ASSR-V621 and ASSR-V622

Dual Channel Photovoltaic MOSFET Driver (6.5V/15µA)

Data Sheet

Description

The ASSR-V62X Series is specially designed to drive high power MOSFETs. It consists of an AlGaAs infrared lightemitting diode (LED) input stage optically coupled to an output detector circuit. The detector consists of a highspeed photovoltaic diode array and driver circuitry to switch on/off two discrete high voltage MOSFETs externally. The relay driver turns on (contact closes) with a minimum input current of 3mA through the input LED. The relay driver turns off (contact opens) with an input voltage of 0.8V or less.

The dual channel configurations, ASSR-V621 and ASSR-V622, allow 2 independent MOSFETs to be driven. It has the versatility to double the photovoltaic voltage by connecting the 2 channels in series or to double the short circuit current by connecting the 2 channels in parallel. They are available in 8-pin DIP and Gull Wing Surface Mount packages.

Features

- Dual Channel Photovoltaic MOSFET Driver
- Open Circuit Voltage: 7V Typical
- Short Circuit Current: 20µA Typical
- Low Input Current: CMOS Compatibility
- Fast Switching Speed: 0.3ms (Ton), 0.03ms (Toff) Typical
- High Input-to-Output Insulation Voltage (Safety and Regulatory Pending Approvals)
 - 3750 Vrms for 1 min per UL1577
 - CSA Component Acceptance

Applications

- Solid State Relay Module
- Voltage Supply for electronic circuits

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

ASSR-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5.

	Option		Surface	Gull	Tape		
Part number	RoHS Compliant	Package	Mount	Wing	& Reel	Quantity	
	-002E					50 units per tube	
ASSR-V621	-302E	300 mil DIP-8	Х	Х		50 units per tube	
	-502E	-	Х	Х	Х	1000 units per reel	
	-002E					50 units per tube	
ASSR-V622	-302E	300 mil DIP-8	Х	Х		50 units per tube	
	-502E	_	Х	Х	Х	1000 units per reel	

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example:

ASSR-V621-002E to order product of 300mil DIP-8 package in tube packaging and RoHS Compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Schematic

Package Outline Drawings 8-Pin DIP Package

8-Pin DIP Package with Gull Wing Surface Mount Option 300

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Lead Free IR Profile

Use of non-chlorine-activated fluxes is highly recommended.

Note: Non-Halide flux should be used.

Regulatory Information

The ASSR-V621-002E and ASSR-V622-002E are approved by the following organizations:

UL

Approved under UL 1577, component recognition program up to $V_{ISO} = 3750 V_{RMS}$

CSA

Approved under CSA Component Acceptance Notice #5.

Insulation and Safety Related Specifications

•		ASSR-V621-002E		
Parameter	Symbol	ASSR-V622-002E	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		Illa		Material Group (DIN VDE 0109)

Absolute Maximum Ratings

	Symbol	Min.	Max.	Units	Note
	Ts	-55	125	°C	
	T _A	-40	85	°C	
Temperature			260	°C	
Time			10	S	
Average	l _F		30	mA	
Surge			300		
Transient			1000		
	V _R		5	V	
Input Power Dissipation			100	mW	
e Profile	See Lead Fre	e IR Profile			
	Time Average Surge	T _S T _A Temperature Time Average Surge Transient V _R P _{IN}	T _S -55 T _A -40 Temperature -40 Time	$\begin{tabular}{ c c c c c } \hline T_S & -55 & 125 \\ \hline T_S & -40 & 85 \\ \hline T_A & -40 & 85 \\ \hline \hline T_{A} & -40 & 85 \\ \hline \hline T_{A} & 100 \\ \hline \hline T_{Ime} & 10 \\ \hline \hline 100 \\ \hline \hline Average & I_F & 30 \\ \hline Surge & 100 \\ \hline \hline Transient & 1000 \\ \hline \hline V_R & 5 \\ \hline \hline P_{IN} & 100 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c } \hline T_{S} & -55 & 125 & ^{\circ}C \\ \hline T_{A} & -40 & 85 & ^{\circ}C \\ \hline Temperature & 260 & ^{\circ}C \\ \hline \hline Time & 10 & s \\ \hline Average & I_{F} & 30 & MA \\ \hline Surge & 300 & MA \\ \hline Surge & 1000 & VR & 5 & V \\ \hline V_{R} & 5 & V \\ \hline P_{IN} & 100 & MW \\ \end{array}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note	
Input Current (ON)	I _{F(ON)}	3	30	mA		
Input Voltage (OFF)	V _{F(OFF)}	0	0.8	V		
Operating Temperature	T _A	-40	+85	°C		

Package Characteristics

Unless otherwise specified, operating temperature $T_A = 25^{\circ}C$.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage	V _{ISO}	3750			Vrms	$RH \le 50\%$, t = 1 min		1
Input-Output Resistance	R _{I-O}		10 ¹²		Ω	$V_{I-O} = 500 \text{ Vdc}$		
Input-Output Capacitance	CI-O		0.6		рF	$f = 1 MHz; V_{I-O} = 0 Vdc$		

Electrical Specifications (DC)

For operating $T_A = +25^{\circ}C$

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	Fig.	Note
Open Circuit Voltage	V _{OC}	6.5	7		V	$I_F = 10 \text{mA}, I_O = 0 \text{mA}$	=0mA	
Short Circuit Current	I _{SC}	15	20		μΑ	$I_{F} = 10 \text{mA}, V_{O} = 0 \text{V}$		
Input Reverse Breakdown Voltage	V _R	5			V	I _R =10μA		
Input Forward Voltage	V _F	1.1	1.3	1.7	V	I _F =10mA		

Switching Specifications (AC)

For operating $T_A = +25^{\circ}C$

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	Fig.	Note
Turn On Time	T _{ON}		0.28		ms	$I_F = 10 \text{mA}, C_L = 1 \text{nF}$		
Turn Off Time	T _{OFF}		0.03		ms	I _F =10mA, C _L =1nF		

Note:

1. Device is considered as a two terminal device; pin 1, 2, 3, 4 shorted and pin 5, 6, 7, 8 shorted.

Figure 1. Short Circuit Output Current vs

Figure 3. T_{ON} vs Temperature

Figure 4. T_{OFF} vs Temperature

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. AV02-0259EN - March 19, 2012

