	1 gel	Up	0.0	0.0	-	1	0	0-0	950/9500	1/-
24	-	Up hIs	426.7	5.5	-	-	0	72-82	0-0	-
24	0 ge0	Up	426.7	5.5	-	1	0	72-82	2375/9500	0/-
24	1 gel	Up	0.0	0.0	-	1	0	0-0	2375/9500	1/-
24	-	Up mIs	0.0	0.0	-	-	0	0-0	0-0	-
24	0 ge0	Up	0.0	0.0	-	1	0	0-0	1425/9500	0/-
24	1 ge1	Up	0.0	0.0	-	1	0	0-0	1425/9500	1/-
24	-	Up lIs	0.0	0.0	-	-	0	0-0	0-0	-
24	0 ge0	Up	0.0	0.0	-	1	0	0-0	950/9500	0/-
24	1 ge1	Up	0.0	0.0	-	1	0	0-0	950/9500	1/-

The next series shows the utilization not quite reaching the spillover thresholds, thus no spillover.

switch:admin> portshow fciptunnel 25 -s --perf

Tunnel	Circuit	St	Flg	TxMBps	RxMBps	CmpRtio	RTTms	ReTx	TxWAN%	TxQ%/BW	Met/G
25	-	Up	s	505.4	1.8	-	-	0	84	0	-

switch:admin> portshow fciptunnel 25 -sc --perf

Tunne	l Circuit	St F	Flg	TxMBps	RxMBps	CmpRtio	RTTms	ReTx	TxWAN%	TxQ%/BW	Met/G
25	-	Up -	s	505.2	1.8	-	-	0	85	0	-
25	1 ge5	Up -		505.2	1.8	-	1	0	85	2000/5000	0/-
25	2 ge2	Up -		0.0	0.0	-	1	0	0	2000/5000	1/-

switch:admin> portshow fciptunnel 25 -sc --qos --perf

Tunne	el Circuit	St	Flg	TxMBps	RxMBps	CmpRtio	RTTms	ReTx	TxWAN%	TxQ%/BW	Met/G
25	-	Up	c-s	0.0	0.0	-	-	0	0-0	0-0	-
25	1 ge5	Up		0.0	0.0	-	1	0	0-0	0/5000	0/-
25	2 ge2	Up		0.0	0.0	-	1	0	0-0	0/5000	1/-
25	-	Up	h-s	0.0	0.0	-	-	0	0-0	0-0	-
25	1 ge5	Up		0.0	0.0	-	1	0	0-0	500/5000	0/-
25	2 ge2	Up		0.0	0.0	-	1	0	0-0	500/5000	1/-
25	-	Up	m-s	506.7	1.8	-	-	0	85-85	0-0	-
25	1 ge5	Up		506.7	1.8	-	1	0	85-85	300/5000	0/-
25	2 ge2	Up		0.0	0.0	-	1	0	0-0	300/5000	1/-
25	-	Up	l-s	0.0	0.0	-	-	0	0-0	0-0	-
25	1 ge5	Up		0.0	0.0	-	1	0	0-0	200/5000	0/-
25	2 ge2	Up		0.0	0.0	-	1	0	0-0	200/5000	1/-

Circuit Spillover Considerations

Many considerations for circuit spillover and circuit failover bandwidth and network requirements are similar, as follows:

- In the portcfg fciptunnel command, the value for max-comm-rate cannot exceed 5 times the value for mincomm-rate.
- The minimum committed rate value is 20000.
- Must not be any restriction on the bandwidth difference between circuits.
- The round-trip time must be less than 250 ms.
- Packet loss must be less than 1 percent.

The following property is specific to circuit spillover:

• When the tunnel is configured as spillover, all metric 1 circuits are treated as metric 0 (primary) circuits when calculating the aggregate bandwidth restrictions.

Service-Level Agreement

A service-level agreement (SLA) works in conjunction with the existing WAN Tool features to provide automatic testing of a circuit before it is placed into service. SLAs are supported on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade.

The primary purpose of an SLA is to provide automated testing of a circuit before it is placed into service. The SLA checks the circuit for the packet loss percentage. If you need to verify the circuit for additional network performance, such as throughput, congestion, or out-of-order delivery, use WAN Tool to run tests manually. See Using WAN Tool for information.

You must configure an SLA session at each end of the circuit being tested. The SLA session uses information from the circuit configuration to configure and establish the SLA connections. If the circuit configurations specify different transmission rates, the SLA negotiates and uses the lower configured rate. This allows the SLA to start even when circuit configurations have a minor mismatch. When the session is established, traffic starts automatically. For the duration of the test, the traffic must remain under the specified loss percentage before the circuit is placed into service. On the Brocade 7840 Switch and the Brocade SX6 Blade, up to 20 SLA sessions can be defined per DP. On the Brocade 7810 Switch, the limit is 12. See Configuring Service Level Agreement for information about configuring and using an SLA.

NOTE

On the Brocade 7810 Switch, when you have SLA's enabled on a circuit configuration that maxes out the primary and secondary bandwidth limits (2.5Gb/s of metric 0 with 2.5Gb/s of metric 1), the total running throughput may exceed the 2.5Gb/s max of the platform. In this type of configuration, SLA use should be avoided or used with caution.

In addition to packet loss, the SLA can also test for timeout duration. If the timeout value is reached during the SLA session, the session is terminated and the circuit is put into service. A timeout value of "none" means that the test runs until the runtime and the packet-loss values are met.

Interaction with an SLA while it is running is limited. You can view statistics, and you can abort an active session. Any attempt to modify a session while it is active is blocked, which means the WAN Tool commands cannot be used while an SLA session is running.

Whenever a tunnel or circuit goes offline and comes back online, or when a circuit is administratively disabled then enabled, the SLA session is started and tests the link before allowing the circuit to go back into service. Configured SLA sessions are persistent across reboots, because circuit configurations are persistent across reboots and the SLA is part of the circuit configuration. However, user-configured WAN Tool sessions are not persistent.

After configuring an SLA, you assign the SLA to a specific circuit with the portcfg fcipcircuit command.

NOTE

During an eHCL reboot, the SLA is disabled and no new SLA sessions can be created until all eHCL operations are complete. After all eHCL operations are complete, the SLA is re-enabled.

Configuring Extension Features

Configuration Overview

Configuration consists of two main phases. The first phase is the planning and preparation phase. The second phase involves logging into the Brocade Extension device and issuing commands that configure the features available on that device.

For the planning and preparation phase, see Configuration Prerequisites. You can use that information as a checklist for preparation.

When you configure the Brocade Extension platform, the recommended sequence is as follows:

- 1. Configure the platform mode. Select the application modes and VE modes. On the Brocade FX8-24 Blade, configure the GbE port mode and VEX mode.
- 2. On the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade, configure the GbE port speed on the 10GbE ports.
- 3. Configure the IP parameters. This includes the IP interface (IPIF), the IP route information where needed, and the VLAN.
- 4. Configure the service-level agreement (SLA) function.
- Configure IPsec policies for the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade. IPsec policies are not supported on the Brocade FX8-24 Blade. Instead, IPsec is configured when the circuit is created or modified.
- 6. Configure the extension tunnels for FCIP.
- 7. Configure the Extension Hot Code Load (eHCL) feature. eHCL is supported on the Brocade SX6 Blade and Brocade 7840 Switch but not on the Brocade 7810 Switch.
- 8. Configure IP Extension if you are using this feature. IP Extension is supported on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade.
- 9. Finalize the configuration.

Configuration Prerequisites

Before you begin, review Tunnel and Circuit Requirements for Brocade Extension Platforms then consider the following points.

- Determine the amount of bandwidth that is required for the extension features deployed in your network.
- · Confirm that the WAN links are provisioned and tested for integrity.
- Confirm that the LAN links are provisioned.
- Make sure that cabling within the data center is completed.
- Make sure that switches and other devices are physically installed and powered on.
- Make sure that you have admin access to all switches and blades that you must configure.
- For the Brocade FX8-24 Blade, determine the following.
 - Which of the three possible GbE or XGE port operating modes are used.
 - Which 10GbE crossports to use for active-active or active-passive configurations.
- For the Brocade 7840 Switch and the Brocade SX6 Blade, determine the VE_Port operating modes that are used (10VE mode or 20VE mode).

NOTE

The Brocade 7810 Switch does not support the different VE operating modes.

- Determine which Ethernet ports are used. The Ethernet ports on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade are in groups, and connections should be spread across the groups and not within the same group if possible.
- Obtain subnets and assign IP addresses for each circuit endpoint that you intend to use, plus the netmask and IP MTU size. The IP MTU size may be smaller than 1500 if there is an IPsec device or similar device in the path. If the IP MTU is larger than 1500, use the following guidelines for your extension product:
 - For the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade, the IP MTU size must be at least 1280. If the supported maximum IP MTU size in the network is larger than 9216, the IP MTU must be 9216. You can use Path MTU Discovery to automatically set the IP MTU size for the circuit's IP interface.
- Determine the gateway IP address as needed for each route across the WAN. The gateway IP address will be on the same IP subnet as the subnet used for the IPIF interface that will use that gateway. The route is the subnet and netmask on the remote side.
- Determine the VE_Port numbers that you want to use. The VE_Port numbers serve as tunnel IDs. Typically, the first one is used.
- Determine source and destination IP addresses for circuit 0 and the minimum and maximum rates for ARL. These values are set by the <code>portCfg fciptunnel create</code> command. If ARL is not being used, set the minimum and maximum committed rates to the same value.
- Determine how many additional circuits you want to create. You need the source and destination IP addresses for each circuit and the minimum and maximum rates for ARL. You must know if you intend to assign metrics to circuits so that lower metric circuits failover to circuits with higher metrics. For all circuits except circuit 0, these values are set by the portCfg fcipcircuit create command.
- If you are using IP Extension, make sure that you have the LAN information available for your site.
- When configuring tunnels to support large numbers of devices, consider the memory limitations of the extension switch or blade if you are enabling any type of emulation features, such as FCP or FICON. If too many devices are present or activated at one time, acceleration operations can be negatively impacted. See Memory Use Limitations for Large-Device Tunnel Configurations.

Configuring Platform Modes

Platform mode configuration consists of setting modes that affect how the platform operates.

FCIP mode (Brocade 7840 Switch and Brocade SX6 Blade) or Hybrid mode (Brocade 7840 Switch and Brocade SX6 Blade)

NOTE

The Brocade 7810 Switch does not support mode configuration. It is in Hybrid mode by default and this setting cannot be changed.

- VE mode This mode determines how many VE ports are available as well as their total throughput. (Brocade 7840 Switch and Brocade SX6 Blade)
- Brocade 7810 Switch GE port mode. This mode can be set to either copper or optical.
- Brocade SX6 Blade. When you remove a blade or change the blade slot, platform information for the blade must be cleared.
- Brocade FX8-24 Blade GbE mode. This mode can be configured to support various throughputs.
- Brocade FX8-24 Blade virtual EX (VEX) mode This mode is supported only on the Brocade FX8-24 Blade.

Configuring FCIP or Hybrid Mode

The Brocade 7840 Switch and the Brocade SX6 Blade can assume both modes though the default is FCIP. The Brocade 7810 Switch operates solely in Hybrid mode. If you want to use IP Extension features, Hybrid mode must be configured on the switch or blade.

You can configure the Brocade 7840 Switch and the Brocade SX6 Blade in either FCIP or Hybrid mode using the extncfg --app-mode command, which is disruptive and requires a reboot.

The following switch modes are available.

- With **FCIP mode**, only FCIP traffic is sent over the extension tunnels. Each DP allows up to 20G of FC traffic (up to 40G with 2:1 compression). You can select either 10VE or 20VE port modes.
- With Hybrid mode, both FCIP traffic and IP traffic can be sent over the extension tunnels.
 - Brocade 7840 Switch or Brocade SX6 Blade. For each DP, Hybrid mode enables up to 10G of FC traffic (up to 20G FC traffic with 2:1 compression) and up to 20G of IP traffic. In Hybrid mode, only 10VE port mode is available.
 - Brocade 7810 Switch. This switch is always in Hybrid mode. It does not support switching modes (FCIP, 10VE, and 20VE).

NOTE

If conflicting configurations exist when you are switching modes, the <code>extncfg</code> command will fail. For example, if you are using a Brocade 7840 Switch in 20VE mode and have a tunnel configured on VE_Port 30, you cannot change to 10VE mode because VE_Port 30 is unavailable in 10VE mode.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. To set the switch to FCIP mode, use the extncfg --app-mode fcip command.

switch:admin> extncfg --app-mode fcip

FCIP is the default operating mode.

3. To set the switch or blade operating mode to hybrid, use the extncfg --app-mode hybrid command.

switch:admin> extncfg --app-mode hybrid

Changing operating mode between FCIP and hybrid is disruptive.

4. To display information about the current mode, use the extncfg --show command.

switch:admin> extncfg --show

Configuring VE Mode

The VE mode on a Brocade 7480 Switch or Brocade SX6 Blade controls how many VE_Ports are available.

In FCIP mode, you can configure the Brocade 7480 Switch or the Brocade SX6 Blade in either 10VE mode (default) or 20VE mode using the extncfg --ve-mode 10VE ||20VE command. This command is disruptive; it requires a reboot.

NOTE

While the Brocade 7810 Switch does not support VE modes, it does provide between 12-15 VE ports.

You can configure the following VE modes on a Brocade 7480 Switch or Brocade SX6 Blade.

- **10VE mode**: In this mode, 10 of the 20 total VE_Ports on the switch are enabled. A single VE_Port on a DP complex can use all Fibre Channel 20Gb/s of bandwidth available to the complex.
- **20VE mode**: This mode is available when the switch is in FCIP mode. In this mode, all 20 VE_Ports are enabled. A single VE_Port on a DP complex can use half of the available Fibre Channel bandwidth available to the DP complex, a maximum of 10Gb/s. This option allows use of more VE_ports, but at a lower maximum bandwidth.

NOTE

On the Brocade 7840 Switch or Brocade SX6 Blade, you should configure only the maximum number of VE_Ports. 10VE mode will accommodate nearly all environments and is the default.

The following table lists the available ports in 10VE and 20VE mode.

Table 28: 10VE and 20VE Mode Ports

Product	10VE mode VE_Ports (default)	20VE mode VE_Ports
	0	DP0 - 24 through 33 DP1 - 34 through 43
	5	DP0 - 16 through 25 DP1 - 26 through 35

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the extncfg --ve-mode command to select the VE mode.
 - To set the operating mode to 20VE, enter the following command.

switch:admin> extncfg --ve-mode 20VE

• To set the operating mode to 10VE, enter the following command.

switch:admin> extncfg --ve-mode 10VE

3. To display the current operating mode, enter the following command.

switch:admin> extncfg --show

VE-Mode: configured for 20VE mode

The display shows the switch is in 20VE mode.

Clearing the Brocade SX6 Blade Configuration

When you remove a Brocade SX6 Blade from a chassis, you can clear all the configuration information for that blade. You can also reset the blade to a default configuration when it is not removed from the chassis.

You can clear the configuration for a Brocade SX6 Blade when the blade is removed from the chassis by using the extncfg --config command with the -clear option. When the configuration is cleared, any additional configuration information for that blade is removed from the configuration database for the blade that is no longer in the chassis. If you clear the configuration for a blade that is still inserted in a slot, only the configuration database is affected. To fully clear the configuration for an inserted blade, use the slotpoweroff command and the slotpoweron command.

Another way to clear the blade configuration is to reset the blade to its initial default configuration. Use the <code>extncfg --config</code> command with the-default option to reset the blade as though it was newly inserted into the chassis. This clears the active running configurations on an extension blade that is active in the chassis. This command is valid only for enabled/active extension blades in the chassis. The command clears the active configurations and removes all extension-related configurations.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. To clear the configuration in a chassis-based system when the Brocade SX6 Blade is removed from slot 2, enter the following command.

```
switch:admin> extncfg --config -clear -slot 2
```

A slot power-off/power-on must be used to clear the configuration entirely.

3. To clear the configuration in a chassis-based system when the Brocade SX6 Blade remains in an enabled slot, enter the following command sequence. In this example, the blade is in chassis slot 3.

```
switch:admin> slotpoweroff 3
Slot 3 is being powered off
switch:admin> extncfg --config -clear -slot 3
switch:admin> slotpoweron 3
Powering on slot 3.
```

The slotpoweroff and slotpoweron commands must be used to clear the configuration entirely.

4. To reset the default values for a Brocade SX6 Blade that is inserted in slot 3 of a chassis-based system, enter the following command.

switch:admin> extncfg --config -default -slot 3

The result is as if the blade were newly inserted into the chassis and there were no extension configurations.

Configuring GE Mode on the Brocade 7810 Switch

The Brocade 7810 Extension Switch is configured with eight GE ports: two extensions RJ-45 copper GbE ports and six optical ports that support SFP+ transceivers. GE0 and GE1 are always in copper mode and GE2 through GE7 are always in optical mode. All eight ports are visible to you in the output of the switchshow command. However, only six are usable at a time as GE0 through GE1 and GE2 through GE3 are mutually exclusive. Therefore, at any moment, only GE0, GE1 or GE2, GE3 can be used (see the following explanation).

NOTE

The Brocade 7810 Switch default port speed is 1Gb/s.

The Ethernet interfaces can be enabled in copper or optical mode using the extncfg command as follows:

- For copper mode, enter extncfg --ge-mode copper. In this mode, GE0 and GE1 are enabled and usable but ports GE2 and GE3 are disabled and unusable.
- For optical mode, enter extncfg --ge-mode optical. In this mode, GE0 and GE1 are disabled and unusable whereas GE2 and GE3 are enabled and usable.

Ports that are unused cannot have any configurations on them. So when transitioning between modes, you must delete any configurations on those ports prior to allowing the mode switch to occur.

NOTE

Regarding switching ports on mode change, the per-port selection is not supported.

Consider the following for copper and optical operating modes:

- Switching between copper and optical operation is a nondisruptive operation. The switch does not reboot.
- During a mode switch, no configurations can be present on the GE ports. If a configuration exists on a port that is disabled, changing modes are blocked, and the configuration must first be deleted.

```
switch:admin> extncfg -show
APP Mode is HYBRID (FCIP with IPEXT)
VE-Mode: None
GE-Mode: Optical
switch:admin> extncfg --help
Usage: extncfg <action> [options]
action:
```

ve-mode 10VE 20VE	- Set VE-Mode to 10VE or 20VE mode.
ge-mode copper optical	- Set GE-Mode to copper or optical.
	(Brocade 7810 Only)
app-mode fcip hybrid	- Set APP-Mode to FCIP or HYBRID (FCIP
	with IPEXT).
show	- Display APP & VE mode details.
config -default	- Default the Extension configuration.
config -clear	- Clear the Config for Extension
	configuration.
fwdl-prep [-version <version>]</version>	- Prepare the switch for firmware
	download to the target version.
-h,help	- Print this usage statement.

```
switch:admin> extncfg -ge-mode copper
Operation Succeeded
switch:admin> extncfg -show
APP Mode is HYBRID (FCIP with IPEXT)
VE-Mode: Not Applicable.
GE-Mode: Copper
switch:admin>
```

This is a sample output of switchshow in optical mode.

switch:admin> switchshow switchName: sw0 switchType: 178.0 switchState: Online switchMode: Native
switchRole: Principal switchDomain: 1 switchId: fffc01 switchWwn: 10:00:c4:f5:7c:01:34:48 OFF zoning: switchBeacon: OFF FC Router: OFF FC Router BB Fabric ID: 1 Address Mode: 0 HIF Mode: OFF

Index Port Address Media Speed State Proto

ved yet)
ved yet)
ved yet)

12	12	010c00			Offline	VE					
13	13	010d00			Offline	VE					
14	14	010e00			Offline	VE					
15	15	010f00			Offline	VE					
	ge0		id	1G	Offline	FCIP	Copper	Disabled	(Unsupported	blade	mode)
	ge1		id	1G	Offline	FCIP	Copper	Disabled	(Unsupported	blade	mode)
	ge2		id	1G	Online	FCIP					
	ge3		id	1G	Online	FCIP					
	ge4		id	1G	No_Sync	FCIP					
	ge5		id	1G	No_Sync	FCIP					
	ge6		id	10G	Online	FCIP					
	ge7		id	10G	Online	FCIP					

This is sample output for switchshow in optical mode and ge0 as persistent disabled.

switch:admin>	switchshow
switchName:	sw0
switchType:	178.0
switchState:	Online
switchMode:	Native
switchRole:	Principal
switchDomain:	1
switchId:	fffc01
switchWwn:	10:00:c4:f5:7c:01:34:48
zoning:	OFF
switchBeacon:	OFF
FC Router:	OFF
FC Router BB F	abric ID: 1
Address Mode:	0
HIF Mode:	OFF

Index	Port	Address	Media	Speed	State	Proto
0	0	010000	id	N8	Online	FC F-Port 10:00:00:05:33:26:72:f1
1	1	010100	id	N8	Online	FC F-Port 10:00:00:05:33:26:72:f0
2	2	010200		N32	No_Module	FC (POD license not assigned or reserved yet)
3	3	010300		N32	No_Module	FC (POD license not assigned or reserved yet)
4	4	010400	id	N16	Online	FC F-Port 20:02:00:11:0d:5a:00:00
5	5	010500	id	N16	Online	FC F-Port 20:03:00:11:0d:5a:01:00
6	6	010600		N32	No_Module	FC (POD license not assigned or reserved yet)
7	7	010700		N32	No_Module	FC (POD license not assigned or reserved yet)
8	8	010800		N32	No_Module	FC (POD license not assigned or reserved yet)
9	9	010900		N32	No_Module	FC (POD license not assigned or reserved yet)
10	10	010a00		N32	No_Module	FC (POD license not assigned or reserved yet)
11	11	010b00		N32	No_Module	FC (POD license not assigned or reserved yet)
12	12	010c00			Offline	VE
13	13	010d00			Offline	VE
14	14	010e00			Offline	VE
15	15	010f00			Offline	VE
	ge0		id	1G	Offline	FCIP Copper Disabled (Persistent and Unsupported blade mode)
	ge1		id	1G	Offline	FCIP Copper Disabled (Unsupported blade mode)
	ge2		id	1G	Online	FCIP

FOS-821-Ext-UG105 User Guide

ge3	id	1G	Online	FCIP
ge4	id	1G	No_Sync	FCIP
ge5	id	1G	No_Sync	FCIP
ge6	id	10G	Online	FCIP
ge7	id	10G	Online	FCIP

This is a sample output for switchshow in copper mode.

switch:admin>	switchshow
switchName:	sw0
switchType:	178.0
switchState:	Online
switchMode:	Native
switchRole:	Principal
switchDomain:	1
switchId:	fffc01
switchWwn:	10:00:c4:f5:7c:01:34:48
zoning:	OFF
switchBeacon:	OFF
FC Router:	OFF
FC Router BB B	Tabric ID: 1
Address Mode:	0
HIF Mode:	OFF

Index Port Address Media Speed State Proto

0	0	010000	id	N8	Online	FC F-Port 10:00:05:33:26:72:f1
1	1	010100	id	N8	Online	FC F-Port 10:00:05:33:26:72:f0
2	2	010200		N32	No_Module	FC (POD license not assigned or reserved yet)
3	3	010300		N32	No_Module	FC (POD license not assigned or reserved yet)
4	4	010400	id	N16	Online	FC F-Port 20:02:00:11:0d:5a:00:00
5	5	010500	id	N16	Online	FC F-Port 20:03:00:11:0d:5a:01:00
6	6	010600		N32	No_Module	FC (POD license not assigned or reserved yet)
7	7	010700		N32	No_Module	FC (POD license not assigned or reserved yet)
8	8	010800		N32	No_Module	FC (POD license not assigned or reserved yet)
9	9	010900		N32	No_Module	FC (POD license not assigned or reserved yet)
10	10	010a00		N32	No_Module	FC (POD license not assigned or reserved yet)
11	11	010b00		N32	No_Module	FC (POD license not assigned or reserved yet)
12	12	010c00			Offline	VE
13	13	010d00			Offline	VE
14	14	010e00			Offline	VE
15	15	010f00			Offline	VE
	ge0		id	1G	Online	FCIP Copper
	ge1		id	1G	Online	FCIP Copper
	ge2		id	1G	No_Sync	FCIP Disabled (Unsupported blade mode)
	ge3		id	1G	No_Sync	FCIP Disabled (Unsupported blade mode)
	ge4		id	1G	No_Sync	FCIP
	ge5		id	1G	No_Sync	FCIP
	ge6		id	10G	Online	FCIP
	ge7		id	10G	Online	FCIP

Configuring GbE Mode on the Brocade FX8-24 Blade

The Brocade FX8-24 Blade can be configured to support 1GbE, 10GbE, or both. The Brocade FX8-24 Blade is supported in a Brocade DCX 8510 chassis.

The GbE ports on a Brocade FX8-24 Blade can operate in one of three ways:

- 1Gb/s mode: In this mode, GbE ports 0 through 9 are enabled as 1GbE ports, with the XGE ports disabled. The 10GbE (FTR_10G) license is not required.
- 10Gb/s mode: In this mode, 10GbE ports xge0 and xge1 are enabled, with GbE ports 0 through 9 disabled. The 10GbE (FTR_10G) license is required and must be assigned to the slot in which the Brocade FX8-24 Blade resides.
 NOTE

Switching between 10Gb/s mode and 1Gb/s mode disrupts traffic.

Dual mode: In this mode, GbE ports 0 through 9 and the 10GbE port xge0 are enabled. The 10GbE port xge1 is disabled. The 10GbE (FTR_10G) license is required and must be assigned to the slot in which the Brocade FX8-24 Blade resides.

Auto-negotiation is enabled by default in 1G mode. In 10G mode it is disabled and not supported. When the port is set for 1G mode, you can disable auto-negotiation using the portcfgge ge --disable -autoneg command.

The following table shows which VE_Ports are available in each mode.

Table 29: Brocade FX8-24 Blade GbE Modes and VE_Ports

Mode	GE ports	VE_Ports
1Gb/s	GbE 0 – GbE 9	VE_12 – VE_21
Dual		VE_12 – VE_21 VE_22 – VE_31
10Gb/s		VE_12 – VE_21 VE_22 – VE_31

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. After deleting the configuration of the port, use the bladeCfgGeMode --set mode slot *slot-number* command to set the GbE port mode of operation for the Brocade FX8-24 Blade.

The following example enables 1g mode for GbE ports 0 through 9 on a Brocade FX8-24 Blade in slot 8. Ports xge0 and xge1 are disabled.

switch:admin> bladecfggemode --set 1g -slot 8

The next example enables 10g mode for ports xge0 and xge1 on a Brocade FX8-24 Blade in slot 8. GbE ports 0 through 9 are disabled.

switch:admin> bladecfggemode --set 10g -slot 8

The following example enables dual-mode for GbE ports 0 through 9 and xge0 on a Brocade FX8-24 Blade in slot 8. Port xge1 is disabled.

switch:admin> bladecfggemode --set dual -slot 8

3. Use the bladecfggemode --show command to display the GbE port mode for the Brocade FX8-24 Blade.

The following example shows that 10Gb/s mode is configured for the blade in slot 8.

switch:admin> bladecfggemode --show -slot 8 bladeCfgGeMode: Blade in slot 8 is configured in 10GigE Mode 10GigE mode: only xge0 and xge1 are enabled (ge0-9 ports are disabled) The blade in slot81 supports IP Sec tunnels on only VEs 12 through 21 (xge1 or ge0-ge9)

Configuring VEX_Ports on the Brocade FX8-24 Blade

A virtual EX_Port that connects a Fibre Channel router to an edge fabric. From the point of view of a switch in an edge fabric, a VEX_Port appears as a normal VE_Port. It follows the same Fibre Channel protocol as other VE_Ports. However, the router terminates VEX_Ports rather than allowing different fabrics to merge as would happen on a switch with regular VE_Ports.

If you are going to use a VEX_Port in your tunnel configuration, use the portCfgVEXPort command to configure the port as a VEX_Port.

If the fabric is already connected, disable the Ethernet ports and do not enable them until after you have configured the VEX_Port. This prevents unintentional merging of the two fabrics.

VEX_Ports are described in detail in the *Brocade Fabric OS Administration Guide*. Refer to that publication if you intend to implement a VEX_Port.

The following example configures a VEX_Port, enables admin, and specifies fabric ID 2 and preferred domain ID 220.

switch:admin> portcfgvexport 18 -a 1 -f 2 -d 220

Configuring Port Speed

You can configure a speed of 10GbE on the Brocade 7840 Switch and either 1GbE or 10GbE (default) on a Brocade SX6 Blade with the portcfgge command.

NOTE

You cannot change port speed on the ports that support 40GbE.

The *base* Brocade 7810 Switch has two GE interfaces, each is limited to 1Gb/s mode. An upgraded Brocade 7810 Switch can have 6GE interfaces, which can be set to 1Gb/s or 10Gb/s. On the "optical" SFP posts of a Brocade 7810 Switch, 1Gb/s is the default speed.

NOTE

GE0 and GE1 (RJ-45 Cu interfaces) only support 1Gb/s.

Auto-negotiation is enabled by default in 1G mode only. In 10G mode it is disabled and not supported. You can disable auto-negotiation on a port set for 1G mode with the portcfgge *ge* --disable -autoneg command.

NOTE

Auto-negotiation only applies to 1Gb/s interfaces and is a standard for 1G GE PHY negotiation. It is not a speed negotiation. The GE port can be set to either 1G mode or 10G mode and the corresponding SFP+ must be installed as well. A port set in auto-negotiate mode is negotiating full duplex and use of pause frames (802.3X) with the attached switch. The port will come up if there is a mismatch in the negotiated parameters. However, the port will not come up if one end is has auto-negotiate enabled and the other end has auto-negotiate disabled.

Use the following steps to configure port speed on the 10GbE ports of a Brocade 7840 Switch or a Brocade SX6 Blade. The missing slot number in the examples below indicate that the discussion applies only to a Brocade 7840 Switch.

NOTE

If a port has active circuits, changing port speed is disruptive.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Perform one of the following steps:
 - To set the port speed at 1Gb/s for port ge4, enter the following:

switch:admin> portCfgGe ge4 --set -speed 1G

• To set the port speed at 10Gb/s for port ge4, enter the following:

switch:admin> portCfgGe ge4 --set -speed 10G

• To disable auto-negotiation on port ge4, enter the following:

switch:admin> portCfgGe ge4 --disable -autoneg

• To enable auto-negotiation on port ge4, enter the following:

switch:admin> portCfgGe ge4 --enable -autoneg

3. To display the current port speed configuration for port ge4, enter the following:

switch:admin> portCfgGe ge4 --show
Port Speed Flags Lag ID Channel
ge4 10G ---- N/A

Flags: A:Auto-Negotiation Enabled C:Copper Media Type L:LAN Port G: LAG Member

switch:admin> portshow ge4
Eth Mac Address: 00.05.33.65.83.57
Port State: 1 Online
Port Phys: 6 In_Sync
Port Flags: 0x3 PRESENT ACTIVE
Port Speed: 10G

Configuring Layer 2 Protocols

Configuring Global LLDP Parameters

The Link Level Discovery Protocol (LLDP) discovers the Ethernet neighbor interface at the link level.

It negotiates the capabilities for Converged Enhanced Ethernet (CEE), and manages the CEE status of the port. To enable GbE connectivity, LLDP primarily maintains the GbE priority and logical link status, and negotiates them with the peer device.

NOTE

LLDP is enabled by default on GbE ports and applies the global parameters to all ports.

To configure LLDP global parameters, follow these steps:

- If necessary, enable the LLDP protocol on the switch. switch#admin> lldp --enable
- 2. Configure the LLDP global parameters.

```
switch#admin> lldp --config -sysname Ext_Switch_15
switch#admin> lldp --config -sysdesc 7810_15_on_default_vf
switch#admin> lldp --config -mx 5
switch#admin> lldp --config -txintvl 40
```

3. Enable the required Type Length Values (TLVs) globally using the lldp --enable -tlv command.

```
switch#admin> lldp --enable -tlv dcbx
```

NOTE

The dcbx and sys-name TLVs are enabled by default globally.

The following TLVs are supported:

- dot1—IEEE 802.1 Organizationally Specific
- dot3—IEEE 802.3 Organizationally Specific
- mgmt-addr—Management Address
- port-desc—Port Description
 With Fabric OS 8.2.1, for the TLV port-desc, the string is now of the format: Switch Model Name (in the
 case of a fixed-port switch)/Slot Model Name (in the case of a chassis): Mode + Speed
 + Slot/Port (for example, Brocade FC32-64: ETH 10G 8/0 or Brocade SX6: WAN 10G 4/ge13).
- sys-cap—System Capabilities
- sys-desc—System Description With Fabric OS 8.2.1, for the TLV sys-desc, the default system description string in the TLV advertised for the switch is now of the format: Switch Model Name, Firmware Version (for example, Brocade 7810, Fabric OS Version 8.2.1).
- sys-name—System Name
- 4. You can use the following commands to display the LLDP neighbors and statistics.

switch#admi	in> lldpsho	w -nbr					
Local Intf	Dead Interval	Remaining Life	Remote Intf	Chassis ID	Τx	Rx	System Name
gel	120	110	7/gel	0027.f8f0.a8d0	622	449	ven110
ge2	120	94	0024.389c.003c	0024.389c.0000	631	439	MLXe-33
ge4	120	106	0024.389c.003e	0024.389c.0000	622	439	MLXe-33
ge5	120	104	0024.389c.003f	0024.389c.0000	622	439	MLXe-33
ge7	120	106	0024.389c.0009	0024.389c.0000	622	439	MLXe-33
ge10	120	120	8/ge10	0027.f8f0.a8d0	600	425	ven110
ge11	120	112	ge11	0005.3365.7c42	622	450	SB116
ge13	120	95	port0	8c7c.ff21.9a2e	622	436	(null)
ge16	120	114	0024.389c.0041	0024.389c.0000	544	359	MLXe-33
ge17	120	112	0024.389c.0042	0024.389c.0000	622	439	MLXe-33
<output td="" tru<=""><td>incated></td><td></td><td></td><td></td><td></td><td></td><td></td></output>	incated>						

Configuring and Activating an LLDP Profile for a Group of Ports

LLDP is enabled by default. You can also create multiple customized LLDP profiles with different parameters and apply them to specific groups of ports. If no specific LLDP profile is applied on a port, the global parameters are applied by default.

NOTE

You can have up to 512 LLDP profiles in a switch or chassis.

1. Create an LLDP profile using the lldp --create -profile command.

switch#admin> lldp --create -profile lldp_profile_2

2. Configure the LLDP profile parameters using the lldp --config command.

```
switch#admin> lldp --config -mx 4 -profile lldp_profile_2
    switch#admin> lldp --config -txintvl 40 -profile lldp profile 2
3. Enable the required TLVs on the LLDP profile using the lldp --enable -tlv command.
    switch#admin> lldp --enable -tlv dot3 -profile lldp profile 2
4. Use the lldp --show -profile command to display the configured LLDP profile parameters.
    switch#admin> lldp --show -profile lldp profile 2
5. Enable the LLDP profile on a group of ports using the following command.
    switch#admin> lldp --enable -port ge13-14 -profile lldp profile 2
   As of Fabric OS 8.2.1, a group of ports can now be expressed as a range rather than as a string of ports separated by
   commas. For example:
    switch#admin> lldp --enable -port 3/40-56 -profile lldp profile 1
Verify the LLDP profile details.
    Switch#admin> lldp --show -profile
    Profile-name: lldp profile1
     Enabled TLVs:dot1;mgmt-addr;
      Profile ports: ge13;ge14
    _____
    Profile-name: lldp profile2
     Enabled TLVs:dot3;sys-desc;mgmt-addr;
      Profile ports: ge16;ge17
      Number of profile entries = 2
    Switch#admin> lldp --show -stats ge17
    LLDP Interface statistics for ge17
    Frames transmitted: 8603
    Frames Aged out:
                      0
    Frames Discarded: 0
    Frames with Error: 0
    Frames Recieved:
                      0
    TLVs discarded:
                       0
    TLVs unrecognized: 0
```

Configuring Static and Dynamic LAGs Using LACP

A LAG treats multiple connections between two components logically as a single connection. The GbE port must be configured to operate in LAN mode before you can configure a LAG. On chassis that have multiple extension blades installed, GbE ports from different blades cannot be combined into a single LAG.

Configuring a LAG is optional. However, without a LAG, you can connect only a single Ethernet link from the IP extension platform (such as the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade) to the LAN switch in your data center. However, if you use multiple VLANs, you can have one connection per VLAN, which provides one logical connection per Layer 2 domain or Layer 2 VLAN, and only one connection is required. A single link does not provide redundancy. A LAG provides redundant links with redundant cables and optics. The recommended practice is to configure a LAG when connecting to a data center LAN switch.

The Brocade 7840 Switch, Brocade 7840 Switch, and Brocade SX6 Blade platforms support both static and dynamic link aggregation groups (LAGs).

The Brocade 7840 Switch and the Brocade SX6 Blade platforms allow a maximum combination of eight static and dynamic LAGs.

The Brocade 7810 Switch supports a maximum combination of two. 1GbE RJ-45 copper ports on the Brocade 7810 Switch can also participate in LAG (both static and dynamic) formation, and the LAG could have a mix of copper and optic GbE ports. The supported speeds on a Brocade 7810 Switch are 1Gb/s and 10Gb/s for LAG configurations.

NOTE

Ethernet ports should be configured as LAN ports before adding them as part of any LAG.

The autoneg configuration option is applicable only to 1Gb/s LAG speed. (On 1Gb/s interfaces, auto-negotiation is enabled by default.)

10Gb/s and 40Gb/s interfaces have no auto-negotiation settings. Auto-negotiation does not apply to link speed, because it is not being negotiated. Auto-negotiation is specific to the use of Ethernet pause frame flow-control and full-duplex link settings. These settings can be determined by auto-negotiation between the two endpoints. If the data center LAN switch is configured for auto-negotiation, the IP extension platform must also be set for auto-negotiation. Otherwise, the links will not come online, because both ends of the link must be set identically.

When you create a LAG, you assign a name to it. Ports can be added to and removed from a named LAG. The port speed and auto-negotiation parameters must match for all ports being added to a LAG. Port speed and link auto-negotiation can be set for the LAG to control the setting of the individual LAG member ports. The port speed and link auto-negotiation setting of LAG member ports cannot be set individually. You can enable or disable individual ports in a LAG.

NOTE

Fabric OS 7.4.1 through Fabric OS 8.1.x support static LAGs. From Fabric OS 8.2.x release onward both dynamic and static LAGS are supported. In Fabric OS 8.2.x, the <code>portcfg lag</code> and <code>portshow lag</code> commands are replaced with the <code>portchannel</code> command for LAG settings.

Perform the following steps to configure a LAG on a GbE LAN port.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. (Optional) For dynamic LAGs, set the global priority between 0 and 65535 (default is 32768) for LACP on the platform with the lacp --config --sysprio command. Then run lacp --show to view the settings.

```
switch:admin> lacp --config --sysprio 100
switch:admin> lacp --show
LACP system priority: 100
LACP System ID: 0x8000,00-05-33-74-85-42
```

The LACP system priority is set to 100.

3. Create either a static or dynamic LAG group with the portchannel --create command.

After configuring a LAG, no GE interfaces belong to it, so you must add ports either individually or by specifying a range.

4. Add GE ports to the groups with the portchannel --add command.

switch:admin> portchannel --add dlag101 -port ge6 switch:admin> portchannel --add slag101 -port ge15 WARNING: While making configuration changes the modified LAN GE ports will be disabled. Please manually enable the modified LAN GE ports after completing all the configuration changes. switch:admin> portchannel --add slag101 -port ge16-17 WARNING: While making configuration changes the modified LAN GE ports will be disabled. Please manually enable the modified LAN GE ports after completing all the configuration changes. switch:admin> portchannel --show -all Name Type Oper-State Port-Count Member Ports _____ Online 1 dlag101 Dynamic qe6

dragionbynamiconlineigeoslag101StaticOffline3ge15,ge16,ge17

With FOS 8.2.1, a group of ports can now be expressed as a range rather than as a string of ports separated by commas.

In static LAGs, the modified LAN GbE ports are disabled by default and must be enabled after completing all the configuration on the LAG. When you add a port to a disabled dynamic LAG, the port gets disabled. When you remove a port from a disabled dynamic LAG, the port gets enabled. If a disabled dynamic LAG is deleted using the portchannel --delete, all the member ports get enabled.

5. Set the speed for all the ports in the LAG with the portchannel --config command. You can enable autonegotiation on 1G ports but not on 10G ports.

switch:admin> portchannel --config slag101 -speed 1G
switch:admin> portchannel --config slag101 -autoneg on

NOTE

The 1G ports are disabled after changing the autonegotiation configuration. The ports must be manually enabled.

6. For dynamic LAG member ports, can configure the KAP timeout and priority.

switch:admin> portchannel --config -port ge6-7 -priority 250
switch:admin> portchannel --config -port ge6 -timeout s
switch:admin> portchannel --config -port ge7 -timeout 1

7. Enable a LAG with the portchannel --enable command.

```
switch:admin> portchannel --enable slag101
```

switch:admin> portchannelshow -all						
Name	Туре	Oper-State	Port-Count	Member Ports		
dlag101	Dynamic	Online	1	ge6		
slag101	Static	Online	3	ge15 ,ge16 ,ge17		
switch:admin>						

NOTE

By default, the admin state of a LAG is "enabled."

8. View detailed information about the LAG groups with the portchannel --show -detail command.

switch:admin>	portchannelsh	now			
Name			Oper-State		
test			c Online		ge5*,ge6
static		Static	Offline	2	ge0 ,gel
switch:admin>	portchannelsh	now -deta	il		
Name :test					
Type :Dynamic					
Key :1					
Speed :1G					
Admin-state:	Enable				
Oper-state :	Online				
Admin Key: 0	001 - Oper Key (001			
LACP System	ID: 0x8000,c4-f5	5-7c-01-3	1-4a		
PART System	ID: 0x0001,00-24	l-38-9b-0	3-00		
Portchannel	Member count = 2	2			
	Oper state				
	Online				
	Offline				
Name :static					
Type :Static					
Key :2					
Speed :1G					
Admin-state:	Enable				
Oper-state :	Offline				
Portchannel	Member count = 2	2			
Port	Oper s		Auto-Negotiati	on	
ge0	Offlir	ne	Enabled		
ge1	Offlir				

Configuring IPIF and IP

IP configuration consists of the following tasks.

- · Configuring IP interface (IPIF) addresses.
- Configuring IP routes, if required.
- Configuring VLAN tag IDs on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade. On the Brocade FX8-24 Blade, VLAN IDs are configured when a tunnel is created or modified.
- Verifying IP connectivity.

Configuring IPIF

An IP interface (IPIF) is the endpoint of an extension tunnel or circuit. You must configure an IPIF for each circuit that you want to create. Depending on whether you intend to use eHCL, you might also configure IPIF for eHCL.

NOTE

The Brocade 7840 Switch and the Brocade SX6 Blade support a maximum of 60 IPIFs per DP and 64 per Port. The Brocade 7810 Switch supports a maximum of 60 IPIFs per DP and 60 per Port.

On a Brocade 7840 Switch or Brocade SX6 Blade, each IPIF used in a circuit is associated with a GE port and data processor (DP) complex, either DP0 or DP1. The Brocade FX8-24 Blade does not use DP parameters when configuring circuits.

To configure an IPIF, use the portCfg ipif create command. The IPIF consists of an IP address, netmask, an IP MTU size, and other options depending on the extension switch or blade. On the Brocade X6 chassis or Brocade 7840 platform you can modify an existing IP address. On the Brocade DCX 8510, you must first delete an existing IP address and then create it with modified parameters.

Requirements and options for configuring IPIFs include the following:

- You can use CIDR notation for both the IPv4 addresses and IPv6 addresses.
- You can specify an optional IP MTU size. If not specified, the size will be set to 1500 bytes. The maximum supported MTU size is 9216.

You can set the MTU manually or set it to AUTO. When set to AUTO, the circuit uses Path MTU Discovery (PMTUD) to determine an MTU.

- You can set a CIDR subnet mask of 31. When an IPv4 address with a 31-bit subnet mask is configured, using network
 addresses for broadcast purposes is not allowed. For example, there is a one-bit difference in the following two
 addresses:
 - Address A: 192.168.1.10/31
 - Address B: 192.168.1.11/31

By using IP addresses with 31-bit prefixes (as defined in RFC 3021), you can reduce the number of IP subnets that are used by network devices to establish IP connectivity to point-to-point WANs that they are connected to. The use of a 31-bit prefix allows the all-zeros and all-ones IP addresses to be assigned as host addresses on point-to-point networks. Prior to RFC 3021 the longest prefix in common use on point-to-point links was 30-bits, which meant that the all-zeros and all-ones IP addresses were wasted.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the <code>portCfg ipif create</code> command to create an IPIF. The following example shows an IPIF created on a Brocade 7840 Switch using GE port 2 and DP0.

switch:admin> portcfg ipif ge2.dp0 create 192.168.1.24 netmask 255.255.255.0 mtu 1500

The following example shows an IPIF created on a Brocade SX6 Blade in slot 4 of a Brocade X6-8 Director.

switch:admin> portcfg ipif 4/gel4.dp0 create 192.168.10.10/24 mtu 1500

The following example shows an IPIF created on a Brocade FX8-24 Blade in slot 8 of a Brocade DCX 8510.

switch:admin> portcfg ipif 8/ge0 create 192.168.1.24/24 mtu 1500

You can use either a CIDR prefix or a netmask value for IPv4 subnet masking. Any MTU larger than the default 1500 is considered a jumbo frame.

3. On the Brocade DCX 8510, you cannot modify an IPIF. To change an IPIF, you must first delete it. Use the portcfg ipif delete command to delete an IPIF.

The following example shows an IPIF deleted on a Brocade FX8-24 Blade in slot 8 of a Brocade DCX 8510. A DP parameter is not used.

switch:admin> portcfg ipif 8/ge0 delete 192.168.1.24

NOTE

If there is a tunnel or circuit configured to use, you cannot delete an IP interface. Be sure to delete all tunnels, circuits, and IP routes using an interface before deleting it.

4. To modify an IPIF IP address on a Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade, use the portCfg ipif modify command.

The following example shows creating an IP address and then modifying the MTU value for that address on a Brocade 7840 Switch. The VLAN value can also be modified. The netmask value cannot be modified.

```
switch:admin> portcfg ipif ge3.dp0 create 192.168.10.10/24 mtu 1320
   Operation Succeeded.
   switch:admin> portshow ipif
              IP Address
                                       / Pfx MTU VLAN Flags
    Port
    _____
                                                             _____
                                        / 24 1320 0
    ge3.dp0
              192.168.10.10
                                                        URM
    lan.dp0
                                        / 24 1500 0
              192.168.10.1
                                                        URM
    lan.dp1
              1000:17:10::107
                                       / 24 1500 0
                                                      URM
   _____
   Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse
         N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport
   switch:admin> portcfg ipif ge3.dp0 modify 192.168.10.10 mtu 1500
   !!!! WARNING !!!!
   Modify operation can disrupt the traffic on any tunnel using this IP address. This operation may bring the
    existing tunnel down (if tunnel is up) before applying new configuration.
   Note: This operation can take a long time depending on the size or complexity of the configuration. It may
    take up to 3 minutes in some cases.
   Continue with Modification (Y,y,N,n): [ n]
                                           У
   Operation Succeeded.
   switch:admin>
   switch:admin> portshow ipif
           IP Address
                                       / Pfx MTU VLAN Flags
    Port
    _____
                                                        _____
                                        / 24 1500 0
    ge3.dp0
              192.168.10.10
                                                        URM
    lan.dp0
             192.168.10.1
                                       / 24 1500 0
                                                        URM
                                        / 24 1500 0
    lan.dp1
              1000:17:10::107
                                                        URM
     _____
   Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse
         N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport
  If the IP address is a tunnel that is in use, the tunnel is brought down before the modifications are made. The tunnel is
  brought up after the modifications are applied.
5. Use the portshow ipif command to display IPIF information.
  The following example shows IPIF information for a specific slot and port.
```

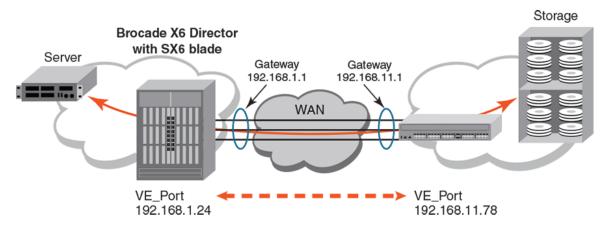
switch:admin> portshow ipif 11/ge17

Port	IP Address	/ Pfx	MTU	VLAN	Flags
11/ge17.dp0	192.168.10.10	/ 24	1500	0	U R M I

Configuring IP Route

Routing is based on the destination IP address that is presented by an extension circuit. If the destination address is not on the same subnet as the Ethernet port IP address, you must configure an IP route to that destination with an IP gateway on the same subnet as the local Ethernet port IP address.

When configuring IP routes, be aware of the following limitations:


- You can define up 128 routes per GbE port on a Brocade 7840 Switch or Brocade SX6 Blade and a maximum of 120 routes per DP.
- You can define up 120 routes per GbE port on a Brocade 7810 Switch.
- You can define up to 32 routes for each GbE port on the Brocade FX8-24 Blade.
- When you use the portCfg iproute command, it can display more routes than those you configured after all routes are added.

To configure a route, use the portCfg iproute create command to specify the destination IP address, subnet mask, and address for the gateway router that can route packets to the destination address.

Optionally, on the Brocade FX8-24 Blade, you can configure an IP route for a failover crossport using the -x or -- crossport option. For information on configuring IP routes using crossport addresses, see Configuring IP Routes with Crossports.

The following figure shows an IP route sample configuration. The Brocade X6 Director connects to the WAN through a gateway, as does the Brocade 7840 Switch. Notice that on each side of the WAN, the IP addresses for gateway and switch are in the same subnet.

Figure 18: Configuring an IP Route

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portCfg iproute create command to create a route on the Brocade X6 Director to the gateway.

The following command creates an IP route to destination network 192.168.11.0 for port ge0 on the SX6 blade in slot 8 of the director. The route is through local gateway 192.168.1.1. After the destination address, either specify a pfx (prefix length) or network mask.

switch:admin> portcfg iproute 8/ge0.dp0 create 192.168.11.0/24 192.168.1.1

Operation Succeeded

switch:admin> portshow iproute

3. Use the portCfg iproute create command to create a route on the Brocade 7840 Switch to the gateway on its side of the network.

The following command creates an IP route to destination network 192.168.1.0 for port ge2 on the Brocade 7840 Switch. The route is through local gateway 192.168.11.1. Because Ethernet ports are shared between DP complexes, the ge1.dp0 option directs the command to a specific DP.

switch:admin> portcfg iproute ge2.dp0 create 192.168.1.0/24 192.168.11.1
Operation Succeeded

4. Use the portshow iproute command to display the configured IP routes.

The following example shows IP routes on the Brocade 7840 Switch.

IP Address / Pfx Gateway Port Flags 192.168.1.0 / 24 192.168.11.1 ge2.dp0 UGS / 24 * 192.168.11.0 ge2.dp0 υC / 32 * ge2.dp0 192.168.11.1 UΗL _____ Flags: U=Usable G=Gateway H=Host C=Created(Interface)

S=Static L=LinkLayer X=Crossport

5. Use the portofg iproute modify command on the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade to modify the local gateway address of an IP route. You cannot use this command to modify the destination network address. If the destination network address needs to be modified, you must delete the IP route, and then recreate it. Also, you cannot use this command to change the prefix length or network mask.

The following example modifies the gateway IP address for an existing IP route on the Brocade 7840.

```
switch:admin> portcfg iproute ge2.dp0 modify 192.168.1.0/24 192.168.11.5
Operation Succeeded
```

Configuring VLANs

When a VLAN tag is created on a circuit, all traffic over that circuit uses the specified VLAN. When the layer 2 path for the IPIF is tagged in a VLAN, the extension circuit must be configured with the matching tag. This tagging ensures that all traffic using that circuit is sent with the appropriate VLAN tag and all incoming traffic for that circuit is checked to ensure that the correct tag is set.

The Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Extension Blade use the portcfg ipif command to include the VLAN tag information when the IPIF is created. To change the VLAN tag, you must first delete the IPIF then create it with the new values.

The Brocade FX8-24 Blade uses the portcfg vlantag command to add VLAN tag information to an interface IP address. You can also include the VLAN tag when you initially define the FCIP circuit on the Brocade FX8-24 Blade so that you need not perform the additional step of adding the tag after the circuit is defined. In addition, VLAN tags can be added to the XGE ports on a Brocade FX8-24 Blade when the blade is configured to use crossports. For more information, see Configuring VLAN Tags with Crossports.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. On the Brocade 7840 Switch, Brocade 7840 Switch, or Brocade SX6, use the portog ipif command to add VLAN tag information to an IPIF.

The following example creates an IPIF with VLAN 200.

switch:admin> portcfg ipif ge2.dp0 create 192.168.5.20/24 mtu 1650 vlan 200
Operation Succeeded

3. Use the portcfg ipif command to display the port information.

The following example shows VLAN 200. When the IPIF with VLAN 200 is used in a circuit, the destination IPIF must also use VLAN 200.

```
switch:admin> portshow ipif
```

Port	IP Address	/ Pfx	MTU	VLAN	Flags
ge2.dp0 ge2.dp0 ge2.dp1	192.168.5.2 192.168.5.20 192.168.5.12	/ 24	1500 1650 1500	200	URMI URM URMI

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

Verifying IP Connectivity

To verify that you have IP connectivity, use the portend --ping command to confirm that the source and destination IPIF addresses can communicate. You must have IP connectivity between the two circuit endpoints for them to talk to each other and bring up the circuit.

1. Use the portcmd --ping command to verify connectivity.

The following example shows a successful ping operation, which confirms network connectivity between the source and destination addresses.

```
switch:admin> portcmd --ping ge2.dp0 -s 192.168.5.2 -d 192.168.1.2
PING 192.168.1.2 (192.168.5.2) with 64 bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=1 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=1 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=1 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=1 ms
--- 192.168.1.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 714 ms
rtt min/avg/max = 1/1/1 ms
```

2. Use the portshow ipif command to display port information.

The following example shows port information on two different switches, Switch_A and Switch_B, which are connected back-to-back. You can see that Switch_A has VLAN 200 and Switch_B does not. The ping from Switch_A to Switch_B fails.

Switch A

Switch_A:admi	n> portshow ipif				
Port	IP Address	/ Pfx	MTU	VLAN	Flags
ge2.dp0	192.168.5.20	/ 24	1650	200	URM

Switch B

Switch_B:admin> portshow ipif					
Port	IP Address	/ Pfz	K MTU	VLAN	Flags
ge2.dp0	192.168.1.20	/ 24	1650	0	URM

Ping from Switch A to Switch B

Switch_A:admin> portcmd --ping ge2.dp0 -s 192.168.5.20 -d 192.168.1.20

PING 192.168.1.20 (192.168.5.20) with 64 bytes of data. From 192.168.1.20: icmp_seq=1 Request timed out From 192.168.1.20: icmp_seq=2 Request timed out From 192.168.1.20: icmp_seq=3 Request timed out From 192.168.1.20: icmp_seq=4 Request timed out --- 192.168.1.20 ping statistics ---4 packets transmitted, 0 received, 100% packet loss, time 12736 ms

Configuring a Service-Level Agreement

The primary purpose of a service-level agreement (SLA) is to provide automated testing of a circuit before it is placed into service. The SLA checks the circuit for packet loss percentage. If you need to verify the circuit for additional network performance, such as throughput, congestion, out-of-order delivery, use WAN Tool to run tests manually. See Using WAN Tool for information.

The SLA feature is supported on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade.

You must configure a matching SLA session at each end of the circuit being tested. The SLA session uses information from the circuit configuration to configure and establish the SLA connections. If the circuit configurations specify different transmission rates, the SLA negotiates and uses the lower configured rate. This allows the SLA to start even when circuit configurations have a minor mismatch. When the session is established, traffic starts automatically. For the duration of the test, the traffic must remain under the specified loss percentage before the circuit is placed into service. On a Brocade 7840 Switch or Brocade SX6 Blade, up to 20 SLA sessions can be defined per DP. On a Brocade 7810 Switch, a maximum of 12 sessions can be defined.

In addition to packet loss, the SLA can also test for timeout duration. If the timeout value is reached during the SLA session, the session is terminated and the circuit put into service. A timeout value of "none" means the test runs until the runtime and packet-loss values are met.

Interaction with an SLA while it is running is limited. You can view statistics and you can abort an active session. Any attempt to modify a session while it is active is blocked, which means the WAN Tool commands cannot be used while an SLA session is running.

Whenever a tunnel or circuit goes offline and comes back online, or when a circuit is administratively disabled then enabled, the SLA session is started and tests the link before allowing the circuit to go back into service. Configured SLA sessions are persistent across reboots, because circuit configurations are persistent across reboots and the SLA is part of the circuit configuration. However, user-configured WAN Tool sessions are not persistent.

You create an SLA session with the portcfg sla command. After configuring an SLA, you assign the SLA to a specific circuit with the portcfg fcipcircuit command.

NOTE

On the Brocade 7810 Switch, when you have SLA's enabled on a circuit configuration that maxes out the primary and secondary bandwidth limits (2.5Gb/s of metric 0 with 2.5Gb/s of metric 1), the total running throughput may exceed the 2.5Gb/s max of the platform. In this type of configuration, SLA use should be avoided or used with caution.

NOTE

During an eHCL reboot, the SLA is disabled and no new SLA sessions can be created until all eHCL operations are complete. After all eHCL operations are complete, the SLA is reenabled.

The following steps show how to configure, display, and abort SLA sessions. You can configure multiple SLAs.

1. Use the portcfg sla command to create an SLA session. You must create an SLA session at each end of the circuit, but the session names need not match.

switch:admin> portcfg sla networkA create --loss 0.5
switch:admin> portcfg sla networkB create --loss 1 --runtime 10 --timeout 30

The SLA named networkA is created with a packet-loss limit of 0.5 percent. It will run for the default 5 minutes and never timeout.

The SLA named networkB is created with a packet-loss limit of 1 percent. It will run for 10 minutes and timeout after 30 minutes.

2. Use the portofg fcipcircuit command to assign an SLA to a circuit. The following command modifies a circuit by assigning the SLA "networkA" to the circuit. Remember to configure the other end of the circuit with a matching SLA.

switch:admin> portcfg fcipcircuit 24 modify 0 --sla networkA

switch:admin> portshow fciptunnel -c

3. Use the portshow fcipctunnel -c command to display the status of tunnel and circuits and see whether the SLA session is actively testing the circuit.

Uptime TxMBps RxMBps ConnCnt CommRt Met/G Tunnel Circuit OpStatus Flags _____ Degrad -----I 1m36s 0.00 0.00 1 24 --/-0 ge2 Test -S-ah--4 0s 0.00 0.00 0 5000/10000 0/-24 ---ah--4 1m36s 0.00 0.00 1 5000/10000 0/-24 1 ge3 Up _____ Flags (tunnel): c=Control h=HighPri m=MedPri l=LowPri I=IP-Extension i=IPSec f=Fastwrite T=TapePipelining F=FICON r=ReservedBW a=FastDeflate d=Deflate D=AggrDeflate (circuit): h=HA-Configured v=VLAN-Tagged p=PMTU i=IPSec 4=IPv4 6=IPv6

ARL a=Auto r=Reset s=StepDown t=TimedStepDown S=SLA-Configured

The sample output assumes that both ends of the circuit are configured with matching SLAs, where packet loss, runtime, and timeout values are the same. Any difference in transmit speed between the endpoints will be negotiated to the lower value. The output shows tunnel 24, circuit 0 is under active test and has an SLA configured.

4. Use the portcmd --wtool show --detail command to display details about active WAN Tool sessions. SLA invokes WAN Tool to run its tests, so the active SLA session are displayed.

Switch, admin policina webbi bhow actail				
WTool Session: 24.0 (DE	20)			
Admin / Oper State	:	Enabled / Running		
Up Time	:	10s		
Run Time	:	9s		
Time Out	:	3m50s		
Time Remaining	:	1m51s		
IP Addr (L/R)	:	213.70.2.10 ge2 <-> 213.70.2.20		
IP-Sec Policy	:	(none)		
PMTU Discovery (MTU)	:	disabled (1500)		
Bi-Directional	:	disabled		
L2CoS / DSCP	:	(none) / (none)		
Configured Comm Rate	:	1000000 kbps		
Peer Comm Rate	:	1000000 kbps		
Actual Comm Rate	:	1000000 kbps		
Tx rate	:	999624.45 Kbps (124.95 MB/s)		
Rx rate	:	1000000.00 Kbps (125.00 MB/s)		
Tx Utilization	:	99.96%		
Rx Utilization	:	100.00%		
RTT (Min/Max)	:	1 ms/1 ms		
RTT VAR (Min/Max)	:	1 ms/1 ms		
Local Session Statistics				
Tx pkts	:	810024		
Peer Session Statistic	s			
Rx pkts	:	792029		
Ooo pkts	:	0		
Drop pkts	:	0 (0.00%)		

switch:admin> portcmd --wtool show --detail

When the SLA sessions complete their run, additional information is displayed in the portcmd --wtool show -detail command that shows when the session either completed or was stopped, and the completion reason. Partial command output provides an example showing the session was aborted.

5. Use the portcmd --wtool show --sla command to display summary information about active SLA sessions. The main advantage of the summary display is to see the amount of time remaining for each session.

	1						
Session	OperSt	TxMBps	RxMBps	Drop%	RunTime	TimeOut	TimeRemaining
24.0	Running	6.22	6.25	0.00	5s	3m55s	1m56s
24.1	Running	6.26	6.25	0.00	5s	19m55s	1m56s
24.2	Running	6.22	6.25	0.00	4s	19m56s	1m57s
24.3	Running	6.20	6.23	0.00	3s	19m57s	1m58s
25.0	Running	12.52	12.45	0.00	3s	19m57s	3m58s
25.1	Running	12.50	12.50	0.00	4s	19m56s	3m57s
25.2	Running	12.47	12.51	0.00	4s	19m56s	3m57s

6. Use the portcmd --wtool <session> stop command to abort an SLA session. The session ID information is obtained from the portcmd --wtool show command. The portcmd --wtool show --detail command to display session details and the completion reason.

switch:admin> portcmd --wtool show

switch:admin> portcmd --wtool show --sla

	-	-		RemoteIp	-	RxMBps D	-
				177.195.2.2			
24.1	Runnin	g6S-	- 2002:176:19	6:dead::2			
				2002:177:195:dead::	2 12.48	12.50	0.00
24.2	Runnin	g4S-	- 176.196.3.2	177.195.3.2	12.51	12.50	0.00
24.3	Runnin	g6S-	- 2003:176:19	6:dead::2			
				2003:177:195:dead::	2 12.52	12.50	0.00
24.4	Runnin	g4S-	- 176.196.4.3	177.195.4.3	12.47	12.50	0.00
24.5	Runnin	g6S-	- 2004:176:19	6:dead::3			
				2004:177:195:dead::	3 12.52	12.49	0.00
24.6	Runnin	g4S-	- 176.196.5.3	177.195.5.3	12.51	12.50	0.00
24.7	Runnin	g6S-	- 2005:176:19	6:dead::3			
				2005:177:195:dead::	3 12.50	12.49	0.00
24.8	Runnin	g4S-	- 176.196.5.4	177.195.5.4	12.52	12.49	0.00
24.9	Runnin	g6S-	- 2005:176:19	6:dead::4			
				2005:177:195:dead::	4 12.51	12.50	0.00

Flags (wtool): S=SLA v=VLAN i=IPsec 4=IPv4 6=IPv6 L=Listener I=Initiator

Alternatively, you can display the individual TCP Lite connections under each session with the following command.

Here, 24.0 is a 1G AWT session that consists of 2 .5G connections.

switch:admin> portcmd --wtool show -c

 Session OperSt
 LocalIp/lPort
 RemoteIp/dPort
 TxMBps
 RxMEps
 Drop%

 15
 Running 10.10.10.76/3225
 10.10.10.77/62722
 62.50
 62.50
 0.00

 15
 Running 10.10.10.76/3226
 10.10.10.77/64673
 62.47
 62.50
 0.00

 15
 Running 10.10.10.76/3226
 10.10.10.77/64676
 62.50
 62.50
 0.00

 15
 Running 10.10.10.76/3226
 10.10.10.77/64676
 62.50
 62.50
 0.00

 15
 Running 10.10.10.76/3225
 10.10.10.77/62716
 62.46
 62.50
 0.00

The WAN Tool session 24.0 is aborted.

7. Use the portcmd --wtool stop-all command to abort all running SLA sessions. switch:admin> portcmd --wtool stop -all

Configuring IPsec

IPsec is enabled on the tunnel level, not on the circuit level. This means that all circuits in a tunnel use the same IPsec settings. Different tunnels can have different IPsec settings. IPsec uses the Internet Key Exchange (IKE) to set up the security association. The key exchange can be through a pre-shared key (PSK) or through public key infrastructure (PKI).

When you use a PSK, both ends of the secure tunnel must be configured with the same key string. If both ends are not configured with the same key, the IKE session does not come up and prevents the extension tunnel from coming up.

The PSK requirements are as follows:

- For the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade, the pre-shared key must be a 16-character to 64-character string.
- For the Brocade FX8-24 Blade, the pre-shared key must be a 32-character string.

The PKI requirements are as follows:

- ECDSA certificates are supported only on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade.
- Non-ECDSA certificates are not supported.
- PKI support is restricted to key-size P384 and hash-type SHA384.
- X.509 certificates are supported.
- Before downgrading from Fabric OS 8.2.x release, you must remove all imported certificates.

NOTE

For information on configuring and managing certificates using the secCertMgmt command, refer to "SSL configuration overview" in the *Brocade Fabric OS Administration Guide*.

When running IPsec, both sides of the extension tunnel must be running the same Fabric OS version.

NOTE

Creating and using IPsec policies is recommended for the security of the data that is transmitted over the network.

On the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade, you first define an IPsec policy though you can define multiple IPsec policies. The IPsec policy is enabled on that tunnel when configured. For information on how to configure a tunnel with IPsec policy, see Configuring IPsec on the 7840 and SX6.

With the Brocade 7840 Switch and the Brocade SX6 Blade, IPsec infers the FPGA type and sets the max number of available SAs at 1024. (As IPsec does not have direct access to the PCI bus to determine the FPGA type, IPsec uses the board type to infer the FPGA type.) However, on the Brocade 7810 Switch, we provide a maximum of 256 SAs.

NOTE

IKE requires four SAs per session and the Brocade 7810 Switch provides a maximum of 48 IKE sessions. So, IKE requires no more than 192 concurrent SAs for data traffic, leaving 64 SAs available for re-keying.

On the Brocade FX8-24 Blade, the IPsec policy is defined and enabled when you create or modify a tunnel on the blade. For information on how to configure IPsec on a Brocade FX8-24 Blade, see Configuring IPsec on the FX8-24.

Configuring IPsec on the Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade

Before enabling IPsec on a tunnel on the Brocade 7810 Switch, Brocade 7840 Switch, or Brocade SX6 Blade, you must first define an IPsec policy. You can define multiple policies, but only one policy can be applied to each tunnel. All circuits in that tunnel use the same IPsec policy.

Beginning with Fabric OS 8.2.x, you can modify an IPsec policy while the policy is still assigned to a tunnel or WAN Tool session. You must provide a new profile and new authentication data. If you are modifying only the authentication data, you need only provide the authentication data. In some instances, the local side and remote side can get out of sync and indicate an authentication error. See IPsec IKE Authentication Failures for information on how to restart IKE authentication.

When you use the pre-shared key (PSK), the IPsec policy must be configured with the same PSK on each end of the tunnel. The policy name can be different at each end, but the key must be the same.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portofg ipsec-policy create command to define a policy. The pre-shared key must be 16 to 64 characters long.

The following example creates an IPsec policy that has the name "myPolicy1". The pre-shared key is 16 characters long.

switch:admin> portcfg ipsec-policy myPolicy1 create -k "123ashorttestkey"
Operation Succeeded.

3. After you create the IPsec policy, you can use it when you configure the tunnel. Use the portcfg fciptunnel modify command to enable a policy on a tunnel.

NOTE

This command is disruptive when an existing tunnel with active circuits is modified.

The following example uses the portcfg fciptunnel modify command to enable the policy "myPolicy1" for an existing tunnel on a Brocade 7840 Switch. Remember to enable IPsec on each end of the tunnel.

```
switch:admin> portcfg fciptunnel 24 modify --ipsec myPolicy1
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [ n]y
```

Operation Succeeded

4. Use the portshow ipsec-policy command to display the available IPsec policies.

The following example displays the IPsec policy name and policy key. You must use the --password option to display the key, otherwise it is represented as a string of asterisks.

Flags: *=Name Truncated. Use "portshow ipsec-policy -d for details".

The following example displays IKE information on a tunnel with IPsec enabled. Notice that the --password option is not used.

switch:admin> portshow ipsec-policy --ike

IPSec Policy Authentication data IKE-ID Oper Flg Local-Addr Remote-Addr IKE Rekey ESP Rekey _____ * * * * * * * * * * * * * * * * myPolicy1 192.168.5.2 5h59m51s 0 dp0.0 UP I 192.168.1.2 3h20m10s 0 dp0.1 UP R 192.168.1.2 192.168.5.12 - -_ _ dp1.0 UP R 192.168.1.12 192.168.5.2 -_ _____

Flags: *=Name Truncated. Use "portshow ipsec-policy -d for details".I=Initiator R=Responder

The following example displays additional detail information on a tunnel with IPsec enabled.

```
switch:admin> portshow ipsec-policy -d
IPSec-policy: myPolicy1
_____
                    * * * * * * * * * * * * * * * *
 Preshared-Key:
 Profile:
                   preshared
                 SHARED_KEY
 Authentication:
 Encryption:
                   AES 256 GCM
 Integrity:
                   NONE
 Diffie Hellman:
                  MODP 2048
 Pseudo Random Function: HMAC 512
 Num IKE Sessions:
                    3
```

5. To disable an IPsec policy on a tunnel, use the portcfg fciptunnel modify command.

The following example disables the IPsec policy on tunnel 24.

```
switch:admin> portcfg fciptunnel 24 modify --ipsec none
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [ n] y
Operation Succeeded
```

6. To delete an IPsec policy, use the portofg ipsec-policy delete command.

The following example deletes the IPsec policy, "myPolicy1". You cannot delete a policy that is in use.

```
switch:admin> portcfg ipsec-policy myPolicy1 delete
Operation Succeeded
```

7. To create an IPsec policy using public key infrastructure (PKI), use the portofg ipsec-policy policy1 create --profile pki command. You must previously obtain a CA certificate.

The following example creates a PKI policy.

```
switch:admin> portcfg ipsec-policy policy1 create --profile pki --key-pair sb127_kp
Operation Succeeded
```

8. Use the portshow ipsec-policy --detail command to display details.

```
switch:admin> portshow ipsec-policy --detail
```

IPSec-policy: policy1

Profile:	PKI
Encryption:	AES-256-CBC
Pseudo-Random:	PRF-HMAC-384
Integrity:	HMAC-SHA-384-192
Diffie-Hellman:	ECDH-P384
Authentication:	ECDSA-P384
Key-Pair:	sb127_kp
Certificate:	sb127_cert.pem
Certificate Hash:	aff6fealb19d81ea43aa72f4275a9cf550edadc0
Num IKE Session:	0

The following example shows IPsec with active IKE sessions. The summary info for the IKE data will include the remote certificate requested and an indicator if the hash matches or not.

```
switch:admin> portshow ipsec-policy -i
IPSec Policy
           Authentication data
IKE-ID Oper Flg Local-Addr Remote-Addr
                               IKE Rekey ESP Rekey
_____
           Loc Cert: ven60.pem
ec pol2
                               Hash: Matched
 dp0.0 UP R 79.196.8.10 78.195.8.10
                               - -
           Rem Cert: sb65.pem
                                Hash: Matched
                               -
 dp0.1 UP R 79.196.8.10 78.195.8.11
                                      _
           Rem Cert: sb125.pem
                               Hash: Matched
_____
Flags: *=Name Truncated. Use "portshow ipsec-policy -d for details".
   I=Initiator R=Responder
```

switch:admin>

9. To modify a PSK-to-PSK policy, only the pre-shared key must be modified.

```
switch:admin> portcfg ipsec-policy pskl modify --preshared-key asdf1234asdf1234
!!!! WARNING !!!!
Modify operation can disrupt the traffic on any tunnel using this IPSec policy. This operation may bring
the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [ n] y
Operation Succeeded
switch:admin>
```

10. To modify a PSK-to-PKI policy, you must modify the profile and the authentication data. Both actions must occur at the same time.

```
switch:admin> portcfg ipsec-policy policy1 modify --profile pki --keypair sb65kp1
!!!! WARNING !!!!
Modify operation can disrupt the traffic on any tunnel using this IPSec policy. This operation may bring
the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [ n] y
Operation Succeeded
```

11. To modify a PKI-to-PSK policy, you must modify the profile and the authentication data. Both actions must occur at the same time.

switch:admin> portcfg ipsec-policy policy1 modify --profile preshared --preshared-key asdf1234asdf1234

!!!! WARNING !!!!
Modify operation can disrupt the traffic on any tunnel using this IPSec policy. This operation may bring
the existing tunnel down (if tunnel is up) before applying new configuration.

```
Continue with Modification (Y,y,N,n): [ n] y
Operation Succeeded
switch:admin>
```

12. To modify a PKI-to-PKI policy, only the authentication data must be modified.

```
switch:admin> portcfg ipsec-policy policy1 modify --keypair sb65kp2
!!!! WARNING !!!!
Modify operation can disrupt the traffic on any tunnel using this IPSec policy. This operation may bring
the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [ n] y
Operation Succeeded
switch:admin>
```

IPsec IKE Authentication Failures

On the Brocade 7810 Switch, the Brocade 7840 Switch, or Brocade SX6 Blade, an IKE authentication error can require user intervention to correct. This error occurs if there is an IKE session parameter mismatch. When such an error occurs, the IKE session is put into a faulty state and remains there until manually corrected thereby preventing an intruder from using multiple attempts to authenticate. For example, if the preshared-key is incorrect during the initial IKE authentication exchange, it will trigger an authentication error and display an RASlog XTUN-2012 message. Refer to the *Brocade Fabric OS Message Reference Manual* for details. The IKE Operational Status is listed as FAULT on the output of the portshow ipsec-policy --ike command.

To recover from an IKE authentication error, you must restart the IKE authentication exchange. Prior to Fabric OS 8.1.x, to restart the IKE authentication, you removed IPsec from the tunnel and add it back in. If a policy is in use, you must first disable it. Beginning with Fabric OS 8.1.x, you could restart the IKE authentication with the portcfg ipsec-policy restart command and name the IPsec policy that you want to restart.

1. Connect to the switch and log in using an account assigned to the admin role.

Prior to Fabric OS 8.1.x, follow these steps.

2. To disable an IPsec policy on a tunnel, use the portcfg modify command.

The following example disables the IPsec policy on tunnel 24.

```
admin> portcfg fciptunnel 24 modify --ipsec none
```

```
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
  operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
```

```
Continue with Modification (Y,y,N,n): [n] y Operation Succeeded
```

3. To delete an IPsec policy, use the portcfg ipsec-policy delete command.

The following example deletes the IPsec policy, "myPolicy1". You cannot delete a policy that is in use.

```
switch:admin> portcfg ipsec-policy myPolicy1 delete
Operation Succeeded
```

4. Use the portofg ipsec-policy command to define a policy. The pre-shared key must be 16 to 64 characters long. After you define the policy, enable it on the tunnel.

Beginning with Fabric OS 8.1.x, follow these steps.

- 5. Connect to the switch and log in using an account assigned to the admin role.
- You can restart IKE sessions under a policy that are in an inactive state. This is useful when an authentication error occurs on an IKE session in FIPS mode and you want to restart the session without creating and enabling duplicate policies on a tunnel.

The following commands show an IKE session that is in FAULT state and restarting the IKE session for a specific IPsec policy.

```
switch:admin> portshow ipsec-policy -i
```

IPSec Po	olicy		Authentication	i uata				
	-	-		Remote-Addr	=			У
			asdf12345678as					
dp0.0	FAULI	I I	192.168.4.20	192.168.4.10	49710d6h	0	0s	0
dp0.2	FAULI	I I	192.168.4.20	192.168.4.11	49710d6h	0	0s	0
dp0.1	FAULI	I I	192.168.5.20	192.168.5.10	49710d6h	0	0s	0
dp0.3	FAULI	I I	192.168.5.20	192.168.5.11	49710d6h	0	0s	0
dp1.0	FAULI	! I	192.168.4.21	192.168.4.10	49710d6h	0	0s	0
dp1.1	FAULI	! I	192.168.5.21	192.168.5.10	49710d6h	0	0s	0
witch:ad	=Name] dmin> p	orte	ated. Use "port fg ipsec-policy	show ipsec-polic y poll restart	y -d for de	tail	s".I=Initi	ator
lags: *= witch:ac peration witch:ac	=Name] dmin> p n Succe dmin> p	oortc: eded oortsl		y poll restart cy −i	y -d for de	tail	s".I=Initi	ator
ags: *= witch:ac peration witch:ac PSec Po KE-ID	=Name] dmin> p n Succe dmin> p olicy Oper	oortc: eeded oorts) Flg	fg ipsec-policy now ipsec-polic Authenticatior Local-Addr	y poll restart cy -i n data Remote-Addr	IKE Rekey			
lags: *= witch:ac peration witch:ac IPSec Po IKE-ID	=Name] dmin> p n Succe dmin> p olicy Oper	oortc: eded oorts Flg	fg ipsec-policy now ipsec-polic Authenticatior Local-Addr	y poll restart cy -i n data Remote-Addr	IKE Rekey			
lags: *= witch:ac peration witch:ac IPSec Po IKE-ID poll	=Name 1 dmin> p n Succe dmin> p olicy Oper	oortc: eeded oorts) Flg	fg ipsec-policy now ipsec-polic Authenticatior Local-Addr asdf12345678as	y poll restart cy -i n data Remote-Addr	IKE Rekey		ESP Reke	.У
lags: *= witch:ac peration witch:ac IPSec Po IKE-ID pol1 dp0.0	=Name 1 dmin> p n Succe dmin> p olicy Oper UP F	oortc: eeded oorts Flg	fg ipsec-policy now ipsec-polic Authenticatior Local-Addr asdf12345678as 192.168.4.20	7 poll restart 29 -i n data Remote-Addr 30df	IKE Rekey 		ESP Reke	:У
ags: *= vitch:ac vitch:ac PSec Po IKE-ID ooll dp0.0 dp0.1	=Name 1 dmin> p h Succe dmin> p blicy Oper UP F UP F	oortc: eded oorts Flg	fg ipsec-policy now ipsec-polic Authenticatior Local-Addr asdf12345678as 192.168.4.20 192.168.4.20	y poll restart by -i n data Remote-Addr sdf 192.168.4.10	IKE Rekey 	 -	ESP Reke 	У
<pre>lags: *= vitch:ac peration vitch:ac IPSec Po IKE-ID Ooll dp0.0 dp0.1 dp0.2</pre>	=Name 1 dmin> p n Succe dmin> p olicy Oper Oper UP F UP F UP F	oortc: eeded oorts Flg	fg ipsec-policy now ipsec-polic Authentication Local-Addr asdf12345678as 192.168.4.20 192.168.4.20 192.168.5.20	y poll restart y -i h data Remote-Addr df 192.168.4.10 192.168.4.11	IKE Rekey - - -	- 	ESP Reke 	:У - -
<pre>lags: *= vitch:ac peration vitch:ac IPSec Po IKE-ID ool1 dp0.0 dp0.1 dp0.2 dp0.3</pre>	=Name 1 dmin> p n Succe dmin> p olicy Oper Oper UP F UP F UP F UP F	Flg	fg ipsec-policy how ipsec-polic Authentication Local-Addr asdf12345678as 192.168.4.20 192.168.4.20 192.168.5.20 192.168.5.20	y poll restart y -i h data Remote-Addr odf 192.168.4.10 192.168.4.11 192.168.5.10	IKE Rekey - - - -	- - - -	ESP Reke - - - -	У - - -

Flags: *=Name Truncated. Use "portshow ipsec-policy -d for details".I=Initiator R=Responder

Configuring IPsec on the Brocade FX8-24 Blade

On the Brocade FX8-24 Blade, you use the portcfg fciptunnel command to define and enable the IPsec policy on a tunnel. The pre-shared key must be a 32 characters string.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use the --ipsec option of the portcfg fciptunnel create and portcfg fciptunnel modify commands to define a policy.

The following examples are for the Brocade FX8-24 Blade. They show IPsec and IKE keys that are enabled for traffic from VE_Ports 2/12 and 2/13 across multiple circuits.

```
portcfg fciptunnel 2/12 create --remote-ip 192.168.0.90 --local-ip 192.168.0.80 -b 50000 -B 50000 \
-x 0 -d c0 -i -K12345678901234567890123456789012
portcfg fcipcircuit 2/12 create 1 --remote-ip 192.168.1.90 --local-ip 192.168.1.80 -b 50000 -B 50000 -x 0
portcfg fcipcircuit 2/12 create 2 --remote-ip 192.168.2.90 --local-ip 192.168.2.80 -b 50000 -B 50000 -x 0
portcfg fcipcircuit 2/12 create 3 --remote-ip 192.168.3.90 --local-ip 192.168.3.80 -b 50000 -B 50000 -x 0
portcfg fcipcircuit 2/12 create 4 --remote-ip 192.168.4.90 --local-ip 192.168.4.80 -b 50000 -B 50000 -x 0
portcfg fcipcircuit 2/12 create 4 --remote-ip 192.168.5.90 --local-ip 192.168.5.80 -b 50000 -B 50000 -x 0
```

```
portcfg fciptunnel 2/13 create --remote-ip 192.168.0.91 --local-ip 192.168.0.81 -b 50000 -B 50000 -x 0 -d
\
c0 -I -K12345678901234567890123456789012 -1
portcfg fcipcircuit 2/13 create 1 --remote-ip 192.168.1.91 --local-ip 192.168.1.81 -b 50000 -B 50000 -x 0
portcfg fcipcircuit 2/13 create 2 --remote-ip 192.168.2.91 --local-ip 192.168.2.81 -b 50000 -B 50000 -x 0
portcfg fcipcircuit 2/13 create 3 --remote-ip 192.168.3.91 --local-ip 192.168.3.81 -b 50000 -B 50000 -x 0
portcfg fcipcircuit 2/13 create 4 --remote-ip 192.168.4.91 --local-ip 192.168.4.81 -b 50000 -B 50000 -x 0
portcfg fcipcircuit 2/13 create 5 --remote-ip 192.168.5.91 --local-ip 192.168.5.81 -b 50000 -B 50000 -x 0
```

The -1 (legacy) option specifies to use the IPsec connection process compatible with Fabric OS releases prior to FOS 7.0.x. Note that the -1 option is a disruptive request that causes the tunnel to bounce.

Brocade FX8-24 Blade Authentication Tag Error Monitor

With the option --auth-error-monitor enable disable of the extnCfg command you can set the automatic recovery mode of the IPsec Authentication Error Monitor for all Brocade FX8-24 Blades in the chassis. The mode is disabled by default.

```
switch:admin> extncfg --help
Usage: extncfg <action> [options]
action:
  --ve-mode 10VE|20VE
                                     - Set VE-Mode to 10VE or 20VE mode.
                                       (7840 / SX6 only)
                                     - Set GE-Mode to copper or optical.
  --ge-mode copper|optical
                                       (7810 only)
                                    - Set APP-Mode to FCIP or HYBRID (FCIP
  --app-mode fcip|hybrid
                                       with IPEXT - 7840 / SX6 only).
  --slot <#>
                                     - Specify slot number for operation.
  --show [-slot <#>|-all]
                                     - Display APP/VE/GE mode details.
  --config -default [-slot <#>|-all] - Default the Extension configuration.
  --config -clear [-slot <#>|-all]
                                   - clear the Extension configuration.
  --fwdl-prep [-version #.#.#] [-abort] - Prepare the switch for firmware
                                      download to the target version.
  --auth-error-monitor enable | disable - Enable/Disable the IPSec Auth
                                       error monitor for FX8-24 blades.
  -h,--help
                                     - Print this usage statement.
switch:admin> extncfg --show
IPSec Auth-Error Reset Detection: Disabled
switch:admin> extncfg --auth-error-monitor enable
Operation succeeded.
switch:admin> extncfg --show
IPSec Auth-Error Reset Detection: Enabled
switch:admin>
```

If the mode monitor mode is enabled and the authentication error threshold is exceeded, the slot automatically resets to recover from the failure condition.

The IPsec Authentication Error Threshold Monitor is associated with two RASLOGs, which are generated whenever the authentication error monitor detects an error. The RASLOGs differ based on whether the recovery mode is enabled or disabled.

- When the authentication error monitor is disabled, you observe the following message: IPS-2000: IPSec authentication error threshold exceeded for slot %d
- When the authentication error monitor is enabled, you observe the following message: IPS-2001: IPSec authentication error threshold exceeded for slot %d Resetting blade

Configuring Extension Tunnels for FCIP

Before you begin configuring tunnels, make sure that you have configured the following parameters:

- Platform modes
 - FCIP only (Brocade 7840 Switch and Brocade SX6 Blade) or Hybrid mode (Brocade 7840 Switch and Brocade SX6 Blade)

NOTE

The Brocade 7810 Switch is always in Hybrid mode; there is no configuration to change.

- VE mode (Brocade 7480 Switch and Brocade SX6 Blade)
- GE mode (Brocade 7810 Switch)
- GbE mode (Brocade FX8-24 Blade)
- VEX_Ports (Brocade FX8-24 Blade)
- Port speed
- IP information
 - IP interfaces (IPIFs)
 - IP routes
 - VLAN
- Service-level agreement (SLA)
- IPsec policies (Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade)

In addition, you must verify IP connectivity before configuring a tunnel. Otherwise, the tunnel does not come up.

NOTE

A Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade can connect with one-another through an extension tunnel but they cannot connect to a Brocade FX8-24 Blade.

When you configure a tunnel, you must configure the local side and the remote side before it comes up. A tunnel consists of one or more circuits. When you first configure a tunnel, it contains a circuit that is identified as circuit 0. You can then configure additional circuits for that tunnel.

Tunnels exist between endpoints. Each endpoint is identified by its IPIF address. Tunnels are established through the VE_Ports on the switch or blade. For example, when you configure tunnel 24 on the local side (the Brocade 7840 Switch), that tunnel is established through VE_Port 24. The tunnel configuration identifies the local and remote IPIFs. On the remote side, the local and remote IPIF addresses for that tunnel are flipped. The remote side can have a different VE_Port for the end of the tunnel. For example, on a Brocade SX6 Blade, tunnel 11/16 is established on VE_Port 16 in chassis slot 11.

To help you stage a configuration without committing specific circuit parameters, you first configure the tunnel with appropriate tunnel parameters only (no IP addresses or circuit options) using <code>portcfg fciptunnel</code> command. Then, configure circuit 0 and additional circuits using <code>portcfg fcipcircuit</code> commands.

Configuring VE_Ports to Persistently Disable

NOTE

Disabling the VE_Port is not required.

Persistently disable the VE_Port before you begin configuring the tunnel on the VE_Port. By default, the VE_Port is persistently enabled. You manually change the state of the VE_Ports from persistently enabled to persistently disabled.

Do this while tunnel configuration is in progress to prevent unwanted fabric merges from occurring until the tunnel is fully configured. After the tunnels have been fully configured on both ends of the tunnel, you must persistently enable the ports.

Persistently disabled ports remain disabled across power cycles, switch reboots, and switch enables.

NOTE

If you enter the portCfgpersistentdisable command and receive "command not allowed in fmsmode" or "command not found" messages, FICON Management Server (FMS) mode may be enabled. You cannot use the portcfgpersistentdisable or portcfgpersistentenable commands with FMS mode enabled. Use the portdisable and portenable commands instead.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portcfgpersistentdisable command to disable any VE_Ports that you will use in the tunnel configuration.

This example disables VE_Port 24.

```
switch:admin> portcfgpersistentdisable 24
switch:admin>
```

There is no additional response or confirmation after entering the command.

3. Use the portshow command to show the status of a port.

This example shows the status of VE_Port 24. You can see the status of persistent disable in the output. (The "<<<<" is not part of the actual output.)

```
switch:admin> portshow 24
portIndex: 24
portName: port24
portHealth: Not Monitored
Authentication: None
portDisableReason: Persistently disabled port
                                                    <<<<<
portCFlags: 0x0
                       PRESENT VIRTUAL U PORT DISABLED LED
portFlags: 0x4021
LocalSwcFlags: 0x0
portType: 12.0
portState: Persistently Disabled
                                                    <<<<<
Protocol: FC
                     portScn: 2
portPhys: 255 N/A
                                     Offline
port generation number:
                        2.4
state transition count:
                          2.0
portId: 0b1800
portIfId: 43020817
portWwn: 20:18:50:eb:1a:13:ad:16
portWwn of device(s) connected:
Distance: normal
Port part of other ADs: No
```

4. When FMS mode is enabled for FICON, use the following steps to disable a port.

a) Use the ficoncupshow command to show the FMS mode. The following example shows that FMS mode is enabled. switch:admin> ficoncupshow fmsmode

FMS 001(I) - FMSMODE for the switch: Enabled

b) Use the portdisable command to disable a port when FMS mode is enabled.

This example disables port 24, a VE_Port in a Brocade 7840 Switch.

```
switch:admin> portdisable 24
switch:admin>
```

There is no additional response or confirmation after entering the command.

5. Use the portshow command to show the port status.

The following example shows that the port is offline and disabled. (The "<<<<" is not part of the actual output.)

```
switch:admin> portshow 24
portIndex: 24
portName: port24
portHealth: Not Monitored
Authentication: None
portDisableReason: None
portCFlags: 0x0
portFlags: 0x4021 PRESENT VIRTUAL U PORT DISABLED LED
LocalSwcFlags: 0x0
portType: 12.0
portState: 2 Offline
                                     <<<<<
Protocol: FC
portPhys: 255 N/A portScn: 2 Offline
port generation number: 26
state transition count:
                         22
portId: 0b1800
portIfId: 43020817
portWwn: 20:18:50:eb:1a:13:ad:16
portWwn of device(s) connected:
```

Configuring Tunnels

Before configuring tunnels, make sure the following are in place:

- IPIFs is configured for the local switch and remote switch endpoints of the tunnel and each of its circuits.
- IP routes are configured, which is required when the endpoint is on different subnets.
- VLANs are configured (optional).
- IPsec policies are configured (optional but recommended).
- IP connectivity is verified.

The Brocade 7840 Switch and the Brocade SX6 Blade support a maximum of 20 tunnels; the Brocade 7810 Switch supports a maximum of 4 tunnels.

The following table shows the platforms supported in Fabric OS 8.2.1 that you can connect with tunnels. For example, you can create a tunnel between two Brocade FX8-24 Blades, but not between a Brocade FX8-24 Blade and a Brocade SX6 Blade.

Table 30: Extension Tunnel Connections

	Brocade 7840	Brocade 7810	Brocade SX6	Brocade FX8-24
Brocade 7840	Yes	Yes	Yes	No
Brocade 7810	Yes	Yes	Yes	No
Brocade SX6	Yes	Yes	Yes	No
Brocade FX8-24	No	No	No	Yes

Tunnels are created between the VE_Ports of a switch or blade. You use the IPIFs on each switch to identify the local and the remote endpoints of the tunnel. You configure each side of the tunnel so that the endpoints point to one another.

When a tunnel is created with the portcfg fciptunnel create command and you specify the local IP and remote IP address endpoints, it contains one circuit, which is circuit 0. To add additional circuits to the tunnel, use the portcfg fcipcircuit command. You can create a tunnel with no circuits, but no traffic passes.

NOTE

Any options that you specify when you create a tunnel must match at each end. The VE_Port can be different.

Refer to the *Brocade Fabric OS Command Reference Manual* for additional information on the options available with the portcfg fciptunnel command.

- 1. Connect to the local switch and log in using an account that is assigned to the admin role.
- 2. Use the portcfg fciptunnel create command to create a tunnel on the local and remote switch.
 - a) Create the local tunnel.

The following example creates a tunnel (and circuit) on the local Brocade 7840 Switch.

Local_switch:admin> portcfg fciptunnel 24 create --local-ip 192.168.5.2 --remote-ip 192.168.1.2 -b 5000000 -B 5000000 -k 1000

b) Create the remote tunnel.

The following example creates a tunnel (and circuit) on the remote Brocade 7840 Switch.

```
Remote_switch:admin> portcfg fciptunnel 24 create --local-ip 192.168.1.2 --remote-ip 192.168.5.2 -b 5000000 -B 5000000 -k 1000
```

Notice that the local IP and remote IP on each switch point to one other.

3. Use the portshow fciptunnel -c command to display the tunnel and circuit information.

The following example displays the tunnel and circuit information on the local switch. OpStatus shows **Up**, which indicates that both sides of the tunnel are configured correctly.

Local_switch:admin> portshow fciptunnel -c				
Tunnel Circuit	OpStatus Flags	Uptime TxMBps	RxMBps ConnCnt CommRt Met/G	
24 - 24 0 ge2	Upah4	18h3m 0.0 18h3m 0.0	0 0.00 5 0 0.00 5 5000/5000 0/-	
Flags (tunnel):	: i=IPSec f=Fastwrit a=FastDeflate d=De I=IP-Ext	1 1	ing F=FICON r=ReservedBW late P=Protocol	

(circuit): h=HA-Configured v=VLAN-Tagged p=PMTU i=IPSec 4=IPv4 6=IPv6 ARL a=Auto r=Reset s=StepDown t=TimedStepDown S=SLA

Tunnel 24 contains one circuit, circuit 0.

4. Use the portshow fcipcircuit command to display the circuit information for a specific tunnel.

The following example shows the circuit information for tunnel 24 on the local switch.

```
Local switch:admin> portshow fcipcircuit 24
Circuit 24.0 (DPO)
 _____
 Admin/Oper State : Enabled / Online
                    : 0x0000000
 Flags
 IP Addr (L/R) : 192.168.5.2 ge2 <-> 192.168.1.2
HA IP Addr (L/R) : 192.168.5.12 ge2 <-> 192.168.1.12
 Configured Comm Rates: 5000000 / 5000000 kbps
 Peer Comm Rates : 5000000 / 5000000 kbps
 Actual Comm Rates : 5000000 / 5000000 kbps
 Keepalive (Cfg/Peer) : 6000 (6000 / 6000) ms
                    : 0
 Metric
 Connection Type
                    : Default
 ARL-Type
                    : Auto
 PMTU
                    : Disabled
 SLA
                    : (none)
 Failover Group : 0
VLAN-ID : NONE
 L2Cos (FC:h/m/l) : 0 / 0 / 0 (Ctrl:0)
 L2Cos (IP:h/m/l) : 0 / 0 / 0
 DSCP (FC:h/m/l) : 0 / 0 / 0 (Ctrl:0)
DSCP (IP:h/m/l) : 0 / 0 / 0
                    : 0x40000000 0x01e13def
 cfamask
 Flow Status
                    : 0
 ConCount/Duration : 7 / 72d18h
 Uptime
                  : 55m11s
 Stats Duration : 55mlls
 Receiver Stats
                    : 75576 bytes / 480 pkts / 23.00 Bps Avg
 Sender Stats
                   : 63576 bytes / 477 pkts / 15.00 Bps Avg
 TCP Bytes In/Out : 64196432680 / 65120353832
 ReTx/000/SloSt/DupAck: 465 / 180 / 14 / 0
 RTT (min/avg/max) : 1 / 1 / 1 ms
 Wan Util
                    : 0.0%
```

Keep-Alive Timeout Values for Different FC Protocols

When FICON traffic flows over an extension tunnel, consider the following items when configuring the keep-alive timeout value (KATOV):

- A tunnel that carries FICON traffic requires a KATOV of less than or equal to 1 second for each circuit added to a tunnel.
- If the tunnel is created first with the FICON flag, then the KATOV for all added circuits is 1 second (recommended value for FICON configurations).
- If the tunnel is created with one or more circuits, and the tunnel is modified to be a FICON tunnel, then the circuits that
 were previously created must be modified to have the correct KATOV.
- Set the circuit KATOV to the same value on both ends. If local and remote circuit configurations do not match, the tunnel uses the shorter duration of the configured values.
- For normal extension tunnel operations over tunnels transporting FICON traffic, the KATOV for all circuit members of a VE_Port (tunnel) must be less than the overall I/O timeout for all FC exchanges. If the FC I/O timeout value is less than the KATOV, then inputs and outputs time out over all available circuits without being retried.
- The default timeout values are not the same for every supported platform. The value for the Brocade SX6 Blade and Brocade 7840 Switch is 6 seconds. The Brocade FX8-24 Blade value is 10 seconds. The default value also differs depending on whether FICON emulation is enabled.

NOTE

The Brocade 7810 Switch does not support FICON or FICON Emulation.

The KATOV should be based on application requirements. Check with your FC initiator or IP initiator providers to determine the appropriate KATOV for your application. The sum of KATOVs for all circuits in a tunnel should be close to the overall FC initiator I/O timeout value. As an example, a mirroring application has a 6-second I/O timeout. There are three circuits belonging to the VE_Port (3 circuit members in the tunnel). Set the KATOV to 2 seconds on each circuit. This allows for maximum retries overall available circuits before an I/O is timed out by the initiator.

Changing the KATOV can be disruptive.

Refer to the *Brocade Fabric OS Command Reference Manual* for additional information on the on option format and value range available with the portcfg fcipcircuit command.

1. Use the portcfg fcipcircuit modify command to change the KATOV value.

The following example modifies circuit 0 on VE_Port 24 and changes the KATOV to 2 seconds (2000 milliseconds).

```
switch:admin> portcfg fcipcircuit 24 modify 1 -k 2000
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
```

Continue with Modification (Y,y,N,n): [n] y Operation Succeeded

2. Use the portofgshow for point command to display the tunnel configuration.

The following example displays the tunnel values for tunnel 24 with the KATOV pointed out. (The output is truncated.)

Local switch:admin> portcfgshow fcipcircuit 24

Circuit 24.0 (DP0)

Admin/Oper State : Enabled / --Flags : 0x0000000 IP Addr (L/R) : 192.168.5.2 <-> 192.168.1.2 HA IP Addr (L/R) : 192.168.5.12 <-> 192.168.1.12 Configured Comm Rates: 5000000 / 5000000 kbps

```
Peer Comm Rates: 0 / 0 kbpsActual Comm Rates: 0 / 0 kbpsKeepalive: 2000 msMetric: 0
```

. . .

Configuring Emulation Features on Tunnels

FICON emulation supports FICON traffic over IP WANs using FCIP as the underlying protocol.

NOTE

The Brocade 7810 Switch does not support FICON Emulation.

FICON emulation can be extended to support performance enhancements for specific applications through use of the following licensed features:

- IBM z/OS Global Mirror emulation (formerly eXtended Remote Copy or XRC)
- FICON tape emulation (tape read and write pipelining)

Using the FICON emulation features requires the Advanced FICON Acceleration licenses installed on each slot where FICON emulation is configured.

Refer to the *Brocade FICON Administration Guide* for more information on FICON emulation and emulation features on a tunnel.

Configuring Compression Options

Compression can be set at the tunnel level and it can be set at the protocol level for FC and IP. The switch or blade must be in Hybrid mode (both FCIP and IP Extension enabled) to set the individual protocol-level compression. Changing the compression level is disruptive.

NOTE

The compression mode must be set the same on each end of the tunnel.

Follow the guidelines in the following table for assigning explicit compression levels for tunnels on the Brocade 7810 Switch, the Brocade 7840 Switch, and the Brocade SX6 Blade.

NOTE

The Brocade 7810 Switch does not support fast deflate compression mode.

Table 31: Assigning Compression Levels

Total Tunnel Bandwidth on a DP	Compression Level		
More than 4Gb/s	Fast deflate		
2Gb/s to 4Gb/s	Deflate		
2Gb/s or less	Aggressive deflate		

The enhancements for IP Extension allow you to configure compression on the tunnel at a protocol level. The compression options override the main tunnel compression level and set the compression for the specified protocol to the desired mode. The available modes depend on the protocol, whether FC or IP.

Table 32: IP Extension Hybrid Mode Protocol Compression Choices

Compression Level	FC Protocol Support	IP Protocol Support
Fast deflate	Yes	No
Deflate	Yes	Yes
Aggressive deflate	Yes	Yes

The following table shows the compression choices for the Brocade FX8-24 Blade.

Table 33: Brocade FX8-24 Blade Compression Choices

Total Effective Tunnels FC Side	Gb/s Compression Level
More than 2Gb/s	Standard
More than 512Mb/s and less than or equal to 2Gb/s	Moderate
Equal to or less than 512Mb/s	Aggressive

- 1. Connect to the local switch and log in using an account that is assigned to the admin role.
- 2. Use the portcfg fciptunnel --compression command to set the tunnel compression mode.

The following example uses the extncfg command to verify that the switch is in FCIP mode and the portcfg fciptunnel modify command to change the tunnel compression.

```
switch:admin> extncfg --show
APP Mode is FCIP
VE-Mode: configured for 10VE mode.
FCIP_Remote:admin> portcfg fciptunnel 24 modify --compression deflate
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [ n] y
```

3. Use the portcfg fciptunnel --ip-compression command to set the IP protocol compression mode. The switch must be in the Hybrid mode.

The following example uses the extncfg command to verify that the switch is in Hybrid mode and the portcfg fciptunnel modify command to change the tunnel compression for IP protocol.

```
switch:admin> extncfg --show
APP Mode is HYBRID (FCIP with IPEXT)
VE-Mode: configured for 10VE mode.
e:admin> portcfg fciptunnel 24 modify --ip-compression deflate
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
```

```
Continue with Modification (Y,y,N,n): [ n] y
```

Configuring WAN on Tunnels

Configuring WAN on tunnels includes setting values for the following:

- Bandwidth values for Adaptive Rate Limiting (ARL) (See Configuring ARL.)
- Quality of Service (QoS) (See Configuring QoS Priorities over a Tunnel.)
- Virtual LAN (VLAN) (See Configuring VLAN.)
- Differentiated Services Code Point (DSCP) (See Configuring DSCP.)

QoS refers to policies for handling differences in data traffic. These policies are based on data characteristics and delivery requirements. For example, ordinary data traffic is tolerant of delays and dropped packets, but real-time voice and video data are not. QoS policies provide a framework for accommodating these differences in data as it passes through a network.

NOTE

If your storage device supports Fibre Channel CS_CTL prioritization, you can use the CS_CTL values in the FC header to prioritize QoS traffic. Refer to the *Brocade Fabric OS Administration Guide* for additional information.

QoS for Fibre Channel traffic is provided through internal QoS priorities. Those priorities can be mapped to TCP/IP network priorities using zone name prefixes and VCs. The different priority TCP sessions can be marked upon egress. The TCP marking is done at the IP layer using Layer 3 DSCP or at the Ethernet layer within the 802.1Q tag header using 802.1P. There are two options for TCP/IP network-based QoS:

- DSCP
- VLAN tagging and Layer 2 Class of Service (L2CoS)

You can configure QoS, DSCP, and VLAN tagging at the tunnel and circuit level for data path traffic.

Configuring ARL

Adaptive Rate Limiting (ARL) is configured on a per-circuit basis because each circuit can have available different amounts of bandwidth. Any single circuit is limited to 10Gb/s unless the hardware imposes a lower bandwidth. ARL never attempts to exceed the maximum configured value and reserves at least the minimum configured value.

The ARL minimum and maximum bandwidth are configured when a circuit is created or modified. The minimum bandwidth is considered the floor and the maximum bandwidth is the ceiling. See ARL Considerations for information about bandwidth values when configuring ARL.

On the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade, you can configure the type of ARL algorithm for backing off the traffic. The default is automatic and the ARL logic determines the best approach. The ARL choices for these platforms are as follows.

- Automatic (default)
- Static reset
- Modified multiplicative decrease (MMD), or step-down
- Time-based decrease, or timed step-down

On the Brocade FX8-24 Blade, when the minimum and maximum bandwidth differ, the ARL algorithm performs a static reset to the transmission floor and then ramps the traffic backup.

NOTE

If you are not using ARL, you must configure the minimum and maximum bandwidth values to the same value.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. When you create a tunnel, circuit 0 is automatically created. Use the portcfg fciptunnel command to create a tunnel and assign upper and lower bandwidth values for ARL.

The following example creates a tunnel and configures circuit 0 with lower and upper ARL bandwidth values of 3Gb/s and 5Gb/s. With an upper limit of 5Gb/s on circuit 0, a 10Gb/s tunnel can support an extra 5 Gb/ps.

```
switch:admin> portcfg fciptunnel 24 create -b 3000000 -B 5000000
Operation Succeeded
```

3. Use the portcfg fcipcircuit command to create an extra circuit on tunnel 24 and assign ARL bandwidth values.

The following example modifies circuit 0 to lower the ARL bandwidth values and creates circuit 1 with ARL bandwidth values. Circuit 1 is modified with the ARL algorithm set to step-down.

```
switch:admin> portcfg fciptunnel 24 modify -b 2500000 -B 3000000
Operation Succeeded
switch:admin> portcfg fcipcircuit 24 create 1 -b 1500000 -B 2000000
Operation Succeeded
switch:admin> portcfg fcipcircuit 24 modify 1 --arl-algorithm step-down
Operation Succeeded
```

4. Use the portshow fcipcircuit command to display circuit information.

The following example shows the information for circuits on tunnel 24 with the configured bandwidth values. The display is truncated. Notice the Online Warning, because the local and remote ARL bandwidth values are different. The ARL algorithm type is shown for circuit 1.

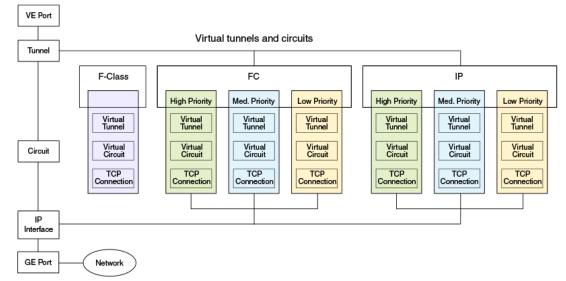
```
switch:admin> portshow fcipcircuit 24 -d
Circuit 24.0 (DPO)
_____
 Admin/Oper State : Enabled / Online Warning
                  : 0x00000000
 Flags
 IP Addr (L/R)
                  : 192.168.5.2 ge2 <-> 192.168.1.2
 HA IP Addr (L/R)
                   : 192.168.5.12 ge2 <-> 192.168.1.12
 Configured Comm Rates: 2500000 / 3000000 kbps
 Peer Comm Rates : 5000000 / 5000000 kbps
 Actual Comm Rates : 2500000 / 3000000 kbps
 Keepalive (Cfg/Peer) : 6000 (6000 / 6000) ms
 Metric
                  : 0
 Connection Type
                  : Default
 ARL-Type
                   : Auto
[...]
```

```
Circuit 24.1 (DP0)
```

Admin/Oper State :	Enabled / Configuration Incomplete
Flags :	0x0000000
IP Addr (L/R) :	0.0.0.0 ge0 <-> 0.0.0.0
HA IP Addr (L/R) :	0.0.0.0 ge0 <-> 0.0.0.0
Configured Comm Rates:	2000000 / 2000000 kbps
Peer Comm Rates :	0 / 0 kbps
Actual Comm Rates :	0 / 0 kbps
Keepalive (Cfg/Peer) :	0 (6000 / 0) ms
Metric :	0
Connection Type :	Default
ARL-Type :	Step Down
[]	

Configuring QoS Priorities over a Tunnel

Per-Priority TCP QoS (PP-TCP-QoS) prioritizes FC traffic flows between initiators and targets within a tunnel to optimize bandwidth and performance. Each circuit handles one of the following priority traffic types:


- F class F class is the highest priority and is assigned bandwidth as needed at the expense of lower priorities, if necessary. This is referred to as a strict priority.
- QoS high The default priority value is 50 percent of the available bandwidth.
- QoS medium The default value is 30 percent of the available bandwidth.
- QoS low The default value is 20 percent of the available bandwidth.

QoS high, medium, and low priority traffic are assigned a percentage of available bandwidth based on priority level. QoS priority is based on the Virtual Circuit (VC) that carries data into the DP complex. For example, if data enters on a high VC, it is placed on a high TCP connection; if it enters on a low VC, then it is placed on the low TCP circuit. Data is assigned to the proper VC based on the zone name prefix.

The following figure illustrates the internal architecture of TCP connections that handle PP-TCP-QoS. Note that this illustrates a tunnel containing a single circuit only that is in FCIP mode. When the tunnel is in Hybrid mode (FCIP and IP Extension), the three QoS priority tunnels exist for both the FCIP traffic and the IP Extension traffic, a total of six QoS VCs.

Figure 19: TCP Connections for Handling QoS

External Perspective

NOTE

If your storage device supports Fibre Channel CS_CTL prioritization, you can use the CS_CTL values in the FC header to prioritize QoS traffic. Refer to the *Brocade Fabric OS Administration Guide* for additional information.

You can modify the default QoS priority values on Brocade Extension switches and blades. This action only changes the QoS priority distribution in the tunnel; it does not reconfigure the fabric.

When the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade is configured in Hybrid mode, QoS traffic can be prioritized by protocol with a percentage assigned to FC and a percentage assigned to IP. (Recall that the Brocade 7810 Switch only operates in Hybrid mode.) The initial setting is 50/50. For each protocol, FC and IP, you can assign a percentage of the bandwidth to each of high, medium, and low levels. When configuring QoS percentages, remember the following:

- The three values (high, medium, low) must equal 100 percent.
- A minimum of 10 percent is required for each level.
- QoS priority settings must be the same on each end of the tunnel.

NOTE

Priorities are enforced only when there is congestion on the network. If there is no congestion, all traffic is handled at the same priority.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portofg fciptunnel --distribution command to change the default bandwidth values.

The following example modifies the protocol bandwidth distribution to 60 percent for FC and 40 percent for IP. When you change bandwidth distribution, the QoS values are reset to their default.

NOTE

This command is disruptive.

switch:admin> portcfg fciptunnel 24 modify --distribution protocol,60,40

Warning: Modification of the distribution ratio will reset the QoS ratio values to default.

!!!! WARNING !!!! Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.

Continue with Modification (Y,y,N,n): [n] y

3. Use the portofg fciptunnel --qos-bw-ratio command to change the ratio for high, medium, and low.

The following example modifies QoS bandwidth ratio in an FCIP-only tunnel to 60 percent, 25 percent, and 15 percent for high, medium, and low. The three values total of 100 percent.

```
switch:admin> portcfg fciptunnel 24 modify --qos-bw-ratio 60,25,15
Operation Succeeded
```

The following example modifies QoS bandwidth ratio in a hybrid tunnel (FCIP and IP). The first triplet of values is for FCIP and the second triplet is for IP. Each triplet totals 100 percent.

switch:admin> portcfg fciptunnel 24 modify --qos-bw-ratio 60,30,10,50,30,20
Operation Succeeded

4. Use the portshow fciptunnel command to display the configured QoS values.

The following example shows the QoS values for tunnel 24 configured to 60 percent, 25 percent, and 15 percent. The output is truncated.

```
switch:admin> portshow fciptunnel 24
Tunnel: VE-Port:24 (idx:0, DP0)
_____
 Oper State
               : Online
 TID
               : 24
                : 0x0000000
 Flags
 IP-Extension
               : Disabled
 Compression
               : None
 OoS BW Ratio
               : 60% / 25% / 15%
[...]
```

5. Use the portshow fciptunnel command to display the virtual circuits.

The following example shows the QoS virtual circuit information. Over each physical circuit, there is a virtual circuit for each of the high, medium, and low QoS tunnels, and a VC for the F-class control data. In this example, there is only a single physical circuit configured, circuit 0. The switch is in FCIP mode, not Hybrid mode.

24	-	Up	h	2d3h2m	0.00	0.00	3	-	-
24	0 ge2	Up	ah4	2d3h2m	0.00	0.00	3	2500/5000	0/-
24	-	Up	m	2d3h2m	0.00	0.00	3	-	-
24	0 ge2	Up	ah4	2d3h2m	0.00	0.00	3	1500/5000	0/-
24	-	Up	1	2d3h2m	0.00	0.00	3	-	-
24	0 ge2	Up	ah4	2d3h2m	0.00	0.00	3	1000/5000	0/-
	Flags (tunnel): c=Control h=HighPri m=MedPri l=LowPri i=IPSec f=Fastwrite T=TapePipelining F=FICON r=ReservedBW a=FastDeflate d=Deflate D=AggrDeflate P=Protocol I=IP-Ext								
	(circuit):	h=HA-Co	nfigured v=V	LAN-Tagged	p=PMTU	i=IPSec	4=	IPv4 6=IPv6	
		ARL a=A	uto r=Reset	s=StepDown	t=Timed	StepDown	n S	S=SLA	

Modifying QoS Default Priority Values on a Brocade FX8-24 Blade

You can modify the default QoS priority values for high, medium, and low on the Brocade FX8-24 Blade. This action only changes the QoS priority distribution in the tunnel and does not reconfigure the fabric. Modifying the QoS default priority values affects the overall priorities for QoS traffic in the tunnel.

NOTE

Priorities are enforced only when there is congestion on the network. If there is no congestion, all traffic is handled at the same priority.

For information about changing the QoS priority values at the protocol level, which applies to the Brocade SX6 Blade and Brocade 7840 Switch, see Configuring QoS Priorities over a Tunnel.

Change the priority percentages on 16Gb/s and 32Gb/s extension platforms using the optional percentage tunnel argument for the portcfg fciptunnel create and portcfg fciptunnel modify commands. When configuring QoS percentages for each level, remember the following:

- The three values must equal 100 percent.
- A minimum of 10 percent is required for each level.
- QoS priority settings must be the same on each end of the tunnel.
- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use the portofg fciptunnel command to create or modify a tunnel and change the default QoS priority values.

The following command sets the QoS priority ratios on VE_Port 12 to high (50 percent), medium (40 percent) and low (10 percent) priorities, respectively.

switch:admin> portcfg fciptunnel 1/12 create --qos 50,40,10

3. Use the portshow fciptunnel command to display tunnel values.

The following command displays details of the tunnel configuration, including the QoS percentages for high, medium, and low priorities.

switch:admin> portshow fciptunnel 1/12

Configuring DSCP

Layer 3 Class of Service Differentiated Services Code Point (DSCP) refers to a specific implementation for establishing QoS policies as defined by RFC 2475. DSCP uses six bits of the Type of Service (TOS) field in the IP header to establish up to 64 different values to associate with data traffic priority.

DSCP settings are useful only if IP routers are configured to enforce QoS policies uniformly within the network. IP routers use the DSCP value as an index into a per-hop behavior (PHB) table. Control connections and data connections can be configured with different DSCP values. Before configuring DSCP settings, determine if the IP network you are using implements PHB, and it consults with the WAN administrator to determine the appropriate DSCP values.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use the portcfg fcipcircuit command to modify the DSCP marking.

The following command modifies circuit 0 on tunnel 24 and sets the DSCP high value to 1 for fibre channel.

NOTE Only change DSCP values after consulting with your WAN administrator.

```
switch:admin> portcfg fciptunnel 7/24 modify --dscp-high 1
Operation Succeeded
```

3. Use the portshow fcipcircuit command to display the configured values for DSCP.

The following example shows the DSCP high value on circuit 0 in tunnel 24 for FC. (The output is truncated.)

```
switch:admin> portshow fcipcircuit 7/24
```

Circuit 7/24.0 (DP0)

```
_____
 Admin/Oper State : Enabled

      Flags
      : 0x0000000

      IP Addr (L/R)
      : 192.168.5.2 ge2 <-> 192.168.1.2

      HA IP Addr (L/R)
      : 192.168.5.12 ge2 <-> 192.168.1.12

 Configured Comm Rates: 5000000 / 5000000 kbps
 Peer Comm Rates : 5000000 / 5000000 kbps
 Actual Comm Rates : 4500000 / 5000000 kbps
 Keepalive (Cfg/Peer) : 6000 (6000 / 6000) ms
 Metric
                       : 0
 Connection Type : Default
 ARL-Type
                         : Auto
 PMTU
                       : Disabled
 SLA
                       : (none)
 Failover Group : 0
                         : NONE
 VLAN-ID
 L2Cos (FC:h/m/l) : 0 / 0 / 0 (Ctrl:0)
 L2Cos (IP:h/m/l) : 0 / 0 / 0
 DSCP (FC:h/m/l) : 1 / 8 / 4 (Ctrl:32)
DSCP (IP:h/m/l) : 0 / 0 / 0
[...]
```

Configuring Layer 2 Class of Service

VLAN traffic is routed using 802.1Q-compliant tags within an Ethernet frame. The tag includes a unique VLAN ID, and Class of Service (CoS) priority bits. The CoS priority scheme Layer 2 Class of Service (L2CoS) uses three Class of Service (CoS or 802.1P) priority bits, allowing eight priorities. Consult with your WAN administrator to determine usage.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use the portofg fcipcircuit command to configure the L2CoS values.

The following example modifies circuit 0 on tunnel 24 to configure L2CoS values.

NOTE The circuit's IPIFs must have a VLAN tag associated with it.

```
switch:admin> portcfg fcipcircuit 7/24 modify 0 --l2cos-f-class 32 --l2cos-high 16 --l2cos-medium 8 --
l2cos-low 4
Operation Succeeded
```

3. Use the portshow fcipcircuit command to display the L2CoS values.

The following example shows the L2CoS values for circuit 0 on tunnel 24 for FC traffic. The output is truncated.

0

```
switch:admin> portshow fcipcircuit 7/24
```

```
Circuit 7/24.0 (DP0)
```

	Admin/Oper State	:	Enabled / Online
	Flags	:	0x0000000
	IP Addr (L/R)	:	10.1.15.20 4/ge15 <-> 10.1.15.1
	HA IP Addr (L/R)	:	0.0.0.0 <-> 0.0.0.0
	Configured Comm Rates	3:	1000000 / 1000000 kbps
	Peer Comm Rates	:	1000000 / 1000000 kbps
	Actual Comm Rates	:	1000000 / 1000000 kbps
	Keepalive (Cfg/Peer)	:	6000 (6000 / 6000) ms
	Metric	:	0
	Connection Type	:	Default
	ARL-Type	:	Auto
	PMTU	:	Disabled
	SLA	:	(none)
	Failover Group	:	0
	VLAN-ID	:	100
	L2Cos (FC:h/m/l)	:	16 / 8 / 4 (Ctrl:32)
	L2Cos (IP:h/m/l)	:	0 / 0 / 0
	DSCP (FC:h/m/l)	:	0 / 0 / 0 (Ctrl:0)
	DSCP (IP:h/m/l)	:	0 / 0 / 0
I	[]		

Configuring Both DSCP and Layer 2 Class of Service

If a tunnel or circuit is VLAN tagged, both DSCP and Layer 2 Class of Service (L2CoS) can be tagged on ingress traffic unless the VLAN is end-to-end with no intermediate hops in the IP network. The following table shows DSCP priorities that are mapped to L2CoS priorities. This can be helpful when consulting with the network administrator. You can modify DSCP and L2CoS values for different priority traffic when configuring circuits for extension switches and blades.

DSCP Priority/Bits	L2CoS Priority/Bits	Assigned to
7/000111	1/001	Medium QoS
11/001011	3/011	Medium QoS
15/001111	3/011	Medium QoS
19/010011	3/011	Medium QoS
23/010111	3/011	Medium QoS
27/011011	0/000	Class 3 Multicast
31/011111	0/000	Broadcast/Multicast
35/100011	0/000	Low Qos
39/100111	0/000	Low Qos
43/101011	4/100	High QoS
46/101110	7/111	Class F
47/101111	4/100	High QoS
51/110011	4/100	High QoS
55/110111	4/100	High QoS
59/111011	4/100	High QoS
63/11111	0/000	Reserved

Configuring Failover

There are two types of configuration supported:

- Active-active: Data is sent on both 10GbE ports to initiate the weighted balancing of the batches across the trunk circuits.
- Active-passive: If all active lower metric circuit paths fail, data fails while overusing LLL to a passive circuit (one with a higher metric).

You must establish a metric for failover circuits. If no metric is provided, circuit data is sent through both ports, and the load is balanced. Circuits have a default metric of 0. A metric of 1 is required for a standby (passive) circuit.

Active-Active Configuration

The following example shows an active-active configuration in which two circuits are configured with the same metric. One circuit going over ge0 and the other circuit uses ge1 as the external port. The metric values of both the circuits are the same (default value), so both circuits send data. The load is balanced across these circuits. The effective bandwidth of the tunnel in this example is 2Gb/s.

1. Configure an IP address on interface ge0.

portcfg ipif 8/ge0 create 192.168.11.20/24 mtu 1500

2. Configure an IP address on interface ge1.

portcfg ipif 8/gel create 192.168.10.10/24 mtu 1500 -x

3. Create a tunnel with one circuit going over ge0.

```
portcfg fciptunnel 8/22 create --remote-ip 192.168.11.20 --local-ip 192.168.11.21 -b 2750000 -B 2750000
```

4. Add another circuit, going over ge1, to the tunnel.

```
portcfg fcipcircuit 8/22 create 1 --remote-ip 192.168.10.10 --local-ip 192.168.10.11 -b 1000000 -B 1000000
```

5. Display local and interface details for ge0.

portshow ipif 8/ge0

NOTE

If the source and destination addresses are on different subnets, you must configure IP routes to the destination addresses. See Configuring IP Route.

Active-Passive Configuration

The following example shows an active-passive configuration in which two circuits are configured with different metrics. One circuit going over ge0 and the other circuit uses ge1 as the external port. In this example, circuit 1 is a failover circuit because it has a higher metric. When circuit 0 goes down, the traffic is failed over to circuit 1. The effective bandwidth of the tunnel in this example is 1Gb/s.

1. Configure an IP address on interface ge0.

portcfg ipif 8/ge0 create 192.168.11.20/24 mtu 1500

2. Configure an IP address on interface ge1.

portcfg ipif 8/gel create 192.168.10.10/24 mtu 1500 -x

3. Create a tunnel with one circuit going over ge0.

```
portcfg fciptunnel 8/22 create --remote-ip 192.168.11.21 --local-ip 192.168.11.20 -b 2750000 -B 2750000 -- metric 0
```

4. Add another circuit, going over ge1, to the tunnel.

```
portcfg fcipcircuit 8/22 create 1 --remote-ip 192.168.10.10 --local-ip 192.168.10.11 -b 1000000 -B 1000000 --metric 1
```

5. Display local and interface details for ge0.

```
portshow ipif 8/ge0
```

NOTE

If the source and destination addresses are on different subnets, you must configure IP routes to the destination addresses. See Configuring IP Route.

Configuring Failover Groups

With circuit failover groups, you can better control which metric 1 circuits is activated if a metric 0 circuit fails. To create circuit failover groups, you define a set of metric 0 and metric 1 circuits that are part of the same failover group. When all metric 0 circuits in the group fail, metric 1 circuits take over data transfer, even when there are metric 0 circuits still active in other failover groups.

Typically, you would only define one metric 0 circuits in the group so that a specific metric 1 circuit will take over data transfer when the metric 0 circuit fails. This configuration prevents the problem of the tunnel operating in a degraded mode, with fewer than the defined circuits, before multiple metric 0 circuits fail.

Use the portofg fciptunnel or portofg fcipcircuit commands to configure the circuit metric and the failover group ID for a circuit. The metric value can be 0 or 1. The failover group ID is a value from 0 through 9.

The following steps modify an existing tunnel and create circuits. The result is two failover groups for tunnel 4/16 that contain two circuits each. Note that circuit 0 is typically created automatically when the tunnel is created.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use the portshow ipif command to verify IP addresses.

The following example shows the IP addresses configured on slot 4, port GE15, DP0 for a Brocade SX6 Blade. This is the local switch.

Local swi	.tch:admin>	portshow	ipif	4/	′ge15.	dp0
-----------	-------------	----------	------	----	--------	-----

Port	IP Address	/ P:	fx MTU	VLAN	Flags
4/ge15.dp0 4/ge15.dp0	10.1.15.20 10.1.15.21 10.1.15.22 10.1.15.23	/ 24 / 24 / 24 / 24	4 1500 4 1500	0	U R M I U R M I U R M I U R M I U R M I

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

The following example shows the IP addresses configured on slot 4, port GE15, DP0 for a Brocade SX6 Blade. This is the remote switch.

Remote switch:admin> portshow ipif 4/ge15.dp0

Port	IP Address	/ 1	Pfx	MTU	VLAN	Flags	
4/ge15.dp0	10.1.15.10	,	/ 24			URMI	-
4/ge15.dp0 4/ge15.dp0	10.1.15.11 10.1.15.12	,	/ 24 / 24			U R M I U R M I	
4/ge15.dp0	10.1.15.13	,	/ 24	150	0 0	URMI	

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

3. Use the portofg fcipcircuit command on the switch to create four circuits and configure the metric and failover group values.

The following example modifies circuit 0 and creates circuits 1 through 3, and assigns metrics and failover values on the local switch.

```
Local_switch:admin> portcfg fciptunnel 4/16 create -S 10.1.15.20 -D 10.1.15.10 -b 1000000 -B 1000000
Local_switch:admin> portcfg fcipcircuit 4/16 modify 0 --metric 0 --failover-group 0
```

!!!! WARNING !!!!

Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [n] y
Operation Succeeded
Local_switch:admin> portcfg fcipcircuit 4/16 create 1 -S 10.1.15.21 -D 10.1.15.11 -x 0 -g 1 -b 1000000 -B
1000000
Operation Succeeded
Local_switch:admin> portcfg fcipcircuit 4/16 create 2 -S 10.1.15.22 -D 10.1.15.12 -x 1 -g 0 -b 1000000 -B
1000000
Operation Succeeded
Local_switch:admin> portcfg fcipcircuit 4/16 create 3 -S 10.1.15.23 -D 10.1.15.13 -x 1 -g 1 -b 1000000 -B
1000000
Operation Succeeded
Local_switch:admin> portcfg fcipcircuit 4/16 create 3 -S 10.1.15.23 -D 10.1.15.13 -x 1 -g 1 -b 1000000 -B
1000000
Operation Succeeded
Local_switch:admin> portcfg fcipcircuit 4/16 create 3 -S 10.1.15.23 -D 10.1.15.13 -x 1 -g 1 -b 1000000 -B
1000000

The following example modifies circuit 0 and creates circuits 1 through 3, and assigns metrics and failover values on a remote Brocade SX6 Blade. Notice that the source and destination circuit endpoints on the remote switch are the reverses of the local switch. The failover group ID must match at each end of the circuit.

```
Remote switch:admin> portcfg fciptunnel 4/24 create -S 10.1.15.10 -D 10.1.15.20 -b 1000000 -B 1000000
Local switch:admin> portcfg fcipcircuit 4/24 modify 0 --metric 0 --failover-group 0
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [ n]
                                               V
Operation Succeeded
Remote switch:admin> portcfg fcipcircuit 4/24 create 1 -S 10.1.15.11 -D 10.1.15.21 -x 0 -g 1 -b 1000000 -B
1000000
Operation Succeeded
Remote switch:admin> portcfg fcipcircuit 4/24 create 2 -S 10.1.15.12 -D 10.1.15.22 -x 1 -g 0 -b 1000000 -B
1000000
Operation Succeeded
Remote switch:admin> portcfg fcipcircuit 4/24 create 3 -S 10.1.15.13 -D 10.1.15.23 -x 1 -g 1 -b 1000000 -B
1000000
Operation Succeeded
```

4. Use the portofg fciptunnel command to verify that the metric and failover values are configured correctly at each end of the circuit.

The following example shows the portshow fciptunnel all -c -h command and that all circuits on the local switch are up, indicating that both sides of the tunnel are communicating.

4/16	1 4/ge15	Up	4	40m3s	0.00	0.00	1	1000/1000	0/1
4/16	2 4/ge15	Up	4	51s	0.00	0.00	5	1000/1000	1/-
4/16	3 4/ge15	Up	4	14s	0.00	0.00	2	1000/1000	1/1
Flags	(tunnel):	l=Legac	y QOS Mode						
		M=MainTunnel L=LocalBackup R=RemoteBackup							
		i=IPSec	i=IPSec f=Fastwrite T=TapePipelining F=FICON r=ReservedBW						
		a=FastDeflate d=Deflate D=AggrDeflate P=Protocol							
		I=IP-Ex	t						
	(circuit):	h=HA-Co	nfigured v=V	LAN-Tagge	d p=PMTU	i=IPSec	: 4=	IPv4 6=IPv6	
		ARL a=A	uto r=Reset	s=StepDown	n t=Time	dStepDow	m	S=SLA	

Configuring Spillover

To configure spillover, use the portofg command. If you do not configure spillover, the default action is to use failover.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use the portcfg fciptunnel command as shown in the following example to modify an existing tunnel for spillover.

```
switch:admin> portcfg fciptunnel 12 modify -L spillover
Operation Succeeded
```

The -L option is the short form for --load-leveling.

3. Use the portshow fciptunnel command to display the current load leveling algorithm. As the value is negotiated from end-to-end, the configured value, peer value, and actual (negotiated) value are displayed. (The output is truncated.)

4. The following example shows the configuration warnings when one side of the tunnel is configured with spillover and the other side of the tunnel is configured with failover. (The output is truncated.)

5. The current PDU/Byte counts that are maintained for each circuit can be used to verify spillover usage of metric 1 circuits. The --qos/-q option provides a more detailed view as to which QoS the spillover is occurring on. The

following examples are of commonly used commands, with some providing information about PDU/byte counts and others showing throughput. Only the commands are shown because output varies depending on the configuration and traffic conditions.

```
switch:admin> portshow fciptunnel -c
switch:admin> portshow fciptunnel -c -q
switch:admin> portshow fciptunnel 12 -c
switch:admin> portshow fcipcircuit 12 -c
switch:admin> portshow fcipcircuit 12 -c -q
```

Example of Spillover Circuits at Various Rates

The following example shows the expected behavior of a tunnel that is configured with the spillover option and the circuits at various rates. The maximum output of the application is approximately 309Mb/s. The spillover circuit 1 is static at 3Gb/s, the primary circuit 0 is initially configured at 3Gb/s. Because circuit 0 can support the 309MB/s max output, the spillover circuit 1 is not being used. When the bandwidth for circuit 0 is stepped down, the extra bandwidth is spilled over into circuit 1 and the overall throughput is closely maintained.

```
switch:admin> portshow fciptunnel -c
Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G
_____
12 -
       Up
            -----I 17m52s 309.05 0.00 2 -
            ----a---4 17m51s 309.05 0.00 2 3000/3000 0/-
12
  0 ge2
       Up
12 1 ge3 Up
            ----a---4 17m52s 0.00 0.00 2 3000/3000 1/-
_____
Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G
_____
 -
       Up
            -----I 20m40s 306.29 0.00 2
12
                                 -
           ----a---4 20m40s 285.33 0.00 2 2400/2400 0/-
12 0 ge2
       Up
12 1 ge3 Up
           ----a---4 20m40s 20.96 0.00 2 3000/3000 1/-
_____
Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G
_____
12 – Up
            -----I 23m30s 305.17 0.00 2 -
12
            ----a---4 23m30s 249.70 0.00 2 2100/2100 0/-
  0 ge2
       Up
12 1 ge3 Up
           ----a---4 23m31s 55.47 0.00 2 3000/3000 1/-
_____
Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G
_____
  -
            -----I 24m52s 304.78 0.00 2
                                 -
12
       Up
12 0 ge2
       Up
           ----a---4 24m51s 178.11 0.00 2 1500/1500 0/-
12 1 ge3 Up
           ----a---4 24m52s 126.67 0.00 2 3000/3000 1/-
_____
```

Configuring VE_Ports to Persistently Enable

NOTE

The Brocade 7810 Switch does not support VE operating mode (i.e., --ve-mode [10VE|20VE]).

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portshow command to show the status of a port.

This example shows the status of VE_Port 24. You can see the status of persistent disable in the output. (The "<<<<" is not part of the actual output.)

```
switch:admin> portshow 24
portIndex: 24
portName: port24
portHealth: Not Monitored
Authentication: None
portDisableReason: Persistently disabled port
                                                    <<<<<
portCFlags: 0x0
portFlags: 0x4021
                     PRESENT VIRTUAL U PORT DISABLED LED
LocalSwcFlags: 0x0
portType: 12.0
portState: Persistently Disabled
                                                    <<<<<
Protocol: FC
portPhys: 255 N/A portScn: 2 Offline
port generation number: 24
state transition count:
                         2.0
portId: 0b1800
portIfId: 43020817
portWwn: 20:18:50:eb:1a:13:ad:16
portWwn of device(s) connected:
Distance: normal
Port part of other ADs: No
```

3. Use the portcfgpersistentenable command to disable any VE_Ports that you will use in the tunnel configuration.

This example enables VE_Port 24.

```
switch:admin> portcfgpersistentenable 24
switch:admin>
```

There is no additional response or confirmation after entering the command.

4. Use the portshow command to verify the status of a port.

This example shows the status of VE_Port 24. You can see the port is online and no longer disabled. (The "<<<<" is not part of the actual output.)

switch:admin> portshow 24
portIndex: 24

portName: port24

```
portHealth: Not Monitored
Authentication: None
portDisableReason: None
                                           <<<<<
portCFlags: 0x1
portFlags: 0x4903 PRESENT ACTIVE VIRTUAL E PORT G PORT U PORT LOGICAL ONLINE LOGIN LED
LocalSwcFlags: 0x0
portType: 12.0
portState: 1 Online
                                           <<<<<
Protocol: FC
portPhys: 255 N/A portScn: 16 E_Port
                        24
port generation number:
state transition count: 21
portId: 0b1800
portIfId: 43020817
portWwn: 20:18:50:eb:1a:13:ad:16
portWwn of device(s) connected:
Distance: normal
Port part of other ADs: No
```

5. If the switch is in FMS mode, use the portenable command to enable a port.

The following example enables port 24, a VE_Port on a Brocade 7840 switch.

```
switch:admin> portenable 24
switch:admin>
```

There is no additional response or confirmation after entering the command.

Verifying Tunnel Configuration

After you have created local and remote configurations, verify that the tunnel and circuit parameters are correct using the portshow fciptunnel and the portshow fcipcircuit commands. Refer to the *Brocade Fabric OS Command Reference Manual* for a description of the command syntax and output.

By comparing the command output at each end of the tunnel, you can usually identify configuration issues. The display often indicates if there is a mismatch between parameters.

1. Use the portshow fciptunnel command to display information about the tunnel. The examples show various uses of the command.

This example shows basic use of portshow fciptunnel. The tunnel is up but has a warning.

switch:admin> portshow fciptunnel
Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G
4/16 - UpWarn ------ 3d19m 0.00 0.00 17 - Flags (tunnel): l=Legacy QOS Mode

switch:admin> portshow fciptunnel 4/16

```
i=IPSec f=Fastwrite T=TapePipelining F=FICON r=ReservedBW
a=FastDeflate d=Deflate D=AggrDeflate P=Protocol
I=IP-Ext
```

2. Use the portshow fciptunnel command to show additional information about a specific tunnel (or VE_Port).

This example shows the portshow fciptunnel *slot/port* command, which expands the basic portshow command information. The tunnel is up, but has a warning. (Code flagged with <<<< points out the warning; it does not appear in the actual display.)

dx:0, DP0)
Online Warning <<<<<
80
0x00000000
Disabled
None
50% / 30% / 20%
Disabled
Disabled
Disabled
Failover (Failover / Failover)
10:00:00:05:33:e7:c5:10
10:00:00:05:33:65:83:48
00:00:00:00:00:00:00
0x000001f 0x40000208
0
17 / 7d6h50m
3d19m
3d19m
2084 bytes / 14 pkts / 0.00 Bps Avg
1748 bytes / 13 pkts / 0.00 Bps Avg
1883857860 / 1848343280
1040 / 0 / 64 / 0
1 / 1 / 1 ms
0.0%
0.0%

3. Use the portshow fcipcircuit command to display specific circuit information.

This example shows the portshow fciptunnel *slot/port* command with a specific circuit specified, 4/16.1. The configuration warning indicates a mismatch in the ARL settings at each end of the circuit. (Code flagged with <<<<< pre>points out the warning; it does not appear in the actual display.)

```
FOS-821-Ext-UG105 User Guide
```

```
: 0x00000000
Flags

      Flags
      : 0x00000000

      IP Addr (L/R)
      : 10.1.15.21 4/ge15 <-> 10.1.15.11

      HA IP Addr (L/R)
      : 0.0.0.0
      <-> 0.0.0.0

Configured Comm Rates: 1000000 / 1000000 kbps
Peer Comm Rates : 1000000 / 1000000 kbps
Actual Comm Rates : 1000000 / 1000000 kbps
Keepalive (Cfg/Peer) : 6000 (6000 / 6000) ms
Metric
              : 0
Connection Type : Default
ARL-Type
                      : Auto
PMTU
                      : Disabled
SLA
                      : (none)
Failover Group : 1
VLAN-ID : NONE
L2Cos (FC:h/m/l) : 0 / 0 / 0 (Ctrl:0)
L2Cos (IP:h/m/l) : 0 / 0 / 0
DSCP (FC:h/m/l) : 0 / 0 / 0 (Ctrl:0)
DSCP (IP:h/m/l)
                      : 0 / 0 / 0
cfgmask
                      : 0x40000000 0x00000c6f
Configuration Warnings:
                                                                     <<<<<
 ARL Type
Flow Status : 0
ConCount/Duration : 1 / 3d38m
              : J_
on : 3d13m
· 0 byt
Uptime
Stats Duration
Receiver Stats
                      : 0 bytes / 0 pkts / 0.00 Bps Avg

        Sender Stats
        : 0 bytes / 0 pkts / 0.00 Bps Avg

        TCP Bytes In/Out
        : 777180488 / 758776120

ReTx/000/SloSt/DupAck: 0 / 0 / 0 / 0
RTT (min/avg/max) : 1 / 1 / 1 ms
                        : 0.0%
Wan Util
```

4. Use the portshow fcipcircuit command to verify that no problems exist.

This example shows the portshow fciptunnel *slot/port* command with a specific circuit specified, 4/16.0. The output indicates that the circuit is functioning and no configuration errors exist, by lack of any warning indicators.

switch:admin> portshow fcipcircuit 4/16 0

```
Circuit 4/16.0 (DP0)
```

Admin/Oper State	: Enabled / Online
Flags	: 0x0000000
IP Addr (L/R)	: 10.1.15.20 4/ge15 <-> 10.1.15.10
HA IP Addr (L/R)	: 0.0.0.0 <-> 0.0.0.0
Configured Comm Rates	: 1000000 / 1000000 kbps
Peer Comm Rates	: 1000000 / 1000000 kbps
Actual Comm Rates	: 1000000 / 1000000 kbps
Keepalive (Cfg/Peer)	: 6000 (6000 / 6000) ms
Metric	: 0
Connection Type	: Default
ARL-Type	: Auto
PMTU	: Disabled

SLA :	(none)
JLA .	(none)
Failover Group :	0
VLAN-ID :	NONE
L2Cos (FC:h/m/l) :	0 / 0 / 0 (Ctrl:0)
L2Cos (IP:h/m/l) :	0 / 0 / 0
DSCP (FC:h/m/l) :	0 / 0 / 0 (Ctrl:0)
DSCP (IP:h/m/l) :	0 / 0 / 0
cfgmask :	0x40000000 0x00000c0f
Flow Status :	0
ConCount/Duration :	17 / 7d7h7m
Uptime :	3d24m
Stats Duration :	3d24m
Receiver Stats :	0 bytes / 0 pkts / 0.00 Bps Avg
Sender Stats :	0 bytes / 0 pkts / 0.00 Bps Avg
TCP Bytes In/Out :	1917176420 / 1899892860
ReTx/000/SloSt/DupAck:	1040 / 0 / 64 / 0
RTT (min/avg/max) :	1 / 1 / 1 ms
Wan Util :	0.0%

Configuring Extension Hot Code Load

Extension Hot Code Load (eHCL) is a feature that allows firmware to be upgraded without disrupting traffic. It is supported on the Brocade 7840 Switch and the Brocade SX6 Blade as well as in both FCIP and IP Extension. The Brocade 7810 Switch does not support eHCL.

eHCL uses the dual DP complexes, DP0 and DP1, on the Brocade 7840 Switch or Brocade SX6 Blade to provide uninterrupted traffic flow when the switch firmware is upgraded. The primary circuit, or main tunnel, is the circuit that is created between the DP0 on the local switch and DP0 on the remote switch. The backup tunnel is a circuit created from the local switch DP1 to the remote switch DP0. When a firmware upgrade occurs, the local DP0 is brought down gracefully and its traffic processing is moved to the local DP1. The local DP1 uses the backup tunnel to the remote DP0 to continue the uninterrupted traffic flow. When the local DP0 comes back up, traffic processing is moved from the local DP1 backup tunnel to the DP0 main tunnel.

NOTE

For releases before Fabric OS 8.1.0, eHCL is disruptive to any IP Extension traffic.

Additional considerations for eHCL configuration are as follows:

- The primary circuit is referred to as the main tunnel (MT). The backup circuit from local switch to remote switch is the local backup tunnel (LBT). The tunnel that points from the remote switch back to the local switch is the remote backup tunnel (RBT).
- The IPIFs for the MT and LBT side of eHCL must be on different DPs.
- When you create or modify a circuit, only those circuits that specify a local and remote HA IP address are protected.
- If a circuit is not specifically configured for eHCL, it will go down during the firmware upgrade process.
- When the switch is in 10VE mode, you can configure up to five tunnel on each DP for eHCL. This allows a total of 15 addresses on the DP to use for eHCL: five each to use as endpoints for the main tunnel, local backup tunnel, and remote backup tunnel.
- When the switch is in 20VE mode, you can configure up to 10 tunnels on each DP for eHCL, for a total of 30 addresses to use for eHCL.
- Whether you use DP0 or DP1 as the main tunnel, the backup tunnel must be configured on the other DP.
- The tunnel and circuit parameters of the main tunnel are replicated on the LBT and RBT, including the circuit properties such as QoS markings, FastWrite, and FICON Acceleration.

To configure eHCL, perform the following steps.

- 1. Connect to the local switch and log in using an account assigned to the admin role.
- 2. Use the portshow ipif command to confirm the IPIF addresses for the main tunnel and backup tunnel are configured on DP0 and DP1.

The following example shows IPIFs on the local switch. The address 192.168.5.2 on DP0 will be used for the main tunnel, and 192.168.5.12 will be used for the backup tunnel.

<pre>local_switch:admin> portshow ipif</pre>						
Port	IP Address	/	Pfx	MTU	VLAN	Flags
ge2.dp0 ge2.dp1	192.168.5.2 192.168.5.12	,	24 24	1500 1500	-	U R M I U R M I

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

The following example shows IPIFs on the remote switch. The address 192.168.1.2 on DP0 will be used for the main tunnel, and 192.168.1.12 on DP1 will be used for the backup tunnel.

remote_switch:admin> portshow ipif

Port	IP Address	/ Pfx	MTU	VLAN	Flags
ge2.dp0 ge2.dp1	192.168.1.2 192.168.1.12				U R M I U R M I

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

3. Use the portcfg fciptunnel command to configure the tunnel and circuit 0. On each switch (local switch, remote switch), the destination address of both the main tunnel and backup tunnel is on DP0 of the other switch

The following example configures tunnel 24 on the local switch with a main tunnel and backup tunnel.

```
local_switch:admin> portcfg fciptunnel 24 create -S 192.168.5.2 -D 192.168.1.2 --local-ha-ip 192.168.5.12
--remote-ha-ip 192.168.1.12 -b 5000000 -B 5000000
local switch:admin>
```

The following example configures tunnel 24 on the remote switch with a main tunnel and backup tunnel.

```
remote_switch:admin> portcfg fciptunnel 24 create -S 192.168.1.2 -D 192.168.5.2 --local-ha-ip
192.168.1.12 --remote-ha-ip 192.168.5.12 -b 5000000 -B 5000000
remote switch:admin>
```

4. When the switch is in Hybrid mode (FCIP and IP Extension), use the portcfg fciptunnel command with the -- ipext enable option.

The following example configures tunnel 24 on the local switch with a main tunnel and backup tunnel in Hybrid mode.

local_switch:admin> portcfg fciptunnel 24 create -S 192.168.5.2 -D 192.168.1.2 --local-ha-ip 192.168.5.12
--remote-ha-ip 192.168.1.12 -b 5000000 -B 5000000 --ipext enable
local switch:admin>

The following example configures tunnel 24 on the remote switch with a main tunnel and backup tunnel in Hybird mode.

```
remote_switch:admin> portcfg fciptunnel 24 create -S 192.168.1.2 -D 192.168.5.2 --local-ha-ip
192.168.1.12 --remote-ha-ip 192.168.5.12 -b 5000000 -B 5000000 --ipext enable
remote switch:admin>
```

5. Use the portshow fcipcircuit command to display the configured values for eHCL.

The following example shows the high-availability (HA) configuration values. You can verify the endpoints for the main tunnel and backup tunnel on the local switch.

```
local switch:admin> portshow fciptunnel --circuits --ha --config
Tunnel Circuit AdminSt Flags Local IP
                                       Remote Ip
_____
   _
2.4
           Enabled -M-----
   0 ge2 Enabled ----ah--4 192.168.5.2
24
                                       192.168.1.2
   -
2.4
           Enabled -R-----
24 0 ge2 Enabled ----ah--4 192.168.5.2 192.168.1.12
24
   -
           Enabled -L-----
           Enabled ----ah--4 192.168.5.12 192.168.1.2
2.4
   0 ge2
_____
Flags (tunnel): M=MainTunnel L=LocalBackup R=RemoteBackup
            i=IPSec f=Fastwrite T=TapePipelining F=FICON r=ReservedBW
            a=FastDeflate d=Deflate D=AggrDeflate P=Protocol
            I=IP-Ext
    (circuit): h=HA-Configured v=VLAN-Tagged p=PMTU i=IPSec 4=IPv4 6=IPv6
            ARL a=Auto r=Reset s=StepDown t=TimedStepDown S=SLA
```

The following example shows the endpoints for the main tunnel and backup tunnel that are configured on the remote switch. (The command uses short notation for the options.)

remote_switch:admin> portshow fciptunnel -chC

I=IP-Ext

Tunnel Circuit	AdminSt Flags Local IP	Remote Ip
24 -	Enabled -M	
24 0 ge2	Enabledah4 192.168.1.2	192.168.5.2
24 -	Enabled -R	
24 0 ge2	Enabledah4 192.168.1.2	192.168.5.12
24 -	Enabled -L	
24 0 ge2	Enabledah4 192.168.1.12	192.168.5.2
Flags (tunnel):	M=MainTunnel L=LocalBackup R=Remote	Backup
	i=IPSec f=Fastwrite T=TapePipelining	F=FICON r=ReservedBW
	a=FastDeflate d=Deflate D=AggrDeflate	P=Protocol

```
Broadcom
```

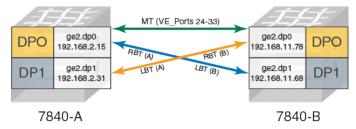
```
(circuit): h=HA-Configured v=VLAN-Tagged p=PMTU i=IPSec 4=IPv4 6=IPv6
ARL a=Auto r=Reset s=StepDown t=TimedStepDown S=SLA
```

The M flag identifies the main tunnel. The R flag identifies the remote backup tunnel. It shows the local IP on DP0 as the endpoint of the remote backup tunnel. The L flag identifies the local backup tunnel. It shows the remote DP0 IP as the local backup tunnel endpoint.

6. Use the portshow fciptunnel command to monitor eHCL status.

The following example shows the status of a correctly configured eHCL when no firmware is being upgraded.

```
switch:admin> portshow fciptunnel --hcl-status
Checking FCIP Tunnel HA Status.
Current Status
                     : Readv
CP Version
                     : v8.1.0
4/DP0 Status:
                    : Online - Inactive
  State
  Version
                     : v8.1.0
  Current FC HA Stage : IDLE
  Current IP HA Stage : IDLE
  IP SVI Swapped : NO
  DP COMM Status
                     : N/A
4/DP1 Status:
  State
                    : Online - Inactive
  Version
                     : v8.1.0
  Current FC HA Stage : IDLE
  Current IP HA Stage : IDLE
  IP SVI Swapped : NO
  DP COMM Status
                     : N/A
```


Tunnel 24 HA configured and HA Online. Traffic will not be disrupted.

Configuring DP Complexes and eHCL Tunnels

When you configure interfaces and tunnels for Extension HCL, the main tunnel (MT) interface cannot be on the same data processor (DP) complex as the local backup tunnel (LBT). Because the Brocade 7840 Switch shares Ethernet ports, you can assign an Ethernet port to a specific DP using the portcfg ipif command with the ge_port.dp_num option.

In the following figure, the Brocade 7840-A switch and the Brocade 7840-B switch both use their DP0 complexes as the endpoints for the main tunnel. Each switch uses its DP1 for the local backup tunnel. On each side, the local backup tunnel on DP1 points to the remote backup tunnel on DP0 on the remote switch. In the simplest eHCL configuration, a single circuit is configured between the local and remote switches, and the circuit consists of the main tunnel, local backup tunnel, and remote backup tunnel endpoints.

Figure 20: Extension HCL Configuration with MT, LBT, and RBT

The DP complex creates the following TCP connections between 7840-A and 7840-B:

- 192.168.2.15 to 192.168.11.78: The main TCP connections for the MT between the switches
- 192.168.2.31 to 192.168.11.78: The connection from 7840-A LBT to 7840-B RBT
- 192.168.2.15 to 192.168.11.68: The connection between 7840-A RBT and 7840-B LBT

The following table shows the possible options for configuring MTs and LBTs on a Brocade 7840 Switch. The options show ports available in 20VE mode and 10VE mode. In 20VE mode, up to 10 HCL tunnels can be configured on each DP. In 10VE mode, the limit is 5 eHCL tunnels on each DP. The VE_Ports used on the local and remote switches need not be bidirectional. That is, you can use one of the VE_Ports 24-33 on the local switch and one of the VE_Ports 34-43 on the remote switch for the main tunnel. GbE ports 0 and 1 (ge0, ge1) are 40GbE ports; the remaining ports are 10GbE ports.

Table 35: Brocade 7840 Extension HCL Considerations for VE_Port Configuration

7840-A Available VE_Ports in 20VE Mode / 10 VE Mode	MT Local IP Addresses Defined on	LBT Local IP Addresses Defined on	7840-B Available VE_Ports in 20VE Mode / 10VE Mode	RBT IP Addresses Defined on
24–33 / 24–28	One of ge0-ge17 on dp0 (such as ge2.dp0)	One of ge0-ge17 on dp1 (such as ge2.dp1)	24–33 / 24–28	One of ge0-ge17 on dp1 (such as ge2.dp1)
24–33 / 24–28	One of ge0-ge17 on dp0 (such as ge2.dp0)	One of ge0-ge17 on dp1 (such as ge2.dp1)	34–43 / 34–38	One of ge0-ge17 on dp0 (such as ge2.dp0)
34–43 / 34–38	One of ge0-ge17 on dp1 (such as ge2.dp1)	One of ge0-ge17 on dp0 (such as ge2.dp0)	34–43 / 34–38	One of ge0-ge17 on dp0 (such as ge2.dp0)
34–43 / 34–38	One of ge0-ge17 on dp1 (such as ge0.dp1)	One of ge0-ge17 on dp0 (such as ge0.dp0)	24–33 / 24–28	One of ge0-ge17 on dp1 (such as ge0.dp1)

Between two Brocade SX6 Blades, the options for a similar SX6-A and SX6-B setup are shown in the following table.

Table 36: Brocade SX6 Extension HCL Considerations for VE_Port Configuration

SX6-A Available VE_Ports in 20VE Mode / 10VE Mode	MT Local IP Addresses Defined on	LBT Local IP addresses Defined on	SX6-B Available VE_Ports in 20VE Mode / 10VE Mode	RBT IP Addresses Defined on
16–25 / 16–20	One of ge0-ge17 on dp0 (such as ge2.dp0)	One of ge0-ge17 on dp1 (such as ge2.dp1)	16–25 / 16–20	One of ge0-ge17 on dp1 (such as ge2.dp1)
16–25 / 16–20	One of ge0-ge17 on dp0 (such as ge2.dp0)	One of ge0-ge17 on dp1 (such as ge2.dp1)	26–35 / 26–30	One of ge0-ge17 on dp0 (such as ge2.dp0)
26–35 / 26–30	One of ge0-ge17 on dp1 (such as ge2.dp1)	One of ge0-ge17 on dp0 (such as ge2.dp0)	26–35 / 26–30	One of ge0-ge17 on dp0 (such as ge2.dp0)

SX6-A Available VE_Ports in 20VE Mode / 10VE Mode	MT Local IP Addresses Defined on	LBT Local IP addresses Defined on	SX6-B Available VE_Ports in 20VE Mode / 10VE Mode	RBT IP Addresses Defined on
26–35 / 26–30		One of ge0-ge17 on dp0 (such as ge0.dp0)	16–25 / 16–20	One of ge0-ge17 on dp1 (such as ge0.dp1)

Configuring IP Extension

IP Extension features are available when you configure the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade to operate in Hybrid mode where you can configure most tunnel features associated with tunnels, and additionally configure IP Extension features. Most tunnel or circuit configurations performed with a switch, not in Hybrid mode are carried over to Hybrid mode.

NOTE

The Brocade 7810 Switch operates only in Hybrid mode.

Before you begin to configure IP Extension features, consider the following:

- Follow the recommendations in Configuration Prerequisites to prepare the WAN support. WAN support must be completed prior to configuring IP Extension features on the Brocade 7840 Switch, the Brocade 7810 Switch, or the Brocade SX6 Blade.
- For the Brocade 7840 Switch or Brocade SX6 Blade, you must configure the VE_Port operating mode for 10VE mode (the default).
- Determine the VE_Port numbers you want to use. The VE_Port numbers serve as tunnel IDs.
- FIPS is not supported when the Brocade 7840 Switch or Brocade SX6 Blade operates in Hybrid mode.

NOTE

Once enabled, FIPS cannot be disabled.

• Determine which Ethernet ports will be used for LAN connectivity. Ensure these ports are in the default switch and configured to LAN mode.

NOTE

The LAN ports do not participate in Layer 2 Ethernet switching on the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade. All traffic is terminated and sent over the tunnel, based on the configured traffic control list (TCL).

NOTE

The Brocade 7840 Switch and the Brocade SX6 Blade support a maximum of 1024 defined and 128 active TCLs. The Brocade 7810 Switch supports a maximum of 256 defined and 32 active TCLs.

- For the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade, the IP MTU size must be at least 1280. If the supported maximum IP MTU size in the network exceeds 9216, the IP MTU should be 9216.
- Identify the subnets that will be extended through the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade. Assign IP addresses, subnet masks, and MTUs to be used as LAN gateways to the IP Extension switch or blade.
- With the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade are operating in Hybrid mode and IP Extension features enabled, you must configure traffic control lists (TCLs).
- Determine how many additional circuits you want to create. You will need the source and destination IP addresses for each circuit, and the minimum and maximum rates for ARL, or the committed rate if not using ARL. You will need to know if you intend to assign metrics to circuits so that lower metric circuits failover to circuits with higher metrics. For all circuits except circuit 0, these values are set by the portCfg fcipcircuit create command.
- You must consider the maximum limit of LAN connections allowed for each DP, which is 512 accelerated TCP connections per DP and 64 UDP connections for the Brocade 7840 Switch and the Brocade SX6 Blade; and 128 TCP connections per DP and 32 UDP connections for the Brocade 7810 Switch.
- When planning for VE_Port and bandwidth usage, consider which VE_Port is hosted by which DP complex. This affects load balancing between each DP complex.

Configuration Steps for IP Extension Features

Perform the following major steps for configuring IP Extension features on extension switches. The WAN configuration steps are presented first, followed by LAN configuration steps.

IP Extension WAN Configuration

The major steps that apply to WAN configuration are as follows:

- Configure the operating mode on the Brocade 7840 Switch or Brocade SX6 Blade for 10VE mode (in Hybrid mode, 10VE is the default and 20VE is disallowed). This step is necessary if the switch or blade has an existing FCIP configuration.
- 2. Configure the Brocade 7840 Switch or Brocade SX6 Blade to operate in hybrid mode using the extncfg --appmode hybrid command. (Recall that the Brocade 7810 Switch operates only in Hybrid mode.)

NOTE

Configuring the switch for Hybrid mode is disruptive. On a Brocade 7840 Switch, it reboots and loads the hybrid image. On a Brocade SX6 Blade, it reboots and the chassis is unaffected.

- 3. If an existing configuration is present, persistently disable the existing VE_Ports. See Configuring VE_Ports to Persistently Disabled.
- 4. Create an IP interface (IPIF) for each circuit that you want on a port by assigning an IP address, netmask, and an IP MTU size to an Ethernet port using the portCfg ipif command. See Configuring IPIF. Note that this step applies to overall WAN configuration and is not specific to IP Extension LAN configuration.
- 5. Create one or more IP routes to a port, if required, using the portCfg iproute command. See Configuring IP Route. Note that this step applies to overall WAN configuration and is not specific to IP Extension LAN configuration.
- 6. Test the WAN IP connection using the portCmd --ping command. Note that this step applies to overall WAN configuration and is not specific to IP Extension LAN configuration. See Verifying IP Connectivity for details.

NOTE

If a VLAN is present in the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade, it requires configuration on only the IPIF. Furthermore, the VLANs must match only the configured local Ethernet hop. See Configuring VLAN for details.

NOTE

Stacked VLAN tagging is not supported on the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade. Stacked VLAN tagging is defined in IEEE 802.1ad.

- 7. Create IPsec policies before creating extension tunnels. Though optional, this step is recommended for security. See Configuring IPsec. Note that this step applies to overall WAN configuration and is not specific to IP Extension LAN configuration.
- 8. Create extension tunnels using the portCfg fciptunnel command. See Configuring Extension Tunnels for FCIP. Note that this step applies to overall WAN configuration and is not specific to IP Extension configuration.
- 9. Configure bandwidth distribution for IP Extension using the portCfg fciptunnel command. The bandwidth distribution determines how QoS traffic is distributed between FC and IP bandwidth.
- 10. Configure the compression mode for IP Extension using the portCfg fciptunnel command. Note that IP traffic compression cannot be set to fast deflate.
- 11. Create FCIP circuits (after circuit 0) and enable or disable features using the portCfg fcipcircuit command. See Configuring a VE Port or Tunnel and Circuits for IP Extension for information. Use the portshow fciptunnel and portCfg fcipcircuit commands to verify tunnel and circuit status before proceeding. See Verifying Tunnel Configuration for additional information. Note that this step applies to overall WAN configuration and is not specific to IP Extension configuration.

IP Extension LAN Configuration

The major steps that apply to LAN configuration for IP Extension are as follows:

1. Identify the subnets that will be extended through the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade. Assign IP addresses, subnet masks, and MTUs to be used as LAN gateways to the switch or blade.

NOTE

The local-side LANs that contain the end devices must be on different subnets. For example, you cannot have end-devices on DC-A subnet 10.0.0.0/24 communicating with end-devices DC-B subnet 10.0.0.0/24. Those are the same subnets on each side.

- 2. Configure a GE port for LAN mode using the <code>portCfgGe</code> command.
- 3. Configure the GE port for link aggregation group (LAG) operation using the portchannel command. (This step is optional.)
- 4. Configure a switch virtual interface (SVI) to provide IP access for LAN devices using the portofg ipif command.
- 5. Configure the traffic control list (TCL) for the port using the portcfg tcl command. A TCL consists of a rule name, a priority, an input filter, and a target for the rule. See IP Extension and Traffic Control Lists for details.
- 6. Persistently enable the VE_Ports.

Configuring Hybrid Mode for IP Extension Features

Configure the Brocade 7840 Switch or Brocade SX6 Blade to operate in Hybrid mode, which supports FCIP tunnel features and IP Extension features.

The Brocade 7840 Switch DP or the Brocade SX6 Blade DP cannot be configured in FIPS mode, which Hybrid mode does not support.

The Brocade 7840 Switch or Brocade SX6 Blade must be in 10VE mode before you can enable Hybrid mode. Changing VE modes is disruptive as it requires rebooting the switch. If you plan to use IP Extension, configure Hybrid mode during initial deployment. Because 20VE mode is unavailable in Hybrid mode, it is normal for the 20VE_Ports to be disabled in 10VE mode. The following table shows the 20VE and 10VE ports on the two platforms.

Product	20VE Mode VE_Ports	10VE Mode VE_Ports
Brocade 7840 Switch	3	DP0 - 24 through 28 DP1 - 34 through 38
Brocade SX6 Blade	, i i i i i i i i i i i i i i i i i i i	DP0 - 16 through 20 DP1 - 26 through 30

Table 37: 20VE and 10VE Mode Ports

NOTE

If you configured tunnels and circuits while in FCIP mode, that configuration is carried over to Hybrid mode provided it is compatible with Hybrid mode. If the configuration is incompatible with Hybrid and 10VE mode, you are prompted to make changes.

The following steps are required to configure the Brocade 7840 Switch or Brocade SX6 Blade to operate in Hybrid mode.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the extncfg --app-mode command to enable Hybrid mode. When prompted, confirm the command action.

switch:admin> extncfg --app-mode hybrid

This action will configure the system for Hybrid (FCIP/IPExt) mode.

```
WARNING: This is a disruptive operation that requires a reboot to take effect. Would you like to continue (Y, y, N, n): [n] y
```

Operation succeeded. Rebooting the system...

3. Use the extncfg --show command to confirm Hybrid mode is enabled.

```
switch:admin> extncfg --show
APP Mode is Hybrid (FCIP with IPEXT)
VE-Mode: configured for 10VE mode.
switch:admin>
```

Configuring an IP interface for IP Extension

A circuit endpoint terminates at an IP interface (IPIF), which is defined by an IP address, subnet mask, MTU, and VLAN ID. The default MTU value is 1500 bytes, and the MTU and VLAN ID are optional. If no VLAN is specified, the IPIF will be untagged.

A VLAN ID is needed only when the traffic from the WAN core router/switch is VLAN tagged. The core router/switch to which the circuit connects must be doing VLAN tagging on the traffic to the IP extension platform (such as a Brocade 7840 Switch or Brocade SX6 Blade) before VLANs apply. In most cases, the port on the data center switch is a member of a particular VLAN, but is not set up to do VLAN tagging, which makes VLAN tagging on the IP extension platform unnecessary. Communication with the data center LAN switch will not work if VLAN usage is mismatched. VLANs are used on the Brocade 7840 Switch or Brocade SX6 Blade when multiple circuits pass through the same Ethernet interface, and the connected data center LAN switch directs those circuits to various paths based on the VLAN tag.

For additional information and examples, see Configuring IPIF.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portcfg ipif command to create a circuit endpoint IP address.

switch:admin> portcfg ipif ge2.dp0 create 10.0.1.3/24
switch:admin> portcfg ipif ge3.dp0 create 10.0.1.4/24

In the example, the endpoint IPIFs of two different circuits on the same Brocade 7840 Switch are created and assigned to GE2 (10.0.1.3) and GE3 (10.0.1.4) respectively. A 24-bit subnet mask is being used (255.255.255.0 = /24). Both IP addresses are processed by DP0, and later when the tunnel circuits are created these local IP addresses (10.0.1.3 and 10.0.1.4) will both be assigned to the same VE_Port as members of an extension trunk. There is no requirement that extension trunk circuits be on the same subnet.

Configuring a WAN IP Route for IP Extension

The IP route is based on the destination IP address to be used by the extension circuit. If the WAN IP network has a different subnet on each end, the network is a Layer 3 network and requires an IP route to be configured on the IP extension platform (like the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade). You can define up 128 routes per Ethernet interface on the Brocade 7840 Switch or Brocade SX6 Blade and up to 120 routes per interface on the Brocade 7810 Switch. You can have at most 120 routes per DP. When you create the route, you specify the destination IP subnet or IP address, subnet mask, and gateway IP address for the router that forwards packets to the specified IP subnet or IP address.

You cannot use the portCfg iproute *interface-number*. *dpnumber* modify command to modify the destination network address. To make changes to the IP route definition, you must delete the IP route, and then recreate it. Also, you cannot use this command to change the prefix length or network mask. This command is intended to change the gateway IP address only.

NOTE

When you create an IP route for IP Extension, the route is created on a LAN interface of DP0 or DP1. This differs from creating IP routes for FCIP. For more information on configuring IP routes for FCIP, see Configuring IP Route.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Verify that the switch or blade is in Hybrid mode. You must be in Hybrid mode to configure a LAN IPIF.

```
FCIP_Local:admin> extncfg --show
APP Mode is HYBRID (FCIP with IPEXT)
VE-Mode: configured for 10VE mode.
```

3. Use the portCfg iproute lan. *dp*-number create command to create the IP route from the LAN IPIF gateway to the destination network address.

switch:admin> portcfg iproute lan.dp0 create 192.168.12.100/32 10.0.1.1
switch:admin> portcfg iproute lan.dp0 create 192.168.12.0/24 10.0.1.1

The first route is a host-based route, meaning that it is a single IP address route to a host, which is indicated by the full netmask, /32.

The second route is a subnet-based route, meaning that it is a route for an entire subnet, which is indicated by a partial netmask, in this case /24. By specifying a subnet route, you can save configuration time if there are multiple WAN circuits in the same subnet. In a subnet you need not add an IP route for every circuit IP address. The same LAN IPIF gateway is used for each route.

4. Use the portshow iproute command to display IP routes configured on the interface. IP routes for FCIP are configured on a GE interface, whereas IP routes for IP Extension are configured on a LAN interface.

switch:admin> portshow iproute							
Port	IP Address	/ Pfx	Gateway	Flags			
ge10.dp0	10.10.0.0	/ 16	*	UC			
ge10.dp0	192.168.12.0	/ 24	*	UC			
ge10.dp0	192.168.12.8	/ 32	*	UHL			
ge11.dp0	192.168.86.0	/ 24	*	UC			
ge11.dp0	192.168.86.14	/ 32	*	UHL			
ge11.dp0	192.168.86.114	/ 32	*	UHL			
ge11.dp1	192.168.86.0	/ 24	*	UC			
ge11.dp1	192.168.86.14	/ 32	*	UHL			
ge12.dp0	192.168.16.0	/ 24	*	UC			
ge12.dp0	192.168.16.15	/ 32	*	UHL			
lan.dp0	192.168.53.128	/ 26	*	UC			
lan.dp0	192.168.53.130	/ 32	*	UHL			
lan.dp0	192.168.53.192	/ 26	*	UC			

Flags: U=Usable G=Gateway H=Host C=Created(Interface)

S=Static L=LinkLayer X=Crossport

The following example shows IP route information where WAN gateways and LAN gateways are configured. The WAN gateway is configured on the ge10.dp1 interface, and the LAN gateway is configured on the lan.dp0 interface.

switch:adming> portshow iproute

Port	IP Address	/ Pfx	Gateway	Flags
7/ge10.dp1 7/ge10.dp1 7/lan.dp0 7/lan.dp0	192.168.1.0 192.168.2.0 192.168.23.2 192.168.40.194	/ 32 / 24 / 32 / 32	* 192.168.1.1 * 3.3.5.0	UC UGS UHL UGS
7/lan.dp0	192.168.53.64	/ 26	*	UC

Flags: U=Usable G=Gateway H=Host C=Created(Interface)

S=Static L=LinkLayer X=Crossport

NOTE

The portshow iproute command may display more routes than you have configured. Some routes are added by default. Do not remove or alter these other routes.

5. Use the portCfg iproute lan. dp-number delete command to delete IP routes configured on a LAN IPIF gateway.

switch:admin> portcfg iproute lan.dp0 delete 10.0.0.3/24

Configuring a Tunnel to Support IP Extension

Configure a tunnel to support IP Extension features.

The Brocade 7840 Switch or Brocade SX6 Blade must be in Hybrid mode. GE ports must be configured for LAN operation. Optionally, LAGs are defined.

To use IP Extension features, you enable IP extension capability on a tunnel. You can create an IP extension capable tunnel or you can modify an existing tunnel to support IP extension.

At least one circuit is required for each tunnel before it can operates. If the circuit parameters are included in the tunnel creation, circuit 0 is automatically created when the tunnel is created.

A recommended practice is to stage your tunnels and circuits. When you stage your tunnels and circuits, you create a basic tunnel and use the portcfg fciptunnel *ve-port* modify command to add, remove, or change values. When your tunnel is configured, you can add circuits with the portcfg fcipcircuit create and portcfg fcipcircuit modify commands.

NOTE

When circuit options are specified on the portcfg fciptunnel *ve-port* create command and the portcfg fciptunnel *ve-port* modify command, they apply only to circuit 0 because these are tunnel operands and not fciptunnel operands. When additional circuits are added, circuit options must be applied per circuit using the portcfg fcipcircuit create or portcfg fcipcircuit modify commands.

ATTENTION

When you configure a tunnel, it is strongly recommended that you apply IPsec policies. IPsec is used for data in-flight across the WAN-side circuits. IPsec is applied to the entire tunnel and all member circuits. You cannot apply IPsec to just one individual circuit of a tunnel. Brocade IPsec has been implemented in HW and operates at line rate, adding negligible propagation delay. See Configuring IPsec on the 7840 and SX6 for additional information about IPsec implementation.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portcfg fciptunnel ve-port create command to create an IP Extension capable tunnel.

This example creates and enables an IP Extension tunnel on VE_Port 24. Notice that protocol and QoS distribution are reset to default values.

switch:admin> portcfg fciptunnel 24 create --ipext enable
Warning: Modification of the distribution ratio will reset the QoS ratio values to default.
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [n]

- 3. Connect to the switch and log in using an account assigned to the admin role.
- 4. Use the portcfg fciptunnel *ve-port* modify command to modify an existing tunnel to be IP Extension capable.

This example modifies an existing tunnel on VE_Port 24 to disable IP Extension.

switch:admin> portcfg fciptunnel 24 modify --ipext disable
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.

Continue with Modification (Y,y,N,n): [n]

Configuring Bandwidth Distribution

Tunnel traffic is distributed between a Fibre Channel traffic group and an IP extension traffic group. You can configure bandwidth ratios between the two groups when a tunnel is configured to support IP Extension. QoS priority is distributed within the bandwidth allocations.

When you configure bandwidth distribution, you can change the default allocation of 50/50 between Fibre Channel (FC) and IP Extension (IP) traffic in a tunnel. All bandwidth allocations are expressed as percentages.

NOTE

The minimum percentage that is allowed for a QoS priority or a distribution group cannot go below 10 percent.

After configuring the FC and IP bandwidth distribution you can configure QoS high, medium, and low priorities in each of the FC and IP distributions. The default priority values for QoS are 50/30/20 for high, medium, and low.

NOTE

Creating or modifying distribution bandwidth can disrupt traffic on the specified tunnel for a brief period of time. The tunnel is brought down before the new configuration is applied, then the tunnel is brought up.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- Use the portcfg fciptunnel create --distribution protocol command to create protocol bandwidth distribution.

This command creates protocol bandwidth distribution at 60 percent for FC and 40 percent for IP traffic.

```
switch:admin> portcfg fciptunnel 24 create --distribution protocol,60,40
Operation Succeeded
```

3. Use the portofg fciptunnel modify --distribution command to change traffic protocol distribution. The first value applies to FC traffic and the second value applies to IP traffic.

This command modifies protocol bandwidth values to 40 percent for FC traffic and 60 percent for IP traffic.

```
switch:admin> portcfg fciptunnel 12 modify --distribution protocol,40,60
Warning: Modification of the distribution ratio will reset the QoS ratio values to default.
!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fciptunnel specified for a brief period of time. This
operation will bring the existing tunnel down (if tunnel is up) before applying new configuration.
Continue with Modification (Y,y,N,n): [ n] y
```

- 4. Use the portcfg fciptunnel modify command to change the QoS priority bandwidth allocations in the FC traffic group and the IP traffic group.
 - a) Use the portofg for for modify --fo-qos-ratio command to configure the FC QoS priorities.

This command modifies the FC QoS priority bandwidth values for high to 30 percent, medium to 50 percent, and low to 20 percent.

```
switch:admin> portcfg fciptunnel 12 modify --fc-qos-ratio 30,50,20
Operation Succeeded
```

b) Use the portofg fciptunnel modify --ip-qos-ratio command to configure the IP QoS priorities.

This command modifies IP QoS priority bandwidth values for high to 60 percent, medium to 30 percent, and low to 10 percent.

```
switch:admin> portcfg fciptunnel 12 modify --ip-qos-ratio 60,30,10
Operation Succeeded
```

5. Use the portshow fciptunnel -d command to display the distribution values.

The following example displays the results of QoS protocol distribution to 40/60 percent, and the results of changing the IP QoS and FC QoS bandwidth values. (The output is truncated.)

switch:admin> portshow fciptunnel -d

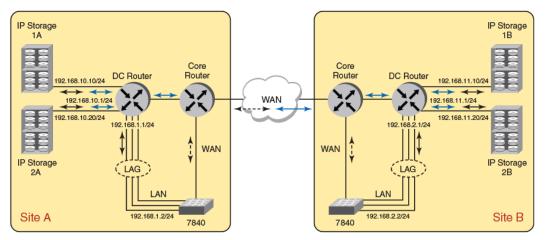
Tunnel: VE-Port:12 (idx:0, DP0)

Oper State	:	In Progress
TID	:	12
Flags	:	0x0000000
IP-Extension	:	Enabled
Compression	:	None
FC-Compression	:	None (Inherited)
IP-Compression	:	None (Inherited)
QoS Distribution	:	Protocol (FC:40% / IP:60%)
FC QoS BW Ratio	:	30% / 50% / 20%
IP QoS BW Ratio	:	60% / 30% / 10%
[]		

Remember that the distribution and bandwidth values should be configured the same at both ends of the tunnel.

Configuring a LAN IP Route for IP Extension and Policy-Based Routing

IP Extension supports policy-based routing (PBR) connections to the LAN interfaces on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade. This allows Layer 3 (routing) connections, in addition to the Layer 2 (direct) connections, to the extension platform.


Most configuration steps for PBR are done on the router. You configure a next-hop gateway address on the router that identifies the extension platform interface as a next-hop, and you configure a policy, such as an access control list, that determines what traffic is sent to the extension platform.

On the extension platform (the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade), you create an IP route to the next-hop gateway. Steps for configuring the IP route for PBR are similar to configuring an IP route for WAN.

When you configure an address for the next-hop gateway, the extension platform learns the MAC address of the next-hop gateway through an ARP message. Thereafter, any packets to the next-hop gateway are forwarded to the learned MAC address through the LAN FE port.

The following illustration shows an example of a network topology where the Brocade 7840 Switch functions as a next-hop gateway for policy-based routing traffic from the DC router. Traffic that is not diverted to the Brocade 7840 Switch by the PBR in the DC router passes through to the core router.

Figure 21: PBR Example Network

Arrows to show default IP storage traffic between Site A and Site B

Arrows to show specific type IP storage traffic between Site A and Site B redirected

✓--≻ Arrows to show 7840 IP Extension WAN traffic

The policies are implemented in the data center (DC) router at each site. In the configuration steps, the router configurations and the IP storage configurations are generic. You must refer to the documentation specific to your equipment for the detailed steps.

NOTE

It is assumed that the WAN tunnel configuration across the core router is complete. It is also assumed that DC routers are configured and can route across core routers using the path between sites A and B.

Configuring the Brocade 7840 Switch on Each Site

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portofg ipif command to configure an IP LAN interface. You perform this action on the Brocade 7840 Switch on each site.

admin:switch_siteA> portcfg ipif lan.dp0 create 192.168.1.2 netmask 255.255.255.0

admin:switch siteB> portcfg ipif lan.dp0 create 192.168.2.2 netmask 255.255.255.0

This command creates a LAN interface on the Brocade 7840 Switch.

3. Use the portofg iproute command to specify the next-hop gateway address. You perform this action on the Brocade 7840 Switch at each site.

admin:switch_siteA> portcfg iproute lan.dp0 create 192.168.10.0 netmask 255.255.255.0 192.168.1.1

admin:switch siteB> portcfg iproute lan.dp0 create 192.168.11.0 netmask 255.255.255.0 192.168.2.1

These commands configure a LAN route with the destination subnet of the local storage using the DC router LAG interface IP as the gateway.

Configuring the Routers at Each Site

NOTE

You must refer to the documentation specific to your router equipment for the detailed steps. The following steps provide generic information.

4. On the DC Router at Site A, configure the router interface for the LAG that is connected to the Brocade 7840 Switch.

```
DC Router Site A:
IP: 192.168.1.1 mask 255.255.255.0
```

5. On the DC Router at Site B, configure the router interface for the LAG that is connected to the Brocade 7840 Switch.

```
DC Router Site B:
IP: 192.168.2.1 mask 255.255.255.0
```

Configuring the router policy at each site

NOTE

You must refer to the documentation specific to your router equipment for the detailed steps. The following steps provide generic information.

6. Configure DC Router at Site A with a policy-based route to direct a specific IP traffic type or ACL, destined to the remote site, to use the Brocade 7840 Switch LAN interface as the gateway or next hop.

```
DC Router Site A:
Destination subnet: 192.168.11.0 mask 255.255.255.0
Source subnet: 192.168.10.0 mask 255.255.255.0
Type: <specific protocol or well-known port or ACL>
Gateway: 192.168.1.2
```

7. Configure DC Router at Site B with policy-based route to direct a specific IP traffic type or ACL, destined to the remote site, to use the Brocade 7840 Switch LAN interface as the gateway or next hop.

```
DC Router Site B:
Destination subnet: 192.168.10.0 mask 255.255.255.0
Source subnet: 192.168.11.0 mask 255.255.255.0
Type: <specific protocol or well-known port or ACL>
Gateway: 192.168.2.2
```

Configuring the IP storage devices at each site

NOTE

You must refer to the documentation specific to your storage devices for the detailed steps. The following steps provide generic information.

8. Configure the IP interfaces on the storage devices at Site A, which are shown in the illustration as IP Storage 1A and IP Storage 2A.

```
IP Storage 1A:
IP: 192.168.10.10 mask 255.255.255.0
IP Storage 2A:
IP: 192.168.10.20 mask 255.255.255.0
```

9. Configure the IP interfaces on the storage devices at Site B, which are shown in the illustration as IP Storage 1B and IP Storage 2B.

```
IP Storage 1B:
IP: 192.168.11.10 mask 255.255.255.0
IP Storage 2B:
IP: 192.168.11.20 mask 255.255.255.0
```

10. Configure the destination routes for peer-site subnet using the DC Router at each site as a gateway. The Site A IP storage devices have a destination route to Site B IP storage devices and Site B devices to Site A devices.

```
IP Storage 1A destination route to 1B:
Destination route: 192.168.11.0 mask 255.255.255.0 gateway 192.168.10.1
IP Storage 2A destination route to 2B:
Destination route: 192.168.11.0 mask 255.255.255.0 gateway 192.168.10.1
IP Storage 1B destination route to 1A:
Destination route: 192.168.10.0 mask 255.255.255.0 gateway 192.168.11.1
IP Storage 2B destination route to 2A:
Destination route: 192.168.10.0 mask 255.255.255.0 gateway 192.168.11.1
```

Configuring Tunnel Compression

Configure tunnel compression per protocol on the tunnel. You can override inherited compression values.

The Brocade 7840 Switch or Brocade SX6 Blade must be in Hybrid mode. GE ports must be configured for LAN operation and a tunnel must be configured to support IP Extension.

The enhancements for IP Extension allow you to configure compression on the tunnel at a protocol level. The protocol compression options override the main tunnel compression level and set the compression for the specified protocol to the desired mode. The available modes depend on the protocol, whether FC or IP.

The IP priorities do not support fast-deflate compression, so only the deflate and aggressive deflate options are allowed with the --ip-compression option. If the main tunnel compression is set to fast deflate, the IP priorities are set to none. The protocol-based compression modes can be set to default, which causes the protocol compression to inherit the configuration from the main tunnel compression setting.

The configuration steps show how to set compression for a tunnel and how to set compression overrides for traffic in that tunnel.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portcfg fciptunnel modify --compression command to configure the fast-deflate compression level for tunnel compression.
 - a) Configure fast-deflate tunnel compression.

switch:admin> portcfg fciptunnel 24 modify --compression fast-deflate

b) Verify that fast-deflate compression is not supported for the IP protocol.

```
switch:admin> portshow fciptunnel 24
Tunnel: VE-Port:24 (idx:0)
...
Compression : Fast Deflate
FC-Compression : Fast Deflate (Inherited)
IP-Compression : None (Inherited)
```

3. Use the portcfg fciptunnel modify --ip-compression command to change the IP compression to deflate.a) Configure deflate compression for the IP protocol.

switch:admin> portcfg fciptunnel 24 modify --ip-compression deflate

b) Verify that deflate compression is configured for IP protocol.

```
switch:admin> portshow fciptunnel 24
Tunnel: VE-Port:24 (idx:0)
....
Compression : Fast Deflate
FC-Compression : Fast Deflate (Inherited)
IP-Compression : Deflate (Override)
....
```

4. You can use the portofg fciptunnel modify command to return compression values to their default, inherited values.

switch:admin> portcfg fciptunnel 24 modify --fc-compr default --ip-compr default

Configuring a Tunnel and Circuits for IP Extension

After you configure a tunnel on a VE_Port, create circuits on the VE_Port that belong to this tunnel. Start with circuit 0 and add circuits incrementing by 1. Circuit 0 is created by default when you create a tunnel. You must create a circuit for each path you want through the IP infrastructure. A VE_Port on the Brocade 7840 Switch or Brocade SX6 Blade can have up to 10 circuits that are assigned to it. The Brocade 7810 Switch can have up to eight circuits. Circuits require identical settings on each end of the circuit to come online.

When you configure a circuit, carefully consider the keep-alive timeout value (KATOV), which is important for proper error recovery. The KATOV should be based on application requirements. Check with your IP storage application provider to determine the appropriate KATOV for your application. The sum of all circuit KATOVs in a tunnel should be slightly less than the I/O timeout value. For example, a mirroring application has a 6-second I/O timeout. There are three circuits belonging to a VE_Port (3 circuit members in the tunnel). Set the KATOV to 2 seconds on each circuit. This allows maximum retries overall available circuits before an I/O is timed out by the IP storage application. In many cases, a 2- to 3-second KATOV is optimal for IP Extension and should be considered.

See Keep-Alive Timeout Value for FICON for more information.

NOTE

There is a 2-second KATOV boundary for support. When KATOV is set for 2 seconds and above, the supported round-trip time (RTT) is 250 ms and a 1-percent packet loss. When KATOV is less than 2 seconds, the supported RTT is 200 ms and 0.1-percent packet loss.

1. Use the portofg fcipcircuit command to create and modify circuits. Use the portofg fciptunnel command to create a tunnel with no circuits. A tunnel must be in place before you can add circuits.

```
switch:admin> portcfg fciptunnel 24 create
switch:admin> portcfg fcipcircuit 24 create 0
switch:admin> portcfg fcipcircuit 24 modify 0 --local-ip 172.16.1.3 --remote-ip 172.16.2.3
switch:admin> portcfg fcipcircuit 24 modify 0 --max-comm-rate 1000000 --min-comm-rate 5000000
switch:admin> portcfg fcipcircuit 24 modify 0 --keepalive 1000
switch:admin> portcfg fcipcircuit 24 create 1
switch:admin> portcfg fcipcircuit 24 modify 1 --local-ip 172.16.1.4 --remote-ip 172.16.2.4
switch:admin> portcfg fcipcircuit 24 modify 1 --max-comm-rate 1000000 --min-comm-rate 5000000
switch:admin> portcfg fcipcircuit 24 modify 1 --max-comm-rate 1000000 --min-comm-rate 5000000
```

The example shows adding two circuits (0 and 1) to VE_Port 24. The keepalive is changed to 1 second, which decreases the link loss recovery time. The ARL value for the circuit is modified with the ARL floor at 5Gb/s and the ceiling at 10Gb/s. When configuring the remote side, the commands are nearly the same except for the local and remote IP addresses are switched.

2. Use the portshow fcipcircuit command to display circuit values. This command is useful for tracking the staging activity while you modify circuit values. You can also see when the circuit configuration has all the required values and is considered complete.

The example shows output for VE_Port 24 and circuit 0 before any values are configured, such as the local and remote IP addresses, bandwidth values, or KATOV.

Configuring Ethernet Interfaces (GbE Port) for IP Extension LAN Features

Configure the GbE port for IP Extension LAN features.

The Brocade 7840 Switch or Brocade SX6 Blade must be in Hybrid mode. (The Brocade 7810 Switch operates only in Hybrid mode.)

To use the IP Extension features, you must configure a GbE port to operate in LAN mode. IP Extension features cannot function without a LAN interface. The end-device storage on an IP network communicates with IP Extension by means of the LAN IPIF gateway, a function provided through the GbE port when it is configured as a LAN interface. If the interface is not configured as LAN, it defaults to a WAN interface and incoming traffic is treated as WAN traffic and dropped.

Any existing IP configuration must be removed before changing a GbE port to LAN mode. Once a port is configured as a LAN port, it cannot be used as a WAN port for any circuit definitions.

Only the 1GbE/10GbE ports, or Ethernet interfaces, can be configured as LAN ports. The 16 available Ethernet interfaces are numbered from GE2 to GE17. Up to eight 10GE interfaces can be configured as LAN ports. Speeds of 1G or 10G are supported. The 40GbE ports, GE0 and GE1, cannot be configured as LAN ports.

NOTE

The Brocade 7810 Switch provides a maximum of six Ethernet interfaces (6 * 1/10GbE optical ports or 4 x 1/10GbE optical ports and 2 x 1GbE RJ-45 copper ports). All ports support LAN and WAN configuration and can be used as per the installed license.

The following steps are required to configure a GbE port to operate in LAN mode.

1. Use the portcfgge command to configure a GbE port for LAN operation.

This example puts port GE10 in LAN mode.

```
switch:admin> portcfgge gel0 --set -lan
Operation Succeeded.
```

2. Optionally, use the portcfgge command to change the interface speed. The example sets port speed for port GE10 to 1Gb/s.

```
switch:admin> portcfgge ge10 --set -speed 1G
Operation Succeeded.
```

3. Use the portcfgge --show command to verify that the GbE port is in LAN mode and to show the port speed.

(The example output is truncated.)

switch:admin> portcfore --show

2	SWILCHI. AUMITIZ	porcergge	5110W	
	Port	Speed	Flags	LAG-ID
	ge0	40G		-
	gel	40G		-
	ge2	10G		-
	ge3	10G		-
	ge4	10G		-
	ge5	10G		-
	ge6	10G		-
	ge7	1G		-
	ge8	10G		-
	ge9	10G		-

gel0 1G --L-- [. . .]
Flags: A:Auto-Negotiation Enabled C:Copper Media Type
L:LAN Port G=LAG Member

4. Alternatively, use the switchshow command to verify that the GbE port is in LAN mode.

(The example output is truncated.)

switch:admin> switchshow							
Index	Port	Address	Media	Speed	State	Proto	
	ge0		id	40G	Online	FCIP	
	ge1		id	40G	Online	FCIP	
	ge2		id	10G	Online	FCIP	
	ge3		id	10G	Online	FCIP	
	ge4		id	10G	Online	FCIP	
	ge5		id	10G	Online	FCIP	
	ge 6		id	10G	Online	LAN	
	ge7		id	10G	Online	LAN	
	ge8		id	10G	Online	LAN	
	ge9		id	10G	Online	FCIP	
	ge1	0	id	1G	Online	LAN	

Configuring a LAN Gateway (SVI) for IP Extension

The switch virtual interface (SVI) IP interface (IPIF) acts as the gateway address for the endpoint devices being redirected through the IP extension platform. The gateway address on the LAN interface acts as a virtual switch and is often the next-hop address for IP routes from the endpoint device.

The IP extension platform (such as the Brocade 7840 Switch or the Brocade SX6 Blade) must be configured for Hybrid mode. (The Brocade 7810 Switch operates only in Hybrid mode.) GE ports must be configured for LAN operation.

There is only one SVI interface per data processor (DP) complex, meaning one LAN-side Ethernet device and MAC per DP. The Brocade 7840 Switch and the Brocade SX6 Blade can have at most 8 SVI IP addresses defined per DP, but they all use the same single SVI interface. The Brocade 7810 Switch can have a maximum of 4 SVI IPIFs.

NOTE

For this discussion, the SVI IPIF is referred to as the LAN gateway, because that is the function it provides for directly connected devices.

You must configure a LAN gateway (SVI IPIF) for each different subnet that an end device has an interface on. On the end device, for each different IP subnet that is used on interfaces, you must add an IP route on the end device that points to the LAN gateway. These IP routes are required before the end device can send traffic to the IP extension platform.

Local end-device IP addresses can be on the same subnet, different subnets, or a combination of subnets. The local and remote end-device IP addresses must be on different subnets.

In the following situations, separate LAN gateways must be configured:

NOTE

Multiple LAN gateways belonging to the same IP subnet cannot be configured on the same DP. A separate IPIF gateway is needed for each VLAN on the LAG.

If the LAG is not configured to use VLAN tagging (802.1Q) on the data center LAN switch, do not associate a VLAN ID with the LAN IPIF because that prevents communications with the data center LAN switch. Tagged traffic can only talk to interfaces that are configured to recognize tagged traffic.

When there are multiple VLANs, the LAG is a VLAN trunk and the traffic is tagged. In this instance, multiple logical ISLs pass over the physical LAG, and the different VLAN traffic is tagged with the appropriate VLAN ID. For the tagged traffic to be properly forwarded to the corresponding LAN IPIF gateway, the gateway must be configured with the matching VLAN ID for each VLAN. If the LAG to the LAN switch is tagged, a LAN IPIF gateway is created for each VLAN.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use portcfg ipif create to configure a LAN gateway port on a DP.

This example shows a LAN gateway on DP0 configured on VLAN 100.

switch:admin> portcfg ipif lan.dp0 create 10.0.0.1/24 vlan 100

This example shows a tagged LAN gateway on DP0 configured for the maximum MTU of 9216 on VLAN 200.

NOTE

PMTU auto-discovery is not supported on the LAN gateway interface (SVI IPIF).

switch:admin> portcfg ipif lan.dp0 create 10.0.1.1/24 vlan 200 mtu 9216

This example shows an untagged LAN gateway on DP1.

switch:admin> portcfg ipif lan.dp1 create 10.0.2.1/24

3. Use portcfg ipif delete to delete a LAN gateway port on a DP.

The example deletes a LAN gateway port on DP0.

switch:admin> portcfg ipif lan.dp0 delete 10.0.0.3

A LAN IPIF can be deleted while still in use. Clean-up enforcement checks are not done on a LAN IPIF. Inadvertently deleting a LAN IPIF disrupts all IP extension flows using that LAN gateway.

4. Use portshow ipif to display the IPIF ports.

switch:admin> portshow ipif

The example shows two LAN ipif gateways (10.0.0.1 on VLAN 100 with MTU 1500, and 10.0.1.1 on VLAN 200 with MTU 9216) configured on DP0, as well as two WAN circuit endpoint IPIFs (192.168.60.20 on GE4 and 192.168.10.107 on GE17) configured on DP0.

Port	IP Address	/ Pfx	MTU	VLAN	Flags
ge4.dp0	192.168.60.20	/ 24	1500	0	URM
ge17.dp0	192.168.10.107	/ 24	1500	0	URM
lan.dp0	10.0.1	/ 24	1500	100	URM
lan.dp0	10.0.1.1	/ 24	9216	200	URM

```
Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running
N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport
```

Configuring Traffic Control Lists for IP Extension

A traffic control list (TCL) defines how LAN traffic is mapped to specific tunnels. Multiple TCL rules, arranged by priority, provide a high level of control over the LAN traffic flow through a particular DP. For additional details about TCL rules and how they operate, see IP Extension and Traffic Control Lists.

NOTE

Brocade 7840 Switch and Brocade SX6 Blade support a maximum of 1024 defined and 128 active TCLs, whereas the Brocade 7810 Switch supports a maximum of 256 defined and 32 active TCLs.

NOTE

TCL rules must be configured. One default rule exists, which is to deny all traffic. This default rule cannot be removed or modified. It is the lowest priority rule, 65535, so it will be the last rule enforced. To have traffic over an IP extension tunnel, you must configure one or more rules that allow traffic to pass through.

Each TCL rule is identified by a name assigned to the rule. Each name must be unique within the IP extension platform (such as the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade). Rules are local to each platform and are not shared across platforms.

The TCL priority number provides an order of precedence to the TCL rule within the overall TCL list. The priority value must be unique across all active TCL rules within an IP extension platform.

The TCL input filter inspects a set of parameters to help identify the input traffic. The TCL input filter identifies a particular host, device, or application by means of the Layer 4 protocol encapsulated within IP, Layer 4 destination ports, Layer 3 source or destination IP addresses and subnets, DSCP/802.1P QoS values, or VLAN tagging.

When defining a TCL rule, the TCL action (allow or deny) and TCL target will determine the behavior with regard to the DPs.

Use the portshow tcl --help command to view the options available for displaying TCL information.

The configuration steps show how to create a TCL named FromSubnetA, enable it, identify a target, source address, and set the rule priority all with a single command. The source IP address identifies a subnet.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portcfg tcl command to create a TCL.

```
switch:admin> portcfg tcl FromSubnetA create --admin enable --target 24 --src-addr 10.0.0.0/8 --priority
10
Operation Succeeded
```

3. Use the portshow tcl command to display TCL information.

```
switch:admin> portshow tcl
```

Pri	Name	Flgs Src-Addr	Target	L2COS	VLAN Dst-2		Proto	Port	Hit
*10	FromSubnetA	AI 10.0.0.0/8	24-Med 8	ANY	ANY ANY	ANY	ANY	ANY	0
*65535	default	D	-	ANY	ANY	ANY	ANY	ANY	0

```
ANY ANY

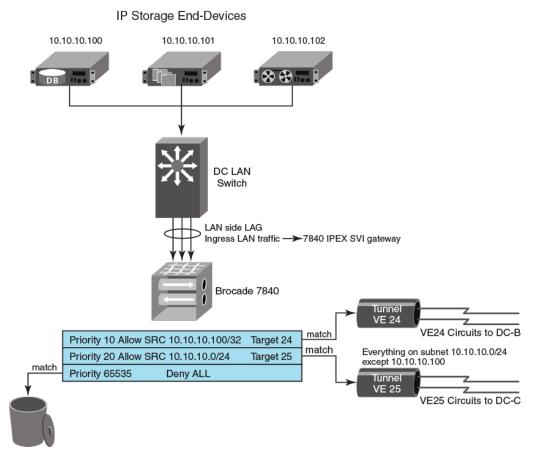
Flags: *=Enabled ..=Name Truncated (see --detail for full name)

A=Allow D=Deny I=IP-Ext P=Segment Preservation

R=End-to-End RST Propagation N=Non-terminated.
```

Configuring TCL for Multiple Tunnels

You can configure TCL rules that allow traffic to go to a specific tunnel when more than one tunnel is needed for different destinations.


Multiple tunnels are typically used to go to multiple data centers. Normally, only one tunnel is used per data center between two IP Extension platforms (that is, a pair of Brocade 7840 Switches, Brocade 7810 Switches, or Brocade SX6 Blades). A single tunnel can leverage Extension Trunking for aggregated bandwidth using multiple circuits, failover and failback, lossless link loss (LLL), and other benefits.

Refer to the following figure. It shows three local IP storage applications communicating to two remote data centers. The DB application (10.10.10.10.100) is destined for DC-B. The NAS and tape applications (10.10.10.101 and 10.10.10.102 respectively) are destined for DC-C. The target specified in the matching TCL rule directs traffic to the correct tunnel. Extension tunnels are point-to-point, therefore, pointing matched traffic to a particular tunnel sends that traffic to the desired data center. When traffic encounters the first matching TCL "allow" rule, that action is performed and no additional TCL processing occurs for that particular traffic stream. Any subsequent rules in the TCL are not evaluated.

As shown in the figure, the first rule is for a specific host source IP address of 10.10.10.100. When there is a match, all traffic sourced from 10.10.10.100 is sent to tunnel 24. The TCL looks just for this specific host IP address because the prefix length has been set to 32 (subnet mask 255.255.255.255), which indicates that all bits in the address must match. It is a host address and not a subnet address. If the traffic is not sourced from 10.10.10.100 then it will fall through to the next priority in the TCL.

The IP addresses 10.10.10.101 and 10.10.10.102 do not match priority rule 10 (as shown in the figure). Priority rule 20 is evaluated next. That rule allows IP address. 10.10.10.0 with prefix length of 24 (subnet mask 255.255.255.0), which means that the first 24 bits of the IP address are significant and must match. The last 8 bits are not significant and can vary. If the incoming traffic is sourced from 10.10.10.4 (subnet match is rule and is sent to tunnel 25.

All traffic that does not match the first two priority rules (10 and 20) encounters the final priority rule 65535. The final rule, which cannot be altered or removed, is to deny all traffic. Any traffic processed by this final priority is dropped.

Figure 22: TCL Rules and Multiple Tunnels

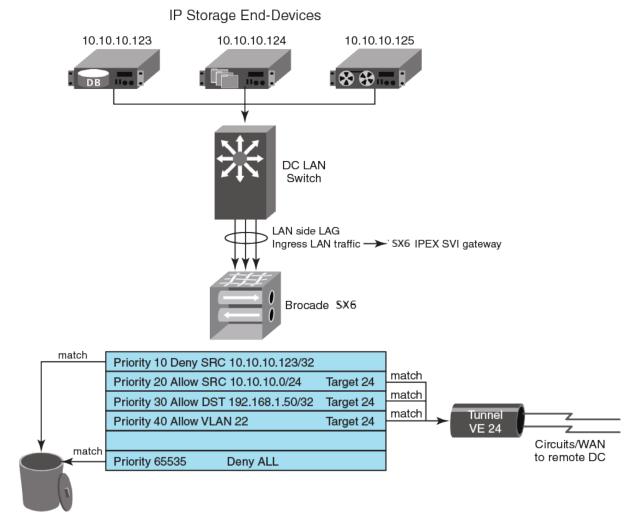
- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portcfg tcl command to create the TCL rules.

switch:admin> portcfg tcl DCB create --admin enable --target 24 --src-addr 10.10.10.100/32 --priority 10
switch:admin> portcfg tcl DCC create --admin enable --target 25 --src-addr 10.10.10.0/24 --priority 20

3. Use the portshow tcl command to display the configured TCL rules.

Pri	Name	Flgs Src-Addr	Target	L2COS	VLAN Dst-A		Proto	Port	Hit
*10	DCB	AI 10.10.10	24-Med .100/32	ANY	ANY ANY	ANY	ANY	ANY	0
*20	DCC	AI 10.10.10	25-Med.0/24	ANY	ANY ANY	ANY	ANY	ANY	0
*6553	5 default	D ANY	-	ANY	ANY ANY	ANY	ANY	ANY	0

switch:admin> portshow tcl


```
Flags: *=Enabled ..=Name Truncated (see --detail for full name)
A=Allow D=Deny I=IP-Ext P=Segment Preservation
R=End-to-End RST Propagation N=Non-terminated.
```

Configuring Traffic Control Lists for a Single Tunnel

You can create traffic control lists (TCLs) to filter traffic based on different criteria. For example, use source addresses and destination addresses to determine whether traffic is passed to a tunnel. All traffic that is filtered by a TCL is from the local LAN. Traffic from a WAN extension tunnel is not filtered.

The following figure shows that traffic is filtered based on source address, a destination address, and VLAN tagging:

- The first rule (priority 10) is processed to deny traffic from IP source address 10.10.10.123. Because the address
 prefix is /32 (netmask 255.255.255.255) all bits of the address must match. This address is a single interface and not a
 subnet address.
- The next rule (priority 20) is processed to allow traffic from IP source address 10.10.10.0, and is configured as a subnet address. The address prefix is /24 (netmask 255.255.255.0). The traffic target is the tunnel at VE_Port 24.
- The next rule (priority 30) allows traffic that is destined for a single interface at IP address 192.168.1.50. The address prefix /32 identifies it as a single interface, not a subnet. None of the traffic for this destination address is from subnet 10.10.10.0 because traffic was filtered by the previous rule (priority 20). Instead, this traffic must be from a different subnet, or interface, and destined for 192.168.1.50.
- The next rule (priority 40) allows all traffic that is tagged with VLAN 22 (802.1Q). Any traffic that matches this rule does not have a source address from subnet 10.10.10.0, and can not be destined for 192.168.1.50. The priority 20 and priority rule 30 have filtered that traffic.
- The final rule is the default rule (priority 65535), which denies all traffic that is not allowed.

Figure 23: Example TCL for Target 24

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use the portofg tol command to configure the TCL rules. Each rule must have a unique name and priority.

Configuring Traffic Control Lists for Non-Terminated traffic

You can create a traffic control list (TCL) rule for traffic that does not terminate at the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade. The non-terminated TCL option allows TCP traffic to be sent as-is to the other endpoint over a tunnel.

As a best practice, configure the non-terminated TCLs with a higher priority than the terminated TCL. For example, a priority value of 10 is higher than a priority value of 100. By doing so, lookup overhead for the non-terminated flows is reduced.

The following steps are required to configure TCL for non-terminated traffic. By default this option is disabled.

- 1. Connect to the switch and log in using an account assigned to the admin role.
- 2. Use the portcfg tcl create command with the --non-terminated enable option to create a TCL rule and enable it.

3. To disable a non-terminated TCL feature, Use the portcfg tcl modify command with the --non-terminated disable option.

switch:admin> portcfg tcl control 1 modify --non-terminated disable

4. Use the portofgshow tol command to display a summary of TCL rule information.

switch:admin> portshow tcl

Pri	Name	Flgs Src-Addr	Target	L2COS	VLAN Dst-A		Proto	Port	Hit
500	control_1	AIN	25-High	ANY	ANY	ANY	TCP 3400-3	500	0
		ANY			ANY				
*65535	default	D ANY	-	ANY	ANY ANY	ANY	ANY	ANY	0
Flags: *=Enabled=Name Truncated (seedetail for full name) A=Allow D=Deny I=IP-Ext P=Segment Preservation R=End-to-End RST Propagation N=Non-terminated.									

5. Use the portofgshow tol command with the --detail option to display detailed TCL rule information.

In this example, the non-terminated function is disabled.

switch:admin> portshow tcl control_1 --detail
TCL: control_1
Admin Status: Enabled
Priority: 789
Target: 25-High (tid:8)
VLAN: ANY

L2COS:	ANY
DSCP:	ANY
Source Address:	ANY
Destination Address:	ANY
L4 Protocol:	ANY
Protocol Port:	ANY
Action:	Allow DP0
RST Propagation:	Disabled
Segment Preservation:	Disabled
Non Terminated:	Disabled <==
Cfgmask:	0x08cc3807
Hit Count:	0

Configuring an App-Type for a Traffic Control List

You can create an app-type to use for additional TCL filtering.

You create an app-type when you have a custom application that uses a port or port range that must be provided in a traffic control list (TCL) so that the traffic for that port can be allowed or denied.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Use the portcfg app-type command to configure the app name and port or port range.

```
switch:admin> portcfg app-type SpecialApp create --portrange 21500-21600 --description "Special
application"
Operation Succeeded
```

3. Use the portshow app-type command to display the configured app-types. All app-types are displayed.

	Port Ranges	-
CIFS	139,445	
Data-Domain	2051	EMC Data Domain
FCIP	3225-3226	
FTP	20-21,989-990,115	Includes Control data FTPS and
		Simple FTP
HTTP	80,8080,8000-8001,3128	
HTTPS	443	
Isilon-SyncIQ	5666-5667	
LDAP	389,8404,636	Includes LDAP secure
MS-SQL	1443	
MySQL	3306	
NETAPP-SNAP-MIRROR	10566	
NFS	2049	
ORACLE-SQL	66,1525,1521	
RSYNC	873	
SRDF	1748	
SSH	22	
SSL-SHELL	614	
SpecialApp	21500-21600	Special application

switch:admin> portshow app-type

TELNET	23,107,513,992	Includes telnets connections
TFTP	69	UDP File Transfer
VERITAS-BACKUP	6101-6102,6106,3527,1125	Does not include Veritas Net
		backup
VTS-GRID Control	1415-1416	
VTS-GRID Data	350	
iscsi	3260	

4. Use the portcfg app-type app-type-name delete command to remove an app-type.

```
switch:admin> portcfg app-type SpecialApp delete
Operation Succeeded
```

switch:admin> portcfg app-type SSH delete
Unable to modify or delete default app-types

You cannot delete or modify a default app-type.

Example of an IP Extension Configuration

The configuration example shows IP Extension between two data center LANs that are connected through a WAN.

The configuration example is based on the following figure. The examples use "left>" to indicate the data center as shown on the left side of the figure, "right>" for the data center on the right side, and "both>" for actions affecting both sides of the data center.

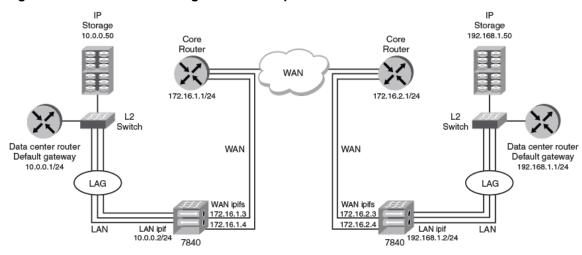


Figure 24: IP Extension Configuration Example

Configuring Hybrid Mode

The following table shows the command used to configure both Brocade 7840 Switches for Hybrid mode. The switches reboot when the app-mode is changed.

Table 38: Brocade 7840 Switch, Hybrid Configuration

Action / Command on Left>	Description	Action / Command on Right>	Description
both> extncfgapp-mode	Places switch in Hybrid mode to support IP Extension		Places switch in Hybrid mode to support IP Extension

Configuring WAN IPs

The following table shows the commands to configure WAN IP for the switches. The commands assume the following:

- The Brocade 7840 Switch on the left uses **ge2** and **ge3** for WAN load-balanced circuits.
- The core router WAN gateway on the left has an IP address 172.16.1.1
- The Brocade 7840 Switch on the right uses ge2 and ge3 for WAN load-balanced circuits.
- The core router WAN gateway on the right has an IP address **172.16.2.1**

Table 39: Brocade 7840 Switch, WAN IP Configuration

Action / Command on Left>	Description	Action / Command on Right>	Description
left> portcfg ipif ge2.dp0 create 172.16.1.3/24	Create IPIFs for ge2 and ge3. IPIFs are on a subnet.	right> portcfg ipif ge2.dp0 create 172.16.2.3/24	Create IPIFs for ge2 and ge3. IPIFs are on a subnet.
<pre>left> portcfg ipif ge3.dp0 create 172.16.1.4/24</pre>		right> portcfg ipif ge3.dp0 create 172.16.2.4/24	
<pre>left> portcfg iproute ge2.dp0 create 172.16.2.0/24 172.16.1.1</pre>	Create IP routes to the right-side data center, including subnet mask.	right> portcfg iproute ge2.dp0 create 172.16.1.0/24 172.16.2.1	Create IP routes to the left-side data center, including the subnet mask.
left> portcfg iproute ge3.dp0 create 172.16.2.0/24 172.16.1.1		right> portcfg iproute ge3.dp0 create 172.16.1.0/24 172.16.2.1	

Configuring IPsec

It is recommended that IPsec should be configured for traffic that goes across the WAN. The following table shows the IPsec configuration.

Table 40: Brocade 7840 Switch, Optional IPsec Configuration

Action / Command on Left>	Description	Action / Command on Right>	Description
both> portcfg ipsec-policy siteAtoB createpreshared- key ipsecPresharedKey	Create an IPsec policy and provide a shared key.		Create an IPsec policy and provide a shared key.

Configuring a Service-level Agreement

You can configure a service-level agreement (SLA) that will test the circuit before it is enabled. The SLA is assigned to a circuit when you create tunnel and circuit configurations. The following table shows an SLA configuration.

Table 41: Brocade 7840 Switch, Optional SLA Configuration

Action / Command on Left>	Description	Action / Command on Right>	Description
	Create SLA at each end of the circuit.		Create an SLA at each end of the circuit.

Verifying WAN Connectivity with ping and WAN Tool

You can use the portcmd --ping command and the portcmd --wtool commands to verify WAN connectivity. If you have configured an SLA, it is not necessary to use the portcmd --wtool commands. The following table shows the portcmd --ping and portcmd --wtool commands.

Table 42: Brocade 7840 Switch, Verifying WAN Connectivity with ping and WAN Tool

Action / Command on Left>	Description	Action / Command on Right>	Description
<pre>left> portcmdping ge2.dp0 - s 172.16.1.3 -d 172.16.2.3 left> portcmdping ge3.dp0 -</pre>	Ping ge2 to destination. Ping ge3 to destination.	No action required.	
<pre>s 172.16.1.4 -d 172.16.2.4 left> portcmdwtool 0 createsrc 172.16.1.3dst 172.16.2.3rate 2500000 admin enabletime 10bi- directionalipsec siteAtoB</pre>	Configure WAN Tool (skip if SLA is configured). Use IPsec if it is configured.	right> portcmdwtool 0 createsrc 172.16.2.3dst 172.16.1.3rate 2500000 admin enabletime 10bi- directionalipsec siteAtoB	Configure matching WAN Tool (skip if SLA is configured). Use IPsec if it is configured.
left> portcmdwtool 0 start	Start WAN Tool.	No action required.	
left> portcmdwtool show detail	Display details and verify performance.	No action required.	
left> portcmdwtool 0 delete	Remove WAN Tool for this pair of IP addresses.	right> portcmdwtool 0 delete	Remove WAN Tool for this pair of IP address
<pre>left> portcmdwtool 0 create src 172.16.1.4dst 172.16.2.4rate 2500000 admin enabletime 10bi- directionalipsec siteAtoB</pre>	Set up and repeat for the second pair of IP addresses.	right> portcmdwtool 0 createsrc 172.16.2.4dst 172.16.1.4rate 2500000 admin enabletime 10bi- directionalipsec siteAtoB	Set up and repeat for the second pair of IP addresses

Creating Tunnel and Circuit Configurations

After verifying WAN connectivity, create the tunnel and circuit configurations between the left-side and right-side locations.

Table 43: Brocade 7840 Switch,	Tunnel, and Circuit Configuration
--------------------------------	-----------------------------------

Action / Command on Left>	Description	Action / Command on Right>	Description
<pre>left> portcfg fciptunnel 24 createipsec siteAtoB sla primaryNetlocal- ip 172.16.1.3remote-ip 172.16.2.3min-comm-rate 2500000max-comm-rate 5000000 left> portcfg fcipcircuit 24 create 1sla primaryNet local-ip 172.16.1.4remote- ip 172.16.2.4min-comm- rate 2500000max-comm-rate 5000000</pre>	Create the tunnel and circuit from the left side to the right side. IPsec is applied to the tunnel. SLA is applied to both tunnel and circuit. (IPsec and SLA are optional)	<pre>right> portcfg fciptunnel 24 createipsec siteAtoB sla primaryNetlocal- ip 172.16.2.3remote-ip 172.16.1.3min-comm-rate 2500000max-comm-rate 5000000 right> portcfg fcipcircuit 24 create 1sla primaryNet local-ip 172.16.2.4remote- ip 172.16.1.4min-comm-rate 2500000max-comm-rate 5000000</pre>	Create the tunnel and circuit from the right side to the left side. IPsec is applied to the tunnel. SLA is applied to both tunnel and circuit. (IPsec and SLA are optional.)
both> portshow fciptunnel circuit	Verify the tunnel and circuit configurations. The tunnel should show Up. If the optional SLA is configured, the tunnel will show Testing until the SLA completes it.	both> portshow fciptunnel circuit	Verify the tunnel and circuit configurations. The tunnel should show Up. If the optional SLA is configured, the tunnel will show Testing until the SLA completes it.

Configuring LAN Ports

The LAN ports and IPIFs are configured with a link aggregation group (LAG) for the ports.

Table 44: Brocade 7840 Switch, LAN Port Configuration

Action / Command on Left>	Description	Description	
both> portcfgge ge6set -lan	On both sides, ports ge6, ge7, and ge8 are configured in a static	both> portcfgge ge6set -lan	On both sides, ports ge6, ge7, and ge8 are configured in a LAG.
both> portcfgge ge7set -lan	LAG.	both> portcfgge ge7set -lan	
both> portcfgge ge8set -lan		both> portcfgge ge8set -lan	
both> portchannelcreate LAN1 -type static		both> portchannelcreate LAN1 -type static	
<pre>both> portchanneladd LAN1 - port ge6-ge8 With FOS 8.2.1, you can represent a port range with comma-separated ports (i.e., portchanneladd slag101 -port ge16, ge 17.</pre>		both> portchanneladd LAN1 - port ge6-ge8	
left> portcfg ipif lan.dp0 create 10.0.0.2/24	An IPIF address is assigned to the LAN port and set up as a subnet address.	right> portcfg ipif lan.dp0 create 192.168.1.2/24	An IPIF address is assigned to the LAN port and set up as a subnet address.
	Enable the ports.		Enable the ports.
both> portenable ge6		both> portenable ge6	
both> portenable ge7		both> portenable ge7	
both> portenable ge8		both> portenable ge8	

Configuring Traffic Control Lists

Traffic Control Lists (TCLs) must be configured. If none is configured, no traffic will pass through the ports.

In this example, TCLs are configured to allow traffic that matches the IP address of the storage arrays on the left side and the right side. No other traffic will pass through the Brocade 7840 Switch LAN interfaces. After the TCL configuration is complete and the ports are enabled, the Brocade 7840 Switch configuration is complete for the network topology shown in the preceding figure.

Table 45: Brocade 7840 Switch, TCL Configuration

Action / Command on Left>	Description	Action / Command on Right>	Description
<pre>left> portcfg tcl storageArray1 create priority 10admin enable target 24src-addr 10.0.0.50/32dst-addr 192.168.1.50/32l4proto TCP</pre>	The /32 prefix corresponds to a netmask of 255.255.255.255, so the entire address must match.	right> portcfg tcl storageArray1 createpriority 10admin enabletarget 24src-addr 192.168.1.50/32dst-addr 10.0.0.50/3214proto TCP	The /32 prefix corresponds to a netmask of 255.255.255.255, so the entire address must match.

Configuring Vendor IP Storage Addresses and Routes

Each vendor uses equipment-specific commands to configure network addresses, IP routes, and other information. Refer to the vendor documentation for specific instructions on how to configure the equipment. Generic information is provided in the example.

Table 46: Vendor IP Addresses and Route, Generic Configuration

Action / Command on Left>	Description	Action / Command on Right>	Description
<pre>left> route add default gateway 10.0.0.1 left> route add 192.168.1.50 netmask 255.255.255</pre>	Generic commands to add a default gateway for the IPIF interface and IP route information to the right side. Refer to vendor documentation for specific commands.	192.168.1.1	Generic commands to add a default gateway for the IPIF interface and IP route information to the left side. Refer to vendor documentation for specific commands.

Configuring Brocade FX8-24 Blade Crossport Features

A crossport is the non-local DP XGE port. The Brocade FX8-24 Blade provides two data processing (DP) complexes that are identified as DP0 and DP1. Each DP has a local 10Gb/s XGE port, xge0 and xge1 that corresponds to DP0 and DP1. You can configure a DP to use its non-local XGE port, which is done to provide an alternate traffic path if the local XGE port fails for some reason. Crossports are supported only on the Brocade FX8-24 Blade and are available when the blade is configured for 10Gb/s mode.

For DP0 and its local xge0 port, the crossport is xge1. Likewise, for DP1 and its local xge1 port, the crossport is xge0.

Typically, IP interface addresses (IPIFs) used by ge0 through ge9 and xge1 are used for any circuits that use VE_Ports 12 through 21. The xge1 port is the local XGE interface for VE_Ports 12 through 21. Likewise, IP addresses configured for xge0 are used by circuits for VE_Ports 22 through 31.

Configure a crossport by assigning an IP address to a remote XGE port that can be used by the local XGE port. For example, assigning an IP address to xge0 as a crossport makes the address available on the remote xge0 for VE_Ports 12 through 21 on the local xge1.

You can also assign IP routes (iproutes) used by the local port, VLAN tagging, and circuits with metrics to the remote XGE port to allow failover to the crossports.

Crossports contain the IP interface addresses (IPIFs) and IP routes (iproutes) that belong to the remote interface. To use crossports, both XGE ports must be configured in 10Gb/s mode.

Configuring Crossports on the Brocade FX8-24 Blade

Configure crossport XGE port addresses using the -crossport or -x (shorthand) options for the portcfg ipif command, as shown in the following example. Note that in this example, IP address 192.168.11.20 is made available on xge1 for circuits on VE_Ports 12 through 21 on local port xge1.

1. Configure an interface for the local XGE port (xge1).

```
switch:admin> portcfg ipif 8/xge1 create 192.168.10.20 netmask
255.255.255.0 mtu 1500
Operation Succeeded
```

2. Configure interface 192.168.11.20 on remote port xge1 to be available for VE_Ports 12 through 21.

switch:admin> portcfg ipif 8/xge1 create 192.168.11.20 netmask 255.255.255.0
mtu 1500 --crossport

or

switch:admin> portcfg ipif 8/xgel create 192.168.11.20 netmask 255.255.255.0 mtu 1500 $-\mathbf{x}$

The output from portshow ipif for xge1 shows the crossport tag.

switch:admin	> portshow ipif 8/xgel								
Port	IP Address	/	Pfx	MTU	VLAN	F.	lag	gs	
8/xgel	192.168.10.20	/	24	1500	0	U	R	М	
8/xgel	192.168.11.20	/	24	1500	0	U	R	М	Х

Delete the crossport address using the delete option instead of the create option for the portcfg ipif command.

switch:admin>portcfg ipif 8/xgel delete 192.168.11.20 netmask 255.255.255.0 mtu 1500 -x

When deleted, output from portshow ipif for xge1 does not show the crossport.

switch:admin>	<pre>> portshow ipif 8/xge1</pre>					
Port	IP Address	/	Pfx	MTU	VLAN	Flags
8/xgel	192.168.10.20	/	24	1500	0	URM

NOTE

If the crossport or -x option is not specified and the address is on the crossport, the command fails with an unknown IP address. The command also fails if the crossport option is specified and the address is not on the crossport.

Display local and crossport interface configuration details for a specific XGE port using the portshow ipif *slot/xgeport* command. Use the portshow ipif command to display details for all interfaces.

```
portshow ipif 8/xge0
portshow ipif
```

Crossports and Failover

A cross-port is the non-local DP XGE port. The Brocade FX8-24 Blade provides two data processing (DP) complexes that are identified as DP0 and DP1. Each DP has a local 10Gb/s XGE port, xge0, and xge1 that corresponds to DP0 and DP1. You can configure a DP to use its non-local XGE port, which is done to provide an alternate traffic path if the local XGE port fails for some reason. Cross-ports are supported only on the Brocade FX8-24 Blade and are available when the blade is configured for 10Gb/s mode.

For DP0 and its local xge0 port, the cross-port is xge1. Likewise, for DP1 and its local xge1 port, the cross-port is xge0.

Typically, IP interface addresses (IPIFs) used by ge0 through ge9 and xge1 are used for any circuits that use VE_Ports 12 through 21. The xge1 port is the local XGE interface for VE_Ports 12 through 21. Likewise, IP addresses configured for xge0 are used by circuits for VE_Ports 22 through 31.

Configure a cross-port by assigning an IP address to the remote XGE port that can be used by the local XGE port. For example, assigning an IP address to xge0 as a cross-port makes the address available on the remote xge0 for VE_Ports 12 through 21 on the local xge1.

You can also assign IP routes (iproutes) used by the local port, VLAN tagging, and circuits with metrics to the remote XGE port to allow failover to the cross-ports.

Cross-ports contain the IPIFs and IP routes that belong to the remote interface. To use crossports, both XGE ports must be configured in 10Gb/s mode.

Configuring Lossless Failover with Crossports on a Brocade FX8-24 Blade

The following two types of configurations are supported:

- Active-active: Data is sent on both 10GbE ports to initiate the weighted balancing of the batches across the trunk circuits.
- Active-passive: If all active lower metric circuit paths fail, data fails while overusing LLL to a passive circuit (one with a higher metric).

You must establish a metric for failover circuits. If no metric is provided, circuit data is sent through both ports and the load is balanced. Circuits have a default metric of 0. A metric of 1 is required for a standby (passive) circuit.

Active-Active Configuration

The following example shows an active-active configuration in which two circuits are configured with the same metric. One circuit going over ge0 and the other circuit uses ge1 as the external port. The metric values of both the circuits are the same (default value), so both circuits send data. The load is balanced across these circuits. The effective bandwidth of the tunnel in this example is 2Gb/s.

1. Configure an IP address on interface ge0.

portcfg ipif 8/ge0 create 192.168.11.20/24 mtu 1500

2. Configure an IP address on interface ge1.

portcfg ipif 8/ge1 create 192.168.10.10/24 mtu 1500 -x

3. Create a tunnel with one circuit going over ge0.

portcfg fciptunnel 8/22 create --remote-ip 192.168.11.20 --local-ip 192.168.11.21 -b 2750000 -B 2750000

4. Add another circuit, going over ge1, to the tunnel.

portcfg fcipcircuit 8/22 create 1 --remote-ip 192.168.10.10 --local-ip 192.168.10.11 -b 1000000 -B 1000000

5. Display local and interface details for ge0.

portshow ipif 8/ge0

NOTE

If the source and destination addresses are on different subnets, you must configure IP routes to the destination addresses. See Configuring IP Route.

Active-Passive Configuration

The following example shows an active-passive configuration in which two circuits are configured with different metrics. One circuit going over ge0 and the other circuit uses ge1 as the external port. In this example, circuit 1 is a failover circuit because it has a higher metric. When circuit 0 goes down, the traffic is failed over to circuit 1. The effective bandwidth of the tunnel in this example is 1Gb/s.

1. Configure an IP address on interface ge0.

portcfg ipif 8/ge0 create 192.168.11.20/24 mtu 1500

2. Configure an IP address on interface ge1.

portcfg ipif 8/gel create 192.168.10.10/24 mtu 1500 -x

3. Create a tunnel with one circuit going over ge0.

```
portcfg fciptunnel 8/22 create --remote-ip 192.168.11.21 --local-ip 192.168.11.20 -b 2750000 -B 2750000 -- metric 0
```

4. Add another circuit, going over ge1, to the tunnel.

```
portcfg fcipcircuit 8/22 create 1 --remote-ip 192.168.10.10 --local-ip 192.168.10.11 -b 1000000 -B 1000000 --metric 1
```

5. Display local and interface details for ge0.

portshow ipif 8/ge0

NOTE

If the source and destination addresses are on different subnets, you must configure IP routes to the destination addresses. See Configuring IP Route.

Configuring IP Routes with Crossports

You can configure IP routes with crossport addresses using the portcfg iproute [*slot/port*] create command, as in the following example. In the example, the route is available for tunnel circuits using VE_ports 12 through 21.

portcfg iproute 8/xge0 create 1.1.1.0 netmask 255.255.255.0 192.168.11.250 -- crossport

or

portcfg iproute 8/xge0 create 1.1.1.0 netmask 255.255.255.0 192.168.11.250 -x

Delete the route using the delete option instead of the create option for the portcfg iproute command.

portcfg iproute 8/xge0 delete 1.1.1.0 netmask 255.255.255.0 -x

NOTE

If the crossport or -x options are not specified and the address is on the crossport, the command fails with an unknown IP address. The command also fails if the crossport option is specified and the address is not on the crossport.

Display the static IP routes for the local interface and crossport using the portshow iproute command:

portshow iproute 1/xge0

Display the IP interface that is configured for the local interface and crossport using the portshow ipif command.

portshow ipif 1/xge0

For more information on configuring an IP route, see Configuring IP Route.

NOTE

If an XGE port has both regular and crossport addresses that are configured on it, and they use the same IP route, two routes must be configured: a regular route and an identical route on the crossport.

Configuring VLAN Tags with Crossports

Add entries with crossport addresses to the VLAN tag table using the <code>portcfg vlantag [slot/port]</code> add command, as in the following example. This example allows VE_ports 12 through 21 to use the configured local IP interface with this VLAN tag.

```
portcfg vlantag 8/xge0 add 192.168.11.20 200 1 --crossport
```

```
or
```

portcfg vlantag 8/xge0 add 192.168.11.20 200 1 -x

Delete the VLAN tag using the delete option instead of the add option for the portcfg vlantag command.

portcfg vlantag 8/xge0 delete 192.168.11.20 200 1 -x

Display the VLAN tag configuration using the portshow vlantag command.

NOTE

To tag Class F traffic or data path traffic, use the -v or -vlan-tagging options for the fcipcircuit create or fcipcircuit modify command. The portcfg vlantag command is primarily used for ping and traceroute operations and not for tunnels and circuits.

For more information on managing VLAN tags, see Configuring VLAN.

Displaying VLAN the Tag Configuration Using the portshow vlantag Command

The following is an example of displaying VLAN tagging information for port 0 on blade 8.

```
portshow vlantag 8/xge0
```

For more information on managing VLAN tags, see Configuring VLAN.

For more information on using Fabric OS commands, optional arguments, and command output, refer to the *Brocade Fabric OS Command Reference Manual*.

Using ping with Crossports

You can ping crossport addresses, as in the following example. Note that if the crossport or x options are not specified and the address is on the crossport, the portCmd command fails with an unknown IP address.

```
portcmd --ping 8/xge0 -s 192.168.11.20 -d 1.1.1.1 --crossport
```

```
or
```

portcmd --ping 8/xge0 -s 192.168.11.20 -d 1.1.1.1 -x

When using VLANs, VLAN tagging ensures that test traffic traverses the same path as real traffic. A VLAN tag entry for both the local and remote sides of the route must exist before using the portCmd --ping command. See Configuring VLAN for details.

Using Traceroute with Crossports

You can trace a route to a crossport address, as in the following example. Note that if the crossport or x options are not specified and the address is on the crossport, the portCmd command fails with an unknown IP address. The command also fails if the x option is specified and the address is not on the crossport.

```
portcmd --traceroute 8/xge0 -s 192.168.11.20 -d 1.1.1.1 --crossport
```

or

portcmd --traceroute 8/xge0 -s 192.168.11.20 -d 1.1.1.1 -x

When using VLANs, VLAN tagging ensures that test traffic traverses the same path as real traffic. A VLAN tag entry for both the local and remote sides of the route must exist before you can use the portCmd --traceroute command. See Configuring VLAN for details.

Using Logical Switches

Configuring tunnels and other components in switches that are enabled for Virtual Fabrics is different than on switches not enabled for Virtual Fabrics. The information that follows provides a brief overview of common logical switch concepts and terminology followed by the specifics of configuring logical switches.

NOTE

The Brocade 7810 Switch does not support logical switches.

Logical Switch Overview

The logical switch feature allows you to divide a physical chassis into multiple fabric elements. Each of these fabric elements is referred to as a logical switch. Each logical switch functions as an independent self-contained FC switch. Each chassis can have multiple logical switches. In Fabric OS 8.1.x, up to a total of 16 logical switches can be supported in a single Gen6 chassis or on a single Brocade SX6 Blade. The Brocade 7840 Switch can support up to four logical switches.

Default Logical Switch

Virtual Fabrics allow Ethernet ports in the default switch to be shared among VE_Ports in any logical switch. To use the Virtual Fabrics features, you must first enable Virtual Fabrics on the switch. Enabling Virtual Fabrics creates a single logical switch in the physical chassis. This logical switch is called the default logical switch, and it initially contains all ports in the physical chassis. After you enable Virtual Fabrics, you can create additional logical switches. The number of logical switches that you can create depends on the switch model.

After you create logical switches, the chassis appears as multiple independent logical switches. All ports continue to belong to the default logical switch until you explicitly move them to other logical switches. The default logical switch always exists. You can add and delete other logical switches, but you cannot delete the default logical switch unless you disable Virtual Fabrics.

Creating Logical Switches

To create logical switches and logical fabrics, you must perform the following steps.

- 1. Enable Virtual Fabrics mode on the switch using instructions in the "Managing Virtual Fabrics" chapter of the *Brocade Fabric OS Administration Guide*.
- 2. Configure logical switches to use basic configuration values using instructions in the "Managing Virtual Fabrics" chapter of the *Brocade Fabric OS Administration Guide*.
- 3. Create logical switches using instructions for creating a logical switch or base switch in the "Managing Virtual Fabrics" chapter of the *Brocade Fabric OS Administration Guide*.

Port Assignment

Initially, all ports belong to the default logical switch. When you create additional logical switches, they are empty and you can assign ports to those logical switches. As you assign ports to a logical switch, the ports are moved from the default logical switch to the newly created logical switch. The following are some requirements for assigning ports:

- A given port can be in only one logical switch.
- You can move ports from one logical switch to another.
- A logical switch can have as many ports as are available in the chassis.
- Ports with defined configuration settings in a logical switch or the default switch cannot be moved to another logical switch without first deleting the current settings. For example, you cannot move a VE_ Port with a defined tunnel in the default switch or a logical switch to a different logical switch until you delete the circuits and the tunnel in the logical switch currently containing the port that you want to move. Similarly, you cannot move a GE_Port between logical switches until all IP routes and IP interfaces have been deleted in the logical switch currently containing the port that you want to move.

Use the $lsCfg - config slot/ge_port$ command to move ports from one logical switch to a different logical switch. The FID is the fabric ID of the logical switch to where you want to move the ports. The ports are automatically removed from the logical switch where they are currently assigned.

As a recommended best practice, leave Ethernet interfaces in the default logical switch and do not move them to another logical switch. There is no reason to move them because of the Ethernet Port Sharing (EPS) feature. A VE_Port in any logical switch context can use an Ethernet interface in the default switch. In addition, by moving a physical port from the default switch to a logical switch, it must be available to tunnels configured in other logical switches. See Ethernet Port Sharing for details.

Logical Switches and Fabric IDs

When you create a logical switch, you must assign it to a fabric ID (FID). The fabric ID uniquely identifies the logical switch within a chassis and indicates the fabric to which the logical switch belongs. You cannot define multiple logical switches with the same fabric ID within the chassis. A logical switch in one chassis can communicate with a logical switch in another chassis (or to a switch not enabled for logical switches) only if the switches have the same fabric ID (FID). The default logical switch is initially assigned FID 128, which can be changed.

Only logical switches with the same FID can form a logical fabric. If you connect two logical switches with different FIDs, the link between the switches segments.

Create logical switches using the lsCfg command. For details, refer to the instructions for creating a logical switch or base switch section in the *Brocade Fabric OS Administration Guide* and to the lsCfg command in the *Brocade Fabric OS Command Reference Manual*.

Logical Switch Contexts

You can configure features or can perform other tasks on a specific logical switch as you would any Fibre Channel switch by entering commands while in the context of that logical switch, which is the FID of the logical switch. Note that 128 is sometimes referred to as the context for the default switch because that is the initial FID of the default switch when you enable Virtual Fabrics. However, this FID can be changed.

There are two methods for changing to the context of a specific logical switch so that you can perform configuration or other tasks:

- Use the setcontext *fabricID* command. This changes the context to a specific logical switch and changes the command-line prompt to reflect the new FID. Any commands that are entered at this prompt are initiated on the logical switch with that FID.
- Use the fosexec --fid FID -cmd command-string to initiate a specific command on a specific logical switch, where command-string is the command string you want to perform.

Using the fosexec command to issue the command string on any logical switch runs the specified FOS command string on the specified logical switch, whereas using setcontext command issues the command string in only the current logical switch.

Connecting Logical Switches

A logical fabric is a fabric that contains at least one logical switch. You can connect logical switches to non-virtual fabrics switches and to other logical switches using two methods:

- Through inter-switch links (ISLs). For extension traffic, the ISL connection is through a tunnel.
- Through base switches and extended ISLs (XISLs). This is supported by the Brocade 7840 Switch, Brocade SX6 Blade, and Brocade FX8-24 Blade. See Enabling XISL for VE_Ports.

More Information on Virtual Fabrics

For more details on managing and configuring Virtual Fabrics, refer to the chapter on managing Virtual Fabrics in the *Brocade Fabric OS Administration Guide*.

Considerations for Logical Switches

Before creating IPIFs, IP routes, tunnels, and circuits, follow procedures for creating logical switches as outlined in Logical Switch Overview and as detailed in the "Managing Virtual Fabrics" chapter in the *Brocade Fabric OS Administration Guide*. Use the following information and instructions for creating tunnels and other components on logical switches.

Ethernet Port Sharing

VE_Ports in different logical switches can share a single Ethernet port (1GbE, 10GbE, or 40GbE) located on the default switch. As a best practice, leave Ethernet interfaces in the default switch even if you use a single virtual fabric logical switch. If new VF logical switches are added and must use the Ethernet interface, the Ethernet interface does not have to be moved back to the default switch.

NOTE

An Ethernet port that is used as a LAN port must be in the default switch.

NOTE

If an Ethernet port is in the default FID, it can be shared across multiple FIDs and VEs. If an Ethernet port is in a nondefault FID, it can be used only for VEs in that particular FID.

With Ethernet port sharing, you can have the following configuration, as an example:

- The default switch has port GbE0.
- Logical switch 1 has VE_Port 24 (or tunnel 24), which has a circuit over GbE0.
- Logical switch 2 has VE_Port 25 (or tunnel 25), which also has a circuit over GbE0.
- There are no LAN ports that are associated with GbE0.

All committed-rate restrictions and bandwidth sharing of the Ethernet ports for ARL remain the same for shared ports in the logical switches. VE_Ports created from shared Ethernet ports initiate as regular VE ISLs in their respective logical switches.

When IPIFs are created for physical ports (including crossports) located in the default switch, these IP interfaces can be used by circuits that are assigned to tunnels created in other logical switches. This means that multiple VE_Ports in multiple logical switches can use the same Ethernet port. Although multiple circuits can use the same Ethernet port, these circuits can be differentiated in the IP network using VLAN tags or access control lists (ACLs) set for the source and destination IP addresses in the circuit. See Configuring VLANs or more information on using VLAN tagging for Extension features.

Limitations of Ethernet Port Sharing

Note the following limitations of port sharing:

- Only Ethernet ports in the default switch can be shared by VE_Ports in different logical switches. An Ethernet port in a
 nondefault switch can only be used by VE_Ports in that same logical switch.
- The GbE ports in other logical switches or ports on the base switch cannot be shared by ports in different logical switches.
- Tunnels created on Brocade FX8-24 Blades with a mix of dedicated ports (ports within the same logical switch) and shared ports (ports in the default switch) are not supported.
- When using shared Ethernet interfaces between the default switch and other logical switches, if the default switch is disabled, the Ethernet ports in the default switch are also disabled. This impacts all tunnels in the other logical switches using the Ethernet interfaces.

Port Sharing Example

This section illustrates an example of port sharing on a Brocade FX8-24 Blade. The output for the <code>portshow ipif all</code> command illustrates IP interfaces, IP routes, and crossports configured for ports in the default logical switch and tunnels and circuits on two different logical switches that use these configurations.

Note the following about the configuration that is detailed in the output:

- This example is for port sharing configuration on a Brocade FX8-24 Blade.
- There are three logical switches:

- LS 0 has FID 128 and is the default switch.

- LS 2 has FID 50.
- LS 4 has FID 70.
- IP interfaces and IP routes for these IPIFs were created for xge0 and xge1. The portcfg --ipif and portcfg -iproute commands were issued in the default logical switch context where the ports reside. See Configuring IPIFs and IP Routes for more information.
- Crossports were configured for both xge0 and xge1 on the default switch. See Crossports and Failover for more information.
- A tunnel with VE_Port 22 and circuits was created on LS 2. VE_Port 22 was first moved to LS 2, and the portcfg fciptunnel commands to configure the tunnel and circuits were issued in the context for LS 2 (FID 50). See Moving Ports between Logical switches and Configuring Tunnels and Circuits for more information.
- A tunnel with VE_Port 12 and circuits was created on LS 4. VE_Port 12 was first moved to LS 4, and the portcfg fciptunnel commands to configure the tunnel and circuits were issued in the context for LS 4 (FID 70). See Moving Ports between Logical Switches and Configuring Tunnels and Circuits for more information.

CURRENT CONTEXT -- LS: 0, FID: 128 *NOTE this is the default switch.* switch:admin> portshow ipif

Port	IP Address	/ Pfx	MTU	VLAN	Flags
8/xge0	10.108.0.90	/ 24	1500	n/a	URM
8/xge0	10.108.0.91	/ 24	1500	n/a	URM
8/xge0	10.108.0.92	/ 24	1500	n/a	URMX
8/xge0	10.108.0.93	/ 24	1500	n/a	URMX
8/xgel	10.108.1.90	/ 24	1320	n/a	URM
8/xgel	10.108.1.91	/ 24	1320	n/a	URM
8/xgel	10.108.1.92	/ 24	1320	n/a	URMX
8/xgel	10.108.1.93	/ 24	1320	n/a	URMX

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running

N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

switch:admin> portshow iproute

Port	IP Address	/ Pfx	Gateway	Flags
8/xqe0	10.108.0.0	/ 24	*	 U С
8/xge0	10.108.0.91	/ 32	*	U C
8/xge0	10.108.100.0	/ 24	10.108.0.250	UGS
8/xge0	10.108.0.0	/ 24	*	UCX
8/xge0	10.108.0.93	/ 32	*	UCX
8/xge0	10.108.100.0	/ 24	10.108.0.250	UGSX
8/xgel	10.108.1.0	/ 24	*	UC
8/xgel	10.108.1.91	/ 32	*	UC
8/xgel	10.108.101.0	/ 24	10.108.1.250	UGS
8/xgel	10.108.1.0	/ 24	*	UCX
8/xgel	10.108.1.93	/ 32	*	UCX
8/xgel	10.108.101.0	/ 24	10.108.1.250	UGSX

Flags: U=Usable G=Gateway H=Host C=Created(Interface)

S=Static L=LinkLayer X=Crossport

CURRENT CONTEXT -- LS: 2, FID: 50 *Note that this is one of the logical switches (not the default switch).*

portsh	portshow fciptunnel all -c:									
Tunnel	Circuit	OpStatus	Flags	Uptime	TxMBps	RxMBps	ConnCnt	CommRt	Met	
1/22	_	Up	cft	14d18h	226.60	2.73	5	_	_	
1/22	0 1/xgeO	Up	4v-s	7d17h34m	64.80	0.78	7 1	000/3000	0	
1/22	1 1/xge0	Up	4v-s	7d5h24m	48.59	0.59	7 1	000/2000	0	
1/22	2 1/xge1	Up	4vxs	7d17h34m	64.60	0.78	7 1	000/3000	0	
1/22	3 1/xge1	Up	4vxs	7d5h24m	48.60	0.58	7 1	000/2000	0	
Flags	(tunnel):			LocalBacku	-		-			
				ite T=Tape	-	-				
		A=AdvComp	or L=LZCo	ompr d=Def	lateComp	r D=Ago	grDeflat	eCompr		
(circuit):	h=HA-Cont	figured v	v=VLAN-Tag	ged p=PM	TU 4=IPv	74 6=IPv	6		
		ARL a=Aut	to r=Rese	et s=StepD	own t=Ti	medStepI	Down			

CURRENT CONTEXT -- LS: 4, FID: 70 *Note that this is a different logical switch (and not the default switch).*

portshow fciptunnel all -c :

Tunnel		OpStatus	Flags	Uptime	TXMBps	RXMBps		CommRt	Met
1/12	-	Up	cF	19d15h	0.00	0.00	1	-	-
1/12	0 1/xgeO	Up	4vxs	7d17h34m	0.00	0.00	3 1	000/3000	0
1/12	1 1/xgeO	Up	4vxs	7d5h24m	0.00	0.00	4 1	000/2000	1
1/12	2 1/xge1	Up	4v-s	7d17h34m	0.00	0.00	3 1	000/3000	0
1/12	3 1/xge1	Up	4v-s	7d5h24m	0.00	0.00	4 1	000/2000	1
Flags:	tunnel:	c=compres	ssion m=r	noderate c	ompressi	on a=ago	gressive	compres	sion
		A=Auto d	compress	ion f=fast	write t=	Tapepipe	elining	F=FICON	
		T=TPerf	i=IPSec	l=IPSec L	egacy				
Flags:	circuit:	s=sack v=	=VLAN Tag	gged x=cro	ssport 4	=IPv4 6=	=IPv6		
		L=Lister	ner I=In	ltiator					

Configuring IP Interfaces and IP Routes

The following example configures IP interfaces (IPIF) and IP routes (iproutes) for ports that reside on the default switch and creating tunnels and circuits on a different logical switch that uses these IP interfaces.

You must issue the portcfg ipif and portcfg iproute commands in the logical switch context where the Ethernet port resides. If the Ethernet port is in the default switch, then the commands must be entered from the default switch context. If the Ethernet ports are in a logical switch other than the default switch, you must issue the commands in that context. In the latter case, the Ethernet ports cannot be used by tunnels created in any other logical switch in the chassis.

In the following example, port ge2.dp0 is on a Brocade 7840 Switch (the default switch with a "default" switch FID of 128).

1. If you are in a different logical switch context than the default switch, set the context to 128 using the setcontext 128 command.

switch:admin> setcontext 128

switch.FID128.admin> portshow inif

2. Enter the portcfg ipif command to create the interface on port ge2 on DP0.

switch:FID128:admin> portcfg ipif ge2.dp0 create 192.168.2.2 netmask 255.255.255.0 mtu 1320

3. Configure an IP route using the portcfg iproute command in the FID 128 context.

The following command creates an IP route to destination network 192.168.2.0 for port ge2.dp0. The route is through local gateway 192.168.12.1.

switch:FID128:admin> portcfg iproute ge2.dp0 create 192.168.12.0 netmask 255.255.255.0 192.168.2.1

4. Use the portshow ipif and portshow iproute commands in the FID 128 context to display IPFI and IP route information.

	IP Address					Flags
ge2.dp0	192.168.2.2		24	1320	0	URM
-	B=Broadcast D=Debug I	-				2
	Arp PR=Promisc M=Multi 28:admin> portshow ipr		CArp L	U=Link	Up X=C	rossport
witch:FID1	28:admin> portshow ipr IP Address		-		Up X=C	rossport Flags
witch:FID1 Port	28:admin> portshow ipr	coute	Gate		up x=0	-
witch:FID1 Port ge2.dp0	28:admin> portshow ipr IP Address	coute / Pfx	Gate 		up x=0	- Flags

Flags: U=Usable G=Gateway H=Host C=Created(Interface)
S=Static L=LinkLayer X=Crossport

Other than issuing commands for IP interfaces and IP routes from the correct logical switch context, other aspects of the commands used in this procedure are the same as for any switch. For more information, see Configuring IPIF.

Configuring Tunnels and Circuits

To configure a tunnel on a logical switch other than the default switch, you first must move the VE_Port to the logical switch from the default switch and then create the tunnel and circuits in that logical switch context. You issue the portcfg fciptunnel command in the context of the logical switch where the VE_Port resides. In the following example, the VE_Port resides on the default switch with FID 128. A tunnel has not been configured yet using this VE_Port.

The following example steps show how to configure a tunnel between two logical switches. Other than issuing commands to move VE_Ports and to create tunnels and circuits from the correct logical switch context, other aspects of configuring tunnels and circuits are the same for any switch. For more information, see Configuring Extension Tunnels for FCIP.

1. Use the lscfg command to create a logical switch with FID 60.

```
switch:FID128:admin> lscfg --create 60
A Logical switch with FID 60 will be created with default configuration.
Would you like to continue [y/n]?: y
About to create switch with fid=60. Please wait...
Logical Switch with FID (60) has been successfully created.
Logical Switch has been created with default configurations.
```

```
Please configure the Logical Switch with appropriate switch
and protocol settings before activating the Logical Switch.
```

2. Move the VE_Port from the default switch to the logical switch with FID 60.

```
switch:FID128:admin> lscfg --config 60 -port -slot 7 -port 24
This operation requires that the affected ports be disabled.
Would you like to continue [y/n]?: y
Making this configuration change. Please wait...
Configuration change successful.
Please enable your ports/switch when you are ready to continue.
```

- 3. Set the context to the logical switch with FID 60 using the following command.
 - switch:FID128:admin> setcontext 60
- 4. Create a tunnel endpoint on the new logical switch using the IP interface that is created for port 7/ge2.dp0 on the default logical switch for the blade and a destination address for a remote endpoint. In the following example, the local address (192.168.2.2) is specified first, followed by the remote address (192.168.12.2). ARL minimum (-b) and maximum (-B) committed rates are specified for circuit 0, which is the default circuit that is created automatically when you configure a tunnel. The example command also enables IP Extension and configures spillover.

```
switch 60:FID60:admin> portenable 7/24
switch 60:FID60:admin> portcfg fciptunnel 7/24 create --local-ip 192.168.2.2 --remote-ip 192.168.12.2 -b
4000000 -B 4000000 --ipext enable -L spillover -k 1000
Operation Succeeded
switch 60:FID60:admin> portshow fciptunnel all -c
Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G
_____
      -
7/24
              Up
                     ----T
                                 9s
                                      0.00
                                            0.00 1
                                      0.00 0.00 1 4000/4000 0/-
7/24 0 7/ge2 Up
                                 9s
                     ----4
_____
Flags (tunnel): i=IPSec f=Fastwrite T=TapePipelining F=FICON r=ReservedBW
             a=FastDeflate d=Deflate D=AggrDeflate P=Protocol
             I=IP-Ext
    (circuit): h=HA-Configured v=VLAN-Tagged p=PMTU i=IPSec 4=IPv4 6=IPv6
             ARL a=Auto r=Reset s=StepDown t=TimedStepDown S=SLA
```

5. Set the context to FID 128 and show the IPIF and IP route information.

```
switch_60:FID60:admin> setcontext 128
```

FOS-821-Ext-UG105 User Guide

switch:FID128:admin> portshow ipif

Port	IP Address	/ Pfx	MTU	VLAN	Flags
7/ge2.dp0	192.168.2.2	/ 2	4 132	20 0	URMI

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

switch:FID128:admin> portshow iproute

Port	IP Address	/ Pfx	Gateway	Flags
7/ge2.dp0	192.168.2.0	/ 24	*	U C
7/ge2.dp0	192.168.2.1	/ 32	*	UHL
7/ge2.dp0	192.168.12.0	/ 24	192.168.2.1	UGS
Flags: U=Us	able G=Gateway H=Host C=Cre	eated(In	terface)	

S=Static L=LinkLayer X=Crossport

6. Configure an IPIF on ge4.dp0 of the default switch.

switch:FID128:admin> portcfg ipif 7/ge4.dp0 create 192.168.4.2 netmask 255.255.255.0 mtu 1360

7. Configure an IP route on ge4.dp0 of the default switch.

switch:FID128:admin> portcfg iproute 7/ge4.dp0 create 192.168.14.0 netmask 255.255.255.0 192.168.4.1

8. Use the portshow command to display the created IPIF and IP route information.

switch:FID128:admin> portshow ipif

Port	IP Address	/ Pfx MTU VLAN Flags
7/ge2.dp0 7/ge4.dp0	192.168.2.2 192.168.4.2	/ 24 1320 0 URMI / 24 1360 0 URM

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

switch:FID128:admin> portshow iproute

Port	IP Address	/ Pfx Gateway	Flags
7/ge2.dp0	192.168.2.0	/ 2.4 *	 и с
7/ge2.dp0	192.168.2.1	/ 32 *	UHL
7/ge2.dp0	192.168.12.0	/ 24 192.168.2.1	UGS
7/ge4.dp0	192.168.4.0	/ 24 *	UC
7/ge4.dp0	192.168.4.1	/ 32 *	UHL
7/ge4.dp0	192.168.14.0	/ 24 192.168.4.1	UGS

```
Flags: U=Usable G=Gateway H=Host C=Created(Interface)
S=Static L=LinkLayer X=Crossport
```

9. Set the context to FID 60.

switch:FID128:admin> setcontext 60

10. Use the portshow fciptunnel command to display existing tunnel and circuit information.

switch_60:F	switch_60:FID60:admin> portshow fciptunnel all -c										
Tunnel Cir	cuit OpStatus	Flags Up	time TxMI	Bps RxMI	3ps Conr	nCnt	CommRt Met	/G			
7/24 -	Up	I	5m18s	0.00	0.00	1	-	-			
7/24 0	7/ge2 Up	4	5m19s	0.00	0.00	1	4000/4000	0/-			
 Flags (tun	nel): i=IPSec			2			servedBW				
	I=IP-Ext	a=FastDeflate d=Deflate D=AggrDeflate P=Protocol I=IP-Ext									
(circ	uit): h=HA-Con	figured v=VLA	N-Tagged p	p=PMTU i=	=IPSec 4	=IP	v4 6=IPv6				
	ARL a=Au	to r=Reset s=	StepDown 1	c=TimedSt	cepDown	S=	SLA				

11. Use the portcfg fcipcircuit command to create a circuit.

switch_60:FID60:admin> portcfg fcipcircuit 7/24 create 2 --local-ip 192.168.4.2 --remote-ip 192.168.14.2 b 4000000 -B 4000000 -x 1 -k 1000

12. Use the portshow fciptunnel command to confirm the new tunnel and circuit information.

```
switch 60:FID60:admin> portshow fciptunnel all -c
Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G
_____
     -
                  -----I 5m36s 0.00 0.00 1
7/24
            Up
                                                 -
7/24 07/ge2 Up
                  ----a---4 5m37s 0.00 0.00 1 4000/4000 0/-
7/24 27/ge4 Up
                  ----a---4 9s 0.00 0.00 1 4000/4000 1/-
_____
Flags (tunnel): i=IPSec f=Fastwrite T=TapePipelining F=FICON r=ReservedBW
           a=FastDeflate d=Deflate D=AggrDeflate P=Protocol
           I=IP-Ext
    (circuit): h=HA-Configured v=VLAN-Tagged p=PMTU i=IPSec 4=IPv4 6=IPv6
           ARL a=Auto r=Reset s=StepDown t=TimedStepDown S=SLA
```

Moving Ports Between Logical Switches

To move ports between logical switches, use the following command:

lscfg --config FID port slot/port

- The FID variable is the Fabric ID of the logical switch where port is moving to.
- The *slot* number is required for the Brocade FX8-24 Blade and Brocade SX6 Blade. It is omitted on the Brocade 7840 Switch.
- The *port* number is the FC, VE, or GE port number. For the Brocade FX8-24 Blade, XGE (10GbE) ports are xge0 or xge1, and GbE ports are ge0-ge9. For the Brocade 7840 Switch and the Brocade SX6 Blade, 40GbE ports are ge0-1, and 10GbE ports are ge2 through ge17.

The following are considerations for moving ports between logical switches:

- The 1GbE ports (Brocade FX8-24 Blade), 10GbE ports (Brocade 7840 Switch, Brocade SX6 Blade, and Brocade X8-24 Blade), 40GbE ports (Brocade 7840 Switch or Brocade SX6 Blade), and VE_Ports can be part of any logical switch. They can be moved between any two logical switches unless they are members of a circuit configuration.
- Because Ethernet ports and VE_Ports are independent of each other, both must be moved in independent steps. You must delete the configuration on VE_Ports and Ethernet ports before moving them between logical switches.
- You must move a VE_Port from the logical switch where it resides to a new logical switch in order to create a tunnel for the new logical switch.

Displaying Logical Switch Configurations

You can display the logical switch configuration for a switch and the Ethernet ports that are located in each logical switch using the lscfg --show -ge command. The following output shows that all Ethernet ports are located in the default switch (FID 128).

switch:admin> lscfg --show -ge Created switches FIDs (Domain IDs): 128 (ds) (80) 60(1) Created switches FIDs(Domain IDs): 128(ds)(80) 60(1) Slot 1 2 З 4 5 6 7 8 GE Port 0 | 128 | 128 | L L 1 1 Т T T T. T. | 128 | 128 | 2 | 128 | 128 | T T. Ĩ Т 3 | 128 | 128 | T Т Т T L Т 4 T T T L Т | 128 | 128 | 5 Т T. T T. | 128 | 128 | T. 6 T T Ĩ T Ĩ Т | 128 | 128 | 7 | 128 | 128 | T T T T Ĩ L 8 T Ĺ | 128 | 128 | Т Т T T. 9 T Ĩ Ĩ | 128 | 128 | Т 10 | 128 | 128 | T T T T Ĩ Т 11 L T Ĩ | 128 | 128 | L 12 Т T. T T T. T. | 128 | 128 | 13 | 128 | 128 | T I 14 T T Ĩ Т | 128 | 128 | 1 | 128 | 128 | 15 T T T T Ĩ Т | 128 | 128 | 16 Т T T Т L | 128 | 128 | 17 Т T T T L Т 18 Т T T I Ĩ L L Т T 19 L Т T T L L L L L 20 Т T Ĩ T L I. L

21	I		I	I	I	L	I	I	
22		I	I	I	I	I	I	I	
23		I	I	I	I	I	Ι	Ι	
24			I	I	I	I	Ι	Ι	
25			I	I	I	I	Ι	Ι	
26	I	I	Ι	I	I	I	Ι	Ι	
27	I	I	Ι	I	I	I	Ι	Ι	
28		1	I	I	I	I	Ι	Ι	
29		1	I	I	I	I	Ι	Ι	
30	I	I	I	I	I.	I.	I	I	
31		1	I	I.	I	T	I	I	

You can display the logical switch configuration and the VE_Ports assigned to each logical switch using the <code>lscfg -- show</code> command. The following output shows that besides the default switch with FID 128 (Domain ID 80), there is also a logical switch FID 60 (Domain ID 1).

Note that some of the VE_Ports have been moved from the default switch to other logical switches. In this example, VE_Port 24 is in logical switch 60 (FID60).

switch:admin> lscfg --show

Creat	Created switches			Ds(Do	oma	in ID:	s):	128(ds)(80)			60(1)		
Slot		1	2	3		4	5		6	7	8		
 Port												-	
0		I	I	128	I	1	128	I.	I	128	128	I	
1	i.	i i	I	128	Ì		128	i	i i	128	128	Ì	
2		Ì	Ī	128	Ì	· ·	128	Ì	Í	128	128	1	
3		I	I	128	Ι		128	I	ļ	128	128	I	
4		I	I	128	Ι		128	I	ļ	128	128	I	
5		I	I	128	Ι	1	128	I	I	128	128		
6	1	I.	I	128	Ι		128	I	1	128	128		
7		I.	I	128	Ι		128	I		128	128	I	
8		I.	I	128	I		128	I	1	128	128		
9		I	I	128	I		128	1	I	128	128		
10	1	I	I	128	I		128	1	1	128	128		
11	1	I	I	128	I		128	1	1	128	128		
12		I	I	128	Ι	1	128	1	I	128	128	I	
13	1	I	I	128	I		128	1	1	128	128		
14		I	I	128	I		128	I		128	128	I	
15		I	I	128	I		128	I		128	128	I	
16		I	I	128	I		128	I		128	128	I	
17		I.	I	128	1		128	1		128	128	l	
18		I.	I	128	1		128	1		128	128	l	
19	1	I.		128			128	1	1	128	128	I	
20		I.	I	128	I		128	1	- 1	128	128	I	
21	1	I	I	128	I.		128	I	1	128	128	I	
22	1	I	I	128	I.		128	I	1	128	128	I	
23		I	I	128	Ι	1	128	I	I	128	128	I	
24		I	I	128	I		128	I	- 1	60	128	I	
25		I	I	128	I		128	I	- 1	128	128	I	

FOS-821-Ext-UG105 User Guide

26	I	1	L	128	I	I	128	I	I	128	L	128	
27	I	1	L	128	I	I	128	I	I	128	L	128	
28	I	1	L	128	I		128	1	I	128	L	128	
29	I	I	L	128	I		128	I	I	128	L	128	
30	I	I	L	128	I		128	I	I	128	L	128	
31	I	I	L	128	I		128	I	I	128	L	128	
32	I	I	L	128	I			I	I	128	L	128	
33	I	I	L	128	I			I	I	128	L	128	
34	I	1	L	128	I	I		I	I	128	L	128	
35	I	1	L	128	I	I		I	I	128	L	128	
36	I	1	L	128	I	I		I	I		L		
37	I.	1	L	128	I	I		1	I				
38	I.	1	L	128	I	I		1	I				
39	I.	1	L	128	I.	I		1	I		L		
40	I.	1	L	128	I.	I		1	I		L		
41	1	1		128	1	I		1	L		I		
42	1	1		128	1	I		1	L		I		
43	1	1		128	1	I		1	L		I		
44	1		L	128	I	I		I	I		L		
45	1	1		128	1	I		1	L		I		
46	1		L	128	I	I		I	I		L		
47	1		L	128	I	I		I	I		L		
48	1		L		I	I		I	I		L		
49	I	1	I		I	I		I	I				
50	I		L		I	I		I	I		L		
51	I		L		I	I		I	I		L		
52	I		L		I	I		I	I		L		
53	I		L		I	I		I	I		L		
54	I	1	L		I	I		I	I		l		
55	I	1	L		I	I		I	I		l		
56	I	1	L		I	I		I	I		l		
57	I	1	L		I	I		I	I		l		
58	I.	1	L		I.	I		I	I		L		
59	I	1	L		I	I		I	I		l		
60	I	I.	I			I		I	I		l		
61	I	I.	I			I		I	I		l		
62	I					I			I		I		I
63	I					I			I		I		I

Brocade 7840 Switch, and Brocade SX6 Considerations and Limitations

The following are the considerations and limitations for the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade configured to support Virtual Fabrics:

- For Brocade 7840 Switch or Brocade SX6 Blade, you can make the logical switch a "base" switch if you plan to use an extended inter-switch link (XISL) connection between such switches rather than use separate ISL connections from logical switches.
- Up to four logical switches will support FICON CUP on a Brocade 7840 Switch and up to 16 logical switches will support FICON CUP on a Brocade Gen6 chassis; however, refer to your system qualification letter-specific limits.
- A tunnel from a Brocade 7840 Switch or Brocade SX6 Blade requires a VE_Port in the logical switch and shared Ethernet port either in the default switch or in the same logical switch. A VE_Port in a logical switch and Ethernet port in the default switch is considered best practice.
- On the Brocade SX6 Blade, the GbE ports and VE_Ports must be on the same blade. You cannot mix GbE ports and VE_Ports from different blades into the same logical switch.

When in 10VE mode, all unused VE_Ports must be in the default switch. If the unused VE_Ports are not in the default switch, the VE-Mode cannot be set to 10VE mode. Unused VE_Ports cannot be moved to other logical switches while in 10VE mode. Refer to the following table for available ports in 10VE and 20VE mode.

Table 47: 20VE and 10VE Mode Ports

Product	20VE Mode VE_Ports	10VE Mode VE_Ports
	3	DP0 - 24 through 28 DP1 - 34 through 38
	Ū Ū	DP0 - 16 through 20 DP1 - 26 through 30

Brocade FX8-24 Blade Considerations and Limitations

The following are considerations and limitations of Brocade FX8-24 Blades that are configured to support Virtual Fabrics:

- The number of logical switches that you can create and the limits on logical switch support for FICON CUP depends on the chassis where the Brocade FX8-24 Blade is installed. For example, up to eight logical switches can be configured on a blade that is installed on DCX 8510 platforms. Refer to your chassis specifications for details.
- For the Brocade FX8-24 Blade, you can make the logical switch a base switch if you are planning on using an
 extended inter-switch link (XISL) connection between base switches instead of using separate ISL connections from
 logical switches.

Enabling XISL for VE_Ports (Brocade FX8-24 Blade/7840 Switch/SX6 Blade)

Another way to connect logical switches is to use extended inter-switch links (XISLs) and base switches. When you divide a chassis or fixed-port switch into logical switches, you can designate one of the switches to be a base switch. A base switch is a special logical switch that is used for interconnecting the physical chassis.

NOTE

The Brocade 7810 Switch does not support "base" switches.

An XISL connection can be created between base switches, instead of using separate ISLs. The base fabric provides the physical connectivity across which logical connectivity is established. The XISL can carry combined traffic for multiple logical fabrics while maintaining traffic separation for each fabric.

Because of the expense of long-distance links, this feature has particular benefits for the Brocade Extension platforms. This feature is supported as follows:

- On tunnels between Brocade FX8-24 Blades running Fabric OS 7.0.x.
- On tunnels between Brocade 7840 Switches running Fabric OS 7.4.x.
- On tunnels between Brocade SX6 Blades, or Brocade 7840 and 7810 Switches running Fabric OS 8.0.x.
- FICON Emulation features are not supported on a Brocade FX8-24 Blade VE XISL port. FICON Emulation features are supported on a Brocade 7840 Switch or Brocade SX6 Blade VE XISL port.

To create a base switch on the Brocade FX8-24 Blade, use the -base option for the lsCfg command when creating a logical switch. To use XISL, refer to instructions for configuring a logical switch to use XISLs in the *Brocade Fabric OS Administration Guide*.

For the Brocade FX8-24 Blade, if an XISL is enabled, you must not configure VE_Ports on both the logical switch and the base switch because tunnels support only a maximum of two hops.

Traffic Isolation Zoning

Traffic Isolation Zoning allows you to control the flow of inter-switch traffic by creating a dedicated path for traffic flowing from a specific set of source ports (N_Ports).

You might use Traffic Isolation Zoning for the following scenarios:

- To dedicate an ISL to high-priority, host-to-target traffic.
- To force high volume, low-priority traffic onto a given ISL to limit the effect on the fabric of this high-traffic pattern.
- To ensure that requests and responses of FCIP-based applications such as tape pipelining use the same VE_Port tunnel across a metaSAN.

Traffic isolation is implemented using a special zone, called a Traffic Isolation zone (TI zone). A TI zone indicates the set of N_Ports, E_Ports, and VE_Ports to be used for specific traffic flow. When a TI zone is activated, the fabric attempts to isolate all inter-switch traffic entering from a member of the zone to only those E_Ports or VE_Ports that have been included in the zone. The fabric also attempts to exclude traffic not in the TI zone from using E_Ports or VE_Ports within that TI zone.

NOTE

Traffic Isolation Zoning is an advanced feature but does not require a license. A strong understanding of Fabric Shortest Path First (FSPF) is required.

NOTE

Use of Traffic Isolation Zones is not considered best practice in FCIP Extension configurations. Instead, you should consider using Logical Switches and multiple circuit tunnels between connected domains.

For more information and details about configuring TI Zoning, refer to the "Traffic Isolation Zoning" chapter in the *Brocade Fabric OS Administration Guide*.

Zoning

A recommended best practice is to use zoning in your network. Zoning is a fabric-based service that enables you to partition your storage area network (SAN) into logical groups of devices that can access each other.

For example, you can partition your SAN into two zones, winzone and unixzone, so that your Windows servers and storage do not interact with your UNIX servers and storage. You can use zones to logically consolidate equipment for efficiency or to facilitate time-sensitive functions; for example, you can create a temporary zone to back up nonmember devices.

A device in a zone can communicate only with other devices that are connected to the fabric within the same zone. A device not included in the zone is not available to members of that zone. When zoning is enabled, devices that are not included in any zone configuration are inaccessible to all other devices in the fabric.

By contrast, if no zones are defined, each device in the fabric can access every other device in the fabric. In a small network with few devices, this might not be a problem. In large networks with many devices, having all devices accessible can present security issues. That is why zoning is recommended.

Zones can be configured dynamically. They can vary in size, depending on the number of fabric-connected devices, and devices can belong to more than one zone.

For more information on configuring zones, refer to the "Administering Advanced Zoning" chapter in the *Brocade Fabric* OS Administration Guide.

IP Extension Flow Monitor Overview

IP Extension Flow Monitor allows you to monitor and view LAN-side statistics. By viewing traffic statistics of an IP pair or a specific port type, you can determine if the IP Extension traffic flows are functioning as expected.

IP Extension Flow Monitor is a feature separate from the Brocade Flow Vision and Flow Monitor features. IP Extension Flow Monitor is accessed through Fabric OS CLI commands on the Brocade X6 and Brocade 7840 platforms running Fabric OS 8.2.x. The following table lists the types of IP traffic information that you can monitor.

NOTE

Because of a reduction in DP memory relative to the Brocade SX6 Blade and Brocade 7840 Switch platforms, the maximum upper limit for VE port-based monitoring of FC on a Brocade 7810 Switch will be lowered (the maximum learned VE flows and static VE flows will be 4 (1 per VE port) and 256, respectively). However, a Brocade 7810 Switch will provide similar support for IP Extension flow monitoring; the maximum supported flows (TCP connections; Brocade 7840 Switch and Brocade SX6 Blade (4K flow per DP for current and historical stats) and max supported IP-PAIR (32 IP pairs) will be unchanged.

Table 48: IP Extension Flow Monitor IP Traffic

Layer	Monitored information
L2	VLAN ID Non-IP traffic is not monitored.
L3	 IP source and IP destination address Non-TCP traffic is not monitored. UDP traffic monitor is not supported.
L4	 TCP port information based on TCP port number TCP port information based on TCP port range TCP port information based on TCP application type Non-TCP traffic is not monitored. UDP traffic monitor is not supported.

Monitoring Traffic Flows

The primary use of the IP Extension Flow monitor is to display statistical information about the flow of L2, L3, and L4 traffic on the ports or addresses. The type of traffic information that is displayed by the IP Extension Flow monitor is controlled by user-defined flows. When you configure the flow monitor, you define a flow name and the type of flow that you want to monitor. Using flow names, you can define filters for the following categories:

- GE port or VE port
- Slot (in a multi-slot chassis)
- DP (either DP0 or DP1 for Brocade SX6 Blade; DP0 for the Brocade 7810 Switch)
- IP address
- TCP port, by port number, port range, or application
- VLAN ID
- Byte values
- Retransmit values

Limited boolean operations are allowed so that you can further refine the definition for a named flow. Up to 32 flow names can be created on a chassis or platform.

You can view dynamic information and historical information. The dynamic information is displayed when you enter the CLI command.

In the view of historical information, statistics are collected from the saved list of connections from the DP. The saved list includes only closed connections. When an active connection is closed, that connection is moved to the saved list. Statistics for closed connections include information about the reason for closure, the time of closure, and optional detailed information.

You can freeze and thaw the historical statistics. When you freeze historical data, that action freezes the saved list in the DP. Connections that are closed after the freeze are not added to the saved list. When you thaw the historical statistics, the saved list returns to its normal operating state, which means that closed connections are again added. During the freeze, no additional information is added to the statistics.

Monitoring IP Pairs

The second use of the IP Extension Flow Monitor is to view IP pair statistics. IP pair statistics are useful for tracking traffic between local and remote nodes. For example, you configure storage replication traffic which flows over one or more TCP connections between the nodes and you want to see traffic bandwidth patterns.

Current IP pair information and historical IP pair information are available. You can view historical IP pair information as a total of the past 24 hours that is captured once every 24-hour period. Up to seven consecutive days of information are retained. The day 1 data drops off when day 8 data is stored. The IP pair information is automatically configured and maintained for each TCP connection and stored when a TCP connection closes on the DP. With the historical information, you can monitor the traffic patterns for each day to analyze the replication bandwidth and view the transmitted and received data for each closed TCP connection during a 24-hour period.

When there is no TCP connection on an IP pair for seven days, the IP pair is removed from the list. New TCP connections initiate the creation of a new IP pair. Statistics are updated from the creation time and not necessarily from the time traffic started.

IP pair statistics can be reset with a CLI command. In addition, the following situations also reset IP pair statistics and result in loss of current and historical information:

- Firmware upgrade or downgrade
- HCL operations
- DP reset

See Using IP Extension Flow Monitor for usage and configuration information.

Using IP Extension Flow Monitor

When you want to view LAN traffic statistics, use the IP Extension Flow Monitor feature.

Before you can use IP Extension Flow Monitor, you must configure IP Extension on the platform. Refer to Configuring IP Extension for information. The IP Extension Flow monitor is useful only when IP traffic is flowing through the extension tunnel. To use the commands that display the IP Extension Flow Monitor statistics, you must connect to the switch and log in using an account assigned to the admin role. For information on all command options, see *Brocade Fabric OS Command Reference Manual*.

NOTE

NTTCP and UDP traffic is not included in the IP pair statistics.

IP Extension Flow Monitor provides default views for traffic flow statistics. You can define and name additional flows so that you can view a specific set of details. You can define up to 32 named flows on a single platform, for example Brocade X6 Directors, Brocade 7840 Extension Switch, or Brocade 7810 Extension Switch. For additional information on how to configure flow views, refer to the following:

- Configuring a Port-Based Flow
- Configuring an IP Address Flow
- Configuring a TCP port Flow
- Configuring a Flow using Logical Operators
- Configuring Historical Statistics Display

In addition to named flows, you can use IP Extension Flow Monitor to view statistics for IP pairs. An IP pair is established automatically for each TCP connection created between source and destination IP addresses. A historical snapshot of the IP pair information is automatically created every 24 hours and retained for seven days. By using command options, you can filter or expand the information displayed for IP pairs. For information on how to modify the IP pair display, refer to the following:

- Displaying IP Pair Detail
- Displaying IP Pair History
- Resetting IP Pair Statistics

The following steps show how to display the default output for flows and IP pairs.

1. To display the default view of flow statistics, use the portshow lan-stats --per-flow command.

switch:	switch:admin> portshow lan-statsper-flow											
*** Di	*** Displaying Top 5 connections by throughput ***											
DP	Idx	Src-Address	Dst-Address	Sport	Dport	Pro	Tx(B/s)	Rx(B/s)				
DP0	142	192.168.10.76	192.168.20.38	63040	49883	TCP	6.6m	6.6m				
DP0	120	192.168.10.76	192.168.20.38	63018	49883	TCP	6.6m	6.6m				
DP0	164	192.168.10.76	192.168.20.38	63062	49883	TCP	6.6m	6.6m				
DP0	170	192.168.10.76	192.168.20.38	63068	49883	TCP	6.6m	6.6m				
DP0	150	192.168.10.76	192.168.20.38	63048	49883	TCP	6.6m	6.6m				

Sport=Source-Port Dport=Destination-Port Pro=Protocol

	DP	ActTCP	ExdTCP	TCLDeny	TCLFail
	DP0	101	0	0	0
	DP1	0	0	0	0
ľ					

ActTCP=Active TCP Conns ExdTCP=Exceeded TCP Conn Cnt

The default display will show up to the top 25 connections sorted by throughput. Each connection is identified by a unique index number as shown in the Idx column.

2. To display the default view of IP pair statistics, use the portshow lan-stats --ip-pair command.

switch:ac	lmin>	portshow lan-stats	sip-pair			
DP	Idx	SrcAddr	DstAddr	Active	TxB	RxB
DP0	1	192.168.20.38	192.168.10.76	101	13.2t	13.2t

The display shows summary information for all IP pairs. In the example output, DP0 has 101 active TCP connections between the source IP address and the destination IP address. DP1 has no IP pair connections, so no information is displayed.

3. You can select and filter statistics by using available options for the portshow lan-stats command without creating flow names. To display all available options, use the portshow lan-stats --help command.

```
switch:admin> portshow lan-stats --help
[Output is not shown]
```

For information on all command options, see Brocade Fabric OS Command Reference Manual.

Configuring a Port-Based Flow

You can create a named flow that filters the IP Extension Flow Monitor output based on a specific port, such as a VE_Port or GE port. The following steps show how to name and create port-based flows.

NOTE

The flow name is case-sensitive. GE3 is not the same as ge3.

1. To create a port-based flow, use the portcfg lan-stats --flow create command. This step shows how to create a flow for a GE port with the name GE3.

```
switch:admin> portcfg lan-stats --flow GE3 create --port ge3.dp0
Operation Succeeded.
```

The port is identified by both its port ID and DP number.

- 2. This step shows how to create a port-based flow for VE_Port 35, which is already configured as an IP Extension tunnel.
 - a) Use the portcfgshow fciptunnel command to display VE_Port tunnels. This step is optional.

```
switch:admin> portcfgshow fciptunnel
portcfgshow fciptunnel
Tunnel Circuit AdminSt Flags
```

7/25	-	EnabledI
7/35	-	EnabledDI
Flags	(tunnel):	l=Legacy QOS Mode
		i=IPSec f=Fastwrite T=TapePipelining F=FICON r=ReservedBW
		a=FastDeflate d=Deflate D=AggrDeflate P=Protocol
		I=IP-Ext

b) To create the flow for a VE_Port, use the portcfg lan-stats --flow create command.

```
switch:admin> portcfg lan-stats --flow test create --port 7/25
Operation Succeeded.
```

switch:admin> portshow lan-stats --flow

3. To view the flow names that you created on the platform, use the portshow lan-stats --flow command.

NameFlow InfoAPP-flow(TCP:3225-3226)host223(port 7/25)test(port 7/25)

The Flow Info column shows the flow definition that is associated with the flow name.

switch:admin> portshow lan-stats --per-flow -flow test

4. To view the flows that you created, use the portshow lan-stats --per-flow -flow name command where name is one of the flow names you created.

```
Aggregate Info:
Flow
             Pro Cnt TX(B/s) RX(B/s) CTx(B) CRx(B) CR
                                               ReTx
_____
             TCP 31 591.8m 0
                             -
                                    -
                                        _
                                               198
test
_____
Pro=Protocol Cnt=Connection Count
CTx(B)=Post-Compression bytes CRx(B)=Pre-Compression bytes
CR=Compression-Ratio
ReTx=ReTransmission
*UDP flows not considered for Compression stats*
Individual Info:
DP
  Idx Src-Address
                  Dst-Address
                              Sport Dport Pro Tx(B/s) Rx(B/s)
_____
7/DP0
      20
         192.168.10.76
                     192.168.20.38
                                53023 59780 TCP
                                            19.6m
                                                  0
7/DP0 23 192.168.10.76 192.168.20.38 53012 59780 TCP 19.7m 0
7/DP0 21 192.168.20.38 192.168.10.76 59779 52994 TCP 0 0
    25 192.168.10.76 192.168.20.38 53016 59780 TCP
7/DP0
                                            19.7m 0
7/DP0 26 192.168.10.76
                    192.168.20.38
                                53025 59780 TCP 19.7m 0
```

FOS-821-Ext-UG105 User Guide

7/DP0	30	192.168.10.76	192.168.20.38	53021 59780 TCP 19.9m 0	
7/DP0	27	192.168.10.76	192.168.20.38	53020 59780 TCP 19.8m 0	
7/DP0	13	192.168.10.76	192.168.20.38	53018 59780 TCP 19.7m 0	
7/DP0	8	192.168.10.76	192.168.20.38	53003 59780 TCP 19.7m 0	
7/DP0	15	192.168.10.76	192.168.20.38	53001 59780 TCP 19.6m 0	
7/DP0	12	192.168.10.76	192.168.20.38	52997 59780 TCP 19.7m 0	
7/DP0	18	192.168.10.76	192.168.20.38	53008 59780 TCP 19.8m 0	
7/DP0	16	192.168.10.76	192.168.20.38	53024 59780 TCP 19.7m 0	
7/DP0	10	192.168.10.76	192.168.20.38	53006 59780 TCP 19.7m 0	
7/DP0	22	192.168.10.76	192.168.20.38	53011 59780 TCP 19.6m 0	
7/DP0	14	192.168.10.76	192.168.20.38	53007 59780 TCP 19.3m 0	
7/DP0	7	192.168.10.76	192.168.20.38	53013 59780 TCP 19.7m 0	
7/DP0	6	192.168.10.76	192.168.20.38	53002 59780 TCP 19.7m 0	
7/DP0	4	192.168.10.76	192.168.20.38	52999 59780 TCP 19.6m 0	
7/DP0	1	192.168.10.76	192.168.20.38	53004 59780 TCP 19.7m 0	
7/DP0	3	192.168.10.76	192.168.20.38	52998 59780 TCP 19.8m 0	
7/DP0	28	192.168.10.76	192.168.20.38	53010 59780 TCP 19.4m 0	
7/DP0	0	192.168.10.76	192.168.20.38	53022 59780 TCP 19.8m 0	
7/DP0	9	192.168.10.76	192.168.20.38	53017 59780 TCP 19.8m 0	
7/DP0	17	192.168.10.76	192.168.20.38	53014 59780 TCP 19.7m 0	
7/DP0	29	192.168.10.76	192.168.20.38	53026 59780 TCP 19.7m 0	
7/DP0	11	192.168.10.76	192.168.20.38	53009 59780 TCP 19.8m 0	
7/DP0	5	192.168.10.76	192.168.20.38	53005 59780 TCP 19.7m 0	
7/DP0	2	192.168.10.76	192.168.20.38	53000 59780 TCP 19.7m 0	
7/DP0	24	192.168.10.76	192.168.20.38	53019 59780 TCP 19.3m 0	
7/DP0	19	192.168.10.76	192.168.20.38	53015 59780 TCP 19.7m 0	

Sport=Source-Port Dport=Destination-Port Pro=Protocol

DP	ActTCP	ExdTCP	TCLDeny	TCLFail	
7/DP0	31	0	0	0	
7/DP1	21	0	0	0	

ActTCP=Active TCP Conns ExdTCP=Exceeded TCP Conn Cnt

Configuring an IP Address Flow

You can create a named flow that filters the IP Extension Flow Monitor output based on a specific IP address. The IP address can be either a source address or destination address associated with a TCP connection. The following steps show how to name and create an IP address flow.

1. To display IP addresses associated with the TCP connections, use the portshow lan-stats --per-flow command. This step is optional.

```
switch:admin> portshow lan-stats --per-flow
  *** Displaying Top 25 connections by throughput ***
  DP Idx Src-Address Dst-Address Sport Dport Pro Tx(B/s) Rx(B/s)
```

DP0	9	192.168.10.76	192.168.20.38	53017	59780	TCP	19.9m	0		
DP0	12	192.168.10.76	192.168.20.38	52997	59780	TCP	19.9m	0		
DP0	27	192.168.10.76	192.168.20.38	53020	59780	TCP	19.9m	0		
DP0	2	192.168.10.76	192.168.20.38	53000	59780	TCP	19.8m	0		
DP0	19	192.168.10.76	192.168.20.38	53015	59780	TCP	19.8m	0		
[Output is truncated.]										

2. To create a flow using IP address 192.168.20.38, use the portofg lan-stats --flow create command.

switch:admin> portcfg lan-stats --flow host create --ipaddr 192.168.10.76
Operation Succeeded.

3. To view the flow names that you created on the platform, use the portshow lan-stats --flow command.

switch:admin> portshow lan-stats --flow

 Name
 Flow Info

 APP-flow
 (TCP:3225-3226)

 host
 (ipaddr:192.168.10.76/32)

 host223
 (port:25)

 test
 (port:25)

The Flow Info column shows the flow definition associated with the flow name.

4. To view the flows that you created, use the portshow lan-stats --per-flow -flow name command where name is one of the flow names you created.

```
switch:admin> portshow lan-stats --per-flow -flow host
portshow lan-stats --per-flow -flow host
Aggregate Info:
Flow
              Pro Cnt TX(B/s) RX(B/s) CTx(B) CRx(B) CR
                                                  ReTx
_____
               TCP 31 591.7m 0
host
                                _
                                                  198
_____
Pro=Protocol Cnt=Connection Count
CTx(B)=Post-Compression bytes CRx(B)=Pre-Compression bytes
CR=Compression-Ratio
ReTx=ReTransmission
*UDP flows not considered for Compression stats*
Individual Info:
DP
    Idx Src-Address
                    Dst-Address
                                 Sport Dport Pro Tx(B/s) Rx(B/s)
_____
DP0
    20 192.168.10.76 192.168.20.38 53023 59780 TCP 19.6m 0
    23 192.168.10.76 192.168.20.38 53012 59780 TCP 19.7m 0
DP0
    21 192.168.20.38 192.168.10.76 59779 52994 TCP 0
DP0
                                                     0
DP0
    25 192.168.10.76 192.168.20.38 53016 59780 TCP 19.7m 0
DP0 26 192.168.10.76 192.168.20.38 53025 59780 TCP 19.8m 0[Output is truncated.]
```

	19 192.	168.10.7	6 192	.168.20.38	53015	59780	TCP	19.9m	0
Sport=S	ource-Por	rt Dport=	Destinat:	ion-Port Pro	=Protoc	ol			
DP 	ActTCP	ExdTCP	TCLDeny	TCLFail					
DP0	31	0	0	0					
DP1	21	0	0	0					

Configuring a TCP Port Flow

You can create a named flow that filters the IP Extension Flow Monitor output based on a specific TCP port. The following steps show how to create and name a TCP port flow.

1. To see the TCP ports that are in use, use the portshow lan-stats --per-flow command.

switch:	<pre>switch:admin> portshow lan-statsper-flow</pre>											
*** Di	*** Displaying Top 5 connections by throughput ***											
DP	Idx	Src-Address	Dst-Address	Sport Dport	Pro	Tx(B/s)	Rx(B/s)					
DP0	142	192.168.10.76	192.168.20.38	63040 49883	TCP	6.6m	6.6m					
DP0	120	192.168.10.76	192.168.20.38	63018 49883	TCP	6.6m	6.6m					
DP0	164	192.168.10.76	192.168.20.38	63062 49883	TCP	6.6m	6.6m					
DP0	170	192.168.10.76	192.168.20.38	63068 49883	TCP	6.6m	6.6m					
DP0	150	192.168.10.76	192.168.20.38	63048 49883	TCP	6.6m	6.6m					

Sport=Source-Port Dport=Destination-Port Pro=Protocol

DP	ActTCP	ExdTCP	TCLDeny	TCLFail
DP0	101	0	0	0
DP1	0	0	0	0

ActTCP=Active TCP Conns ExdTCP=Exceeded TCP Conn Cnt

The Sport and Dport columns show the TCP port numbers.

2. To display a list that shows TCP ports associated with known application ports, use the portshow lan-stats -- known-apps command. This step is optional.

switch:admin> portshow lan-stats --known-apps

FCIP	3225-3226
FTP	20-21,989-990,115
HTTP	80,8080,8000-8001,3128
HTTPS	443
iscsi	3260
Isilon-SyncIQ	5666-5667
LDAP	389,8404,636
MS-SQL	1443
MySQL	3306
NETAPP-SNAP-MIRROR	10566
NFS	2049
ORACLE-SQL	66,1525,1521
RSYNC	873
SRDF	1748
SSH	22
SSL-SHELL	614
TELNET	23,107,513,992
TFTP	69
VERITAS-BACKUP	6101-6102,6106,3527,1125
VTS-GRID Control	1415-1416
VTS-GRID Data	350
Data-Domain	2051

You can use the port IDs to create a TCP port flow. You can also use the application information to create an application-based flow.

3. To create a TCP flow using port address 49883, use the portcfg lan-stats --flow create command.

```
switch:admin> portcfg lan-stats --flow TCP-flow create --tcp 49883
Operation Succeeded.
```

4. To view the flow names that you created on the platform, use the portshow lan-stats --flow command.

The Flow Info column shows the flow definition associated with the flow name.

5. To view the flows that you created, use the portshow lan-stats --per-flow -flow name command where name is one of the flow names you created.

```
switch:admin> portshow lan-stats --per-flow -flow TCP-flow
No Active Per-flow stats to Display
```

6. To display a listing of all TCP ports that attempted to connect, use the portshow lan-stats --tcp-port-info command.

```
Ven60:FID128:admin> portshow lan-stats --tcp-port-info
8/DP0:
LAN TCP Destination Ports Used:
_____
  445 (0x01bd)
 3260 (0x0cbc)
 49374 (0xc0de)
 49375 (0xc0df)
 54762 (0xd5ea)
 63177 (0xf6c9)
 63399 (0xf7a7)
 _____
8/DP1:
LAN TCP Destination Ports Used:
_____
  _____
```

Configuring a Flow Using Logical Operators

You can use the logical operators AND and OR to create flows that meet specific criteria. Logical operators are restricted by the following conditions:

- A flow definition can contain a maximum of 30 elements.
- · You cannot combine AND operators with OR operators in a flow definition.

The following steps show how to create flows that use logical operators.

1. To combine a specific DP with an IP address and VE_Port using the AND operator, use the <code>portcfg lan-stats -- flow create command</code>.

```
switch:admin> portcfg lan-stats --flow dp1_225 create --dp dp1 --and --ipaddr 192.168.10.76/24 --port
7/35
```

Operation Succeeded.

In this example, DP1 is selected along with an IP address on a specific port. Traffic flow statistics that meet all criteria are displayed for the dp1 225 flow.

2. To combine a DP with an IP address and VE_Port using the OR operator, use the portcfg lan-stats --flow create command.

```
switch:admin> portcfg lan-stats --flow dp0_ve35 create --dp dp0 --or --ipaddr 192.168.10.76/24 --port
7/35
Operation Suggesded
```

Operation Succeeded.

In this example, the statistics for all TCP traffic on DP0 are displayed, along with all traffic on VE_Port 35 or IP address 192.168.10.76.

3. To view the flow names that you created on the platform, use the portshow lan-stats --flow command.

```
admin> portshow lan-stats --flow
```

Name	Flow Info
dp0_ve35	(dp:DP0 or ipaddr:192.168.10.76/24 or port 7/35)
dp1_225	(dp:DP1 and ipaddr:192.168.10.76/24 and port 7/35)

The Flow Info column shows the flow definition that is associated with the flow name.

Displaying Historical Flow Statistics

You can display historical statistics for LAN traffic in the IP Extension Flow Monitor. The historical display is a snapshot of information for all closed connections that are stored in the DP for both DP0 and DP1. You can freeze or thaw the statistics. Freezing the statistics means that no additional updates are made. All activity that occurs during the freeze is not captured. When you thaw the statistics, activity is updated and information about closed connections is again captured.

You can apply options to the command to filter specific information. For example, you can filter on a DP or you can define additional filters.

The default display for historical flow statistics shows a summary view of the first five and last five entries. When you select a detailed view, you first freeze the historical statistics.

1. To display the default view of historical statistics, use the portshow lan-stats --hist-stats command.

admin> portshow lan-stats --hist-stats

7/DP0 Connection Summary: (Thawed)

Idx	Src-Address	Dst-Address	Sport	Dport	Pro	Tx(B)	Rx(B)
First	5 Connections:						
32	192.168.20.38	192.168.10.76	49374	52996	TCP	231	139
25	192.168.20.38	192.168.10.76	59767	52973	TCP	1.0g	14.5m
13	192.168.20.38	192.168.10.76	59767	52961	TCP	752.1m	10.5m
30	192.168.20.38	192.168.10.76	59767	52978	TCP	755.1m	10.6m
21	192.168.20.38	192.168.10.76	59767	52969	TCP	754.8m	10.6m
Last	5 Connections:						
12	192.168.20.38	192.168.10.76	59767	52960	TCP	1.0g	14.5m
3	192.168.20.38	192.168.10.76	59767	52951	TCP	755.3m	10.6m
1	192.168.20.38	192.168.10.76	59766	52947	TCP	220	168
11	192.168.20.38	192.168.10.76	59767	52959	TCP	755.Om	10.6m
31	192.168.20.38	192.168.10.76	59767	52979	TCP	1.0g	14.5m

Total Connection count:	33
Oldest Entry:	10/17/2017 09:45:16 PD1
Newest Entry:	10/17/2017 09:46:21 PD1
Close RX/TX FIN:	1 / 2
Close RX/TX RST:	30 / 0
Total TX Errors	
Slow Starts:	3
FastRetrans/RetransTO:	0 / 3

```
Total RX Errors
Out of Orders/Dup Ack: 0 / 0
7/DP1: No historical stats available.
```

The snapshot display shows the first and last five entries and summary information for each DP.

2. To freeze the historical flow data, use the portshow lan-stats --hist-stats -freeze command.

```
switch:admin> portshow lan-stats --hist-stats -freeze
Operation Succeeded.
7/DP0 Hist Status: Frozen
7/DP1 Hist Status: Frozen
```

3. To thaw the historical flow data, use the portshow lan-stats --hist-stats -thaw command.

```
switch:admin> portshow lan-stats --hist-stats -thaw
Operation Succeeded.
7/DP0 Hist Status: Thawed
7/DP1 Hist Status: Thawed
```

switch:admin> portshow lan-stats --hist-stats -detail

4. To display a detailed view, use the portshow lan-stats --hist-stats -detail command. This command displays details for the first and last five entries. When 10 or fewer entries are stored, all connection details are displayed. Use the -all option to display details for all entries that are stored in the DP instead of the first and last five entries.

```
Warning: It is recommended to freeze the table when using detailed stats.
7/DP0 Connection Summary: (Thawed)
_____
Idx Src-Address
                     Dst-Address
                                    Sport Dport Pro Tx(B) Rx(B)
_____
First 5 Connections:
                                  49374 52996 TCP 231
32
   192.168.20.38
                    192.168.10.76
                                                      139
2.5
   192.168.20.38
                    192.168.10.76
                                   59767 52973 TCP 1.0g 14.5m
13 192.168.20.38
                    192.168.10.76
                                   59767 52961 TCP 752.1m 10.5m
30
   192.168.20.38
                    192.168.10.76
                                    59767 52978 TCP 755.1m 10.6m
21
    192.168.20.38
                    192.168.10.76
                                    59767 52969 TCP 754.8m 10.6m
Last 5 Connections:
   192.168.20.38
12
                    192.168.10.76
                                   59767 52960 TCP 1.0g 14.5m
3
    192.168.20.38
                     192.168.10.76
                                   59767 52951 TCP 755.3m 10.6m
1
   192.168.20.38
                    192.168.10.76
                                   59766 52947 TCP 220 168
11 192.168.20.38
                    192.168.10.76
                                    59767 52959 TCP 755.0m 10.6m
                                    59767 52979 TCP 1.0g 14.5m
31
    192.168.20.38
                    192.168.10.76
_____
Total Connection count: 33
Oldest Entry:
                  10/17/2017 09:45:16 PDT
Newest Entry:
                  10/17/2017 09:46:21 PDT
                  1 / 2
Close RX/TX FIN:
Close RX/TX RST:
                  30 / 0
Total TX Errors
```

Slow Starts: 3 FastRetrans/RetransTO: 0 / 3 Total RX Errors Out of Orders/Dup Ack: 0 / 0 Warning: It is recommended to freeze the table when using detailed stats. DP1: No historical stats available.

Notice that the information is thawed and a message advising that you freeze the data before displaying detailed statistics.

5. To display all options that you can use to filter the historical statistics, use the portshow lan-stats --histstats -filter -help command. This command returns a list of all options available for the portshow command.

```
switch:admin> portshow lan-stats --hist-stats -help
Usage:
 portshow lan-stats --hist-stats [<harqs>]
 Hist-Stats Args: Displays the historical TCP connection info for
 closed TCP IP-Extension flows.
    -all
                     Display all stored connections. Default 10
                     entries if omitted.
   -detail
                     Displays the connection stats in detailed view
   -freeze
                     Freeze the historical TCP connection table to
                     prevent existing entries from being removed and
                     new entries from being added.
                     Thaw the historicatl TCP connection table allowing
    -thaw
                     existing entries to be removed and new entries to
                     be added.
   -dp [<slot>/]dp<#> [-index <index id>] Specify a target DP
                     to get the historical TCP stats from.
                     Limit the output to specific filter criteria.
    -filter <args>
                     Use portShow lan-stats --hist-stats -filter -help
                      for details.
```

Displaying IP Pair Detail

IP pair statistics are useful for understanding traffic flow that occurs across all the TCP connections that are created between a source and destination IP address. See Using IP Extension Flow Monitor for information on the default view of IP pair statistics. IP pair detail can provide information about the TCP connections on a specific DP and index value. The following steps show how to display IP pair details.

1. To display detailed information for IP pairs, use the portshow lan-stats --ip-pair -detail command.

```
switch:admin> portshow lan-stats --ip-pair -detail
    portshow lan-stats --ip-pair -hist -detail
    DP0: Index:0 192.168.20.38 <-> 192.168.10.76
    No of active connections: 31
    No of closed connections: 33
```

FOS-821-Ext-UG105 User Guide

Creation time	10/17/201	7 09:44:35 PDT
	TxB	RxB
Current stats:	4.5t	358
Mon 10/16 stats:	0	0
Sun 10/15 stats:	0	0
Sat 10/14 stats:	0	0
Fri 10/13 stats:	0	0
Thu 10/12 stats:	0	0
Wed 10/11 stats:	0	0
Tue 10/10 stats:	0	0
Total stats:	4.5t	358
DP1: Index:0 1000:17:20::3	8 <-> 1000	:17:10::76
		:17:10::76
	2	
No of active connections:	2 0	
No of active connections: No of closed connections:	2 0	7 11:53:33 PDT
No of active connections: No of closed connections:	2 0 10/17/201 TxB	7 11:53:33 PDT RxB
No of active connections: No of closed connections: Creation time	2 0 10/17/201 TxB 83	7 11:53:33 PDT RxB 57
No of active connections: No of closed connections: Creation time Current stats:	2 0 10/17/201 TxB 83 0	7 11:53:33 PDT RxB 57
No of active connections: No of closed connections: Creation time Current stats: Mon 10/16 stats:	2 0 10/17/201 TxB 83 0 0	7 11:53:33 PDT RxB 57 0 0
No of active connections: No of closed connections: Creation time Current stats: Mon 10/16 stats: Sun 10/15 stats:	2 0 10/17/201 TxB 83 0 0 0	7 11:53:33 PDT RxB 57 0 0
No of active connections: No of closed connections: Creation time Current stats: Mon 10/16 stats: Sun 10/15 stats: Sat 10/14 stats:	2 0 10/17/201 TxB 83 0 0 0 0	7 11:53:33 PDT RxB 57 0 0 0
No of active connections: No of closed connections: Creation time Current stats: Mon 10/16 stats: Sun 10/15 stats: Sat 10/14 stats: Fri 10/13 stats:	2 0 10/17/201 TxB 83 0 0 0 0 0 0	7 11:53:33 PDT RxB 57 0 0 0 0
No of active connections: No of closed connections: Creation time Current stats: Mon 10/16 stats: Sun 10/15 stats: Sat 10/14 stats: Fri 10/13 stats: Thu 10/12 stats: Wed 10/11 stats:	2 0 10/17/201 TxB 83 0 0 0 0 0 0	7 11:53:33 PDT RxB 57 0 0 0 0 0 0
No of active connections: No of closed connections: Creation time Current stats: Mon 10/16 stats: Sun 10/15 stats: Sat 10/14 stats: Fri 10/13 stats: Thu 10/12 stats: Wed 10/11 stats:	2 0 10/17/201 TxB 83 0 0 0 0 0 0 0 0 0 0 0	7 11:53:33 PDT RxB 57 0 0 0 0 0 0

The output shows detailed information for a Brocade 7840 Switch. Each IP pair has a unique index value, which you can use to filter the results. In this example, only DP0 has an active IP pair connection.

2. To display IP pair information detail for a specific DP and index value, use the portshow lan-stats --ip-pair [*slot/dp*] [*index*] -detail command.

```
admin>
     portshow lan-stats --ip-pair dp0 0 -detail
DP0: Index:0 192.168.20.38 <-> 192.168.10.76
_____
No of active connections: 31
No of closed connections: 33
Creation time
                     10/17/2017 09:44:35 PDT
                    TxB RxB
Current stats:
                    4.6t
                             358
Mon 10/16 stats:
                    0
                             0
Sun 10/15 stats:
                    0
                             0
Sat 10/14 stats:
                    0
                             0
Fri 10/13 stats:
                    0
                            0
Thu 10/12 stats:
                     0
                             0
Wed 10/11 stats:
                     0
                             0
Tue 10/10 stats:
                     0
                             0
                             358
Total stats:
                     4.6t
```

You can see that the displayed output is limited to DP0 and index 0.

Displaying IP Pair History

IP pair history provides a snapshot of activity every 24 hours. The snapshot is saved for seven days unless the history is reset. The time of the last snapshot is displayed in the detailed view.

It can take several seconds to accumulate the snapshot data, so the 24-hour time-stamp can vary from day to day. For information on how to display historical flow history, see Displaying Historical Flow Statistics.

The following steps show how to display the IP pair history.

1. To display the IP pair history information, use the portshow lan-stats --ip-pair -hist command.

switch:admin> portshow lan-statsip-pair -hist										
DP	Idx	SrcAddr Todav		D Sun	stAddr Sat	Fri	Active Thu	Closed Wed	Tue	
7/DP0	0	192.1	68.20.38	3	192.168.1	L0.76	31	33		
TxB		4.8t	-	-	-	-	-	-	-	
RxB		358	-	-	-	-	-	-	-	
7/DP1	0	1000:	17:20::3	38	1000:17:1	LO::76	21	12		
TxB		432	-	-	-	-	-	-	-	
RxB		381.8g	-	-	-	-	-	-	-	

The values in the Today column are a snapshot as of when the command was entered.

switch:admin> portshow lan-stats --ip-pair 7/dp0 0 -hist -detail

2. To specify a DP and index value for the history display, use the portshow lan-stats --ip-pair [*slot/port*] [*index*] -hist command. Add the -detail option to obtain a detailed history display.

```
7/DP0: Index:0 192.168.20.38 <-> 192.168.10.76
_____
No of active connections: 31
No of closed connections: 33
Creation time
                    10/17/2017 09:44:35 PDT
                   TxB
                          RxB
Current stats:
                   4.2t
                           358
Mon 10/16 stats:
                   0
                            0
Sun 10/15 stats:
                    0
                            0
Sat 10/14 stats:
                   0
                            0
Fri 10/13 stats:
                   0
                            0
                    0
Thu 10/12 stats:
                            0
                    0
Wed 10/11 stats:
                            0
Tue 10/10 stats:
                   0
                           0
Total stats:
                   4.2t
                           358
```

Resetting IP Pair Statistics

You can reset the IP pair statistics to start the data gathering from zero. Current statistics are set to zero and then updated only with what has transpired since the reset was entered. If there is a saved IP pair that has no active connection, that IP pair is removed and not displayed. Conditions other than a command entry can reset the IP pair statistics. Those conditions are as follows:

- · Firmware upgrade
- Firmare downgrade
- Platform reboot

NOTE

There is no warning displayed or confirmation required when you reset IP pair statistics.

You can control which IP pair statistics are reset. For example, you can reset statistics on a specific DP, or you can reset statistics for a particular index number. The following steps show how to reset IP pair statistics:

1. To reset all IP pair statistics, use the portshow lan-stats --ip-pair reset command.

```
admin> portshow lan-stats --ip-pair -reset
```

```
IP-Pair reset status:Success
```

- 2. To reset only certain IP pair statistics, you can specify values for the DP and IP pair index by using the <code>portshow</code> <code>lan-stats --ip-pair</code> reset command with the DP option and <code>index</code> option. Use the <code>portshow</code> <code>lan-stats --ip-pair</code> command to identify a DP and an index, and then use the <code>portshow</code> <code>lan-stats --ip-pair</code> reset command.
 - a) Display the IP pair information.

```
switch:admin> portshow lan-stats --ip-pair -hist
```

DP	Idx SrcAd	dr	Ds	tAddr		Active	Closed	
	Today	Thu	Wed	Tue	Mon	Sun	Sat	Fri
7/DP0	0 192	.168.20.3	 3	192.168.1	L0.76	31	1	
TxB	22.2t	51.0t	51.0t	51.0t	51.0t	51.0t	51.0t	51.0t
RxB	0	-	-	-	-	-	-	-
7/DP1	0 100	0:17:20:::	38	1000:17:1	L0::76	21	1	
TxB	0	-	-	-	-	-	-	-
RxB	37.8t	86.7t	86.9t	86.7t	86.7t	86.8t	86.9t	86.7t

- b) Reset the IP pair statistics for ${\tt DP0}$ and index ${\tt 0}$.

switch:admin> portshow lan-stats --ip-pair 7/dp0 0 -reset

IP-Pair reset status:Success

c) Confirm that the selected IP pair statistics are reset.

```
switch:admin> portshow lan-stats --ip-pair -hist
```

DP	Idx SrcAddr Today Tue	DstAddr Mon Sun	Sat	Active Fri	Closed Thu	Wed
7/DP0	0 192.168.20.38	3 192.168.	10.76	0	11265	, ,
TxB	2.6m -		-	-	-	-
RxB	822.3k -		-	-	-	-

Any IP pair that has no active connection is removed from the display table when the statistics are reset.

Troubleshooting Tools

In-band Management

NOTE

In-band management is supported on the Brocade FX8-24 Blade only.

In-band management allows the management of an extension switch or blade in conjunction with FCIP traffic through Ethernet ports. This enables a management station that is located on the WAN side of the Brocade FX8-24 Blade platform to communicate with the control processor (CP) for management tasks, such as SNMP polling, SNMP traps, troubleshooting, and configuration. Through IP forwarding, inband management also allows a management station that is connected to the management port of one extension switch or blade to manage the blade at the far end of the network through the WAN.

The in-band management path is achieved by receiving the management traffic from the Ethernet port and transmitting the traffic to the CP through the inband interface. The CP then handles the management traffic as it would handle any other management requests from a normal management interface. The in-band management interface is protocol-independent, so any traffic that is destined for these in-band management interfaces passes through the data processor (DP) to the CP. It is then handled on the CP according to the rules set forth for the normal management interface and follows any security rules that may be in place on the CP.

One in-band management interface can be configured per Ethernet interface to provide redundancy. This allows the management station on the WAN side of the network to have multiple addresses for reaching that switch and provides redundancy if one of the Ethernet ports cannot be reached. Communication is handled through external addresses that are configured independently for each in-band management interface.

The following functions are not supported by the in-band management interface:

- Downloading firmware
- IPv6 addressing

IP Routing

The in-band management interfaces are separate from the existing IP interfaces currently used for extension tunnel traffic. These interfaces exist on the CP and are added and maintained on the CP routing table to ensure end-to-end connectivity. Because this routing table will be shared among all devices on the CP, including the management interface, precautions must be taken to ensure that proper connectivity is maintained. To ensure proper handling of routes, the inband management devices should be configured on a different network from the management interface and from every other in-band management interface.

In-band management interface addresses must also be unique and cannot be duplicates of any addresses defined on the Ethernet ports. An in-band management address can exist on the same network as an address defined on one of the GbE ports because the in-band management interfaces use the CP routing table and not the routing table normally used for the GbE ports.

Configuring IP Addresses and Routes


Configure and view IP addresses and routes for in-band management interfaces by using the following Fabric OS commands:

- portcfg mgmtif [slot/gePort] [create|delete] ipAddress netmask mtu
- portcfg mgmtif [slot/gePort] [enable|disable] ٠
- portshow mgmtif [slot/gePort]
- portcfg mgmtroute [slot/gePort] destination netmask gateway

Example of a Management Station on the Same Subnet

The following figure illustrates an example of configuring in-band management with the management station attached to the same subnet as managed switches. Note that only the IP address is required for each extension platform.

Figure 25: Management station configured on the same subnet

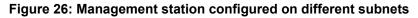
Configure the in-band management interfaces.

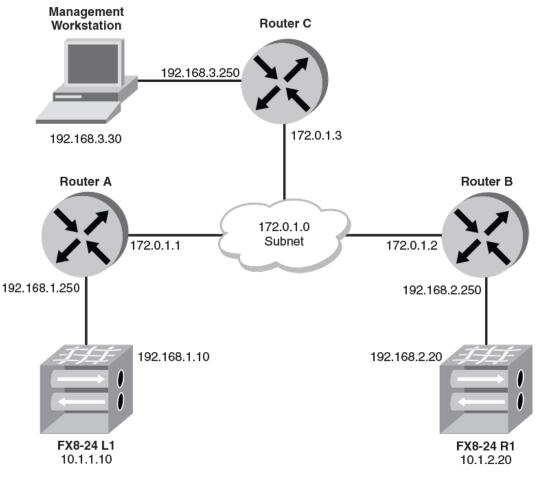
portcfg mgmtif 1/ge0 create 192.168.3.10 255.255.255.0

FX8-24 R1

Configure the in-band management interfaces.

portcfg mgmtif 1/ge0 create 192.168.3.20 255.255.255.0


Management Workstation


telnet 192.168.3.10

Broadcom

Example of a Management Station on a Different Subnet

The following figure illustrates an example configuration consisting of switches and the management station on different networks and attached through a WAN cloud. The routers are assumed to already have route entries to access each other's subnet.

FX8-24 L1

• Configure the in-band management interfaces.

portcfg mgmtif 1/ge0 create 192.168.1.10 255.255.255.0

• Configure the in-band management route for the management station.

portcfg mgmtroute 1/ge0 create 192.168.3.0 255.255.255.0 192.168.1.250

FX8-24 R1

• Configure the in-band management interfaces.

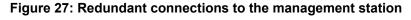
portcfg mgmtif 1/ge0 create 192.168.2.20 255.255.255.0

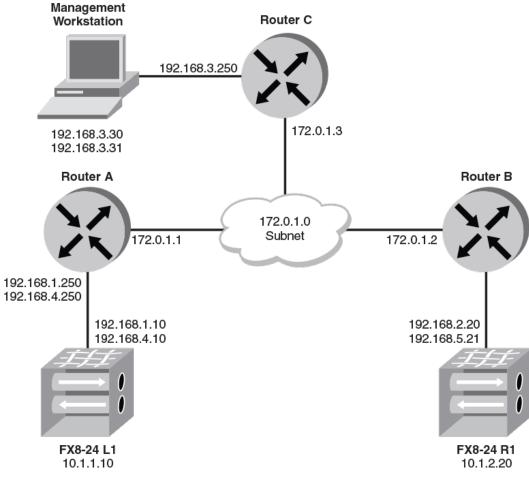
• Configure the in-band management route for the management station.

portcfg mgmtroute 1/ge0 create 192.168.3.0 255.255.255.0 192.168.2.250

Management station

Add route entries to access the Brocade FX8-24 Blade external in-band management interfaces.


```
route add 192.168.1.0 netmask 255.255.255.0 gw 192.168.3.250 route add 192.168.2.0 netmask 255.255.255.0 gw 192.168.3.250
```


Access the Brocade FX8-24 Blade through the external in-band management interfaces.

```
telnet 192.168.1.10
```

Example of Redundant Connections to the Management Stations

In the following figure, because the in-band management interfaces do not support a multi-homing stack, unique addresses must be used on the management station to communicate with different in-band management interfaces. If both management station interfaces are on the same subnet, then host-specific routes must be added on the Brocade FX8-24 Blade.

FX8-24 L1

• Configure the in-band management interfaces.

portcfg mgmtif 1/ge0 create 192.168.1.10 255.255.255.0

portcfg mgmtif 1/ge1 create 192.168.4.10 255.255.255.0

Configure the in-band management route for the management workstation.

portcfg mgmtif 1/ge0 create 192.168.1.10 255.255.255.255 192.168.1.250 portcfg mgmtif 1/ge1 create 192.168.4.10 255.255.255.255 192.168.4.250

FX8-24 R1

Configure the in-band management interfaces.

portcfg mgmtif 1/ge0 create 192.168.2.20 255.255.255.0 portcfg mgmtif 1/ge1 create 192.168.5.20 255.255.255.0

Configure the in-band management route for the management workstation.

portcfg mgmtroute 1/ge0 create 192.168.3.30 255.255.255.255 192.168.2.250 portcfg mgmtroute 1/ge1 create 192.168.3.31 255.255.255.255 192.168.5.250

Management Workstation

Add route entries to get to the Brocade FX8-24 Blade external in-band management interfaces.

route add 192.168.1.0 netmask 255.255.255.0 gw 192.168.3.250 route add 192.168.2.0 netmask 255.255.255.0 gw 192.168.3.250 route add 192.168.4.0 netmask 255.255.255.0 gw 192.168.3.250 route add 192.168.5.0 netmask 255.255.255.0 gw 192.168.3.250

Access the Brocade FX8-24 Blade through the external in-band management interfaces.

telnet 192.168.1.10

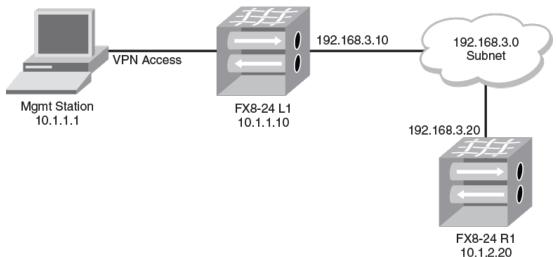
VLAN Tagging Support

To add VLAN tag entries to the VLAN tag table for in-band management interfaces, use the --mgmt or -m options with the portcfg vlantag command. Perform the following steps.

1. Configure an IP address and route for in-band management interface using the following command format.

portcfg mgmtif [slot/ge port] [create|delete] ipAddress netmask mtu

2. Add the VLAN tag entry for the management interface using the following command format.


portcfg vlantag [slot/ge port] [add|delete] ipAddress L2COS --mgmt

IP Forwarding Support

IP forwarding is supported over in-band management to allow communication to the remote switch through the WAN connection. This is done by enabling IP forwarding to allow IP packets arriving at the CP interface to be forwarded through the in-band management interface to the remote side. To prevent network routing and actual bridging of the LAN side of the network to the WAN side of the network, the forwarding rules of the ipfilter command default to deny any forwarding traffic. To allow forwarding, new ipfilter command rules must be added to specific destinations. This prevents any unintended network traffic from being forwarded from the LAN side to the WAN side of the network.

The following figure shows an example network where the management station is located on the LAN side of an FX8-24 Blade L1. Using in-band management, the station can also communicate with a Brocade FX8-24 Blade R1.

Figure 28: In-band management with IPv4 forwarding

For this example, you must configure the following:

Management station

- IP address 10.1.1.1/24 (defined)
- IP route to 192.168.3.20/32 through 10.1.1.10
- FX8-24 L1
 - CP management address 10.1.1.10/24
 - In-band management address 192.168.3.10/24
 - IP filter forward rule with destination IP address 192.168.3.20
- FX8-24 R1
 - CP management address 10.1.2.20/24
 - In-band management address 192.168.3.20/24
 - In-band management route to 10.1.1.1/32 through 192.168.3.10

Once all of these configurations are complete, proper IP connectivity should occur through the network. In the case where there are routed networks between the Brocade FX8-24 Blades, you must add in-band management routes to each Brocade FX8-24 Blade. Using host-specific routes help eliminate undesired traffic. If network routes are needed, they can be substituted, but you must note that this allows anything on that network to be forwarded, which could result in undesired disruption of traffic.

NOTE

In all routed network cases, all intermediate hops must have route entries to get to the endpoints.

Using the ipfilter Command

Use the ipfilter command to create and manage forwarding rules for use with in-band management. For full details on this command, options, and arguments, refer to the "ipfilter" section of the *Brocade Fabric OS Command Reference Manual*.

To create an IP forwarding rule, you must first create a policy if one has not yet been created. The easiest way to do this is with the -clone option to create a copy of the default policy.

ipfilter --clone inband_ipv4 -from default_ipv4

A new rule can be added to allow forwarding traffic.

```
ipfilter --addrule inband_ipv4 -rule rule_number
-dp dest_port
-proto protocol
-act [permit|deny] -type FWD -dip destination IP
```

Valid *dest_port* values are any TCP or UDP port numbers or a range of port numbers that you want to be forwarded. Valid *protocol* values are tcp or udp. The *destination_IP* is the IP address of the in-band management interface on the remote side. After a rule is added, save the policy and activate it using the --save and --activate options of the ipfilter command. There can only be a single IPv4 policy active at any time. Each policy can consist of multiple rules.

WAN Analysis Tools

WAN analysis tools are designed to test connections, trace routes, and estimate the end-to-end IP path performance characteristics between a pair of Brocade Extension port endpoints. These tools are available as options on the portCmd command. The following options are available:

- portCmd --tperf. Generates and sends test data over a tunnel to determine the characteristics and reliability of the IP network that is used by the tunnel at the circuit level. Supported on the Brocade FX8-24 Blade.
- portCmd --ping. Tests connections between a local Ethernet port and a destination IP address.
- portCmd --pmtu . Assists identifying the maximum MTU possible in the WAN network. Supported on the Brocade 7840 Switch and the Brocade SX6 Blade.
- portCmd --traceroute . Traces routes from a local Ethernet port to a destination IP address.
- portCmd --wtool . Generates traffic over a pair of IP addresses to test the link for issues such as maximum throughput, congestion, loss percentage, out-of-order delivery, and other network conditions. Supported on the Brocade 7840 Switch and the Brocade SX6 Blade
- portShow fcipTunnel --perf. Displays performance statistics that are generated from the WAN analysis

The tperf Option

The tperf option (portCmd --tperf) is a utility that generates data between a local and remote switch over a tunnel. It reports the data that is generated and response from the remote switch to determine the characteristics and reliability of the IP network that is used by the tunnel.

The tperf option operates with a pair of Brocade FX8-24 Blades. One blade plays the role of a data sink and the other switch or blade plays the role of the data source. During the data generation process, traffic flows from the source to the sink, then the sink responds to this traffic. The process continues for a duration that you specify with command options or until you terminate (**Ctrl +C**).

Normally, you should establish one Telnet or SSH session for the tperf source and one for the tperf sink. Also, open additional Telnet or SSH sessions so that you can periodically display TCP connection statistics using the -tcp or -p options of the portshow fciptunnel [*slot*/*ve_port*] command. These statistics can sometimes help you understand the tunnel bandwidth and IP network infrastructure capability.

To use the tperf option, you must first create a tunnel with at least one circuit or modify an existing tunnel using the tperf flag -T. As with any tunnel, this must be done on both blades. The following commands create a tperf-enabled tunnel with a committed rate of 10000.

```
portcfg fciptunnel 1/16 create --remote-ip 192.168.10.1 --local-ip 192.168.10.2 10000 -T
portcfg fciptunnel 1/16 create --remote-ip 192.168.10.2 --local-ip 192.168.10.1 10000 -T
```

The tperf option tests single and multiple circuit tunnels. The tperf option also tests the different priority connections that are provided by a tunnel. When a tperf-enabled tunnel is operative, it is not an active VE_Port. Fabrics do not merge over an operative tperf tunnel. To determine if the tperf tunnel is up, issue the following command:

switch:admin> portshow fciptunnel -c

Tunne	l Circuit	OpStatus	Flags	Uptime	TxMBps	RxMBps	ConnCnt	t CommRt M	let/G
1/16	-	Up		1h21m43s	0.00	0.00	0	-	-/-
1/16	0 1/ge3	Up	4s	1h21m43s	0.00	0.00	0	1000/1000	0/-
1/16	1 1/ge3	Up	4s	1h21m43s	0.00	0.00	0	1000/1000	0/-
Flags	(tunnel):	c=compres	ssion m=m	oderate co	ompressi	on a=agg	ressive	e compress	ion
		A=Auto co	ompressio	n f=fastwi	rite t=T	apepipel	ining 1	F=FICON	
		T=TPerf	i=IPSec l	=IPSec Leg	gacy				
	(circuit):	s=sack v	=VLAN Tag	ged x=cros	ssport 4	=IPv4 6=	IPv6		
		L=Listen	er I=Init	iator					

The previous display shows VE_Port 16 as up, but a switchshow command for that same VE _Port will show the following:

switch:admin> switchshow | grep 16 | grep VE 128 1 16 028000 -- -- Offline VE

For full details on syntax and using this command, refer to the Brocade Fabric OS Command Reference Manual.

The following examples create a tperf data sink and a tperf data source on VE_Port 16.

```
switch:admin> portcmd --tperf 1/16 -sink -interval 15
switch:admin> portcmd --tperf 1/16 -source -interval 15 -high -medium -low
```

The tperf option generates statistics every 30 seconds by default unless you specify a different value for-interval.

Table 49: tperf Output

Item	Description
Tunnel ID	Numeric identifier for the Tperf tunnel.
Traffic	Priority High, Medium, or Low.
bytes tx	Number of bytes transmitted.
bytes rx	Number of bytes received.
PDUs tx	Number of protocol data units transmitted.
PDUs rx	Number of protocol data units received.
bad CRC headers rx	Number of bad CRC headers received.
bad CRC payloads rx	Number of bad CRC payloads received.
out of seq PDUs rx	Number of out-of-sequence PDUs received.
flow control count	Flow control count.
packet loss (%)	The percentage of packet loss.
bytes/second	The number of bytes transmitted per second.

Item	Description
	The time that it took for the last round trip between the Tperf source and the Tperf sink in milliseconds. This is calculated only on the source-side report. It is reported as N/A on the sink-side report.

Using ping to Test a Connection

The portCmd --ping command tests the connection between the IP address of a local Ethernet port and a destination IP address. If you want to use this command to test a VLAN connection when you do not have an active tunnel, you must manually add entries to the VLAN tag table. The entries must be added on both the local and remote sides of the route, using the portCfg vlantag command (applicable to the Brocade FX8-24 Blade only).

The general syntax of the portCmd --ping command is as follows:

portCmd --ping [slot/ge_port] -s source_ip -d destination_ip -n num_request -q diffserv -t
ttl -w wait time -z size -v vlan id -c L2 Cos

On the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade, because DP complexes share Ethernet ports, identification for the port is gen.DP n, for example, ge0.DP0. This directs the command to a specific DP complex.

Using Traceroute

The portCmd traceroute command traces routes from a local Ethernet port to a destination IP address. To trace a route across a VLAN when you do not have an active tunnel, you must manually add entries to the VLAN tag table. The entries must be added on both the local and remote sides of the route using the portCfg vlantag command (applicable to the Brocade FX8-24 Blade only).

The general syntax of the portCmd --traceroute command is as follows:

portCmd --traceroute [slot/ge_port] -s source-ip -d destination_ip -h max_hops -f
first ttl -q diffserv -w wait-time -z size -v vlan id -c L2 Cos

On the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blades, because DP complexes share Ethernet ports, identification for the port is *gen.DP n*, for example, ge0.DP0. This directs the command to a specific DP complex.

The following example traces the route between IP addresses 192.168.2.22 and 192.168.2.30 over VLAN 12 from a 7840 switch.

portcmd --traceroute ge2.dp1 -s 192.168.2.22 -d 192.168.2.30 -v 12

The following example traces the route between IP addresses 192.168.10.1 and 192.168.20.1 over VLAN 10 from an FX8-24 blade.

portcmd --traceroute 8/ge0 -s 192.168.10.1 -d 192.168.20.1 -v 10

NOTE

To trace a route with crossport addresses, see Using Traceroute with Crossports.

For details of command syntax and output examples, refer to the Brocade Fabric OS Command Reference Manual.

Using WAN Tool

WAN Tool allows you to generate traffic at a specified rate in Kbps over a pair of IP addresses to test the network link for issues such as maximum throughput, congestion, loss percentage, out of order delivery, and other network conditions. The main purpose of this tool is to determine the health of a link before deploying it for use as a circuit in a tunnel.

WAN Tool is supported exclusively on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade.

NOTE

For the Brocade 7810 Switch, three of the Automated and User WAN Tool sessions (Maximum Automated WAN Tool sessions (AWT), Maximum User WAN Tool sessions, and Maximum Aggregated Bandwidth) are reduced relative to their values for the Brocade 7840 Switch and the Brocade SX6 Blade.

The following table shows the supported features on the three platforms.

Supported Features	Brocade 7840 Switch	Brocade 7810 Switch	Brocade SX6 Blade
Max Automated WAN Tool sessions	20 per DP0 and 20 per DP1	12	20 per DP0 and 20 per DP1
Max User WAN Tool sessions	10	6	10
Max Aggregated BW	20Gb/s (10VE mode) 10Gb/s (20VE mode)	2.5Gb/s	20Gb/s (10VE mode) 10Gb/s (20VE mode)
IPSec	Yes	Yes	Yes
L2cos	Yes	Yes	Yes
Bi-directional traffic	Yes	Yes	Yes
DSCP	Yes	Yes	Yes
L2cos	Yes	Yes	Yes
Connection-type	Yes	Yes	Yes
PMTUd	Yes	Yes	Yes
Jumbo Frames	Yes	Yes	Yes

The following are the requirements and considerations for using WAN Tool:

- Each DP complex supports a maximum of ten WAN Tool sessions. This reflects the number of enabled WAN Tool and SLA-configured WAN Tool sessions. One slot can support a maximum of 20 sessions.
- A test session can run over an IP path being used by an existing circuit between two switches; however, you must disable the circuit at each end before configuring the session (applicable to User WAN Tool only).
- You must configure the WAN Tool session on the switch at each end of the circuit.
- Before you can start a test, you must enable the WAN Tool session on the switch at each end of the circuit. When the testing is complete, you can disable the WAN Tool session, which allows you to retain the WAN Tool configuration when you enable the circuit.
- After configuration, you can start a test from one switch to solely examine unidirectional traffic to the opposite switch or you can test bidirectional traffic between both switches using the <code>bidirectional</code> option. If you select the latter, you can start the session at either switch.
- You can configure multiple test sessions (one per circuit) for a single port, but the total rate that is configured for all sessions must be equal to or less than the physical speed of the port (40Gb/s, 10Gb/s, or 1Gb/s). For example, on a 10Gb/s port, you could configure four 2.5Gb/s sessions. Alternatively, on a 40Gb/s interface, you could configure four 10Gb/s sessions.
- The MTU size that is used in the test session is obtained from the IPIF configured value. You can change the MTU size for the IP address pair being tested using the portcfg ipif ge#.p#t modify ip_addr mtu new-mtu command. For details on this command, see Brocade Fabric OS Command Reference Manual or Configuring IPIF.

A tunnel and WAN Tool cannot operate at the same time since they both cannot utilize the TCP ports 3225 and 3226. Therefore, you must disable the circuit that you are testing at the local and remote switch before you can configure a WAN Tool connection. When you configure WAN Tool on both switches with the necessary parameters, non-guaranteed TCP connections are established between the switches. Issuing the WAN Tool start command starts traffic flow on these connections.

Multiple non-guaranteed TCP connections are established for the WAN Tool session to ensure that the traffic being generated between the IP pair is as balanced as possible. The configured rate is split equally among 500Mb/s connections. For example, if you configure a 10Gb/s rate for the test session, twenty 500Mb/s connections are created. As another example, if you configure a 1Gb/s rate, two 500 Mb/s connections are created. If the rate cannot be split equally into 500Mb/s connections, connections with different rates are created. For example, if you configure a 1.5Gb/s rate, four 375Mb/s connections are created. You can verify that these connections are created after configuring WAN Tool on both switches using the portcmd--wtool wt-id show -c command. See the example output of this command in Configuring WAN Tool and Displaying Results.

AWT is triggered in the following ways:

- While creating a circuit, if you specify an SLA as one of the configuration options, the AWT will run before bringing the newly-created circuit online.
- After a circuit has come online, an AWT will run provided the circuit bounces for any reason.
- You can manually launch an AWT session by disabling then re-enabling a circuit, disabling/enabling a switch, or bouncing the GE port a specific circuit is configured on.

During a session, you might see the following messages:

- When the AWT is enabled.[XTUN-3000], 1161/308, CHASSIS, INFO, SKY76, WAN Tool session 24.6 ENABLED.
- When the AWT session establishes and starts traffic.[XTUN-3002], 1183/313, CHASSIS, INFO, SKY76, WAN Tool session 24.6 STARTED.
- When the AWT successfully meets SLA requirements.[XTUN-3007], 1250/330, CHASSIS, INFO, SKY76, WAN Tool session 24.6 SLA requirements meet.
- When the AWT fails to meet the SLA loss requirements. [XTUN-3006], 691, CHASSIS, WARNING, SKY76, WAN Tool session 24.6 SLA Failed to meet SLA requirements Reason SLA Drop.
- When the AWT fails to meet the SLA run time requirements. [XTUN-3006], 691, CHASSIS, WARNING, SKY76, WAN Tool session 24.6 SLA Failed to meet SLA requirements Reason SLA Timeout.
- After completion, the AWT stops traffic and disables the session.[XTUN-3003], 280, CHASSIS, INFO, SKY76, WAN Tool session 24.6 STOP. and [XTUN-3001], 288, CHASSIS, INFO, SKY76, WAN Tool session 24.6 DISABLED.

WAN Tool Commands

Configure a WAN Tool session using the portend --wtool command. The general syntax for creating a test session including all command options is as follows:

portcmd --wtool wt-id create --admin-status [enable|disable] --src src_ip --dst dst_ip time test_time --rate link_rate --ipsec policy_name [--bi-directional|-uni-directional] -dscp dscp --l2cos L2Cos --connection-type type.

You must configure the following parameters on each switch:

• WAN Tool session test ID (wt-id): The ID does not have to match on each switch, but this is recommended for easier comparison of test results on both ends of the circuit when multiple test sessions are created. (However, the rate must

be the same.) Valid IDs are 0 through 9. You can configure 10 sessions for each DP and a maximum of 20 sessions per slot.

- Administrative status (create --admin-status [enable|disable]): This must be enabled before a test can be run.
- Link rate (*link_rate*) in Kb/s: Configure the same link rate on the switch at each end of the circuit. The WAN Tool connections do not fully establish until the same rate is specified for each switch.
- IPsec policy name (*policy_name*): The policy name can be different on each switch; the IPsec policy configuration parameters must be the same on each switch.
- Source IP (*src_ip*) and destination IP (*dst_ip*) address: The source address is the destination address and the destination address is the source address on the opposite switch.
- Bidirectional or unidirectional ([--bi-directional]-uni-directional]: This is an optional parameter, but if used, configure on both switches.
- Test session time (*test_time*): The test duration time in minutes must be configured on both switches, but it does not need to match on both switches. The test session uses the time that is configured on the switch where the test started. If bidirectional is specified, the session runs for the time that is configured on the switch where the test started, and then it runs for the time (if configured) configured on the opposite switch.

NOTE

You can create a WAN Tool session without all required parameters. However, all required parameters must be configured before a test session can be enabled. For more details on WAN Tool command and parameters, refer to the *Brocade Fabric OS Command Reference Manual*.

Modify the link rate, test time, test direction (--bi-directional) parameters, and clear statistics for a WAN Tool test session after creating a test session, using the portcmd --wtool wt-id modify command.

NOTE

You must stop the WAN Tool session before modifying parameters using portcmd --wtool wt-id stop.

The following are examples of using the modify parameter:

- To modify the rate, use portcmd --wtool wt-id modify --rate link rate.
- To clear test results, use portcmd --wtool wt-id modify --clear.

Start and stop a configured test session on a specific switch using the following commands:

- portcmd --wtool *wt-id* start. The test duration must be specified with the create or modify parameters. The time can be modified while traffic is not running. The next start command will use the updated time value.
- portcmd --wtool wt-id stop

Clear test statistics using the portcmd --wtool wt-id modify clear command.

Display historical statistics using the portend --wtool wt-id show --history command.

NOTE

User WAN Tool session historical stats are collected when the start command is issued. There are no statistics to display until a session runs to completion at least one time. Statistics are also stored when a session is administratively disabled. For automated WAN Tool sessions, historical statistics are stored automatically when the session runs to completion and it is administratively disabled.

Disable the test sessions using the portcmd --wtool wt-id modify -a disable command.

Alternatively, you can delete test sessions using the portcmd --wtool *wt-id* delete command. Delete all configured test sessions using portcmd --wtool delete -all.

At this point, after disabling or deleting the configured test sessions, you can re-enable the circuit for operation in a tunnel using the portCfg fcipcircuit create command.

Display statistics from a WAN Tool session using portcmd -wtool wt-id show, where wt-id is the ID (0-15) you used to create the test session. Display all test sessions (if multiple test sessions are configured) using portcmd --wtool all show.

For more details on WAN Tool command and parameters, refer to the Brocade Fabric OS Command Reference Manual.

Configuring a WAN Tool Session and Displaying Results

Use the following steps to configure a WAN tool session and display results. When you configure a WAN tool session, you can optionally set the connection type to be a listener or an initiator. Use the portcmd --wtool command with no arguments to display all available command options.

- 1. Connect to the switch and log in using an account that is assigned to the admin role.
- 2. Disable the circuit for the IP pair that you wish to test at each switch using the portCfg fcipcircuit modify -- admin-status disable command.

The following example disables circuit 1.

Switch1:admin>portCfg fcipcircuit 24 modify 1 --admin-status disable

- 3. Verify that the circuit is disabled using the portshow fciptunnel -c command. The OpStatus for circuit 1 should be Down.
- 4. Establish a test connection on the circuit by configuring a WAN Tool session on the switch at one end of the circuit.

The following example configures a test connection (WAN Tool session 0) on circuit 1 between source IP of 10.1.1.1 and destination IP of 10.1.1.2.

```
Switch1:admin> portcmd --wtool 0 create --src 10.1.1.1 --dst 10.1.1.2 --rate 10000000 --time 10 --admin-
status enable
```

5. Configure the WAN Tool session on the switch at the other end of the circuit.

```
Switch2:admin>portcmd --wtool 0 create --src 10.1.1.2 --dst 10.1.1.2 --rate 10000000 --time 10 --admin-
status enable
```

The wt-id (0) does not need to match the configuration on Switch1, but this is recommended for easier comparison of test results on both ends of the circuit when multiple test sessions are created. The rate must be the same for both switches. Note that the source address of Switch1 becomes the destination address for Switch2 and the destination address becomes the source address. See WAN Tool Commands for a list of WAN Tool command parameter values that must be identical for both switches in the circuit.

NOTE

If the rate is not configured the same on both sides, the rate is negotiated. The detailed output of the portcmd --wtool wt-id show -d command displays the configured, current, and peer rates.

Switch1:admin> portcmd --wtool 2 show -d

WTool Session: 2 (DP1)

Admin / Oper State	: Enabled / Online
Up Time	: 9s
Run Time	: 0s
Time Remaining	: 1mOs
IP Addr (L/R)	: 2002:141::65 gel1 <-> 2002:140::65
IP-Sec Policy	: FID_99Presh

PMTU Discovery (MTU)	: disabled (6666)	
Bi-Directional	: enabled	
L2CoS / DSCP	: (none) / (none)	
Configured Comm Rate	: 15000 kbps <==	= rate mismatch negotiation
Peer Comm Rate	: 20000 kbps <==	= rate mismatch negotiation
Actual Comm Rate	: 15000 kbps <==	= rate mismatch negotiation
Tx rate	: 2171.87 Kbps (0.27 MB/s)	
Rx rate	: 2171.87 Kbps (0.27 MB/s)	
Tx Utilization	: 14.48%	
Rx Utilization	: 14.48%	
RTT (Min/Max)	: 1 ms/6 ms	
RTT VAR (Min/Max)	: 1 ms/3 ms	
Local Session Statisti	cs	
Tx pkts	: 0	
Peer Session Statistic	S	
Rx pkts	: 0	
Ooo pkts	: 0	
Drop pkts	: 0	
Drop% (Overall/5s)	: 0.00% / 0.00%	

6. Verify that the WAN Tool test connection has established using the portcmd --wtool wt-id show command, the portcmd --wtool wt-id show -c command, and the portcmd --wtool wt-id show -d command. Switch1:admin> portcmd --wtool 0 show

State	: Established
Up Time	: 7m37s
Run Time	: 0s
Time remaining	: 0s
IP Addr (L/R)	: 10.1.1.2 <-> 10.1.1.1
PMTUD	: Disabled
Comm Rate	: 10000000 Kbps (1220.70 MB/s)
Tx rate	: 4562.50 Kbps (0.56 MB/s)
Rx rate	: 4539.69 Kbps (0.55 MB/s)
Tx Utilization	: 0.05%
Rx Utilization	: 0.05%
RTT (Min/Max)	: 0.10ms/0.28ms
RTT VAR (Min/Max)	: 0.09ms/0.34ms
Local Session Sta	tistics
Tx pkts	: 0
Peer Session Stat	istics
Rx pkts	: 0
Ooo pkts	: 0
Drop pkts	: 0 (0.00%)

Id	Port(L/R)	Rate(Tx/Rx)	UpTime	RunTime	
====					
6	63494 / 3225	0.03 / 0.03	8m8s	0s	
17	63490 / 3225	0.03 / 0.03	8m8s	0s	
14	63498 / 3225	0.03 / 0.03	8m8s	0s	
3	61443 / 3226	0.03 / 0.03	8m8s	0s	

	<i></i>	0 00 / 0 00		<u> </u>	
11	61447 / 3226	0.03 / 0.03	8m8s	0s	
9	61446 / 3226	0.03 / 0.03	8m8s	0s	
1	61442 / 3226	0.03 / 0.03	8m8s	0s	
20	63491 / 3225	0.03 / 0.03	8m8s	0s	
8	63495 / 3225	0.03 / 0.03	8m8s	0s	
12	63497 / 3225	0.03 / 0.03	8m8s	0s	
4	63493 / 3225	0.03 / 0.03	8m8s	0s	
16	63489 / 3225	0.03 / 0.03	8m8s	0s	
13	61448 / 3226	0.03 / 0.03	8m8s	0s	
19	61440 / 3226	0.03 / 0.03	8m8s	0s	
5	61444 / 3226	0.03 / 0.03	8m8s	0s	
15	61449 / 3226	0.03 / 0.03	8m8s	0s	
7	61445 / 3226	0.03 / 0.03	8m8s	0s	
18	61441 / 3226	0.03 / 0.03	8m8s	0s	
10	63496 / 3225	0.03 / 0.03	8m8s	0s	
2	63492 / 3225	0.03 / 0.03	8m8s	0s	
					===

Number of Connections:20

Switch1:admin> portcmd --wtool 0 show -d

```
WTool Session: 0 (DP0)
```

Admin / Oper State		ine		
Up Time				
Run Time				
Time Remaining				
IP Addr (L/R)	: 10.1.9.76 ge9	<-> 10.1.9.77		
IP-Sec Policy	: (none)			
PMTU Discovery (MTU)	: disabled (150	0)		
Bi-Directional	: disabled			
L2CoS / DSCP	: (none) / (none	e)		
Configured Comm Rate	: 20000 kbps			
Peer Comm Rate	: 20000 kbps			
Actual Comm Rate	: 20000 kbps			
Tx rate	: 517.04 Kbps (0.06 MB/s)		
Rx rate	: 517.04 Kbps (0.06 MB/s)		
Tx Utilization	: 2.59%			
Rx Utilization	: 2.59%			
RTT (Min/Max)	: 1 ms/1 ms			
RTT VAR (Min/Max)	: 1 ms/1 ms			
Local Session Statistic	cs			
Tx pkts	: 0			
Peer Session Statistics	3			
Rx pkts	: 0			
Ooo pkts	: 0			
Drop pkts	: 0			
Drop% (Overall/5s)	: 0.00% / 0.00%			
Switch1:admin> portcmd ·	wtool show			
Session OperSt Flags				
and a second s		10.1.1.2		

Flags (wtool): S=SLA v=VLAN i=IPsec 4=IPv4 6=IPv6 L=Listener I=Initiator

The example output from the -wtool 0 show command indicates that the connection has an established state. The example output from the --wtool 0 show -c command displays the non-guaranteed TCP connections that are created between TCP ports 3225 and 3226 to balance the test traffic. For the 10Gb/s test connection, 20 non-guaranteed TCP connections are created. The output from the --wtool 0 show -d command shows additional details.

7. You can display peer information using the --wtool show --peer command.

WTool Session (0)		(Remote)
Admin / Oper State		: Up
Up Time	: 6m49s	: 6m49s
Run Time	: 0s	: 0s
Time Remaining	: 10m0s	: -
Port	: ge9	: -
IP Addr	: 10.1.1.1	: 10.1.1.2
IP-Sec Policy	: (none)	: (none)
Configured Comm Rate	: 10000000 kbps	: 10000000 kbps
Actual Comm Rate	: 10000000 kbps	: 10000000 kbps
PMTU Discovery (MTU)	: disabled (1500)	: disabled (1500)
L2cos /DSCP	: (none) / (none)	: (none) / (none)
Tx Rate	: 5156.03 Kbps	: 0.00 Kbps
Rx Rate	: 5144.34 Kbps	: 0.00 Kbps
Tx Utilization	: 0.05%	: 0.00%
Rx Utilization	: 0.05%	: 0.00%
RTT (Min/Max)	: 1 ms/1 ms	: 1 ms/1 ms
RTT VAR (Min/Max)	: 1 ms/1 ms	: 1 ms/1 ms
Tx pkts	: 0	: 0
Rx pkts	: 0	: 0
Ooo pkts	: 0	: 0
Drop pkts	: 0	: 0
Drop% (Overall / 5s)	: 0.00% / 0.00%	: 0.00% / -

switch:admin> portcmd --wtool 0 show --peer

8. When using SLA for automated WAN tool sessions, you can show the configured and negotiated SLA configuration for the session. This makes it easier to see the SLA requirements and whether the requirements were negotiated.

```
switch:admin> portcmd --wtool 24.0 show -d
WTool Session: 24.0 (DP0)
Admin / Oper State : Enabled / Running
Up Time
                 : 25s
Run Time
                : 25s
Time Out
                 : 1h29m35s
Time Remaining
                 : 4m59s
IP Addr (L/R)
                : 170.195.7.10 ge7 <-> 171.196.7.10
IP-Sec Policy
                 : (none)
```

PMTU Discovery (MTU) Bi-Directional L2CoS / DSCP	: disabled	
SLA (Run Time / Timeou		
Configured :	(5m / 1h30m / .5%)	<=====
Actual : (5m	/ 1h30m / .2%)	<=====
Configured Comm Rate	: 1000000 kbps	
Peer Comm Rate	: 1000000 kbps	
Actual Comm Rate	: 1000000 kbps	
Tx rate	: 999565.18 Kbps (124.95 MB/s)	
Rx rate	: 750737.63 Kbps (93.84 MB/s)	
Tx Utilization	: 99.96%	
Rx Utilization	: 75.07%	
RTT (Min/Max)	: 50 ms/51 ms	
RTT VAR (Min/Max)	: 1 ms/9 ms	
Local Session Statisti	cs	
Tx pkts	: 153112464	
Peer Session Statistic	S	
Rx pkts	: 114832047	
Ooo pkts	: 0	
Drop pkts	: 38278953	
Drop % (overall/5s)	: 25.00%/.5%	

9. If you have created multiple WAN Tool sessions, you can verify basic connection information using the --wtool all show command.

Switch1:admin> portcmd --wtool all show

Sessio	n OperSt	t Flags	LocalIP	RemoteIp	TxMBps	RxMBps	Drop%
1	Up	-i4pv	10.1.9.77	10.1.9.76	0.06	0.06	0.00
25.0	Up	S-4	10.1.8.77	10.1.8.76	0.06	0.06	0.00
Flags	(wtool)	: S=SLA v	=VLAN i=IPsec 4=	=IPv4 6=IPv6 L=Li	stener I=In	nitiator	

Output for this example shows that WAN Tool session 1 was created to test the circuit with IP address pair 10.1.9.77 and 10.1.9.76 and session 25.0 was created testing the circuit with IP address pair 10.1.8.77 and 10.1.8.76.

- **10. Start traffic on the test connection by entering the** portcmd --wtool *wt-id* start **command**. Switch1:admin> portcmd --wtool 0 start
- 11. Verify that the test session started by entering the portcmd --wtool show *wt-id* --detail command. Switch1:admin> portcmd --wtool show --detail

WTool Session: 24.0 (DP0)

Admin / Oper State	: Enabled / Running
Up Time	: 10s
Run Time	: 9s
Time Out	: 3m50s
Time Remaining	: 1m51s
IP Addr (L/R)	: 10.1.1.2 ge9 <-> 10.1.1.1

IP-Sec Policy	:	(none)
PMTU Discovery (MTU)	:	disabled (1500)
Bi-Directional	:	disabled
L2CoS / DSCP	:	(none) / (none)
Configured Comm Rate	:	1000000 kbps
Peer Comm Rate	:	1000000 kbps
Actual Comm Rate	:	1000000 kbps
Tx rate	:	999624.45 Kbps (124.95 MB/s)
Rx rate	:	1000000.00 Kbps (125.00 MB/s)
Tx Utilization	:	99.96%
Rx Utilization	:	100.00%
RTT (Min/Max)	:	1 ms/1 ms
RTT VAR (Min/Max)	:	1 ms/1 ms
Local Session Statistic	cs	
Tx pkts	:	810024
Peer Session Statistics	5	
Rx pkts	:	792029
Ooo pkts	:	0
Drop pkts	:	0 (0.00%)

Note that the State shows that the test is running and other statistics display as well, such as test Run Time and Time Remaining.

12. Start the test from the other switch by entering the portcmd --wtool wt-id command.

NOTE

If you used the bi-directional option when creating the session, you can start the session on either switch.

Switch2:admin> portcmd --wtool 0 start

- 13. Verify that the test session started on the other switch by entering the portcmd --wtool wt-id show command. Switch2:admin> portcmd --wtool 0 show
- 14. You can delete the WAN Tool session on both switches, or you can disable the WAN Tool session on both switches. Perform the following steps to delete the WAN Tool session on both switches:
 - a) To delete the WAN Tool session, use the portcmd --wtool *wt-id* delete command. This deletes the session and allows you to enable the circuit for normal traffic.
 - b) To disable the WAN Tool session, use the portcmd --wtool wt-id modify --admin -status disable command. This disables the session without deleting it, so you can use the same session again.
- 15. To verify that the WAN Tool session is disabled, enter the portcmd --wtool wt-id show command or the portcmd --wtool wt-id show -d command.
- 16. Enable the circuit from each switch using the portcfg fcipcircuit *port* modify command. The following example enables the circuit from Switch1.

Switch1:admin> portCfg fcipcircuit 24 modify 1 --admin-status enable

Resolving Test Session Problems

If the output from the portcmd -wtool wt-id show command shows that the State is down, constantly in progress, or the connection times out (changes from an up to down state) the WAN Tool test connection is not being established. Verify that you have configured the session on both switches in the circuit with appropriate parameters and values. Refer to the list of parameters required for each switch in WAN Tool Commands.

Common problems in establishing a connection can result from the following WAN Tool configuration problems:

- · The test rate does not match on each switch.
- The test rate on a single circuit or multiple circuits on a port is greater than the rate allowed for the port. Note that this generates a warning that the bandwidth has been exceeded and blocks you from creating a session.
- The IPsec policy does not match on each switch. Note that the IPsec names need not match, but the names must refer to the same policy.
- Configured source and destination IP addresses are not correct on one or both switches.

Using the portshow Command

Use the portshow command to display port operational information on Brocade Extension switches and blades. The *Brocade Fabric OS Command Reference Manual* provides complete descriptions of the portshow command syntax and options. The following sections identify a few specific outputs that may be useful for maintenance and troubleshooting.

Displaying IP Interfaces

The following example displays IP interface information for a Brocade 7840 Switch.

switch:admin> portshow ipif ge0.dp0

The following example displays IP interface information for a Brocade FX8-24 Blade.

switch:admin> portshow ipif 1/xge0

Displaying IP Routes

The following example displays IP route information for a Brocade 7840 Switch.

switch:admin> portshow iproute ge5

The following example displays IP route information for a Brocade SX6 Blade.

switch:admin>	<pre>portshow iproute 4/ge0</pre>				
Port	IP Address	/	Pfx	Gateway	Flags
4/ge0.dp0	192.168.0.0	/	24	192.168.20.1	UGS
4/ge0.dp0	192.168.20.0	/	24	*	UC
4/ge0.dp0	192.168.20.1	/	32	*	UHL
4/ge0.dp0	192.168.20.11	/	32	*	UC
4/ge0.dp0	192.168.20.12	/	32	*	UC
4/ge0.dp0	192.168.20.13	/	32	*	UC
4/ge0.dp0	192.168.20.14	/	32	*	UC
4/ge0.dp0	192.168.20.15	/	32	*	UC
4/ge0.dp0	192.168.20.16	/	32	*	UC
4/ge0.dp0	192.168.20.17	/	32	*	UC

Flags: U=Usable G=Gateway H=Host C=Created(Interface)

S=Static L=LinkLayer X=Crossport

The following example displays IP route information for a Brocade FX8-24 Blade when the x-port flag is configured.

> portshow iproute				
IP Address	/	Pfx	Gateway	Flags
1.250.250.0	/	24	*	UC
1.250.250.1	/	32	*	UHL
1.250.250.205	/	32	*	UC
	IP Address 1.250.250.0 1.250.250.1	IP Address / 1.250.250.0 / 1.250.250.1 /	IP Address / Pfx 1.250.250.0 / 24 1.250.250.1 / 32	IP Address / Pfx Gateway 1.250.250.0 / 24 * 1.250.250.1 / 32 *

9/xge0	1.250.250.209	/ 32	*	UC
9/xge0	1.250.250.213	/ 32	*	UC
9/xge0	1.250.250.217	/ 32	*	UC
9/xge0	1.250.250.221	/ 32	*	U C
9/xge0	1.250.250.225	/ 32	*	UC
9/xge0	1.250.250.229	/ 32	*	U C
9/xge0	1.250.250.233	/ 32	*	U C
9/xge0	1.250.250.237	/ 32	*	U C
9/xge0	1.250.251.0	/ 24	1.250.250.1	UGS
9/xge0	1.250.250.0	/ 24	*	UCX
9/xge0	1.250.250.1	/ 32	*	UHLX
9/xge0	1.250.250.207	/ 32	*	UCX
9/xge0	1.250.250.211	/ 32	*	UCX
9/xge0	1.250.250.215	/ 32	*	UCX
9/xge0	1.250.250.219	/ 32	*	UCX
9/xge0	1.250.250.223	/ 32	*	UCX
9/xge0	1.250.250.227	/ 32	*	UCX
9/xge0	1.250.250.231	/ 32	*	UCX
9/xge0	1.250.250.235	/ 32	*	UCX
9/xge0	1.250.250.239	/ 32	*	UCX
9/xge0	1.250.251.0	/ 24	1.250.250.1	UGSX
9/xgel	1.250.250.0	/ 24	*	UC
9/xgel	1.250.250.1	/ 32	*	UHL
9/xgel	1.250.250.208	/ 32	*	UC
9/xgel	1.250.250.212	/ 32	*	UC
9/xgel	1.250.250.216	/ 32	*	UC
9/xgel	1.250.250.220	/ 32	*	UC
9/xgel	1.250.250.224	/ 32	*	UC
9/xgel	1.250.250.228	/ 32	*	UC
9/xgel	1.250.250.232	/ 32	*	UС
9/xgel	1.250.250.236	/ 32	*	UС
9/xgel	1.250.250.240	/ 32	*	UC
9/xgel	1.250.251.0	/ 24	1.250.250.1	UGS
9/xgel	1.250.250.0	/ 24	*	UCX
9/xgel	1.250.250.1	/ 32	*	UHLX
9/xgel	1.250.250.206	/ 32	*	UCX
9/xgel	1.250.250.210	/ 32	*	UCX
9/xgel	1.250.250.214	/ 32	*	UCX
9/xgel	1.250.250.218	/ 32	*	UCX
9/xgel	1.250.250.222	/ 32	*	UCX
9/xgel	1.250.250.226	/ 32	*	UCX
9/xgel	1.250.250.230	/ 32	*	UCX
9/xgel	1.250.250.234	/ 32	*	UCX
9/xgel	1.250.250.238	/ 32	*	UCX
9/xgel	1.250.251.0	/ 24	1.250.250.1	UGSX

Flags: U=Usable G=Gateway H=Host C=Created(Interface)

S=Static L=LinkLayer X=Crossport

Displaying Switch Mode Information with the extncfg Command

The Brocade 7810 Switch, Brocade 7840 Switch, and Brocade SX6 Blade operate in Hybrid mode to support the IP Extension features. (The Brocade 7810 Switch operates only in Hybrid mode.)

The following example displays the operating mode for the Brocade 7840 Switch or the Brocade SX6 Blade.

switch:admin> extncfg --show
slot 4:
APP Mode is FCIP
VE-Mode: configured for 10VE mode.
slot 8:
APP Mode is FCIP
VE-Mode: configured for 10VE mode.

The following example displays the operating mode for the Brocade 7810 Switch.

NOTE

With FOS v8.2.1, a new option was introduced for the extncfg command to change the GE port mode between copper and optical on the Brocade 7810 Switch.

```
switch:admin> extncfg -show
APP Mode is HYBRID (FCIP with IPEXT)
VE-Mode: Not Applicable.
GE-Mode: Copper
```

Displaying GbE Port Information with the portcfgge Command

The following example displays the GbE port configuration for the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade.

```
switch:admin> portcfgge --show
```

switch: admin> portcfgge --show -lmac

Listing the MAC Addresses of LAN and GE Ports

Use the portcfgge ge#/lan --show -lmac command to display the MAC addresses of the LAN and GE ports on the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade. See the following sample outputs for more information.

Examples

The following example shows the output of the portcfgge show command when the ge_port option is excluded.

```
switch:admin> portcfgge 12/xge0 --show -lmac
Port dpid MAC Address
12/xge0 - 00:05:33:42:87:6a
```

Port	dpid	MAC Address
3/ae0		00:05:33:3a:1d:04
3/gel		00:05:33:3a:1d:05
3/ge2		00:05:33:3a:1d:06
3/qe3		00:05:33:3a:1d:07
3/qe4		00:05:33:3a:1d:08
3/ge5		00:05:33:3a:1d:09
3/ge6		00:05:33:3a:1d:0a
3/ge7	-	00:05:33:3a:1d:0b
3/ge8	-	00:05:33:3a:1d:0c
3/ge9	-	00:05:33:3a:1d:0d
3/xge0	-	00:05:33:3a:1d:0e
3/xge1	-	00:05:33:3a:1d:0f
12/ge0	-	00:05:33:42:87:60
12/ge1	-	00:05:33:42:87:61
12/ge2	-	00:05:33:42:87:62
12/ge3	-	00:05:33:42:87:63
12/ge4	-	00:05:33:42:87:64
12/ge5	-	00:05:33:42:87:65
12/ge6	-	00:05:33:42:87:66
12/ge7	-	00:05:33:42:87:67
12/ge8	-	00:05:33:42:87:68
12/ge9	-	00:05:33:42:87:69
12/xge0	-	00:05:33:42:87:6a
12/xge1	-	00:05:33:42:87:6b

The following example lists the MAC addresses of all the LAN and GE ports in the switch:

switch:admin	n> porte:	fggeshow -lmac
Port	dpid	MAC Address
4/ge0	dp0	00:27:f8:f0:aa:d0
4/ge0	dp1	00:27:f8:f0:aa:d0
4/gel	dp0	00:27:f8:f0:aa:d1
4/gel	dp1	00:27:f8:f0:aa:d1
4/ge2	dp0	00:27:f8:f0:aa:d2
4/ge2	dp1	00:27:f8:f0:aa:d2
4/ge3	dp0	00:27:f8:f0:aa:d3
4/ge3	dp1	00:27:f8:f0:aa:d3
4/ge4	dp0	00:27:f8:f0:aa:d4
4/ge4	dp1	00:27:f8:f0:aa:d4
4/lan	dp0	00:00:00:00:00:00
4/lan	dp1	00:00:00:00:00:00
4/lan1	dp0	00:00:00:00:00:00
4/lan1	dp1	00:00:00:00:00:00
4/ha0	dp0	00:00:00:00:00:01
4/ha0	dp1	00:00:00:00:00:01

The following example lists the MAC addresses of the LAN ports on slot 8 in the switch:

switch:ad	min> por	tcfgge 8/lanshow -lmac
Port	dpid	MAC Address
8/lan	dp0	00:00:00:00:00:00
8/lan	dp1	00:00:00:00:00:00

The following example lists the MAC addresses of the GE4 port on slot 4 in the switch:

```
switch:admin> portcfgge 4/ge4 --show -lmac
Port dpid MAC Address
4/ge4 dp0 00:27:f8:f0:aa:d4
4/ge4 dp1 00:27:f8:f0:aa:d4
```

Displaying LAG Information

Under Hybrid mode only, you can display link aggregation group (LAG) information for the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade with the portchannel --show command. (Recall that the Brocade 7810 Switch operates only in Hybrid mode.)

NOTE

The Brocade 7840 Switch and Brocade SX6 Blade support a maximum of 8 LAGs (a combination of static and dynamic), whereas the Brocade 7810 Switch supports a maximum of 2 LAGs.

The following example displays LAG information for both static and dynamic LAGs.

switch:admin>	> portchannel -	-show -all		
Name	Туре	Oper-State	Port-Count	Member Ports
dlag101	Dynamic	Online	1	ge6*
slag101	Static	Online	3	ge15 ,ge16 ,ge17
slag102	Static	Offlin	ne ()

You can display more detailed information with the detail option.

```
switch:admin> portchannel --show -detail
Name :dlag101
Type :Dynamic
Key :555
Speed :1G
Autoneg :Off
Admin-state: Enable
Oper-state : Online
Admin Key: 0555 - Oper Key 0555
LACP System ID: 0x8000,00-05-33-65-7b-c2
PART System ID: 0x0001,00-24-38-9c-00-00
Portchannel Member count = 1
```

Port Oper state Sync Timeout _____ _____ *ge6 1 Online Long Name :slag101 Type :Static Key :1 Speed :10G Autoneg :Off Admin-state: Enable Oper-state : Online Portchannel Member count = 3 Port Oper state ----ge15 Online Online ge16 ge17 Online Name :slag102 Type :Static Key :123 Speed :10G Autoneg :Off Admin-state: Disable Oper-state : Offline Portchannel Member count = 0

Displaying Tunnel HCL Information

The following example displays the tunnel HCL status for a Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade.

```
switch:admin> portshow fciptunnel --hcl-status
Checking FCIP Tunnel HA Status.
Current Status : Ready
CP Version
                   : v8.2.1 bld30
DP0 Status:
  State
                   : Online - Inactive
  Version
                   : v8.2.1 bld30
  Current FC HA Stage : IDLE
  Current IP HA Stage : IDLE
  IP SVI Swapped : NO
  DP COMM Status
                  : UP
DP1 Status:
                   : Online - Inactive
  State
             : v8.2.1_bld30
  Version
  Current FC HA Stage : IDLE
```

```
Current IP HA Stage : IDLE

IP SVI Swapped : NO

DP COMM Status : UP

Tunnel 24 (FID:40) FC:HA Ready IP:Disabled - FC traffic will be disrupted.

Tunnel 25 (FID:65) FC:HA Online IP:Disabled - Traffic will not be disrupted.

Tunnel 26 (FID:20) FC:HA Offline IP:HA Offline - FC and IP traffic will be disrupted.

Tunnel 27 (FID:65) FC:HA Ready IP:Disabled - FC traffic will be disrupted.

Tunnel 34 (FID:40) FC:HA Online IP:HA Online - Traffic will be disrupted.

Tunnel 35 (FID:65) FC:HA Ready IP:Disabled - FC traffic will be disrupted.

Tunnel 36 (FID:65) FC:HA Ready IP:Disabled - FC traffic will be disrupted.

Tunnel 37 (FID:20) FC:HA Ready IP:Disabled - Traffic will be disrupted.

Tunnel 38 (FID:20) FC:HA Ready IP:HA Ready - FC and IP traffic will be disrupted.
```

Displaying TCL Information

Under Hybrid mode only, you can display traffic control list (TCL) configuration information for the Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade with the portshow tcl command. (Recall that the Brocade 7810 Switch operates only in Hybrid mode.)

NOTE

Brocade 7840 Switch and Brocade SX6 Blade support a maximum of 1024 defined and 128 active TCL sessions whereas the Brocade 7810 Switch supports a maximum of 256 defined and 32 active TCL sessions.

The following example displays the TCL configuration information. A summary table shows the current TCL consumption on a per-DP basis. The output is truncated

Pri	admin> portshow tcl Name	Src-A	Target ddr		Dst-	-Addr			
	testl		-	ANY		ANY			
	[TUNCAT	ED OUTP	UT]		••••			••••	••
*65535	default	D ANY	-		ANY ANY	ANY	ANY	ANY	0
Active	*=Enabled=Name Tru A=Allow D=Deny I=IP-E R=End-to-End RST Prop TCL Limits: Cur / M	xt P=Se agation ax	gment Pre N=Non Te	servation rminated.		name)			
4/DP0 4/DP1 8/DP0 8/DP1	2 / 1) - / -	28 28		-					
	ared Total: 5 / 1			-					

You can display more detailed information by using the detail option.

switch:admin> portshow tcl --detail

You can sort the output by using the sort option. The following example sorts the configured TCLs by name.

switch:admin> portshow tcl --sort name

Use the help option to show all available options.

```
switch:admin> portshow tcl --help
Usage:
portshow tcl [<name>] [<option>]
```

Options:

-s,summary	Displays summary view of TCLs.
-d,detail	Displays detailed view of TCLs.
-p,priority <pri></pri>	Displays TCL(s) matching the specified priority
-S,sort <sort></sort>	Sorts the TCL list based on specified sort field.
	<pre>sort=[name priority src-addr dst-addr]</pre>
filter <args></args>	Limit the output to specific filter criteria.
	Use portShow tclfilter -help for details.

Displaying IP Extension LAN Statistics

Under Hybrid mode only, you can display IP Extension LAN statistics for a Brocade 7840 Switch, Brocade 7810 Switch, or Brocade SX6 Blade with the portshow lan-stats command. (Recall that the Brocade 7810 Switch operates only in Hybrid mode.)

NOTE

The Brocade 7840 Switch and the Brocade SX6 Blade support a maximum of 8 LAN ports whereas the Brocade 7810 Switch supports a maximum of 4 LAN ports.

The following example displays the global LAN statistics for a Brocade 7840 Switch.

```
switch:admin> portshow lan-stats --global
```

For additional information about displaying IP Extension LAN statistics, see Using IP Extension Flow Monitor.

Displaying Performance Statistics

You can display a summary of performance statistics for all tunnels and circuits using the portshow fciptunnel -- all command.

```
switch:admin> portshow fciptunnel --circuit --perf --summary
```

You can display a summary of performance statistics for the logical switch and circuits using the portshow fciptunnel --all command.

switch:admin> portshow fciptunnel --all-ls --circuit --perf --summary

Displaying QoS Statistics

You can display QoS statistics for all tunnels with the portshow fciptunnel --all command.

```
switch:admin> portshow fciptunnel --all --qos --summary
```

You can display QoS statistics for current FV tunnels with the portshow fciptunnel all command.

```
switch:admin> portshow fciptunnel all --qos --summary
```

Displaying Configuration Details

You can display all configuration details with the portshow fciptunnel --all command

```
switch:admin> portshow fciptunnel --all --detail
```

You can display current FV configuration details with the portshow fciptunnel all command.

```
switch:admin> portshow fciptunnel all --detail
```

Filtering portshow Display Output

You can filter the display output of the portshow filter command by creating filter names or by specifying information that you want to show or hide. The filter rules can contain any combination of IP addresses, TCP ports, GE ports, Tunnel IDs, and other counters/IDs.

The following example displays only per-flow stats that use both IP address 192.168.0.10 and TCP port 336.

```
switch:admin> portshow lan-stats --per-flow -all --filter -ipaddr 192.168.0.10 \ -tcp-port 336 -and
```

The following example creates a filter set called tcpErrors that looks for any retransmits greater than 100 and a byte count greater than 1000000 bytes. This shows objects that are moving traffic.

```
switch:admin> portcfg filter-set tcpErrors create --retransmits 100 --and --bytes 1000000
Operation Succeeded
switch:admin> portshow filter-set
Name ACT/DEF Filter Statement
```

tcpErrors SHOW/HIDE (retx:100 && bytes:1000000) ACT: Action for objects matching filter DEF: Default behavior for objects where filter doesn't apply

The filters of the portshow command provides built-in filter sets. The following example shows how to use the --ipaddr filter to show a specific IPIF address.

switch:admin>	• portshow ipif					
	IP Address					2
	192.168.20.10					URM
4/ge0.dp0	192.168.20.11	/	24	1280	0	URM
4/ge0.dp0	192.168.20.12	/	24	1350	0	URM
4/ge0.dp0	192.168.20.13	/	24	1500	0	URM
4/ge0.dp0	192.168.20.14	/	24	3000	0	URM
4/ge0.dp0	192.168.20.15	/	24	6000	0	URM
4/ge0.dp0	192.168.20.16	/	24	9000	0	URM
4/ge0.dp0	192.168.20.17	/	24	9216	0	URM
N=NOA1	B=Broadcast D=Debug L=Loopback P rp PR=Promisc M=Multicast S=Stat	ic	Arp L	U=Link	Up X=C	2
switch:admin/	 portshow ipiffilteripadd 	Γ.	±)2 •	100.20	• 1 1	
Port	IP Address	/	Pfx	MTU	VLAN	2

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

For additional details on the portshow filter command, refer to the Brocade Fabric OS Command Reference Manual.

Displaying Tunnel Status

Most often, tunnel status is displayed with the portshow fciptunnel command.

```
I=IP-Ext
(circuit): h=HA-Configured v=VLAN-Tagged p=PMTU i=IPSec 4=IPv4 6=IPv6
ARL a=Auto r=Reset s=StepDown t=TimedStepDown S=SLA
```

Displaying Tunnel Information

The following example displays general tunnel information associated with port 24.

```
switch:admin> portshow fciptunnel 7/24
 Tunnel: VE-Port:7/24 (idx:0, DP0)
 _____
 Oper State : Online Warning
 TID
                    : 24
                  : 0x00000000
: Disabled
 Flags
 IP-Extension
 Compression
                    : None
 QoS BW Ratio
                    : 50% / 30% / 20%
                    : Disabled
 Fastwrite
 Tape Pipelining : Disabled
                    : Disabled
 IPSec
 Load-Level (Cfg/Peer): Failover (Failover / Failover)
              : 10:00:50:eb:1a:14:a9:46
 Local WWN
                    : 10:00:50:eb:1a:13:ad:16
 Peer WWN
 RemWWN (config) : 00:00:00:00:00:00:00
 cfqmask
                    : 0x001007ff 0x40000208
 Flow Status
                    : 0
 ConCount/Duration : 1 / 5d1h52m
                  : 5d1h52m
 Uptime
 Stats Duration : 5d1h52m

        Receiver Stats
        : 7697068 bytes / 51760 pkts / 16.00 Bps Avg

        Sender Stats
        : 6297068 bytes / 51757 pkts / 16.00 Bps Avg

 TCP Bytes In/Out : 4460323284 / 4458865888
 ReTx/000/SloSt/DupAck: 0 / 0 / 0 / 0
 RTT (min/avg/max) : 1 / 1 / 6 ms
 Wan Util : 0.0%
 TxO Util
                    : 0.0%
```

Displaying a Tunnel with Circuit Information

The following example shows how to use the -c option to add circuit information to the portshow fciptunnel command output.

switch:admin> portshow fciptunnel 7/24 -c
Tunnel: VE-Port:7/24 (idx:0, DP0)

Oper State : Online Warning
TID : 24
Flags : 0x0000000

IP-Extension	:	Disabled			
Compression	:	None			
QoS BW Ratio	:	50% / 30% / 20%			
Fastwrite	:	Disabled			
Tape Pipelining	:	Disabled			
IPSec	:	Disabled			
Load-Level (Cfg/Peer):	Failover (Failover / Failover)			
Local WWN	:	10:00:50:eb:1a:14:a9:46			
Peer WWN	:	10:00:50:eb:1a:13:ad:16			
RemWWN (config)	:	00:00:00:00:00:00:00			
cfgmask	:	0x001007ff 0x40000208			
Flow Status	:	0			
ConCount/Duration	:	1 / 5d1h51m			
Uptime	:	5d1h51m			
Stats Duration	:	5d1h51m			
Receiver Stats	:	7695768 bytes / 51751 pkts /	8.00	Bps	Avg
Sender Stats	:	6295972 bytes / 51748 pkts /	8.00	Bps	Avg
TCP Bytes In/Out	:	4459623112 / 4458165680			
ReTx/000/SloSt/DupAc	k:	0 / 0 / 0 / 0			
RTT (min/avg/max)	:	1 / 1 / 6 ms			
Wan Util	:	0.0%			
TxQ Util	:	0.0%			

```
Circuit 7/24.0 (DP0)
```

Admin/Oper State	: Enabled / Online Warning
Flags	: 0x0000000
IP Addr (L/R)	: 192.168.5.2 7/ge2 <-> 192.168.1.2
HA IP Addr (L/R)	: 192.168.5.12 7/ge2 <-> 192.168.1.12
Configured Comm Rates	: 5000000 / 5000000 kbps
Peer Comm Rates	: 5000000 / 5000000 kbps
Actual Comm Rates	: 4500000 / 5000000 kbps
Keepalive (Cfg/Peer)	: 6000 (6000 / 6000) ms
Metric	: 0
Connection Type	: Default
ARL-Type	: Auto
PMTU	: Disabled
SLA	: (none)
Failover Group	: 0
VLAN-ID	: NONE
L2Cos (FC:h/m/l)	: 0 / 0 / 0 (Ctrl:0)
L2Cos (IP:h/m/l)	: 0 / 0 / 0
DSCP (FC:h/m/l)	: 0 / 0 / 0 (Ctrl:32)
DSCP (IP:h/m/l)	: 0 / 0 / 0
cfgmask	: 0x40000000 0x00213def
Configuration Warnings	s:
Min-comm-rate / QoS·	-Ratio / Dist-Ratio
Flow Status	: 0
ConCount/Duration	: 1 / 5dlh51m
Uptime	: 5d1h51m
Stats Duration	: 5d1h51m
Receiver Stats	: 7695768 bytes / 51751 pkts / 8.00 Bps Avg
Sender Stats	: 6295972 bytes / 51748 pkts / 8.00 Bps Avg

```
TCP Bytes In/Out : 4459625608 / 4458168176
ReTx/OOO/SloSt/DupAck: 0 / 0 / 0 / 0
RTT (min/avg/max) : 1 / 1 / 6 ms
Wan Util : 0.0%
```

Displaying Tunnel Performance

switch:admin> portshow fciptunnel 24 --perf

The following example displays performance statistics for a tunnel associated with port 24.

Tunnel: VE-Port: 7/24		idx:0, DP0)			
Oper State	:	Online Warning			
TID	:	24			
Flags	:	0x0000000			
IP-Extension	:	Disabled			
Compression	:	None			
QoS BW Ratio	:	50% / 30% / 20%			
Fastwrite	:	Disabled			
Tape Pipelining	:	Disabled			
IPSec	:	Disabled			
Load-Level (Cfg/Peer)	:	Failover (Failover / Failover)			
Local WWN	:	10:00:50:eb:1a:14:a9:46			
Peer WWN	:	10:00:50:eb:1a:13:ad:16			
RemWWN (config)	:	00:00:00:00:00:00:00			
cfgmask	:	0x001007ff 0x40000208			
Flow Status	:	0			
ConCount/Duration	:	1 / 5d1h50m			
Uptime	:	5d1h50m			
Stats Duration	:	5d1h50m			
Receiver Stats	:	7694964 bytes / 51746 pkts /	16.00	Bps	Avg
Sender Stats	:	6295372 bytes / 51743 pkts /	16.00	Bps	Avg
TCP Bytes In/Out	:	4459054876 / 4457597464			
ReTx/000/SloSt/DupAck	:	0 / 0 / 0 / 0			
RTT (min/avg/max)	:	1 / 1 / 6 ms			
Wan Util	:	0.0%			
TxQ Util	:	0.0%			

Displaying Tunnel TCP Statistics

The following example displays TCP connection statistics for a tunnel associated with port 24.

switch:admin>portshow fciptunnel 7/24 -c --tcp

You can reset statistics counters to zero and thereby display only new statistics (those issued from the last reset) with the --tcp option.

```
switch:admin> portshow fciptunnel 7/24 -c --tcp --reset
```

You can display the entire lifetime of statistics for the tunnel using the following command. The time basis for the statistics will display in the output.

switch:admin> portshow fciptunnel 7/24 -c --tcp --lifetime

Displaying Circuits

The following example displays circuit information for all VFs.

```
switch:admin> portshow fcipcircuit --all-ls
```

Displaying a Single Circuit

The following example displays information for circuit 1 on tunnel 24.

```
switch:admin> portshow fcipcircuit 7/24 1
```

Displaying TCP Statistics for Circuits

The following example displays TCP statistics for circuits associated with VE_Port 12 of a Brocade FX8-24 Blade.

switch:admin> portshow fcipcircuit 3/12 --tcp

You can reset statistics counters to zero and thereby display only new statistics (from the time you issue the last reset) with the --tcp option.

switch:admin> portshow fcipcircuit 3/12 --tcp --reset

You can display the entire lifetime of statistics for the circuit using the following command. The time basis for the statistics will display in the output.

switch:admin> portshow fcipcircuit 3/12 --tcp --lifetime

Displaying Circuit Performance

The following example will display circuit performance information for circuit 1 on slot 3, tunnel 12.

```
switch:admin> portshow fcipcircuit 3/12 1 --perf
```

Displaying GbE Port Performance

The following example displays a GbE throughput port performance. The display updates until you press the **Enter** key. Use the --help option to show available command options.

switch:a Throughp slot 4:			fshow						
	ge 1	ge 2	ge 3	ge 4	ge 5	ge 6	ge 7	ge 8	_
0	0	0	40	0	40	0	0	0	=
ge 9	ge10	ge11	ge12	ge13	ge14	ge15	ge16	ge17	Total
======= 50	0	0	0	0	0	0	0	0	130

slot 8:									
ge O	ge 1	ge 2	ge 3	ge 4	ge 5	ge 6	ge 7	ge 8	
									=
0	0	50	0	51	0	0	0	0	
ge 9	ge10	ge11	ge12	ge13	ge14	ge15	ge16	ge17	Total
0	0	0	0	0	0	0	0	0	101

Displaying QoS Prioritization for a Circuit

The following example displays QoS prioritization for circuit 0 on tunnel 24. The QoS performance statistics are shown for all QoS tunnels. The example shows an FCIP-only tunnel (no IP traffic) and the Control, High, Medium, and Low statistics.

switch:admin> portshow fcipcircuit 7/24 0 --perf --qos

```
Circuit 7/24.0 (DP0)
```

Admin/Oper State	Enabled / Online
Priority	Control
Flags	0x0000000
IP Addr (L/R)	192.168.5.2 7/ge2 <-> 192.168.1.2
HA IP Addr (L/R)	192.168.5.12 7/ge2 <-> 192.168.1.12
Configured Comm Rates:	0 / 5000000 kbps
Peer Comm Rates	0 / 5000000 kbps
Actual Comm Rates	0 / 5000000 kbps
Keepalive (Cfg/Peer) :	6000 (6000 / 6000) ms
Metric	0
Connection Type	Default
ARL-Type	Auto
PMTU	Disabled
SLA	(none)
IPSEC	Disabled (0)
Failover Group	0
VLAN-ID	NONE
L2Cos (Ctrl)	0
DSCP (Ctrl)	32
cfgmask	0x40000000 0x00213def
Flow Status	0
ConCount/Duration	1 / 5d12m
Uptime	5d12m
Stats Duration	5d12m
Receiver Stats	7592900 bytes / 51059 pkts / 16.00 Bps Avg
Sender Stats	6211872 bytes / 51056 pkts / 16.00 Bps Avg
TCP Bytes In/Out	1148929804 / 1147502276
ReTx/000/SloSt/DupAck:	0 / 0 / 0 / 0
RTT (min/avg/max)	1 / 1 / 4 ms
Wan Util (low/high)	0.0% / 0.0%
Circuit 7/24.0 (DPO)	

FOS-821-Ext-UG105 User Guide

Admin/Oper State	Enabled / Online
Priority	FC-High
Flags	0x0000000
IP Addr (L/R)	192.168.5.2 7/ge2 <-> 192.168.1.2
HA IP Addr (L/R)	192.168.5.12 7/ge2 <-> 192.168.1.12
Configured Comm Rates:	2500000 / 5000000 kbps
Peer Comm Rates	2500000 / 5000000 kbps
Actual Comm Rates	2500000 / 5000000 kbps
Keepalive (Cfg/Peer)	6000 (6000 / 6000) ms
Metric	0
Connection Type	Default
ARL-Type	Auto
PMTU	Disabled
SLA	(none)
IPSEC	Disabled (0)
Failover Group	0
VLAN-ID	NONE
L2Cos (FC-High)	0
DSCP (FC-High)	0
cfgmask	0x40000000 0x00213def
Flow Status	0
ConCount/Duration	1 / 5d12m
Uptime	5d12m
Stats Duration	5d12m
Receiver Stats	0 bytes / 0 pkts / 0.00 Bps Avg
Sender Stats	0 bytes / 0 pkts / 0.00 Bps Avg
TCP Bytes In/Out	1083588332 / 1083589164
ReTx/000/SloSt/DupAck	0 / 0 / 0 / 0
RTT (min/avg/max)	1 / 1 / 6 ms
Wan Util (low/high)	0.0% / 0.0%

Circuit 7/24.0 (DP0)

Admin/Oper State :	Enabled / Online Warning
Priority :	FC-Medium
Flags :	0x0000000
IP Addr (L/R) :	192.168.5.2 7/ge2 <-> 192.168.1.2
HA IP Addr (L/R) :	192.168.5.12 7/ge2 <-> 192.168.1.12
Configured Comm Rates:	1500000 / 5000000 kbps
Peer Comm Rates :	2000000 / 5000000 kbps
Actual Comm Rates :	1500000 / 5000000 kbps
Keepalive (Cfg/Peer) :	6000 (6000 / 6000) ms
Metric :	0
Connection Type :	Default
ARL-Type :	Auto
PMTU :	Disabled
SLA :	(none)
IPSEC :	Disabled (0)
Failover Group :	0
VLAN-ID :	NONE
L2Cos (FC-Medium) :	0
DSCP (FC-Medium) :	0
cfgmask :	0x40000000 0x00213def

FOS-821-Ext-UG105 User Guide

Configuration Warning	
Min-comm-rate / QoS	-Ratio / Dist-Ratio
	: 0
ConCount/Duration	: 1 / 5d12m
-	: 5d12m
Stats Duration	
	: 0 bytes / 0 pkts / 0.00 Bps Avg
	: 0 bytes / 0 pkts / 0.00 Bps Avg
TCP Bytes In/Out	: 1083589204 / 1083588460
ReTx/000/SloSt/DupAck	: 0 / 0 / 0 / 0
RTT (min/avg/max)	: 1 / 1 / 4 ms
Wan Util (low/high)	: 0.0% / 0.0%
Circuit 24.0 (DP0)	
	: Enabled / Online Warning
Priority	: FC-Low
Flags	: 0x0000000
IP Addr (L/R)	: 192.168.5.2 7/ge2 <-> 192.168.1.2
HA IP Addr (L/R)	: 192.168.5.12 7/ge2 <-> 192.168.1.12
Configured Comm Rates	: 1000000 / 5000000 kbps
Peer Comm Rates	: 500000 / 5000000 kbps
Actual Comm Rates	: 500000 / 5000000 kbps
	: 6000 (6000 / 6000) ms
Metric	: 0
Connection Type	: Default
	: Auto
PMTU	: Disabled
SLA	: (none)
IPSEC	: Disabled (0)
Failover Group	: 0
	: NONE
L2Cos (FC-Low)	: 0
DSCP (FC-Low)	
	: 0x40000000 0x00213def
Configuration Warning	
Min-comm-rate / QoS	
Flow Status	: 0
ConCount/Duration	: 1 / 5d12m
	: 5d12m
Stats Duration	: 5d12m
Receiver Stats	: 0 bytes / 0 pkts / 0.00 Bps Avg
	: 0 bytes / 0 pkts / 0.00 Bps Avg
	: 1083583264 / 1083583984
ReTx/000/SloSt/DupAck	
RTT (min/avg/max)	
Wan Util (low/high)	

Displaying Tunnel Information (Brocade FX8-24 Blade)

You can use the <code>portShow fcipTunnel</code> command to view the performance statistics and monitor the behavior of an online tunnel.

The following example shows how to use the -c option of the portShow fcipTunnel command to display the circuits of tunnel 8/12.

switch:admin> portshow fciptunnel 8/12 -c

Tunnel Issues

The following are common tunnel issues and recommended actions for you to follow to fix them.

Tunnel Does Not Come Online

If a tunnel fails to come online, troubleshoot this issue using the following steps.

1. Confirm that the Ethernet port is online.

```
switch:admin> portshow ge2
Eth Mac Address: 00.05.1e.37.93.06
Port State: 1 Online
Port Phys: 6 In_Sync
Port Flags: 0x3 PRESENT ACTIVE
Port Speed: 10G
```

2. Confirm that the IP configuration is correct on both tunnel endpoints using the following commands.

switch:admin> portshow ipif ge2

	Port	IP Address	/ Pfx	MTU	VLAN	Flags
ge2.dp0192.168.5.2/ 241500U R M Ige2.dp1192.168.5.12/ 241500U R M I	5 1		,		•	

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running I=InUse N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp X=Crossport

```
switch:admin> portshow fciptunnel 24 --circuit --config
```

Tunnel: VE-Port:24 (idx:0, DP0)

Oper State :	Enabled
TID :	24
Flags :	0x0000000
IP-Extension :	Disabled
Compression :	None
QoS BW Ratio :	50% / 30% / 20%
Fastwrite :	Disabled
Tape Pipelining :	Disabled
IPSec :	Disabled
Load-Level (Cfg/Peer):	Failover (Failover / Failover)
Local WWN :	10:00:50:eb:1a:14:a9:46
Peer WWN :	10:00:50:eb:1a:13:ad:16
RemWWN (config) :	00:00:00:00:00:00:00
cfgmask :	0x001007ff 0x40000208
Flow Status :	0

FOS-821-Ext-UG105 User Guide

```
ConCount/Duration : 1 / 5d2h
Uptime
                      : 5d2h
                    : 5d2h
: 5d2h
Stats Duration
Receiver Stats
                    : 7704928 bytes / 51813 pkts / 8.00 Bps Avg

        Sender Stats
        : 6303500 bytes / 51810 pkts /
        8.00 Bps Avg

        TCP Bytes In/Out
        : 4465088992 / 4463631336

ReTx/000/SloSt/DupAck: 0 / 0 / 0 / 0
RTT (min/avg/max) : 1 / 1 / 6 ms
Wan Util
                      : 0.0%
                     : 0.0%
TxO Util
Circuit 24.0 (DPO)
_____
Admin/Oper State : Enabled / Online Warning
Flags
         : 0x0000000
IP Addr (L/R) : 192.168.5.2 ge2 <-> 192.168.1.2
HA IP Addr (L/R) : 192.168.5.12 ge2 <-> 192.168.1.12
Configured Comm Rates: 5000000 / 5000000 kbps
Peer Comm Rates : 5000000 / 5000000 kbps
Actual Comm Rates : 4500000 / 5000000 kbps
Keepalive (Cfg/Peer) : 6000 (6000 / 6000) ms
Metric
           : 0
Connection Type : Default
ARL-Type
                      : Auto
                    : Disabled
PMTU
SLA
                    : (none)

      Failover Group
      : 0

      VLAN-ID
      : NONE

      L2Cos (FC:h/m/l)
      : 0 / 0 / 0 (Ctrl:0)

L2Cos (IP:h/m/l) : 0 / 0 / 0
DSCP (FC:h/m/l) : 0 / 0 / 0 (Ctrl:32)
DSCP (IP:h/m/l)
                     : 0 / 0 / 0
cfgmask
                     : 0x40000000 0x00213def
Configuration Warnings:
                                                <======
  Min-comm-rate / QoS-Ratio / Dist-Ratio
Flow Status : 0
ConCount/Duration : 1 / 5d2h
                     : 5d2h
Uptime
                   : 5d2h
: 5d2h
Stats Duration
Receiver Stats
                    : 7704928 bytes / 51813 pkts / 8.00 Bps Avg
Sender Stats
                    : 6303500 bytes / 51810 pkts / 8.00 Bps Avg
TCP Bytes In/Out : 4465092320 / 4463634664
ReTx/000/SloSt/DupAck: 0 / 0 / 0 / 0
RTT (min/avg/max) : 1 / 1 / 6 ms
Wan Util
                      : 0.0%
```

In this example, the Online Warning indicates a possible problem and the information identified by Configuration Warnings tells where the problem might exist. Both ends of the circuit should be configured with the same parameters.

3. Enter the portCmd --ping command to the remote tunnel endpoint from both endpoints.

The gel.dp0 value identifies a port on a Brocade 7840 Switch or Brocade SX6 Blade. The -s value is the source IP address; the -d value is the destination IP address.

```
portcmd --ping gel.dp0 -s 11.1.1.1 -d 11.1.1.2
```

If the command is successful, then you have IP connectivity and your tunnel should come up. If not, continue to the next step.

When using VLANs, VLAN tagging ensures that test traffic traverses the same path as real traffic. A VLAN tag entry for both the local and remote sides of the route must exist prior to issuing the portCmd --ping or portCmd -- traceroute commands. See Configuring VLAN for details.

4. Enter the portCmd --traceroute command to the remote tunnel endpoint from both endpoints.

portcmd --traceroute gel.dp0 -s 11.1.1.1 -d 11.1.1.2

 If there are routed IP connections that provide for the tunnel, confirm that both ends of the tunnel have defined IP routes, and the route gateways are correct. The tunnel or route lookup may fail to come online because of a missing or incorrect IP route.

See Configuring IP Route to review the set up of the IP route.

6. Confirm that the tunnel is configured correctly using the following command.

portshow fciptunnel tunnel ID (VE-port number)

Confirm that the compression, FastWrite, and OSTP and IPsec settings match at each endpoint or the tunnel might not come up. Confirm that the local and destination IP address and WWN are accurate.

7. Generate an Ethernet sniffer trace.

Rule out all possible blocking factors. Routers and firewalls that are in the data path must be configured to pass traffic (TCP port 3225, and for the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade, TCP port 3226) and IPsec traffic, if IPsec is used (UDP port 500). If possible blocking factors have been ruled out, simulate a connection attempt using the portCmd --ping command, from source to destination, and then generate an Ethernet trace between the two endpoints. The Ethernet trace can be examined to further troubleshoot the connectivity.

Tunnel Goes Online and Offline

A tunnel that goes offline and then online (a bouncing tunnel) is a common problem. This bouncing usually occurs because of an over-commitment of available bandwidth, resulting in the following behaviors:

- Too much data tries to go over the link.
- Management data is lost or is queued too long, and timeouts expire.
- Data times out multiple times.

Perform the following steps to gather information.

- 1. Verify what link bandwidth is available.
- 2. Confirm that the IP path is being used exclusively for traffic.
- 3. Confirm that traffic shaping is configured to limit the available bandwidth by using the following command.

```
portShow fciptunnel all --tcp
```

Examine data from both routers. This data shows retransmissions, indicating input and output rates on the tunnels.

4. For the Brocade FX8-24 Blade, run the portcmd --tperf command to gather WAN performance data. For the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade, use WAN Tool.

Troubleshooting Extension Links

The following list contains information for troubleshooting Extension links:

- When deleting Extension links, you must delete them in the exact reverse order in which they were created. That is, first delete the tunnels, followed by any IP route configurations, then the IP interfaces, and finally the port configuration.
- The portCmd --ping command only verifies physical connectivity. This command does not verify that you have configured the ports correctly for tunnels.
- Ports at both ends of the tunnel must be configured correctly for a tunnel to work correctly. These ports can be either VE_Ports or VEX_Ports. A VEX_Port must be connected to a VE_Port.
- When configuring routing over an Extension link for a fabric, the edge fabric will use VE_Ports and the backbone fabric will use VEX_Ports for a single tunnel.
- If a tunnel fails and a "Disabled (Fabric ID Oversubscribed)" message displays, the solution is to reconfigure the VEX_Port to the same fabric ID as all of the other ports connecting to the edge fabric.
- Because of an IPsec RASlog limitation, you might not be able to determine an incorrect configuration that causes an IPsec tunnel to not become active. This misconfiguration can occur on either end of the tunnel. As a result, you must correctly match the encryption method, authentication algorithm, and other configurations on each end of the tunnel.

Gathering Additional Information

The following commands should be executed and their data collected before the supportsave command is run. Using the supportsave command can take ten minutes or more to run, and some of the information is time critical.

- tracedump -n
- porttrace --show all
- porttrace --status

For issues specific to tunnel ports, run and collect the data from the following commands:

- slotshow
- portshow slot/ge port /

For a Brocade 7840 Switch or Brocade 7810 Switch, run and collect the data from the following commands:

- extncfg --show
- portcfgge --show

For a Brocade 7840 Switch or Brocade 7810 Switch operating in Hybrid mode (for IP Extension features), run and collect the data from the following commands:

- portshowlag
- portshowlag --detail
- portshowtcl
- portshowtcl --detail
- portshowlan-stats --global
- portshowlan-stats --per-flow
- portshowlan-stats --hist-stats

If possible, run and collect the data from the following commands:

- portshow ipif --all slot/ge port
- portshow arp --all slot/ge port
- portshow iproute --all slot/ge_port
- portshow fciptunnel --all slot/ge_portall|tunnel

- portshow fciptunnel --all --perf
- portshow fciptunnel --all -c
- portshow fciptunnel --all --circuit --perf --summary
- portshow fciptunnel --all --circuit --perf --tcp --qos
- portCmd --ping --traceroute --perf
- portCmd -ping
- portCmd traceroute

Finally, gather the data from the supportsave command.

Refer to the *Brocade Fabric OS Administration Guide* or *Brocade Fabric OS Command Reference Manual* for complete details on these commands.

Using FTRACE

FTRACE is a support tool used primarily by your switch support provider. FTRACE can be used in a manner similar to that of a channel protocol analyzer. You can use FTRACE to troubleshoot problems through a Telnet session rather than using an analyzer or sending technical support personnel to the installation site.

CAUTION

FTRACE is meant to be used solely as a support tool and should be used only by Brocade support personnel or at the request of Brocade support personnel. The FTRACE command is restricted to the root switch user.

FTRACE is always enabled on extension switches and blades, and the trace data is automatically captured.

FTRACE Configuration

A default configuration for FTRACE is provided for each of the two DP complexes on the Brocade 7840 Switch, Brocade SX6 Blade, and Brocade FX8-24 Blade, and on the DP complex for the Brocade 7810 Switch. This allows tracing of events related to the DP complexes.

The portcfg ftrace *slot/ve port* cfg command is interactive.

Use this command under the direction of an authorized support representative. FTRACE configuration settings are described in Changing Configuration Settings.

Brocade 7840 Switch, Brocade 7810 Switch, and the Brocade SX6 Blade

FTRACE has been enhanced on the Brocade 7840 Switch, Brocade 7810 Switch, and Brocade SX6 Blade to allow more trace saving options than for the Brocade FX8-24 Blade. The default FTRACE configuration has been changed on this platform as a result of those enhancements. For a display of the default configuration for the Brocade 7840 Switch or Brocade SX6 Blade using the portshow trace ve_port stats command, see Displaying FTRACE Status on 7840 Switch.

The Brocade 7840 Switch and the Brocade SX6 Blade include two data processing (DP) complexes. Each DP complex has an FTRACE instance. The default configuration for FTRACE on the switch or blade defines eight FTRACE buffers for trace events on each DP complex. The default configuration defines 300,000 trace entries (trace records) per trace buffer. The default FTRACE configuration enables auto-checkout (ACO) for the first four buffers and disables ACO for the last four. The Brocade 7840 Switch and the Brocade SX6 Blade have a solid-state disk (SSD) file system in each DP complex. This can be used to save copies of triggered FTRACE buffers. Use of the SSD to save FTRACE buffers is enabled by default and by the "Save to Flash" portcfg ftrace ve port cfg command.

On the Brocade 7840 Switch or Brocade SX6 Blade, you can enable ACO for each defined FTRACE buffer. FTRACE processing varies when the FTRACE buffer is defined with ACO enabled or disabled.

ACO enabled: If the FTRACE buffer is defined with ACO enabled, when that buffer is the "current" FTRACE buffer and a trigger event occurs, FTRACE will post fill that buffer to the end (or add the post fill percentage of more trace entries). When the post filling process is occurring the FTRACE buffer state will be reported as "post fill". When the post filling process has completed, the buffer state will be reported as "checked out," and the next sequential available buffer number will be assigned to the current buffer (state "current"). If all FTRACE buffers are marked as "checked out," FTRACE will no longer be recording trace entries. The default configuration therefore will capture at least the first four error traces, permanently check out those buffers, and then move them to the ACO-off buffers. FTRACE buffers that have been checked out will be saved in a supportsave capture. When the supportsave is complete, the buffers will return to an "unused" state and will be available for new traces. You can use the portshow ftrace ve_port cmd command to check in a checked-out buffer.

ACO disabled: If the FTRACE buffer is defined with ACO disabled, when that buffer is the "current" FTRACE buffer and a trigger event occurs, FTRACE processing will complete the same post filling process as described for ACO enabled. When completed, if the "Save to Flash" configuration option was enabled, the buffer will move to a "saving" state, and the next available buffer will be made as the current trace buffer. The Brocade 7840 Switch or Brocade SX6 Blade will save as many as eight FTRACE buffers in the DP SSD file system. If there are already eight saved FTRACE buffers in the file system, the oldest trace buffer will be replaced by the current buffer being saved. When the save-to-flash processing completes, the buffer will be marked as "triggered". If the "Save to Flash" option is not enabled, the buffer will be immediately marked as "triggered" and the next sequentially available FTRACE buffer will be marked as the "Current" buffer.

In the default configuration, FTRACE will therefore capture at least the first four error events (in buffers 0, 1, 2, and 3). It will capture the last three error events in triggered buffers (4-7) and will always have a current buffer. Buffers 4-7 will also potentially have as many as 10 saved prior trigger events reported and saved in the DP SSD file system.

FTRACE data contents are included in a switch supportsave capture. After the supportsave has been captured, the FTRACE buffers will be reset and all buffers that were previously either "Checked Out" or "Triggered" return to an "unused" state.

Change the FTRACE ACO configuration using the rooportcfg ftrace *slot/ve_port* cfg command. See Changing Configuration Settings for more information.

Brocade FX8-24 Blade

The default configuration creates four FTRACE buffers of 100,000 trace events that will be used until a trigger event (programmed trigger point in the logic) occurs. Trigger events include unexpected events or events that include FC abort sequences or other errors when emulation features are enabled on the tunnel.

The default configuration does not allow the reuse of a trace buffer that includes one or more trigger events. The FTRACE configuration item that controls this function is called Auto Checkout (ACO). The default configuration of FTRACE provides for capturing, at a minimum, the first four error time periods in the four FTRACE buffers. That is because the default setting has enabled FTRACE ACO processing. When a buffer is checked out, it will not be reused until it is manually checked in or cleared through the supportsave process.

If the FTRACE configuration is changed so that ACO is disabled, then instead of post-filing and then checking out, the buffer is marked as triggered. If multiple trigger events subsequently occur so that all buffers are marked triggered, FTRACE will find the oldest triggered buffer and make it the current buffer. In this configuration, FTRACE will be set up to capture the last three error time periods.

FTRACE data contents are included in a switch supportsave capture. After the supportsave has been captured, the FTRACE buffers will be reset and all buffers that were previously either "checked out" or "triggered" return to an "unused" state.

Change the FTRACE ACO configuration using the following root command:

```
portcfg ftrace [slot/]vePort cfg
```

See Changing Configuration Settings for more information.

Changing Configuration Settings

Use the root $portcfg ftrace slot/ve_port cgf command to change FTRACE configuration settings. The configuration for FTRACE is defined using the first VE_Port on the switch or blade DP complex as follows:$

- Brocade 7840 Switch: VE_Port 24 on DP0 and VE_Port 34 on DP1
- Brocade 7810 Switch: VE Port 12 on DP0
- Brocade SX6 Blade: VE_Port 16 on DP0 and VE_Port 26 on DP1

To change FTRACE configuration settings on the first DP complex (DP0) on a Brocade 7840 Switch, if applicable, set the context where VE_Port 24 is defined, and then issue the following command as the root user only:

portcfg ftrace 24 cfg

To change FTRACE configuration settings on the first DP complex (DP0) on a Brocade 7840 Switch, if applicable, set the context where the VE_Port 24 is defined, and then issue the following command as the root user only:

portcfg ftrace 24 cfg

To change FTRACE configuration settings on the second DP complex (DP1) on a Brocade 7840 Switch, if applicable, set the context to where VE_port 34 is defined, and then issue the following command as the root user only:

portcfg ftrace 34 cfg

Note that portofg is an interactive command sequence and will prompt you for configuration items.

Changing FTRACE Configuration Settings on a Brocade 7840 Switch

The following is an example of the interactive command sequence that illustrates where you are prompted to change FTRACE configuration settings on a Brocade 7840 Switch. To change the settings, set the context where VE_Port 34 is defined, and then issue the portcfg ftrace 34 cfg command as the root user only.

NOTE

User input lines in the following example of this interactive command have been annotated to help you select configuration options. Those notes in italic fonts, such as * *Enables FTRACE (default is y)* *, indicate options that you can modify. Those in-between double asterisk characters indicate options that you should not modify without direction from a support representative.

```
switch:admin> portcfg ftrace 34 cfg
  *** FTRACE INTERACTIVE CONFIGURATION ***
                                         * * *
  *** Note: A reboot is necessary to
  *** activate a change in the number
                                         * * *
                                         ***
  *** of buffers or records.
Enable FTRACE?
                                    (Y,y,N,n): [y] y
                                                              *Enables FTRACE -default y*
Buffers
                                    (0-16): [8]
                                                              *Sets number of trace buffers -default 8*
Records (decimal, no commas)
                                    (0-262,144): [300,000]
                                                              *Sets number of trace records per buffer -
default 200,000*
Auto Checkout?
                                    (Y,y,N,n): [y]
                                                              *Enables ACO (default y) *
Auto Checkout is on, config at least 1 buffer accordingly.
```

Auto Checkout buffer 0	(Y,y,N,n): [y]	*Enables ACO for buffer 0 -default y*
Auto Checkout buffer 1	(Y,y,N,n): [y]	*Enables ACO for buffer 1 -default y*
Auto Checkout buffer 2	(Y,y,N,n): [y]	*Enables ACO for buffer 2 -default y*
Auto Checkout buffer 3	(Y,y,N,n): [y]	*Enables ACO for buffer 3 -default y*
Auto Checkout buffer 4	(Y,y,N,n): [n]	*Disables ACO for buffer 4 -default n*
Auto Checkout buffer 5	(Y,y,N,n): [n]	*Disables ACO for buffer 5 -default n*
Auto Checkout buffer 6	(Y,y,N,n): [n]	*Disables ACO for buffer 6 -default n*
Auto Checkout buffer 7	(Y,y,N,n): [n]	*Disables ACO for buffer 7 -default n*
Save to Flash?	(Y,y,N,n): [y]	*Enables saving non-ACO to flash -default y^*
Post Percentage (decimal)	(0-100): [5]	*Sets the post fill percentage -default $5*$
Trace Mask (*)	(0-fffffff): [8000dffb]	**Sets the trace mask -default 8000dffb**
Trigger Mask (T)	(0-fffffff): [1]	**Sets the trigger mask -default 1**
Display Mask (-)	(0-fffffff): [fffffff]	**Sets the trace display mask -default
fffffff**		
Enable VE Traces?	(Y,y,N,n): [y]	**Enables VE event traces -default y**
Enable FCIP Traces?	(Y,y,N,n): [y]	**Enables FCIP event traces -default y**
Enable TCPIP Traces?	(Y,y,N,n): [y]	**Enables TCP/IP event traces -default y**
Enable TCPIP Conn Traces?	(Y,y,N,n): [y]	**Enables TCP/IP Connection event traces -
default y**		
Enable IP Traces?	(Y,y,N,n): [y]	**Enables IP Event traces -default y**
Enable ARL Traces?	(Y,y,N,n): [y]	**Enables ARL Event traces -default y**
Enable Ethernet Traces?	(Y, y, N, n): [n]	**Disables Ethernet traces -default n**
Enable IP API Traces?	(Y,y,N,n): [y]	**Enables IP/API even traces -default y**
Enable FCIP MSG Traces?	(Y,y,N,n): [y]	**Enables FCIP Msg traces -default y**
Enable VDM Traces?	(Y, y, N, n): [n]	**Disables VDM traces -default n**
Configuration complete.		
Operation Succeeded		

To correctly and completely delete an FTRACE configuration and reset to defaults, perform the following command sequences.

```
switch:admin> portcfg ftrace 34 del

*** Note: This command will clear out ***
*** the current config and FTRACE will ***
*** be reset to default values. ***
Do you wish to continue? (Y,y,N,n): [n] y
Operation Successful
switch:admin> reboot
/* After switch completes reboot sequence */
switch:admin> portcfg ftrace 34 cfg
/* repeat the configuration or leave as default */
```

Displaying FTRACE Status on a DP Complex

To display the current FTRACE status on a DP complex, issue the following command as the root user:

portshow ftrace [slot/]vePort stats

The vePort is in the current logical switch context.

Brocade 7840 Switch Example

The following is an example of displaying FTRACE status using the portshow ftrace *slot/ve port* stats command. The example shows the default configuration for the Brocade 7840 Switch. A similar command can be used for the Brocade SX6 Blade.

switch:admin> portshow ftrace 34 stats

VE traces:	On-all	Trace Mask:	0x8000dffb (*)
FCIP Tunnel traces:	On-all	Trigger Mask:	0x0000001 (T)
TCPIP traces:	On-all	Display Mask:	Oxfffffff (-)
TCPIP Conn. traces:	On-all	Tunnel Mask:	Inactive
IP traces:	On-all	Post trigger:	5% - 10000 events
ARL traces:	On-all	Record Size:	128
ETHERNET traces:	Off	Save to Flash:	Enabled
IP API traces:	On-all	FTRACE is:	Enabled
FCIP MSG traces:	On-all	Debug level:	4-Normal (low)
VDM traces:	Off	CLIB / HAL:	Off / Off

*-Bit 31 [0x80000000]: Software Structure					
-Bit 19 [0x00080000]: EtRX - Ethernet Received Frame					
-Bit 18 [0x00040000]: EtSX - Ethernet Send Frame to Peer					
-Bit 17 [0x00020000]: TnTX - Tunnel Received Peer Frame					
-Bit 16 [0x00010000]: TnSX - Tunnel Send Frame to Peer					
*-Bit 15 [0x00008000]: FcT - FC FWD Frame From Peer					
*-Bit 14 [0x00004000]: FcR - FC FWD Received Frame					
-Bit 13 [0x00002000]: Dsc - Discarded Frame					
*-Bit 12 [0x00001000]: Data - Frame Data					
*-Bit 11 [0x00000800]: State Change					
*-Bit 10 [0x00000400]: CpRX - Frame Received From CP					
*-Bit 9 [0x00000200]: CpSX - Frame Sent To CP					
*-Bit 8 [0x00000100]: ToP - Sent To Peer					
*-Bit 7 [0x00000080]: Tfx - Emulation FC Frame From Peer					
-Bit 7 [0x00000080]: Tfx - Emulation FC Frame From Peer -Bit 6 [0x00000040]: Rfx - Emulation FC Received Frame					
*-Bit 6 [0x00000040]: Rfx - Emulation FC Received Frame *-Bit 5 [0x00000020]: Sfx - Send Frame					
*-Bit 4 [0x00000010]: Gfx - Generated Frame					
*-Bit 3 [0x0000008]: FC SOFi1/2/3 or Class F Frames					
-Bit 2 [0x0000004]: FC SOFn1/2/3 Frames					
*-Bit 1 [0x00000002]: Msg - Information					
T*-Bit 0 [0x0000001]: Err - Error					
++					
Trace Header Wrap In Out Switch Switch					
Id State ACO Size Address Count OXID OXID Date Time					
++					
0 Current on 200000 0x0b0f7480 0 FFFF FFFF					
1 unused on 200000 0x0b0f7780 0 FFFF FFFF					
2 unused on 200000 0x0b0f7a80 0 FFFF FFFF					
3 unused on 200000 0x0b0f7d80 0 FFFF FFFF					
4 unused off 200000 0x0b0f8080 0 FFFF FFFF					

٠

```
unused | off | 200000 | 0x0b0f8380 |
1
  5 I
                                  0 | FFFF | FFFF |
                                                    T
                                                           T
      unused | off | 200000 | 0x0b0f8680 |
                                  0 | FFFF | FFFF |
                                                           L
  6 |
                                                    unused | off | 200000 | 0x0b0f8980 |
                                 0 | FFFF | FFFF |
                                                    7 |
  _____
```

The table at the bottom of the output example has the following columns:

- Id: The FTRACE trace buffer identifier or buffer number.
- State: The FTRACE buffer state for that buffer number. The state can be one of the following:
- Current: The buffer is the current active buffer in use for events.
 - Triggered: The buffer has been used to record an error event from the DP complex. This state is used only when the Auto Checkout option was disabled.
 - Checked Out: The buffer has been used to record an error event from the DP complex, and the buffer will not be overwritten.
 - Post Fill: A trigger event has been encountered, and the FTRACE buffer is currently being post-filled with a number of post-error events. Once the post-filling has been completed, the buffer will transition to either a "Checked Out" or "Triggered" state.
- Unused: The buffer has not been used to capture any events. The buffer will be used when the prior buffer in the list transitions to either a "Checked Out" or a "Triggered" state.
- ACO: Auto Checkout enabled (on) or disabled (off) status.
- Size: The number of trace records that are in the buffer.
- Trace Header Address: A memory address used internally for controlling access to the trace buffer.
- Wrap Count: The number of times that a trace buffer has been wrapped. The trace is a circular buffer that wraps after the size number of trace events has been exceeded.
- In OXID and Out OXID: Not used until the buffer is being analyzed.
- Switch Date: Indicates the system date when the buffer transitioned to either a "Checked Out" or "Triggered" state.

Brocade FX8-24 Blade Example

Following is an example of displaying FTRACE status using the portshow ftrace *slot/ve port* stats command.

```
Slot 0:
VE traces (0-31): (0xffffffff) On
                                     Trace Mask:
                                                   0x8000fefb (*)
                                  Trigger Mask: 0x0000001 (T)
FCIP Tunnel traces (32-64): On
TCPIP traces (65):
                                  Display Mask: 0x8000fefb (-)
                           On
TCPIP Conn. traces (66):
                          Off
                                  Tunnel Mask: Inactive
                          Off Post trigger: 3% - 3600 events
IP traces (67-83):
                          Off
ARL traces (84):
                                  Record Size: 128
ETHERNET traces (85-103): Off
                                  Auto Checkout: Enabled
                           Off
                                  FTRACE is: Enabled
IP API traces (104):
FCIP MSG traces (105):
                           Off
                                  Debug level: 4-Normal (low)
VDM traces (106):
                           Off
 *-Bit 31 [0x8000000]: Software Structure
  Bit 19 [0x00080000]: EtRX - Ethernet Received Frame
  Bit 18 [0x00040000]: EtSX - Ethernet Send Frame to Peer
  Bit 17 [0x00020000]: TnTX - Tunnel Received Peer Frame
  Bit 16 [0x00010000]: TnSX - Tunnel Send Frame to Peer
 *-Bit 15 [0x00008000]: FcT - FC FWD Frame From Peer
 *-Bit 14 [0x00004000]: FcR - FC FWD Received Frame
 *-Bit 13 [0x00002000]: Dsc - Discarded Frame
 *-Bit 12 [0x00001000]: Data - Frame Data
 *-Bit 11 [0x00000800]: State Change
```

*-Bit	10	[0x0000	0400]:	CpF	XX - Frame Red	ceived F	rom CP			
*-Bit	9	[0x0000	0200]:	CpS	CpSX - Frame Sent To CP					
Bit	8	[0x0000]	0100]:	ToF	ToP - Sent To Peer					
*-Bit	7	[0x0000]	0080]:	: Tfx - Emulation FC Frame From Peer						
*-Bit 6 [0x00000040]: Rfx - Emulation FC Received Frame										
*-Bit 5 [0x0000020]: Sfx - Send Frame										
*-Bit 4 [0x0000010]: Gfx - Generated Frame										
*-Bit 3 [0x0000008]: FC SOFi1/2/3 or Class F Frames										
Bit 2 [0x0000004]: FC SOFn1/2/3 Frames										
*-Bit 1 [0x0000002]: Msg - Information										
T*-Bit 0 [0x0000001]: Err - Error										
+	+		+	+		+	+	+	++	+
1			1		Trace Header	Wrap	In	Out	Switch	Switch
Id	St	tate	Siz	e	Address	Count	OXID	OXID	Date	Time
+	+		+	+		+	+	+	++	+
1	Ci	urrent	1000	00	0x001f2f00	12344	FFFF	FFFF		
1		unused	1000	00	0x001f3180	0	FFFF	FFFF		
2		unused	1000	00	0x001f3400	0	FFFF	FFFF		
3		unused	1000	00	0x001f3680	0	FFFF	FFFF		
+	+		+	+		+	+	+	++	+

The table at the bottom of the output example has the following information:

- Id: The FTRACE trace buffer identifier or buffer number.
- State: The FTRACE buffer state for that buffer number. The state can be one of the following:
 - Current: The buffer is the current active buffer in use for events
 - Triggered: The buffer has been used to record an error event from the DP complex. This state is used only when the Auto Checkout option was disabled.
 - Checked Out: The buffer has been used to record an error event from the DP complex, and the buffer will not be overwritten.
 - Post Fill: A trigger event has been encountered, and the FTRACE buffer is currently being post-filled with a number of post-error events. Once the post-filling has been completed, the buffer will transition to either a "Checked Out" or "Triggered" state.
 - Unused: The buffer has not been used to capture any events. The buffer will be used when the prior buffer in the list transitions to either a "Checked Out" or a "Triggered" state.
- Size: The number of trace records that are in the buffer.
- Trace Header Address: A memory address used internally for controlling access to the trace buffer.
- Wrap Count: The number of times that a trace buffer has been wrapped. The trace buffer is a circular buffer that wraps after the size number of trace events has been exceeded.
- In OXID and Out OXID: Not used until the buffer is being analyzed.
- Switch Date: Indicates the system date when the buffer transitioned to either a "Checked Out" or "Triggered" state.
- Switch Time: Indicates the system time when the buffer transitioned to either a "Checked Out" or a "Triggered" state.

Revision History

FOS-821-Ext-UG105; 19 April 2021

- Edited the document to make the release version generic to FOS releases.
- Updated the Supported Hardware and Software section.
- Updated the Redundancy and Fault Tolerance section.
- Updated the FSPF Link Cost Calculation with Rate Limiting section.
- · Updated the Overview of Extension Platforms and Features section.
- Updated the Brocade 7810 Switch License Options section.
- Updated the Ethernet Port Sharing section.

FOS-821-Ext-UG104; 16 April 2020

- The maximum number of supported LAN TCP connections has been increased from 128 to 256.
- UDP traffic that exceeds the maximum limit will be sent as ASIS traffic.
- An extension switch will send out an RST if it receives a TCP packet that does not belong to non-terminated traffic and has no connection context.
- Throughout the document, reflected that the FX8-24 blade is not supported in FOS 9.0.0.
- Revised the Root / Security /IPsec Policies / <policy> window
- Removed FX8-24 from extncfg --show command
- Documented new command "portshow lanstats --tcp-port-info," which lists all TCP ports that attempt to connect.

FOS-821-Ext-UG104; 13 February 2019

- Under IP WAN Network Considerations, in the first bullet, removed any suggestion that under some circumstances the URG bit is not set.
- Under IP WAN Network Considerations, in the first bullet under "Routers and firewalls that are in the data path must be configured to pass traffic through a specific TCP port on the switch, " included the Brocade 7840 Switch and the Brocade SX6 Blade in the list of qualifying platforms.

FOS-821-Ext-UG103; 4 December 2018

Stylistic changes.

FOS-821-Ext-UG102; 17 October 2018

Stylistic changes.

FOS-821-Ext-UG101; 28 September 2018

Changes to this release include the following:

- Completely revised the discussion of Extension Hot Code Load.
- Support for the Brocade 7810 Extension Switch, including the new sections Brocade 7840 Switch Ports and Brocade 7810 Switch License Options.
- UnderConfiguring Global LLDP Parameters :

For the TLV port-desc, the string is now of the format: "Switch Model Name (in the case of a fixed-port switch)/Slot Model Name (in the case of a chassis): Mode + Speed + Slot/Port" (for example, Brocade SX6: WAN 10G 4/ge13).

For the TLV sys-desc, the default system description string in the TLV advertised for the switch is now of the format: "Switch Model Name, Firmware Version" (for example, Brocade 7840, Fabric OS Version 8.2.1).

 Under Configuring Static and Dynamic LAGs Using LACP: A group of ports can now be expressed as a range rather than as a string of ports separated by commas. For example: switch#admin> lldp --enable -port 3/40-56 -profile lldp_profile_1

FOS-821-Ext-UG100; 28 August 2018

Initial release.

