Form A, Solid State Relay (400V, 0.12A, 25Ω)



## **Reliability Data Sheet**

#### Description

The reliability data shown includes Broadcom<sup>®</sup> reliability test data from the reliability qualification done on this product family. All of these products use the same LEDs, similar IC, and the same packaging materials, processes, stress conditions, and testing. The data in Table 1 and Table 2 reflects actual test data for devices on a per-channel basis. Before stress, all devices are preconditioned using a solder reflow process (260°C peak temp) and 20 temperature cycles (-55°C to +125°C, 15 mins dwell, 1 min transfer). This data is taken from testing on Broadcom devices using internal Broadcom processes, material specifications, design standards, and statistical process controls. **It is not transferable to other manufacturers' similar part types.** 

## **Operating Life Test**

For valid system reliability calculations, it is necessary to adjust for the time when the system is not in operation. Note that if you are using MIL-HDBK-217 for predicting component reliability, the results may not be comparable to those given in Table 2 due to different conditions and factors that have been accounted for in MIL-HDBK-217. For example, it is unlikely that your application will exercise all available channels at full rated power with the LED(s) always ON as Broadcom testing does. Thus, your application total power and duty cycle must be carefully considered when comparing Table 2 to predictions using MIL-HDBK-217.

#### **Definition of Failure**

Inability to switch (functional failure), is the definition of failure in this data sheet. Specifically, failure occurs when the device fails to switch ON with 2 times the minimum recommended drive current (but not exceeding the max rating) or fails to switch off when there is no input current.

## **Failure Rate Projections**

The demonstrated point mean time to failure (MTTF) is measured at the absolute maximum stress condition. The failure rate projections in Table 2 uses the Arrhenius acceleration relationship, where a 0.43 eV activation energy is used as in the hybrid section of MIL-HDBK-217.

## **Application Information**

The data of Table 1 and Table 2 was obtained on devices with high temperature operating life duration. An exponential (random) failure distribution is assumed, expressed in units of FIT (failures per billion device hours) are only defined in the random failure portion of the reliability curve.

#### **Test Results**

 Table 1 Demonstrated Operating Life Test Performance

| Stress Test<br>Condition               | Total Device Tested | Total Device Hours | Number of<br>Failed Units | Demonstrated<br>MTTF(hr) at<br>Ta = +105°C | Demonstrated FITs at<br>Ta = +105°C |
|----------------------------------------|---------------------|--------------------|---------------------------|--------------------------------------------|-------------------------------------|
| Ta = 105°C<br>lf = 30 mA<br>lo = 70 mA | 60                  | 60,000             | 0                         | > 60,000                                   | < 16,667                            |

#### Table 2 Reliability Projection for Device Listed in Title

| Ambient          | Junction         | Typical (60% Confidence) |                               | 90% Confidence   |                               |
|------------------|------------------|--------------------------|-------------------------------|------------------|-------------------------------|
| Temperature (°C) | Temperature (°C) | MTTF (Hr/Fail)           | FITs (Fail/10 <sup>9</sup> h) | ) MTTF (Hr/Fail) | FITs (Fail/10 <sup>9</sup> h) |
| 105              | 150              | 65,481                   | 15,272                        | 26,058           | 38,376                        |
| 100              | 145              | 75,389                   | 13,264                        | 30,000           | 33,333                        |
| 90               | 135              | 100,970                  | 9,904                         | 40,180           | 24,888                        |
| 80               | 125              | 137,231                  | 7,287                         | 54,610           | 18,312                        |
| 70               | 115              | 189,488                  | 5,277                         | 75,405           | 13,262                        |
| 60               | 105              | 266,149                  | 3,757                         | 105,911          | 9,442                         |
| 50               | 95               | 380,791                  | 2,626                         | 151,532          | 6,599                         |
| 40               | 85               | 555,826                  | 1,799                         | 221,185          | 4,521                         |
| 30               | 75               | 829,145                  | 1,206                         | 329,950          | 3,031                         |
| 25               | 70               | 1,021,585                | 979                           | 406,530          | 2,460                         |

### **Mechanical Tests**

Testing done on a constructional basis.

| Test Name                            | Reference Standard  | Test Conditions                                                    | Units Tested | Units Failed |
|--------------------------------------|---------------------|--------------------------------------------------------------------|--------------|--------------|
| Temp Cycling                         | JA104               | –55 to +125°C, Transfer = 1 min,<br>Dwell = 15 mins, 500 cycles    | 80           | 0            |
| Solderability<br>(Pb-free condition) | _                   | 8 hrs steam aging (93°C), followed by solder dip<br>(260°C, 5 sec) | 10           | 0            |
| Solderability<br>(SnPb condition)    | _                   | 8 hrs steam aging (93°C), followed by solder dip<br>(245°C, 5 sec) | 10           | 0            |
| Preconditioning                      | J-STD-020,<br>JA113 | As per reference standard (MSL 1 condition)                        | 80           | 0            |

## **Environmental Testing**

Testing on a constructional basis.

| Test Name                        | Reference Standard | Test Conditions                                                      | Units Tested | Units Failed |
|----------------------------------|--------------------|----------------------------------------------------------------------|--------------|--------------|
| High Temperature<br>Reverse Bias | JA108              | Ta = $150^{\circ}$ C, Vf = $-5$ V, Vo = $320$ V,<br>Time = $500$ hrs | 78           | 0            |
| Unbiased Autoclave               | JA102              | Ta = 121°C, RH = 100%, 15 psig,<br>Time = 168 hours                  | 80           | 0            |

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom in the United States, certain other countries and/or the EU.

Copyright © 2017 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

ASSR-4110-RDS100 – July 7, 2017

# BROADCOM°

