

ACPL-T350 2.5-Amp Output Current IGBT Gate Driver Optocoupler with Low I_{CC}

Description

The ACPL-T350 contains a GaAsP LED. The LED is optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate-controlled devices. The voltage and current supplied by these optocouplers make them ideally suited for directly driving IGBTs with ratings up to 1200V/100A. For IGBTs with higher ratings, the ACPL-T350 series can be used to drive a discrete power stage that drives the IGBT gate. The ACPL-T350 has an insulation voltage of V_{IORM} = $630V_{peak}$ (Option 060).

Figure 1: Functional Diagram

NOTE: A 0.1- μ F bypass capacitor must be connected between pins V_{CC} and V_{EE}.

Table 1: UVLO Truth Table

LED	VCC – VEE "POSITIVE GOING" (TURN-ON)	VCC - VEE "NEGATIVE GOING" (TURN-OFF)	v _o
OFF	0V–30V	0V–30V	LOW
ON	0V–11V	0V–9.5V	LOW
ON	11V–13.5V	9.5V–12V	TRANSITION
ON	13.5V–30V	12V–30V	HIGH

Features

- 2.5A absolute maximum peak output current
- 15-kV/µs minimum Common Mode Rejection (CMR) at V_{CM} = 1500V
- 1.5V maximum low-level output voltage (V_{OL})
- I_{CC} = 4-mA maximum supply current
- Under-voltage lockout (UVLO) protection with hysteresis
- Wide operating V_{CC} range: 15V to 30V
- 500-ns maximum switching speeds
- Industrial temperature range: –40°C to 100°C
- Safety approval:
 - UL recognized 3750 V_{rms} for 1 minute
 - CSA approval
 - IEC/EN/DIN EN 60747-5-5 approved
 V_{IORM} = 630V_{peak} (Option 060)

Applications

- IGBT/MOSFET gate drive
- Inverter for home appliances
- Industrial inverters
- Switching power supplies (SPS)
- **CAUTION!** It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation that may be induced by ESD.

Ordering Information

	Option						
Part Number	RoHS Compliant	Package	Surface Mount	Gull Wing	Tape & Reel	IEC/EN/DIN EN 60747-5-5	Quantity
	-000E						50 per tube
	-300E		Х	Х			50 per tube
ACPL-T350	-500E/500ME		Х	Х	Х		1000 per reel
ACPL-1350	-060E	300-mil DIP-8				Х	50 per tube
	-360E		Х	Х		Х	50 per tube
	-560E/560ME		Х	Х	Х	Х	1000 per reel

The ACPL-T350 is UL recognized with 3750 $\rm V_{rms}$ for 1 minute per UL1577.

To form an order entry, choose a part number from the Part Number column and combine it with the desired option from the Option column.

Example 1:

Use ACPL-T350-560E to order the product in a 300-mil DIP, gull-wing, surface-mount package in tape-and-reel packaging with IEC/EN/DIN EN 60747-5-5 safety approval and RoHS compliant.

Example 2:

Use ACPL-T350-000E to order the product in a 300-mil DIP package in tube packaging and RoHS compliant.

Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

NOTE: The notation '#XXX' is used for existing products, whereas products launched since July15, 2001, with the RoHS compliant option use '-XXXE'.

Regulatory Information

The ACPL-T350 is approved by the following organizations:

IEC/EN/DIN EN 60747-5-5 (ACPL-T350 Option 060 only)	UL
Approval under: DIN EN 60747-5-5 (VDE 0884-5):2011-11	Approval under UL 1577, component recognition program, File E55361.
EN 60747-5-5:2011	CSA
	Approval under CSA Component Acceptance Notice #5, File CA 88324.

Recommended Pb-Free IR Profile

The recommended reflow condition is as per JEDEC standard J-STD-020 (latest revision). Non-halide flux should be used.

Package Outline Drawings

ACPL-T350 Outline Drawing (300-mil DIP)

ACPL-T350 Outline Drawing (300-mil Gull Wing)

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Table 2: IEC/EN/DIN EN 60747-5-5 Insulation Characteristics^a (ACPL-T350 Option 060)

Description	Symbol	ACPL-T350 Option 060	Unit
Installation Classification per DIN VDE 0110/39, Table 1	—		_
For rated mains voltage ≤ 150 V _{rms}		I-IV	
For rated mains voltage ≤ 300 V _{rms}			
For rated mains voltage ≤ 450 V _{rms}		I — III	
Climatic Classification	—	55/100/21	
Pollution Degree (DIN VDE 0110/39)	—	2	—
Maximum Working Insulation Voltage	V _{IORM}	630	V _{peak}
Input to Output Test Voltage, Method b ^a V _{IORM} × 1.875 = V _{PR} , 100% Production Test with t _m = 1 second, Partial discharge < 5 pC	V _{PR}	1181	V _{peak}
Input to Output Test Voltage, Method a ^a V _{IORM} × 1.6 = V _{PR} , Type and Sample Test, t _m = 10 seconds, Partial discharge < 5 pC	V _{PR}	1008	V _{peak}
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60 seconds)	V _{IOTM}	6000	V _{peak}
Safety-Limiting Values – maximum values allowed in the event of a failure	—		
Case Temperature	T _S	175	°C
Input Current	I _{S, INPUT}	230	mA
Output Power	P _{S, OUTPUT}	600	mW
Insulation Resistance at T _S , V _{IO} = 500V	R _S	> 10 ⁹	Ω

a. Refer to the optocoupler section of the *Isolation and Control Components Designer's Catalog*, under the "Product Safety Regulations" section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

NOTE: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface-mount classification is Class A in accordance with CECC 00802.

Parameter	Symbol	ACPL-T350	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	—	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and the detector.
Tracking Resistance Comparative Tracking Index)	СТІ	> 175	V	DIN IEC 112/VDE 0303 Part 1.
Isolation Group	—	Illa	_	Material Group (DIN VDE 0110, 1/89, Table 1).

Table 3: Insulation- and Safety-Related Specifications

All Broadcom data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board, the minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered (the recommended land pattern does not necessarily meet the minimum creepage of the device). There are recommended techniques, such as grooves and ribs, that can be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will also change depending on factors such as the pollution degree and insulation level.

Parameter Symbol Min. Max. Units Note °C Storage Temperature Ts -55 125 °C **Operating Temperature** ΤA -40 100 Average Input Current 25 mΑ IF(AVG) а ____ Peak Transient Input Current IF(TRAN) 1.0 А (<1 µs pulse width, 300 pps) Reverse Input Voltage VR 5 V ____ "High" Peak Output Current A IOH(PEAK) 2.5 b 2.5 "Low" Peak Output Current IOL(PEAK) A b V Supply Voltage Vcc-Vee 0 35 Input Current (Rise/Fall Time) 500 tr(IN) /tf(IN) ____ ns Output Voltage VO(PEAK) 0 Vcc V **Output Power Dissipation** Po 250 mW с Total Power Dissipation Pт 295 mW d Lead Solder Temperature 260°C for 10 seconds, 1.6 mm below seating plane

Table 4: Absolute Maximum Ratings

a. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA/°C.

b. Maximum pulse width = 10 µs.

c. Derate linearly above a 70°C free-air temperature at a rate of 4.8 mW/°C.

d. Derate linearly above a 70°C free-air temperature at a rate of 5.4 mW/°C. The maximum LED junction temperature should not exceed 125°C.

Table 5: Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Power Supply	VCC-VEE	15	30	V	
Input Current (ON)	IF(ON)	7	16	mA	
Input Voltage (OFF)	VF(OFF)	-3.6	0.8	V	
I _{OH(PEAK)} /I _{OL(PEAK)}	ТА	-2.0	2.0	A	
Operating Temperature	TA	-40	100	°C	

Table 6: Electrical Specifications (DC)

Over recommended operating conditions ($T_A = -40^{\circ}C$ to $100^{\circ}C$, $I_{F(ON)} = 7$ mA to 16 mA, $V_{F(OFF)} = -3.6V$ to 0.8V, $V_{CC} = 15V$ to 30V, $V_{EE} =$ Ground) unless otherwise specified. All typical values at $T_A = 25^{\circ}C$ and $V_{CC} - V_{EE} = 30V$, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
		0.5	1.6	_	A	Vo=Vcc-4V	0 4 40	а
High Level Output Current	Юн	2.0	_	_	Α	Vo = Vcc - 15V	3, 4, 16	b
	IOL	0.5	1.6		Α	Vo = VEE + 2.5V	6, 7, 17	а
Low Level Output Current		2.0			А	Vo = VEE + 15V		b
High Level Output Voltage	Voн	Vcc-4	Vcc-3		V	Io = -100 mA	2, 4, 18	c, d
Low Level Output Voltage	Vol	_	VEE + 0.5	1.5	V	lo = 100 mA	5, 7, 19	
High Level Supply Current	Іссн	-	2.0	4.0	mA	Output open, IF = 7 mA to 16 mA	8, 9	
Low Level Supply Current	ICCL	—	2.0	4.0	mA	Output open, VF = $-3.0V$ to $+0.8V$		
Threshold Input Current Low to High	IFLH	_	2.0	5	mA	lo = 0 mA, Vo > 5V	10, 20	
Threshold Input Voltage High to Low	VFHL	0.8	—	_	V	lo = 0 mA, Vo > 5V		
Input Forward Voltage	VF	1.2	1.5	1.8	V	IF = 10 mA		
Temperature Coefficient of Input Forward Voltage	ΔVF/ΔTA	-	-2.0	—	mV/°C	IF = 10 mA		
Input Reverse Breakdown Voltage	BVR	5	_	_	V	IR = 10 μA		
Input Capacitance	Cin	_	60	_	pF	f = 1 MHz, VF = 0V		
	VUVLO+	11.0	12.3	13.5	V	IF = 10 mA, Vo > 5	45.04	
UVLO Threshold	Vuvlo-	9.5	10.7	12.0	V	IF = 10 mA, Vo > 5V	15, 21	
UVLO Hysteresis	UVLOHYS	_	1.6		V	IF = 10 mA, Vo > 5V		

a. Maximum pulse width = 50 μ s.

b. Maximum pulse width = 10 μ s.

c. In this test, V_{OH} is measured with a DC load current. When driving capacitive loads, V_{OH} will approach V_{CC} as I_{OH} approaches zero amps.

d. Maximum pulse width = 1 ms.

Table 7: Switching Specifications (AC)

Over recommended operating conditions ($T_A = -40^{\circ}C$ to $100^{\circ}C$, $I_{F(ON)} = 7$ mA to 16 mA, $V_{F(OFF)} = -3.6V$ to 0.8V, $V_{CC} = 15V$ to 30V, $V_{EE} = Ground$) unless otherwise specified. All typical values at $T_A = 25^{\circ}C$ and $V_{CC} - V_{EE} = 30V$, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to High Output Level	t _{PLH}	0.05	0.25	0.5	μs		11, 12,	а
Propagation Delay Time to Low Output Level	t _{PHL}	0.05	0.25	0.5	μs	Rg = 10Ω,	13, 22	u
Pulse Width Distortion	PWD	_	_	0.3	μs	Cg = 10 nF, f = 10 kHz, Duty Cycle = 50%		b
Propagation Delay Difference Between Any Two Parts or Channels	PDD (t _{PHL} – t _{PLH})	-0.35	_	0.35	μs			С
Rise Time	t _R	—	15	_	ns		22	
Fall Time	t _F	_	20	_	ns			
Output High Level Common Mode Transient Immunity	CM _H	15	20		kV/μs	$T_A = 25^{\circ}C,$ $I_F = 10 \text{ mA to } 16 \text{ mA},$ $V_{CM} = 1500V,$ $V_{CC} = 30V$	23	d, e
Output Low Level Common Mode Transient Immunity	CM _L	15	20	_	kV/µs	$T_A = 25^{\circ}C,$ $V_F = 0V,$ $V_{CM} = 1500V,$ $V_{CC} = 30V$	23	d, f

a. This load condition approximates the gate load of a 1200V/100A IGBT.

b. Pulse width distortion (PWD) is defined as $|t_{\text{PHL}} - t_{\text{PLH}}|$ for any given device.

c. The difference between t_{PHL} and t_{PLH} between any two ACPL-T350 parts under the same test condition.

d. Pins 1 and 4 must be connected to LED common.

e. Common mode transient immunity in the high state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to ensure that the output will remain in the high state (that is, $V_O > 15.0V$).

f. Common mode transient immunity in a low state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to ensure that the output will remain in a low state (that is, $V_O < 2.0V$).

Table 8: Package Characteristics

Over the recommended temperature ($T_A = -40^{\circ}C$ to $100^{\circ}C$) unless otherwise specified. All typical values at $T_A = 25^{\circ}C$.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	V _{ISO}	3750	_	_	V _{rms}	RH < 50%, t = 1 minute, T _A = 25°C		a, b
Resistance (Input-Output)	R _{I-O}	_	10 ¹²	_	Ω	V _{I-O} = 500V		b
Capacitance (Input-Output)	C _{I-O}	—	0.6	—	pF	Freq = 1 MHz		
LED-to-Case Thermal Resistance	θ_{LC}	_	467	_	°C/W	Thermocouple located		
LED-to-Detector Thermal Resistance	θ_{LD}	—	442	—	°C/W	center underside of package		
Detector-to-Case Thermal Resistance	θ_{DC}	—	126	—	°C/W			

* The input-output momentary withstand voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refers to your equipment level safety specification or Application Note 1074 entitled *Optocoupler Input-Output Endurance Voltage*.

a. In accordance with UL1577, each optocoupler is proof-tested by applying an insulation test voltage ≥ 4500 V_{rms} for 1 second (leakage detection current limit, I_{LO} ≤ 5 μA).

b. Device is considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.

Figure 3: I_{OH} vs. Temperature

Figure 5: V_{OL} vs. Temperature

Figure 7: V_{OL} vs. I_{OL}

Figure 12: Propagation Delay vs. IF

Figure 11: Propagation Delay vs. V_{CC}

Figure 13: Propagation Delay vs. Temperature

Figure 8: I_{CC} vs. Temperature

Figure 15: Undervoltage Lockout

Figure 16: I_{OH} Test Circuit

Figure 17: I_{OL} Test Circuit

Figure 18: V_{OH} Test Circuit

Figure 19: V_{OL} Test Circuit

Figure 20: I_{FLH} Test Circuit

Figure 21: UVLO Test Circuit

Figure 22: t_{PLH}, t_{PHL}, t_r, and t_f Test Circuit and Waveforms

Figure 24: Typical Application Circuit

Figure 25: Typical Application Circuit with Negative IGBT Gate Drive

Copyright © 2012–2024 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

