
CFP2 Common Data Block

Application Note 5592

Introduction to CDB (Common Data Block)
When manufactured, each AFBR-842xxxx-xxx transceiver
is loaded with default firmware that has proven perfor-
mance and reliability. In general firmware update is not
advised, however, if demand for deploying customized
firmware exists, the CDB feature provides the option to
do so via the MDIO interface without returning the trans-
ceiver to factory for rework. I.e. the transceiver’s firmware
can be changed when functional MDIO communication is
established between the host and transceiver.

This application note is divided into six sections; CDB
Structure, CDB Implementation, CDB Command, CDB
Command Execution, CDB Command Execution Process
and Firmware Upgrade

1. CDB Structure
CFP MSA MIS 2.2 r06a allocates 1024 registers on A000h
page as the CDB which starting at AC00h and ending at
AFFFh. It has two realizations, the CDB Command Frame
(Panel A) and the CDB Reply Frame (Panel B). When host
requests module to perform a task it writes a CDB Com-
mand Frame to the module. When host requests the sta-
tus of last command execution with optional data return;
it reads a CDB Reply Frame from the module. See Figure
13 Common Data Block Structure in CFP MSA MIS 2.2.
CDB Command Frame includes CDB Command Register,
CDB Payload Size Register, CDB Payload Registers and CDB
CRC Registers.

1.1.	 CDB Command Register
In a CDB Command Frame AC00h contains the CDB
Command which is required to make a valid com-
mand frame. Host shall write to this register as the
last register to write in a Command Frame. Writing to
this register “triggers” the execution of the CDB com-
mand by module.

1.2.	 CDB Payload Size Register
CDB Payload Size register is at AC01h containing the
total number of registers of CDB Payload starting at
AC02h. The minimum value of CDB Payload Size is 1
and the maximum value is 1020. Zero value indicates
that the payload is not present. Payload Size register
shall be always present regardless of its value.

1.3.	 CDB Payload Registers
CDB Payload occupies a block of registers starting at
AC02h and ending at AC02h+L-1, where L is the CDB
Payload Size. CDB Payload contains parameters of
other type of data associated with a CDB Command.
CDB Payload is only present when CDB Command has
data to pass the module.

1.4.	 CDB CRC Registers
The CRC registers are allocated right after the end
of CDB Payload with MSW at smaller address. CRC
is a 32-bit value with the same algorithm defined for
B000h page Bulk Data Block. The use of CRC is op-
tional, but when it is used, they always shall start at
AC02h.

1.5.	 CDB Reply Frame
In a CDB Reply Frame AC00h contains the CDB Reply
required to make a valid reply frame. Host shall read
this register first to determine where it needs to read
further for the rest of the Reply Frame. When prepar-
ing a Reply Frame, a module shall write to this register
with “Command in Process” in the field of CDB Status
indicating the rest of the Reply Frame may not be
ready for host to read. The rest of a DCB Reply Frame
is similar to that of a CDB Command Frame.

Figure 13.Common Data Block Structure

CDB Command

CDB Payload Size (L)

CDB Payload
(of size L)

CDB CRC MSW

CDB CRC LSW

CDB Reply

CDB Payload Size (L)

CDB Payload
(of size L)

CDB CRC MSW

CDB CRC LSW

CDB Command Frame CDB Reply Frame

AC00h

AC01h

AC02h

AC02h+L-1

AC02h+L

AC02h+L+1

NOTE:
Figure and Table numbers in this document are referenced to:
CFP MSA Management Interface Specification
100/40 Gigabit Transceiver Package Multi-Source Agreement
Version 2.2 r06a
July 1, 2013
CFP_MSA_MIS_V2p2r06a.pdf

2

2. CDB Implementation
Please refer to Table 18 CDB Implementation in CFP MSA MIS 2.2 for the general form of CDB Command Frame and CDB
Reply Frame with implementation details.

Table 18. CDB Implementation

Continued on next page...

Hex
Addr

Size Access
Type

Bit Register Name Description Initial
Value

AC00 1 CDB Command or
CDB Reply

This is a shared address between CDB Command register
and CDB Reply register, defined respectively with the
following cases.

0000h

CDB Command Frame Case

 0 devreseR 21~51 OW

WO 11~8 CDB CMD Class A 4-bit unsigned value coding 16 CDB Command Classes.
0h: System level operations
1h: General CFP register operations
2h~Dh: Reserved
Eh~Fh: Vendor specific command class code.

0

WO 7~0 CDB CMD Code An 8-bit value coding 256 CDB commands for each CDB CMD
Class. See separate section for details.

0

CDB Reply Frame Case

RO 15~10 Reserved 0

RO 9~8 CDB Status A 2-bit value representing CDB status. Note this field shall be
synchronized with A004h.3~2 therefore CDB and A004h can be
operated one and only one at a time.
00b: CDB Idle,
01b: CDB Command completed successfully,
10b: CDB Command in progress,
11b: CDB Command failed.

0

7~0 CDB Message

An 8-bit value coding CDB Message related to each CDB Status.
If CDB Status = CDB Idle, then

00h: Reserved,
01h: Ready to accept host command,
02h~7Fh: Reserved by MSA,
80h~FFh: Allocated for vendor use.

If CDB Status = Command in Progress, then
 00h: Reserved,
 01h: Command is captured but not processed,
 02h: Command checking is in progress, CDB Reply CRC is not
valid.
 03h: Command execution is in progress,
 04h: Command execution is in progress but CDB Payload is
open for host write, note that write to CDB Command register
(AC00h) shall be ignored. Meanwhile, Payload Size and CRC in
the Reply Frame may be overwritten by incoming host write.
 05h~7Fh: Reserved by MSA,
 80h~FFh: Allocated for vendor use.

0

3

Table 18. CDB Implementation (Continued)

3. CDB Command Execution
3.1.	 Initialization

On power up CDB function shall be initialized to CDB
IDEL state with CRC and Global Alarm disabled.

3.2.	 Host to Write a CDB Command Frame
To send a CDB Command to module, host shall write
CDB Command register AC00h at last and shall use
this write as the “trigger” for module to execute the
CDB Command. Host shall be able to write all other
registers in a CDB Command Frame in any order. A
module shall interpret other register contents per the
CDB command once it detects the “trigger”.

3.3.	 Host to Read a CDB Reply Frame
To received a CDB Reply Frame host shall read CDB
Reply register (AC00h) first and then shall proceed
with reading CDB Payload Size register and CDB Pay-
load, and then CRC. If no data is return per the previ-
ous command, host only needs to read the CDB Reply
register to determine the CDB Status and CDB Mes-
sage.

3.4.	 Command in Progress (CIP)
COP is an important status for module to present to
host. Once a command is received CDB state ma-
chine shall immediately update CDB reply register
with this status and associated CDB Message. During
this state, module shall not be able to determine its
CRC content if CRC option is enabled. Host shall not
make attempt to read CRC registers.

3.5.	 Command Completed Successfully (CCS)
CCS is asserted by a module with proper CDB Message
for additional information. If CDB Payload is attached
as a part of the CDB Command execution, host shall
read the CDB Payload per CDB Payload Size register. If
CRC is enabled, host shall read CRC registers as well to
determine whether a valid CDB Reply Frame is valid.

3.6.	 Command Failed (CF)
CF is a CDB State indicating a failed execution of a
CDB Command. The CDB Message 10 shall be used
by a module to provide additional cause of failure.

Hex
Addr

Size Access
Type

Bit Register Name Description Initial
Value

If CDB Status = CDB Command Completed Successfully,
then
 00h: Reserved,
 01h: No specific message, one more host read gets CDB to idle
status,
 02h~3F: Reserved by MSA,
 40h~7Fh: For individual CDB Command or task progress report
,
 80h~FFh: Allocated for vendor use.
If CDB Status = Command Failed, then
 00h: Reserved,
 01h: CDB Data Length error, L > 1020,
 02h: Unknown command,
 03h: Command checking error without detail,
 04h: Command checking time out,
 05h: CRC error,
 06h: Password error,
 07h~0Fh: Reserved for CDB command checking error,
 10h: Command execution error without detail,
 11h~3Fh: Reserved by MSA
 40h~7Fh: For individual CDB command or task error,
 80h~FFh: Allocated for vendor use.

AC01 1 CDB Payload Size Contain the length of CDB Payload. 0000h

 0 devreseR 01~51 OR

 0 .0201 =< L < =0 ,L regetni dengisnu tib-01 A eziS daolyaP 0~9 WR

AC02 L RW 15~0 CDB Payload Data block of size L with either a CDB Command or Reply. N/A

AC02+
L

2 RW 15~0 CDB CRC 32-bit CRC for the registers AC00h, AC01h, and CDB
Payload. Most significant word at smaller address.

0000h

4

4. CDB Command Execution Process
CDB Command execution is an interactive process between host, CDB State Machine, and module processor. Figure 2
CDB Command Execution Flowchart illustrates the process of host execution. Note that CDB Reply is used extensively
in CDB Command execution process.

Figure 14. CDB Command Execution Flowchart

CDB Status
= “CIP”?

Host to read CDB
Reply

Host to write CDB
Command

Yes

Yes

No

No

Try again?

No

CDB Status
= “CCS”?

Yes

Host to read CDB
Data Block if Any

CDB Status
= “CDB Idle”?

No

Host to read CDB
Reply

Start

End

Yes

5

5. CDB Commands
CDB Commands are listed in Table 21 CDB Command Table where all the acronyms used are listed in Table 20 Acronyms
used in CDB Command Table. AFBR-842XXXX-XXX supports CDB Command Class 0 – System Operation only. CDB Com-
mand Class 1 – Register Access is not supported

Table 20. Acronyms used in CDB Command Table

Acronym Description
PW Password

PS Payload Size

PLx Payload xth entry

Y Yes or OK

N No or None

CMD ID Value in register AC00 in a CDB Command Frame. It is also used as a Command ID.

Table 21. CDB Command Table

Continued on next page...

CMD
Class

CMD
Code

CMD
ID Command Name PS PW Description

CDB Command Class 0 – System Operation
00h 00h 0000h Reserved
00h 01h 0001h Commit Password 0 N Commit to the password entered in A000h~A001h.
00h 02h 0002h Save New Password 0 Y Save the new password entered in A002h~A003h.
00h 03h 0003h Enable Password 0 N Enable the optional password protection for user NVR.
00h 04h 0004h Disable Password 0 Y Disable the optional password protection for user NVR.

00h 05h 0005h Enable CDB CRC 0 N

Enable the optional CRC for CDB. This Command is
volatile after power cycle. No CRC checking shall be
executed on this command itself but CRC shall take effect
starting from next CDB Command/Reply Frame if this
command is executed successfully.

00h 06h 0006h Disable CDB CRC 0 N
Disable the optional CRC for CDB. CRC checking shall be
performed for this command itself but CRC shall be
inactive starting from next CDB Command/Reply Frame.

00h 07h 0007h Enable CDB Global
Alarm Interrupt 0 N Enable CDB Interrupt to host option. This Command is

volatile.

00h 08h 0008h Disable CDB Global
Alarm Interrupt 0 N Disable CDB Interrupt to host option.

00h 11h 0011h Start Firmware
Download 0 Y

Request the module to receive new firmware image
with forth coming Bulk Data Write command.
(Simulate B04Dh.15~12:1)
Expected CMD specific Reply:
0140h: Ok to receive FW image,
0340h: Not enough NVM space,
0341h: Other errors.

00h 12h 0012h Complete Firmware
Download 0 Y

Request module FW image download is finished.
(Simulate B04Dh.15~12: 2)
Expected CMD specific Reply:
0140h: Full image has been received and image is good.
0340h: Image is incomplete,
0341h: Image is complete but CRC error,

00h 13h 0013h Run Image A 0 Y

Request module to run Image A.
(Simulate Bo4Dh.1~12: 3)
Expected CMD Specific CDB Reply:
0140h: Command has been executed;
0340h: Image A is not valid, execution aborted.
0341h: other errors.

6

Table 21. CDB Command Table (Continued)

00h 16h 0016h Copy Image A to B 0 Y

Request module to copy Image A to B (Optional)
Expected CMD specific CDB Reply:
0140h: Command has been executed;
0340h: Not enough memory, execution aborted.
0341h: Copying is not successful,
0342h: Other errors.

00h 17h 0017h Copy Image B to A 0 Y

Request module to copy Image B to A (Optional)
Expected CMD specific CDB Reply:
0140h: Command has been executed;
0340h: Not enough memory, execution aborted.
0341h: Copying is not successful,
0342h: Other errors.

00h 18h 0018h Commit Image A 0 Y

Request module to commit to Image A.
Expected CMD Specific CDB Reply:
0140h: Committed to Image A.
0340h: Command error.

00h 19h 0019h Commit Image B 0 Y

Request module to commit to Image B.
Expected CMD Specific CDB Reply:
0140h: Committed to Image B,
0340h: Command error.

00h 20h 0020h Get Software Upgrade
Status 0 Y

Get Firmware Upgrade Status.
Host issues this command to get CDB Reply with a CDB
Reply payload of size 1.
Expected Reply:
0140h: Status read successful
0340h: Status read error
Payload PL0 takes the identical definition as register
B051h. Note the following fields of B051h are not
included: B051h.15~14.

00h 21h 0021h Download Image Block L Y

Host to download a block of software image to module.
PL0 = Image Block Number (max 65535). The rest of
CDB Payload is the software image block which can
contain additional descriptor per vendor design. Note
total image size is limited to 1019 x 65536 = 66.78 MB.
Expected CMD specific Reply:
0140h: Image download successful. PL0 = Block number
just downloaded.
0340h: CRC image block CRC error. PL0 = Block number
just downloaded.

CMD
Class

CMD
Code

CMD
ID Command Name PS PW Description

00h 14h 0014h Run Image B 0 Y

Request module to run Image B. (Simulate
B04Dh.15~12:4)
Expected CMD Specific CDB Reply:
0140h: Command has been executed;
0340h: Image B is not valid, execution aborted.
0341h: other errors.

00h 15h 0015h Abort Image Download 0 Y
Abort Image Download. (Simulate B04Dh.15~12:5).
Expected CMD Specific CDB Replay:
0140h: Image download aborted.
0340h: Command error.

7

6. Firmware Upgrade
Firmware upgrade procedure can refer to Figure 19 Software Upgrade State Machine and Figure 20 Software Upgrade
Sequence with exception that copy commands are not supported.

For software update, the software data image must be divided into blocks whose size is determined by how much data
can be processed the module in a given time cycle. Each block includes the data and CRC, so that the module can check
whether there are any errors after receiving the block. Upon find any errors in the block, the module informs the Host for
a received errored block and the host must retransmit the same block.

A software upgrade transfer begins with the Host issuing a request to download an image. The module grants the request
and the image is written a block at a time and setting the “Upgrade Data Block Ready” flag and the module processes
each block and updates the status. It is the host responsibility to make sure that each block size is equal to or less than
the “Maximum Upgrade Data Block Size”. If there is any error in block processing, the host will retransmit the block. It is
recommended to force an abort by the host if a CRC error occurs few times on the same block. While download is not
complete, the Host can issue “Abort” command to abort the current download that is in progress. After all the works of
the image have been written to the module, termination of the transfer is completed by issuing a Download Complete to
the Upgrade Command register. The module will acknowledge the complete image has been downloaded successfully
by providing a Command completed successfully status. If the image has an error in download, then the module will
reply with a Command failed status. This state machine is illustrated in Figure 19 Software Upgrade State Machine. The
Software Upgrade sequence is illustrated in. Modules sets - Maximum Upgrade Data Block Size.

Once the image has been downloaded successfully, the image’s service affectability will be reported and a request to run
downloaded image can be performed. Ideally, most upgrades should not be service affecting, i.e. services actively sup-
ported by the transmission system, especially if they are just software upgrades. In some instances when upgrading firm-
ware it may not be possible to achieve a non-service affecting upgrade. With the image service affecting status provided,
the host software can be informed of the side effects that may impact current service by upgrading to the downloaded
imaged. During a service affecting upgrade, the modules may be in a state where even MDIO transactions are not avail-
able to the module while the upgrade is happening. In order for the host to be cognizant of when MDIO transactions are
available, the assertion of the GLB_ALRM pin shall signal to the host that initialization due to the upgrade is complete and
the MDIO interface is available. Even though an upgrade is service affecting, it shouldn’t require a reconfiguration of the
module to get it in the operating state that it was in just prior to the upgrade.

After the run downloaded image request is issued by the Host, the module will be running the downloaded version of
software. At this point, the Host can commit the image. If the Host wants to keep both banks the same, it can issue “Copy
image” command.

Note: The host should be aware that during module software upgrade, the NVR Checksum may be inconsistent due to
mismatch of some register values between host and module, e.g. 0x806Ch, 0x807Bh. These registers should be updated
and the host, module NVR Checksums consistent after the module software upgrade is successfully completed.

To clarify expected host behavior following module hardware reset, there are cases that need to be considered:

1.	 Hardware Reset:

	 Asserting MOD_RSTn will cause a complete reset of the module. All VR values are host and must be re-written by the
host.

2.	 Non-service affecting upgrade

	 Non-service affecting upgrades are typically software-only upgrades and will not include module reprogramming. If
the VR is maintained in the module, the MDIO register space is preserved during the upgrade. The CPU must re-read
the VR after the upgrade to return to the state prior to the upgrade. This will include channel numbers, power setting
etc.

3.	 Service affecting upgrade

	 Service affecting upgrades may include reprogramming of the module. During this process, the contents of the VR
in the module may be lost and the host must reset the VR to return the module to the configuration state prior to the
upgrade.

A default image is loaded in the both image A and B banks when the AFBR-842XXXX-XXX was manufactured. Executing
this image in either bank restores the module to factory default state. This is useful when user want undo the software
update and restore the transceiver to original factory default state. Password for User NVR1 & 2 will be restored to MSA
default (0101 1100h) after restoring the module using the default image.

8

Figure 19. Software Upgrade State Machine.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved.
AV02-4766EN - February 16, 2015

Figure 20. Software Upgrade Sequence

