
ACPL-798J Evaluation Board Kit
(PMOD Type 1 Interface)
Isolated Sigma-Delta Modulator with LVDS Interface

User Guide

Description
The ACPL-798J isolated sigma-delta (Σ−Δ) modulator converts an analog input signal into a high-speed (up to 25MHz)
single-bit data stream by means of a sigma-delta over-sampling modulator. The time average of the modulator data is
directly proportional to the input signal voltage. The modulator uses external clock ranges from 5 MHz to 25 MHz that
is coupled across the isolation barrier. This arrangement allows synchronous operation of data acquisition to any digital
controller, and adjustable clock for speed requirements of the application. The modulator data are encoded and trans-
mitted across the isolation boundary where they are recovered and decoded into high-speed data stream of digital ones
and zeros. The original signal information is represented by the density of ones in the data output. [1]

Input signal information is contained in the modulator output data stream, represented by the density of ones and
zeros. The density of ones is proportional to the input signal voltage, as shown in Figure 1. A differential input signal of
0 V ideally produces a data stream of ones 50% of the time and zeros 50% of the time. A differential input of –200 mV
corresponds to 18.75% density of ones, and a differential input of +200 mV is represented by 81.25% density of ones
in the data stream. A differential input of +320 mV or higher results in ideally all ones in the data stream, while input of
–320 mV or lower will result in all zeros ideally. Table 1 shows this relationship.

Figure 1. Modulator output vs. analog input

Table 1. Input voltage with ideal corresponding density of 1s at modulator data output, and ADC code.

Analog Input Voltage Input Density of 1s ADC Code (16-bit unsigned decimation)

Full-Scale Range 640 mV

+Full-Scale +320 mV 100% 65,535

+Recommended Input Range +200 mV 81.25% 53,248

Zero 0 mV 50% 32,768

–Recommended Input Range –200 mV 18.75% 12,288

–Full-Scale –320 mV 0% 0

–FS (ANALOG INPUT)

+FS (ANALOG INPUT)

0 V (ANALOG INPUT)

TIME

MODULATOR OUTPUT

ANALOG INPUT

Table 1 Input voltage with ideal corresponding density of 1s at modulator data output, and ADC code.

2

Figure 2. CIC or Sinc3 filter block.

By scaling the filter decimation ratio, it is possible to scale the resolution vs response speed accordingly and vice versa.

Table 2. Flexibility to scale, resolution vs speed.

Decimation
Ratio (R)

Fs=20MHz Fs=10MHz

Throughput Rate
(Fs/R) KHz

Effective Number
of Bits (ENOB) Filter Delay (us)

Throughput Rate
(Fs/R)

Effective Number
of Bits (ENOB) Filter Delay (us)

256 78.1 12 12.8 39.1 12 25.6

128 156.2 11 6.4 78.1 11 12.8

64 312.5 11 3.2 156.2 11 6.4

32 625 9 1.6 312.5 10 3.2

The original analog signal that is converted to a digital bit stream by the over-sampling sigma-delta modulator, can be
recovered by means of filtering in the digital domain. A common and simple way is through implementation of a cas-
caded integrated comb (CIC) filter or Sinc3 filter. The digital filter averages or decimates the over-sampled bit stream and
effectively converts it into a multi-bit digital equivalent code of the original analog input signal. With a 20MHz external
clock frequency, 256 decimation ratio and 16-bit word settings, the output data rate is 78 kHz (= 20MHz/256). This filter
can be implemented in an ASIC, an FPGA or a DSP.

I I I C C CM

CIC (Cascaded Integrated Comb Filter) or Sinc3 Filter Block

Decimation
Filter

Σ-Δ
Modulator

20MHz

1Bit

78kHz

16Bit
Analog
Input

Decimation Ratio M = 256

This User Manual is provided to assist you in the evaluation of product(s) currently under development. Until Avago
Technologies releases this product for general sales, Avago Technologies reserves the right to alter prices, specifica-
tions, features, capabilities, functions, release dates, and remove availability of the product(s) at anytime.

3

PMOD Interface Evaluation Board
The purpose of the ACPL-798J PMOD interface type 1 evaluation board is to make it easier for system designer to quickly
assemble and integrate Avago’s ACPL-798J LVDS digital modulator to FPGA, DSP or microcontroller development kits
/ reference boards which also come with PMOD interface for prototyping or evaluation purpose with not soldering
required.

Pmod interface or Peripheral Module interface is a standard defined by Digilent Inc in the Digilent Pmod™ Interface
Specification [2] for peripherals used with FPGAs or micro-controllers. Pmods come in a standard 6-Pin interface with 4
signals, one ground and one power pin. Double and quad Pmods also exist. These duplicate the standard interface to
allow more signals to pass through to the module.

Figure 3. PMOD type 1 port (6-pin configuration)

Figure 4 demonstrates how the 798J PMOD interface type 1 evaluation board is used together with a FPGA develop-
ment kit.

Figure 4. 798J PMOD type 1 evaluation board interface to FPGA development kit

Vcc
Gnd

Mclkin +
Mclkin -
Mdat +
Mdat -

Mclkin
Mdat

1
2
3
4
5
6

7
8

PMOD Type 1
Interface

798J PMOD Type 1
Interface

Evaluation Board

FPGA
Development Kit /
Reference Board

with PMOD
Interface

Sinc3 Filter

Analog
Current

or
Voltage

Input

Vcc GND Single row
module uses

4 IO pins

Vcc GND Dual row
module uses 8

IO pins

PMODTM Ports

PMODTM port = 2 row of 6 pins each
Plug-in modules can have either one or two rows of pins

4

Sinc3 filter can be easily programmed into FPGA in VHDL or Verilog environment. An example of a 16-bit output Sinc3 fil-
ter code is provided at the Appendix of this userguide for both VHDL and Verilog. In this example, two pins are assigned
to allow selection of three decimation ratio settings, 256, 128 and 64.

If the FPGA is configured for LVDS interface, toggle all pins 1 to 4 of dip switch selector to the left. If FPGA is configured
to drive single-ended board clock frequency and to receive single ended data, toggle all pins 1 to 4 of dip switch selector
to the right. A pair of LVDS driver and receiver are included in the evaluation board to translates LVDS differential clock
and data signals to single ended signal respectively. Please refer to schematic diagram on the last page for illustration.

Figure 5. Avago 798J PMOD interface evaluation board output interfacing to PMOD type 1

Output pin configuration of Avago 798J PMOD interface evaluation board

Pin Evaluation Board PMOD Type 1 Port
1 5V Vcc

2 GND Gnd

3 Differential Clock + User I/O

4 Differential Clock - User I/O

5 Differential Data + User I/O

6 Differential Data - User I/O

1
2
3
4
5
6

Vc
c

Gn
d

Us
er

 IO
 1

Us
er

 IO
 2

Us
er

 IO
 3

Us
er

 IO
 4

Pmod Interface
Type 1

Reference
[1] Datasheet ACPL-798J Optically Isolated Sigma-Delta Modulator with LVDS Interface, publication number AV02-4339EN

[2] Digilent Pmod™ Interface Specification (PDF), Digilent, Inc., November 20, 2011

A 10mΩ shunt resistor is included in this evaluation board to demonstrate the current sensor function. It’s suitable for
current sensing up to 15Arms. For higher current sensing application, choose appropriate shunt resistance value and
power rating accordingly.

Shunt Resistor Value Selection
One example to select the shunt resistor value is shown below:

If maximum rms current through motor = 10A, 50% overloads during normal operation, then, peak current is 21.1 A (=10
x 1.414 x 1.5). Recommended max. input voltage for ACPL-798J = ±200mV.

• Shunt resistor value = V/I = 200mV/21.1A ≈ 10mΩ

• Power dissipation = I2*R = (10)2 * 10mΩ = 1W

A list of high precision shunt resistor manufacturers is available at the Appendix.

5

APPENDIX A - PCB

Front PCB

Rear PCB

Vishay Dale WSR-2
0.015Ω, 2W shunt

resistor

Motien VA-0505DLH
5V/5V isolated DC-

DC converter

3.3V voltage
regulator

ACPL-798J LVDS
Digital Modulator

Clock (Mclkin) and
Data (Mdat)

Single-ended /
Di�erential dip

switch

Analog
Current
Input

LVDS receiver

LVDS driver

PMOD
Interface
Type 1

FPGA
3.3V I/O
interface

6

APPENDIX B - 16-bit Output Sinc3 Filter Code

16-bit Output Sinc3 Filter Code with three selectable decimation factors 256, 128 and 64 (hardware pin select)

1. Verilog Code
/*---
 Avago Technologies Confidential

 ---*/
/* Create Date: 09/13/2011
 Design Name: cic_filter
 Module Name: cic_filter.v

 Description: CIC filter (SINC3 digital filter)
 with decimation value 64, 128, 256
 Revision:
 Revision 0.01 - File Created
 Additional Comments:
 */

module cic_filter (clk, reset, sel, filter_in, filter_out, word_clk);

 input clk; // sigma delta adc clock
 input reset;
 input [1:0] sel; //Control decimation factor 64, 128 and 256
 input filter_in; // sigle bit sigma delta bit stream

 output [15:0] filter_out; // 16 bit digital filter output
 output word_clk; // Decimated Clock

//**********************************
//////////////////////////////
//sel = 2'b00 --> Decimation Factor = 256
//sel = 2'b01 --> Decimation Factor = 128
//sel = 2'b10 --> Decimation Factor = 64
//sel = 2'b11 --> Decimation Factor = 256
/////////////////////////////

 wire [24:0] ip_data1;
 reg [24:0] acc1;
 reg [24:0] acc2;
 reg [24:0] acc3;
 reg [24:0] acc3_d2;
 reg [24:0] diff1;
 reg [24:0] diff2;
 reg [24:0] diff3;
 reg [24:0] diff1_d;
 reg [24:0] diff2_d;
 reg [15:0] filter_out;
 reg [7:0] word_count;
 reg word_clk;

//**********************************

assign ip_data1 = (filter_in == 1'b1)? 25'h1 : 25'h0;

7

Verilog Code (Continued...)
//accumulation process
always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 acc1 <= 0;
 acc2 <= 0;
 acc3 <= 0;
 end
 else begin
 acc1 <= acc1 + ip_data1;
 acc2 <= acc2 + acc1;
 acc3 <= acc3 + acc2;
 end
end

always @(posedge clk or posedge reset)
begin
 if (reset)
 word_count <= 0;
 else begin
 if(word_count == 8'b11111111)
 word_count <= 0;
 else
 word_count <= word_count + 1;
 end
end

//Decimation Stage
always @(sel or word_count)
begin
 if(sel == 2'd0)
 if (word_count == 8'b11111111)
 word_clk <= 1'b1;
 else
 word_clk <= 1'b0;
 else if(sel == 2'd1)
 if (word_count[6:0] == 7'b1111111)
 word_clk <= 1'b1;
 else
 word_clk <= 1'b0;
 else if(sel == 2'd2)
 if (word_count[5:0] == 6'b111111)
 word_clk <= 1'b1;
 else
 word_clk <= 1'b0;
 else
 if (word_count == 8'b11111111)
 word_clk <= 1'b1;
 else
 word_clk <= 1'b0;
end

8

Verilog Code (Continued...)
//DIFFERENTIATOR
always @(posedge clk or posedge reset)
begin
 if(reset) begin
 acc3_d2 <= 0;
 diff1_d <= 0;
 diff2_d <= 0;
 diff1 <= 0;
 diff2 <= 0;
 diff3 <= 0;
 end
 else begin
 if (word_clk)
 begin
 diff1 <= acc3 - acc3_d2;
 diff2 <= diff1 - diff1_d;
 diff3 <= diff2 - diff2_d;
 acc3_d2 <= acc3;
 diff1_d <= diff1;
 diff2_d <= diff2;
 end
 end
end

// filter_out --> Filtered 16 bit output
always @(posedge clk or posedge reset)
begin
 if (reset)
 filter_out <= 16'h0000;
 else begin
 if (word_clk)
 begin
 if(sel == 2'd0) begin //Decimation ratio 256
 if (diff3[24] ==1'b1)
 filter_out <= 16'hffff;
 else
 filter_out <= diff3[23:8];
 end
 else if(sel == 2'd1) begin //Decimation ratio 128
 if (diff3[21] ==1'b1)
 filter_out <= 16'hffff;
 else
 filter_out <= diff3[20:5];
 end
 else if(sel == 2'd2) begin //Decimation ratio 32
 if (diff3[18] == 1'b1)
 filter_out <= 16'hffff;
 else
 filter_out <= diff3[17:2];
 end
 else begin
 if (diff3[24] ==1'b1) //Decimation ratio 256
 filter_out <= 16'hffff;
 else
 filter_out <= diff3[23:8];
 end
 end
 end
end

endmodule

9

2. VHDL Code
--
-- Avago Technologies Confidential
--
--
-- Author: WongCH
--
-- Create Date: 31-05-2011
-- Design Name: filter
-- Module Name: filter.vhd
-- Project Name:
-- Target Device:
-- Tool versions:
-- Description: SINC3 digital filter
--
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity filter is
 Port (clk : in STD_LOGIC;
 reset : in STD_LOGIC;
 mdata : in std_logic;
 setting : in std_logic_vector(7 downto 0);
 word_clk : out std_logic;
 fil_data : out std_logic_vector(15 downto 0)
);
end filter;

Architecture rtl of filter is

signal ipdata1 : std_logic_vector(24 downto 0);
signal acc1 : std_logic_vector(24 downto 0);
signal acc2 : std_logic_vector(24 downto 0);
signal acc3 : std_logic_vector(24 downto 0);
signal acc3_d2 : std_logic_vector(24 downto 0);
signal diff1 : std_logic_vector(24 downto 0);
signal diff2 : std_logic_vector(24 downto 0);
signal diff3 : std_logic_vector(24 downto 0);
signal diff1_d : std_logic_vector(24 downto 0);
signal diff2_d : std_logic_vector(24 downto 0);
signal data : std_logic_vector(15 downto 0);
signal word_count : std_logic_vector(7 downto 0);
signal i_word_clk : std_logic;

begin

p_mdata: process(mdata)
begin
if mdata = '0' then
 ipdata1 <= "0000000000000000000000000";
else
 ipdata1 <= "0000000000000000000000001";
end if;
end process;

10

VHDL Code (Continued...)

p_acc: process(reset, clk)
begin
if (reset = '1') then
 acc1 <= (others => '0');
 acc2 <= (others => '0');
 acc3 <= (others => '0');
elsif (clk ='1' and clk'event) then
 acc1 <= acc1 + ipdata1;
 acc2 <= acc2 + acc1;
 acc3 <= acc3 + acc2;
end if;
end process;

p_dec_clk: process(reset, clk)
begin
 if (reset = '1') then
 word_count <= (others => '0');
 elsif (clk ='1' and clk'event) then
 word_count <= word_count + '1';
 end if;
end process;

process(word_count, setting)
begin
 if setting(7 downto 4) = "1111" then
 case setting(1 downto 0) is
 when "00" =>
 if word_count(7 downto 0) = "11111111" then
 i_word_clk <= '1';
 else
 i_word_clk <= '0';
 end if;
 when "01" =>
 if word_count(6 downto 0) = "1111111" then
 i_word_clk <= '1';
 else
 i_word_clk <= '0';
 end if;
 when "10" =>
 if word_count(5 downto 0) = "111111" then
 i_word_clk <= '1';
 else
 i_word_clk <= '0';
 end if;
 when Others =>
 if word_count(4 downto 0) = "11111" then
 i_word_clk <= '1';
 else
 i_word_clk <= '0';
 end if;
 end case;
 else
 i_word_clk <= '0';
 end if;
end process;

word_clk <= i_word_clk;

p_diff: process(reset, clk)

11

VHDL Code (Continued...)
begin
 if (reset = '1') then
 acc3_d2 <= (others =>'0');
 diff1_d <= (others =>'0');
 diff2_d <= (others =>'0');
 diff1 <= (others =>'0');
 diff2 <= (others =>'0');
 diff3 <= (others =>'0');
 elsif (clk ='1' and clk'event) then
 if i_word_clk ='1' then
 acc3_d2 <= acc3;
 diff1 <= acc3 -acc3_d2;
 diff1_d <= diff1;
 diff2 <= diff1 -diff1_d;
 diff2_d <= diff2;
 diff3 <= diff2 -diff2_d;
 end if;
 end if;
 end process;

p_data: process(reset, clk)
begin
 if (reset = '1') then
 data <= (others =>'0');
 elsif (clk ='1' and clk'event) then
 if i_word_clk ='1' then
 if setting(7 downto 4) = "1111" then
 case setting(1 downto 0) is
 when "00" => --decimation ratio= 256
 if diff3(24) ='1' then
 data <= (others =>'1');
 else
 data <= diff3(23 downto 8);
 end if;
 when "01" => --decimation ratio = 128
 if diff3(21) ='1' then
 data <= (others =>'1');
 else
 data <= diff3(20 downto 5);
 end if;
 when "10" => --decimation ratio =64
 if diff3(18) ='1' then
 data <= (others =>'1');
 else
 data <= diff3(17 downto 2);
 end if;
 when others => --decimation ratio = 32
 if diff3(15) ='1' then
 data <= (others =>'1');
 else
 data <= diff3(14 downto 0) & '0';
 end if;
 end case;
 else
 data <= "0000000000000000";
 end if;
 end if;
 end if;
end process;

fil_data <= data;

end rtl;

12

APPENDIX C - Shunt Resistor Manufacturer
1) KOA {http://www.koanet.co.jp}

2) Micron Electric (Japan) {http://www.micron-e.co.jp/}

3) International Resistive Company (IRC) {http://www.irctt.com/}

4) Isabellenhuette Isotek {http://www.isotekcorp.com/about-us/isabellenhutte}

5) Precision Resistor {http://www.precisionresistor.com}

6) Vishay-Dale {http://www.vishay.com/videos/resistors/vishay-dale-shunt-resistors-an-overview}

The above pictures show different types of high precision shunt resistors with different resistance values, tolerance and
power dissipations offered by the manufacturers listed above.

13AP
PE

ND
IX

 D
 -

 S
ch

em
at

ic
Di

ag
ra

m

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved.
AV02-4961EN - June 23, 2015

DISCLAIMER: Avago’s products and software are not specifically designed, manufactured or authorized for sale
as parts, components or assemblies for the planning, construction, maintenance or direct operation of a nucle-
ar facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to
make claims against Avago or its suppliers, for all loss, damage, expense or liability in connection with such use.

Author: Lim Shiun Pin, Avago Isolation Product Division Application Engineer

