

# HCPL-2530, HCPL-2531, HCPL-4534 HCPL-0530, HCPL-0531, HCPL-0534 Dual-Channel High-Speed Optocouplers

#### Description

These dual-channel optocouplers contain a pair of lightemitting diodes and integrated photodetectors with electrical insulation between the input and the output. A separate connection for the photodiode bias and the output transistor collectors increases the speed up to a hundred times that of a conventional phototransistor coupler by reducing the basecollector capacitance.

These dual-channel optocouplers are available in an 8-pin DIP and in an industry-standard SO-8 package. The following is a cross reference table listing the 8-pin DIP part number and the electrically equivalent SO-8 part number.

| 8-Pin DIP | SO-8 Package |
|-----------|--------------|
| HCPL-2530 | HCPL-0530    |
| HCPL-2531 | HCPL-0531    |
| HCPL-4534 | HCPL-0534    |

#### **Functional Diagram**



A 0.1- $\mu$ F bypass capacitor between pins 5 and 8 is recommended.

#### Features

- 15-kV/µs minimum common mode transient immunity at V<sub>CM</sub> = 1500V (HCPL-4534/0534)
- TTL compatible
- Available in 8-pin DIP, SO-8, and 8-pin DIP gull-wing surface-mount (Option 020) packages
- High-density packaging
- 3-MHz bandwidth
- Open collector outputs
- Safety approval:

UL recognized – 3750  $V_{RMS}$  for 1 minute (5000  $V_{RMS}$  for 1 minute for Option 020) per UL1577 CSA Approved IEC/EN/DIN EN 60747-5-5

- V<sub>IORM</sub> = 630 V<sub>peak</sub> for HCPL-2530/2531/4534
  Option 060
- V<sub>IORM</sub> = 567 V<sub>peak</sub> for HCPL-0530/0531/0534
  Option 060
- Single-channel version available (HCPL-4502/HCPL-4503/HCPL-0452/HCPL-0453)
- MIL-PRF-38534 hermetic version available (HCPL-55xx, HCPL-65xx, 4N55)

#### Applications

- Line receivers High common mode transient immunity (>1000 V/µs) and low input-output capacitance (0.6 pF)
- High-speed logic ground isolation TTL/TTL, TTL/LTTL, TTL/CMOS, TTL/LSTTL
- Replace pulse transformers Save board space and weight
- Analog signal ground isolation Integrated photon detector provides improved linearity over phototransistor type
- Polarity sensing
- Isolated analog amplifier Dual-channel packaging enhances thermal tracking

**CAUTION!** Take normal static precautions in the handling and assembly of this component to prevent damage and degradation that might be induced by electrostatic discharge (ESD). The components featured in this data sheet are not recommended to be used in military or aerospace applications or environments.

The SO-8 does not require through holes in a PCB. This package occupies approximately one-third the footprint area of the standard dual-inline package. The lead profile is designed to be compatible with standard surface-mount processes.

The HCPL-2530/0530 is for use in TTL/CMOS, TTL/LSTTL, or wide-bandwidth analog applications. The current transfer ratio (CTR) for the HCPL-2530/0530 is 7% minimum at  $I_F$  = 16 mA.

The HCPL-2531/0531 is designed for high-speed TTL/TTL applications. A standard 16-mA TTL sink current through the input LED provides enough output current for one TTL load and a 5.6-k $\Omega$  pull-up resistor. The CTR of the HCPL-2531/0531 is 19% minimum at I<sub>F</sub> = 16 mA.

The HCPL-4534/0534 is an HCPL-2531/0531 with an increased common mode transient immunity of 15,000 V/µs minimum at VCM = 1500V guaranteed.

### **Selection Guide**

| Minimum CMR     |                        |                                  | 8-Pin DIP<br>(300 Mil)  |                                        |                         | l-Outline<br>6O-8                      | Wide Body<br>(400 Mil)                 | Hermetic                                             |
|-----------------|------------------------|----------------------------------|-------------------------|----------------------------------------|-------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------|
| dV/dt<br>(V/µs) | V <sub>CM</sub><br>(V) | Current<br>Transfer<br>Ratio (%) | Dual-Channel<br>Package | Single-Channel<br>Package <sup>a</sup> | Dual-Channel<br>Package | Single-Channel<br>Package <sup>a</sup> | Single-Channel<br>Package <sup>a</sup> | Single- and<br>Dual-Channel<br>Packages <sup>a</sup> |
| 1 000           | 10                     | 7                                | HCPL-2530               | 6N135                                  | HCPL-0530               | HCPL-0500                              | HCNW135                                | —                                                    |
| 1,000 10        | 10                     | 19                               | HCPL-2531               | 6N136<br>HCPL-4502                     | HCPL-0531               | HCPL-0501<br>HCPL-0452                 | HCNW136<br>HCNW4502                    | —                                                    |
| 15,000          | 1500                   | 19                               | HCPL-4534               | HCPL-4503                              | HCPL-0534               | HCPL-0453                              | HCNW4503                               | —                                                    |
| 1,000           | 10                     | 9                                | _                       | _                                      | -                       | _                                      | _                                      | HCPL-55XX<br>HCPL-65XX<br>4N55                       |

a. Technical data for these products is in separate Broadcom publications.

### **Ordering Information**

The HCPL-2530, HCPL-2531, HCPL-4534, HCPL-0530, HCPL-0531, and HCPL-0534 are UL recognized with 3750 V<sub>RMS</sub> for 1 minute per UL1577, and they are approved under CSA Component Acceptance Notice #5, File CA 88324.

|                        | Opt               | tion                  | Package          | Surface<br>Mount |              | Tape &<br>Reel | UL 5000<br>V <sub>RMS</sub> /<br>1-Minute<br>Rating |                            |               |
|------------------------|-------------------|-----------------------|------------------|------------------|--------------|----------------|-----------------------------------------------------|----------------------------|---------------|
| Part Number            | RoHS<br>Compliant | Not RoHS<br>Compliant |                  |                  | Gull<br>Wing |                |                                                     | IEC/EN/DIN<br>EN 60747-5-5 | Quantity      |
|                        | -000E             | No option             |                  |                  |              |                |                                                     |                            | 50 per tube   |
|                        | -300E             | #300                  |                  | Х                | Х            |                |                                                     |                            | 50 per tube   |
|                        | -500E             | #500                  |                  | Х                | Х            | Х              |                                                     |                            | 1000 per reel |
| HCPL-2530              | -020E             | #020                  | 300 mil<br>DIP-8 |                  |              |                | Х                                                   |                            | 50 per tube   |
| HCPL-2531              | -320E             | #320                  |                  | Х                | Х            |                | Х                                                   |                            | 50 per tube   |
| HCPL-4534              | -520E             | #520                  | Dii -0           | Х                | Х            | Х              | Х                                                   |                            | 1000 per reel |
|                        | -060E             | #060                  |                  |                  |              |                |                                                     | Х                          | 50 per tube   |
|                        | -360E             | #360                  |                  | Х                | Х            |                |                                                     | Х                          | 50 per tube   |
|                        | -560E             | #560                  |                  | Х                | Х            | Х              |                                                     | Х                          | 1000 per reel |
| HCPL-0530              | -000E             | No option             |                  | Х                |              |                |                                                     |                            | 100 per tube  |
| HCPL-0531<br>HCPL-0534 | -500E             | #500                  | SO-8             | Х                |              | Х              |                                                     |                            | 1500 per reel |

To form an order entry, choose a part number from the Part Number column and combine it with the desired option from the Option column.

#### Example 1:

Use HCPL-2530-560E to order the product with a 300-mil DIP gull-wing surface-mount package in tape and reel packaging with IEC/EN/DIN EN 60747-5-5 safety approval and RoHS compliance.

#### Example 2:

Use HCPL-2530 to order the product with a 300-mil DIP package in tube packaging and with no RoHS compliance.

Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

**NOTE:** The notation '#XXX' is used for existing products, whereas products that launched since July 15, 2001 with the RoHS-compliant option use '-XXXE'.

### Schematic



USE OF A 0.1-µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 5 AND 8 IS RECOMMENDED.

### **Package Outline Drawings**

Figure 1: 8-Pin DIP Package (HCPL-2530/2531/4534)







LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

#### Figure 3: Small Outline SO-8 Package (HCPL-0530/0531/0534)



DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.

NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

## **Regulatory Information**

The devices contained in this data sheet have been approved by the following organizations.

| UL         | Recognized under UL 1577, Component Recognition Program, File E55361. |
|------------|-----------------------------------------------------------------------|
| CSA        | Approved under CSA Component Acceptance Notice #5, File CA 88324.     |
| IEC/EN/DIN | IEC/EN/DIN EN 60747-5-5 Approved under (Option 060 only).             |

### Insulation and Safety Related Specifications

| Parameter                                            | Symbol | 8-Pin DIP<br>(300 Mil)<br>Value | SO-8<br>Value | Units | Conditions                                                                                                                                                           |
|------------------------------------------------------|--------|---------------------------------|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minimum External Air Gap<br>(External Clearance)     | L(101) | 7.1                             | 4.9           | mm    | Measured from input terminals to output terminals,<br>shortest distance through the air.                                                                             |
| Minimum External Tracking<br>(External Creepage)     | L(102) | 7.4                             | 4.8           | mm    | Measured from input terminals to output terminals, shortest distance path along the body.                                                                            |
| Minimum Internal Plastic Gap<br>(Internal Clearance) | _      | 0.08                            | 0.08          | mm    | Through insulation distance, conductor to conductor,<br>usually the direct distance between the photoemitter and<br>the photodetector inside the optocoupler cavity. |
| Minimum Internal Tracking<br>(Internal Creepage)     | —      | N/A                             | N/A           | mm    | Measured from input terminals to output terminals, along the internal cavity.                                                                                        |
| Tracking Resistance<br>(Comparative Tracking Index)  | CTI    | 200                             | 200           | Volts | DIN IEC 112/VDE 0303 Part 1.                                                                                                                                         |
| Isolation Group                                      | —      | Illa                            | Illa          | —     | Material Group (DIN VDE 0110, 1/89, Table 1).                                                                                                                        |

The Option 300 surface-mount classification is Class A in accordance with CECC 00802.

### IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (Option 060)

|                                                                                                                                                                      |            | Characteristic HCPL- |                  |                   |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|------------------|-------------------|--|--|
| Description                                                                                                                                                          | Symbol     | 2530/2531/4534       | 0530/0531/0534   | Unit              |  |  |
| Installation classification per DIN VDE 0110, Table 1                                                                                                                |            |                      |                  |                   |  |  |
| For rated mains voltage ≤150 V <sub>RMS</sub>                                                                                                                        |            | I-IV                 | I-IV             |                   |  |  |
| For rated mains voltage ≤ 300 V <sub>RMS</sub>                                                                                                                       |            | I–IV                 | I–IV             | _                 |  |  |
| For rated mains voltage ≤ 600 V <sub>RMS</sub>                                                                                                                       |            | I – IV               | I — III          |                   |  |  |
| Climatic Classification                                                                                                                                              |            | 0/70/21              | 0/70/21          |                   |  |  |
| Pollution Degree (DIN VDE 0110/39)                                                                                                                                   |            | 2                    | 2                | _                 |  |  |
| Maximum Working Insulation Voltage                                                                                                                                   | VIORM      | 630                  | 567              | V <sub>peak</sub> |  |  |
| Input to Output Test Voltage, Method b <sup>a</sup><br>VIORM x 1.875 = VPR, 100% Production Test<br>tm = 1 second, Partial discharge < 5 pC                          | Vpr        | 1181                 | 1063             | V <sub>peak</sub> |  |  |
| Input to Output Test Voltage, Method a <sup>a</sup><br>V <sub>IORM</sub> × 1.6 = V <sub>PR</sub> , Type and Sample Test<br>tm = 10 seconds, Partial discharge < 5 pC | Vpr        | 1008                 | 907              | V <sub>peak</sub> |  |  |
| Highest Allowable Overvoltage (Transient Overvoltage t <sub>ini</sub> = 60 seconds)                                                                                  | VIOTM      | 8000                 | 6000             | V <sub>peak</sub> |  |  |
| Safety-Limiting Values – Max. Values Allowed in the Event of a Failure.                                                                                              |            |                      |                  |                   |  |  |
| Case Temperature                                                                                                                                                     | Ts         | 175                  | 150              | °C                |  |  |
| Input Current <sup>b</sup>                                                                                                                                           | IS, INPUT  | 230                  | 230              | mA                |  |  |
| Output Power <sup>b</sup>                                                                                                                                            | Ps, OUTPUT | 600                  | 600              | mW                |  |  |
| Insulation Resistance at Ts, VIO = 500V                                                                                                                              | Rs         | >10 <sup>9</sup>     | >10 <sup>9</sup> | Ω                 |  |  |

a. Refer to the optocoupler section of the *Isolation and Control Components Designer's Catalog*, under the "Product Safety Regulations" section, IEC/EN/DIN EN 60747-5-5, for a detailed description of the Method a and Method b partial discharge test profiles.

b. See Figure 4 for the dependence of  $\mathsf{P}_{\mathsf{S}}$  and  $\mathsf{I}_{\mathsf{S}}$  on the ambient temperature.

**NOTE:** Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in application.

#### Figure 4: Output Power/Input Current vs Case Temperature



# **Absolute Maximum Ratings**

| Parameter                                                                                   | Symbol    | Device    | Min. | Max. | Units |
|---------------------------------------------------------------------------------------------|-----------|-----------|------|------|-------|
| Storage Temperature                                                                         | Ts        | —         | -55  | 125  | °C    |
| Operating Temperature                                                                       | ТА        | —         | -55  | 100  | °C    |
| Average Forward Input Current (Each Channel)                                                | lf(AVG)   | —         | —    | 25   | mA    |
| Peak Forward Input Current (Each Channel) (50% duty cycle, 1 ms pulse width)                | IF(PEAK)  | —         | —    | 50   | mA    |
| Peak Transient Input Current (Each Channel)<br>(≤ 1 µs Pulse Width, 300 pps)                | IF(TRANS) | —         | —    | 1    | A     |
| Reverse LED Input Voltage (Each Channel)                                                    | VR        | —         |      | 5    | V     |
| Input Power Dissipation (Each Channel)                                                      | PIN       | —         | —    | 45   | mW    |
| Average Output Current (Each Channel)                                                       | IO(AVG)   | —         |      | 8    | mA    |
| Peak Output Current                                                                         | IO(PEAK)  | —         |      | 16   | mA    |
| Supply Voltage (Pins 8–5)                                                                   | Vcc       | —         | -0.5 | 30   | V     |
| Output Voltage (Pins 7–5, 6–5)                                                              | Vo        | —         | -0.5 | 20   | V     |
| Output Power Dissipation (Each Channel) <sup>a</sup>                                        | Ро        | —         | —    | 35   | mW    |
| Lead Solder Temperature (Through-Hole Parts Only)<br>1.6 mm Below Seating Plane, 10 seconds | TLS       | 8-Pin DIP | —    | 260  | °C    |

a. Derate linearly above 90°C free-air temperature at a rate of 3.0 mW/°C for the SO-8 package.

# **Electrical Specifications (DC)**

Over the recommended temperature (T<sub>A</sub> = 0°C to 70°C) unless otherwise specified.<sup>1</sup>

| Parameter                                           | Symbol            | Device                                   | Min.     | Typ. <sup>a</sup> | Max.       | Units | Test Conditio                                                               | ns                                               | Fig.    | Note                                                         |                         |    |   |
|-----------------------------------------------------|-------------------|------------------------------------------|----------|-------------------|------------|-------|-----------------------------------------------------------------------------|--------------------------------------------------|---------|--------------------------------------------------------------|-------------------------|----|---|
| Current                                             |                   | HCPL-2530/<br>0530                       | 7<br>5   | - 18              | 50         | %     | T <sub>A</sub> = 25°C                                                       | I <sub>F</sub> = 16 mA,                          |         |                                                              |                         |    |   |
| Transfer<br>Ratio                                   | CTR               | HCPL-2531/<br>0531<br>HCPL-4534/<br>0534 | 19<br>15 | 24                | 50         | %     | T <sub>A</sub> = 25°C                                                       | V <sub>CC</sub> =4.5V<br>V <sub>O</sub> =0.5V    | 5, 6, 8 | b, c                                                         |                         |    |   |
| Logic Low                                           |                   | HCPL-2530/<br>0530                       | _        | 0.1               | 0.5<br>0.5 | V     | T <sub>A</sub> = 25°C<br>I <sub>O</sub> = 1.1 mA<br>I <sub>O</sub> = 0.8 mA |                                                  |         |                                                              |                         |    |   |
| Output<br>Voltage                                   | V <sub>OL</sub>   | HCPL-2531/<br>0531                       |          | 0.1               | 0.5        | V     | T <sub>A</sub> = 25°C<br>I <sub>O</sub> = 3.0 mA                            | I <sub>F</sub> = 16 mA<br>V <sub>CC</sub> = 4.5V | 5       | b                                                            |                         |    |   |
|                                                     |                   | HCPL-4534/<br>0534                       |          |                   | 0.5        |       | I <sub>O</sub> = 2.4 mA                                                     |                                                  |         |                                                              |                         |    |   |
| Logic High<br>Output                                | I <sub>ОН</sub>   | _                                        |          | lou -             |            |       | 0.003                                                                       | 0.5                                              | - μΑ -  | $T_A = 25^{\circ}C$<br>$V_{CC} = V_O = 5.5V$<br>$I_F = 0 mA$ | – I <sub>F</sub> = 0 mA | 10 | b |
| Current                                             |                   |                                          |          |                   | 50         | μų    | $T_A = 25^{\circ}C$<br>$V_{CC} = V_O = 15V$<br>$I_F = 0 mA$                 | iF o init                                        |         |                                                              |                         |    |   |
| Logic Low<br>Supply<br>Current                      | I <sub>CCL</sub>  |                                          | _        | 100               | 400        | μA    | I <sub>F</sub> = 16 mA<br>V <sub>O</sub> = Open<br>V <sub>CC</sub> = 15V    | _                                                |         | —                                                            |                         |    |   |
| Logic High<br>Supply<br>Current                     | I <sub>CCH</sub>  |                                          | _        | 0.05              | 4          | μA    | I <sub>F</sub> = 0 mA<br>V <sub>O</sub> = Open<br>V <sub>CC</sub> = 15V     | _                                                |         | _                                                            |                         |    |   |
| Input Forward<br>Voltage                            | V <sub>F</sub>    |                                          | _        | 1.5               | 1.7<br>1.8 | - V - | T <sub>A</sub> = 25°C                                                       | – I <sub>F</sub> = 16 mA                         | 7       | b                                                            |                         |    |   |
| Input Reverse<br>Breakdown<br>Voltage               | BV <sub>R</sub>   | _                                        | 5        | _                 |            | V     | I <sub>R</sub> =10 μΑ                                                       | _                                                | _       | b                                                            |                         |    |   |
| Temperature<br>Coefficient of<br>Forward<br>Voltage | <u>ΔVf</u><br>ΔTa | _                                        | —        | -1.6              | _          | mV/°C | I <sub>F</sub> = 16 mA                                                      | _                                                | _       | _                                                            |                         |    |   |
| Input<br>Capacitance                                | C <sub>IN</sub>   | _                                        | _        | 60                | _          | pF    | f = 1 MHz, V <sub>F</sub> = 0V                                              |                                                  | 5       | _                                                            |                         |    |   |

a. All typicals at  $T_A = 25^{\circ}C$ .

b. Each channel.

c. The current transfer ratio is defined as the ratio of the output collector current,  $I_{O}$ , to the forward LED input current,  $I_{F}$ , times 100%.

<sup>1.</sup> Use of a  $0.1\mathchar`-\mu\mbox{F}$  bypass capacitor connected between pins 5 and 8 is recommended.

# **Switching Specifications (AC)**

Over the recommended temperature (T<sub>A</sub> = 0°C to 70°C),  $V_{CC}$  = 5V, I<sub>F</sub> = 16 mA unless otherwise specified.

| Parameter                                          | Symbol           | Device HCPL- | Min.       | Typ. <sup>a</sup> | Max. | Units  | Test Co                     | onditions                             | Fig.   | Note    |
|----------------------------------------------------|------------------|--------------|------------|-------------------|------|--------|-----------------------------|---------------------------------------|--------|---------|
|                                                    |                  | 2530/0530    |            | 0.2               | 1.5  |        | T <sub>A</sub> = 25°C       | R <sub>L</sub> = 4.1 kΩ               |        |         |
| Propagation Delay                                  | t                | 2530/0530    | _          | 0.2               | 2.0  |        |                             | TYL - 4.1 KS2                         | 9, 13, | b,c     |
| Time to Logic Low at<br>Output                     | t <sub>PHL</sub> | 2531/0531/   | _          | 0.2               | 0.8  | μs     | T <sub>A</sub> = 25°C       | R <sub>I</sub> = 1.9 kΩ               | 15     | 2,0     |
|                                                    |                  | 4534/0534    |            | 0.2               | 1.0  | -      |                             | NL - 1.3 K32                          |        |         |
|                                                    |                  | 2530/0530    |            | 1.3               | 1.5  |        | T <sub>A</sub> = 25°C       | R <sub>I</sub> = 4.1 kΩ               |        |         |
| Propagation Delay                                  | t <sub>PLH</sub> | 2530/0530    | 2.0        |                   |      | 9, 13, | b,c                         |                                       |        |         |
| Time to Logic High<br>at Output                    |                  | 2531/0531/   | 2531/0531/ | 0.6               | 0.8  | μs     | T <sub>A</sub> = 25°C       | R <sub>L</sub> = 1.9 kΩ               | 15     | b, C    |
| •                                                  |                  | 4534/0534    | _          | 0.0               | 1.0  | -      |                             |                                       |        |         |
| Common Mode                                        |                  | 2530/0530    | 1          | 10                | —    |        | $R_L = 4.1 \text{ k}\Omega$ | I <sub>F</sub> = 0 mA                 | 14     |         |
| Transient Immunity<br>at Logic High Level          | CM <sub>H</sub>  | 2531/0531    | 1          | 10                | _    | kV/µs  | R <sub>L</sub> = 1.9 kΩ     | T <sub>A</sub> = 25°C                 |        | b, c, d |
| Output                                             |                  | 4534/0534    | 15         | 30                | —    | -      | R <sub>L</sub> = 1.9 kΩ     | V <sub>CM</sub> = 10 V <sub>p-p</sub> |        |         |
| Common Mode                                        |                  | 2530/0530    | 1          | 10                | _    |        | $R_L = 4.1 \text{ k}\Omega$ | I <sub>F</sub> = 0 mA                 |        |         |
| Transient Immunity<br>at Logic Low Level<br>Output | CM <sub>L</sub>  | 2531/0531    | 1          | 10                | —    | kV/µs  | $R_L = 1.9 \text{ k}\Omega$ | T <sub>A</sub> = 25°C                 | 14     | b, c, d |
|                                                    |                  | 4534/0534    | 15         | 30                | —    |        | R <sub>L</sub> = 1.9 kΩ     | V <sub>CM</sub> = 10 V <sub>p-p</sub> |        |         |
| Bandwidth                                          | BW               | —            |            | 3                 | —    | MHz    | R <sub>L</sub> =            | 100 kΩ                                | 11, 12 | —       |

a. All typicals at  $T_A = 25^{\circ}C$ .

b. The 1.9-k $\Omega$  load represents one TTL unit load of 1.6 mA and the 5.6-k $\Omega$  pull-up resistor.

c. The 4.1-k $\Omega$  load represents one LSTTL unit load of 0.36 mA and the 6.1-k $\Omega$  pull-up resistor.

d. Common mode transient immunity in a logic high level is the maximum tolerable (positive)  $dV_{CM}/dt$  on the rising edge of the common mode pulse,  $V_{CM}$ , to ensure that the output will remain in a logic high state (that is,  $V_O > 2.0V$ ). Common mode transient immunity in a logic low level is the maximum tolerable (negative)  $dV_{CM}/dt$  on the falling edge of the common mode pulse signal,  $V_{CM}$ , to ensure that the output will remain in a logic low state (that is,  $V_O < 0.8V$ ).

### Package Characteristics

| Parameter                                   | Symbol           | Device                            | Min. | Typ. <sup>a</sup> | Max. | Units            | Test Conditions                                        | Note |
|---------------------------------------------|------------------|-----------------------------------|------|-------------------|------|------------------|--------------------------------------------------------|------|
| Input-Output                                |                  |                                   | 3750 |                   |      |                  | RH < 50%                                               | c, d |
| Momentary Withstand<br>Voltage <sup>b</sup> | V <sub>ISO</sub> | HCPL-2530/2531/4534<br>Option 020 | 5000 | _                 |      | V <sub>RMS</sub> | t = 1 minute                                           | c, e |
| Resistance<br>(Input-Output)                | R <sub>I-O</sub> | _                                 | _    | 10 <sup>12</sup>  |      | Ω                | RH ≤45%<br>V <sub>I-O</sub> = 500 Vdc<br>t = 5 seconds | с    |
| Capacitance<br>(Input-Output)               | C <sub>I-O</sub> | _                                 | _    | 0.6               |      | pF               | f = 1 MHz<br>T <sub>A</sub> = 25°C                     | f    |
| Input-Input Insulation<br>Leakage Current   | I <sub>I-I</sub> | _                                 |      | 0.005             |      | μΑ               | RH ≤45%<br>t = 5 seconds<br>V <sub>I-I</sub> = 500 Vdc | g    |
| Resistance<br>(Input-Input)                 | R <sub>I-I</sub> | _                                 | _    | 10 <sup>11</sup>  |      | Ω                | _                                                      | g    |
| Capacitance<br>(Input-Input)                | C <sub>I-I</sub> | HCPL-2530/2531/4534               |      | 0.03              |      | pF               | 6 - 4 MU-                                              | g    |
|                                             |                  | HCPL-0530/0531/0534               | _    | 0.25              |      | рг               | f = 1 MHz                                              | У    |

a. All typicals at  $T_A = 25^{\circ}C$ .

b. The input-output momentary withstand voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Broadcom Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."

c. The device is considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.

- In accordance with UL 1577, each optocoupler is proof-tested by applying an insulation test voltage ≥4500 V<sub>RMS</sub> for 1 second (leakage detection current limit, I<sub>I-O</sub> ≤5 μA).
- e. In accordance with UL 1577, each optocoupler is proof-tested by applying an insulation test voltage ≥6000 V<sub>RMS</sub> for 1 second (leakage detection current limit, I<sub>I-O</sub> ≤5 μA).
- f. Measured between the LED anode and the cathode shorted together and pins 5 through 8 shorted together.
- g. Measured between pins 1 and 2 shorted together and pins 3 and 4 shorted together.

#### Figure 5: DC and Pulsed Transfer Characteristics



Figure 7: Input Current vs. Forward Voltage



Figure 9: Propagation Delay vs. Temperature



#### Figure 6: Current Transfer Ratio vs. Input Current



Figure 8: Current Transfer Ratio vs. Temperature



Figure 10: Logic High Output Current vs. Temperature



#### Figure 11: Small-Signal Current Transfer Ratio vs. Quiescent Input Current



Figure 12: Frequency Response















Figure 15: Propagation Delay Time vs. Load Resistance



Copyright © 2005–2025 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.



