ACPL-C78A, ACPL-C780, ACPL-C784

Miniature Isolation Amplifiers

Reliability Data Sheet

Description

The reliability data shown includes Avago Technologies reliability test data from the reliability qualification done on this product family. All of these products use the same LEDs, similar IC, and the same packaging materials, processes, stress conditions and testing. The data in Table 1 and Table 2 reflect actual test data for devices on a per channel basis. Before stress, all devices are preconditioned using a solder reflow process (260°C peak temp) and 20 temperature cycles (-55°C to +125°C, 15 mins dwell, <5 min transfer). These data are taken from testing on Avago Technologies devices using internal Avago Technologies process, material specifications, design standards, and statistical process controls. **THEY ARE NOT TRANSFERABLE TO OTHER MANUFACTURERS' SIMILAR PART TYPES.**

Operating Life Test

For valid system reliability calculations it is necessary to adjust for the time when the system is not in operation. Note that if you are using MIL-HDBK-217 for predicting component reliability, the results may not be comparable to those given in Table 2 due to different conditions and factors that have been accounted for in MIL-HDBK-217. For example it is unlikely that your application will exercise all available channels at full rated power with the LED(s) always ON as Avago Technologies testing does. Thus, your application total power and duty cycle must be carefully considered when comparing Table 2 to predictions using MIL-HDBK-217.

Table 1. Demonstrated Operating Life Test Performance

Definition of Failure

Inability to switch, i.e. "functional failure" is the definition of failure in this data sheet. Specifically, failure occurs when the device fails to switch ON with 2 times the minimum recommended drive current (but not exceeding the max rating) or fails to switch off when there is no input current

Failure Rate Projections

The demonstrated point mean time to failure (MTTF) is measured at the absolute maximum stress condition. The failure rate projections in Table 2 uses the Arrhenius acceleration relationship, where a 0.43 eV activation energy is used as in the hybrid section of MIL-HDBK-217.

Application Information

The data of Table 1 and 2 were obtained on devices with high temperature operating life duration. An exponential (random) failure distribution is assumed, expressed in units of FIT (failures per billion device hours) are only defined in the random failure portion of the reliability curve.

Stress Test Condition	Total Device Tested	Total Device Hours	Number of Failed Units	Demonstrated MTTF(hr) @ Ta = +125°C	Demonstrated FITs @ Ta = +125°C
Ta = 125°C Vdd1/2 = 5.5V Vin+/- = Gnd Vout+/- = Gnd	175	175,000	0	> 175,000	< 5,714

Ambient Temperature (°C)	Junction	Typical (60% Con	Typical (60% Confidence)		
	Temperature (°C)	MTTF (Hr/fail)	FITs (Fail/10 ⁹ h)	MTTF (Hr/fail)	FITs (Fail/10 ⁹ h)
125	140	190,987	5,236	76,002	13,158
120	135	221,419	4,516	88,111	11,349
110	125	300,936	3,323	119,755	8,350
100	115	415,531	2,407	165,356	6,048
90	105	583,641	1,713	232,254	4,306
80	95	835,040	1,198	332,296	3,009
70	85	1,218,877	820	485,040	2,062
60	75	1,818,242	550	723,551	1,382
50	65	2,777,290	360	1,105,195	905
40	55	4,353,199	230	1,732,312	577
30	45	7,018,942	142	2,793,118	358
25	40	9,015,180	111	3,587,501	279

Table 2. Reliability Projection for Device Listed in Title

Table 3. Mechanical Tests (Testing done on a constructional basis)

Test Name	Reference Standard	Test Conditions	Units Tested	Units Failed
Temp Cycling	JA104	-55 to 125°C Transfer < 5 min Dwell = 15 mins 1000 cycles	220	0
Solderability	JB102	8hrs steam aging (93°C), followed by solder dip (245°C,5sec)	20	0
Preconditioning	J-STD-020 JA113	As per reference standard (to conform to MSL 1)	375	0

Table 4. Environmental Testing

Test Name	Reference Standard	Test Conditions	Units Tested	Units Failed
Highly Accelerated Stress Test	JA110	Ta = 130°C, RH 85% Vdd1/2 = 5.5V Time = 168 hours	45	0
Unbiased Autoclave	JA102	Ta = 121°C, RH = 100% 15psig Time = 168 hours	120	0
High Temperature Storage	JA103	Ta = 150°C Unbiased Time = 1000hrs	90	0

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-2639EN - July 28, 2011

