

# ASSR-1410/ASSR-1411/ASSR-1420

General Purpose, Form A, Solid State Relay (Photo MOSFET) (60V/0.6A/1Ω)

### Description

The reliability data shown includes Avago Technologies reliability test data from the reliability qualification done on this product family. All of these products use a similar IC and the same packaging materials, processes, stress conditions, and testing. The data in Table 1 and Table 2 reflects actual test data for devices on a per-channel basis. Before stress, all devices are preconditioned at MSL 1 using a solder reflow process (250°C peak temp) and 20 temperature cycles (–55°C to +125°C, 15-minute dwell, 1-minute transfer). This data is taken from testing on Avago Technologies devices using internal Avago Technologies processes, material specifications, design standards, and statistical process controls. They are not transferrable to other manufacturers' similar part types.

## **Operating Life Test**

For valid system reliability calculations, it is necessary to adjust for the time when the system is not in operation. Note that if you are using MIL-HDBK-217 for predicting component reliability, the results may not be comparable to those given in Table 2 due to different conditions and factors that have been accounted for in MIL-HDBK-217. For example, it is unlikely that your application exercises all available channels at full-rated power with the IC always ON (as is standard during Avago Technologies testing). Thus, your application's total power and duty cycle must be carefully considered when comparing Table 2 to predictions using MIL-HDBK-217.

## **Definition of Failure**

Inability to switch, meaning functional failure, is the definition of failure in this data sheet. Specifically, failure occurs when the device fails to switch ON with two times the minimum recommended drive current (but not exceeding the maximum rating) or fails to switch off when there is no input current.

### **Failure Rate Projections**

The demonstrated point mean time to failure (MTTF) is measured at the absolute maximum stress condition. The failure rate projections in Table 2 uses the Arrhenius acceleration relationship, where a 0.43 eV activation energy is used as in the hybrid section of MIL-HDBK-217.

## **Application Information**

The data from Table 1 and Table 2 is obtained on devices with high temperature operating life duration. An exponential (random) failure distribution is assumed, expressed in units of FIT (failures per billion device hours), and only defined in the random failure portion of the reliability curve.

| Stress Test<br>Condition | Total Device<br>Tested | Total Device Hours | Units Failed | Demonstrated MTTF (hr)<br>at T <sub>a</sub> = +105°C | Demonstrated FITs<br>at T <sub>a</sub> = +105°C |
|--------------------------|------------------------|--------------------|--------------|------------------------------------------------------|-------------------------------------------------|
| T <sub>a</sub> = 105°C   | 80                     | 80,000             | 0            | >80,000                                              | <12,500                                         |
| I <sub>f</sub> = 30 mA   |                        |                    |              |                                                      |                                                 |
| I <sub>o</sub> = 125 mA  |                        |                    |              |                                                      |                                                 |

#### Table 1: Demonstrated Operating Life Test Performance

#### Table 2: Reliability Projection for Device Listed in Title

| Ambient<br>Temperature (°C) | Junction<br>Temperature (°C) | Typical (60% Confidence) |                  | 90% Confidence |                  |  |
|-----------------------------|------------------------------|--------------------------|------------------|----------------|------------------|--|
|                             |                              | MTTF (hr/fail)           | FITs (fail/109h) | MTTF (hr/fail) | FITs (fail/109h) |  |
| 105                         | 150                          | 87,309                   | 11,454           | 34,744         | 28,782           |  |
| 100                         | 145                          | 100,519                  | 9,948            | 40,001         | 25,000           |  |
| 90                          | 135                          | 134,627                  | 7,428            | 53,573         | 18,666           |  |
| 80                          | 125                          | 182,975                  | 5,465            | 72,813         | 13,734           |  |
| 70                          | 115                          | 252,651                  | 3,958            | 100,540        | 9,946            |  |
| 60                          | 105                          | 354,865                  | 2,818            | 141,215        | 7,081            |  |
| 50                          | 95                           | 507,721                  | 1,970            | 202,043        | 4,949            |  |
| 40                          | 85                           | 741,101                  | 1,349            | 294,914        | 3,391            |  |
| 30                          | 75                           | 1,105,527                | 905              | 439,934        | 2,273            |  |
| 25                          | 70                           | 1,362,114                | 734              | 542,040        | 1,845            |  |

#### Table 3: Mechanical Tests (Testing on a Constructional Basis)

| Test Name                         | Reference Standard | Test Conditions                                                   | Units Tested | Units Failed |
|-----------------------------------|--------------------|-------------------------------------------------------------------|--------------|--------------|
| Temp Cycling                      | JA104              | –55°C to +125°C                                                   | 80           | 0            |
|                                   |                    | Transfer = 1 minute, Dwell = 15 minutes                           |              |              |
|                                   |                    | 1000 cycles                                                       |              |              |
| Physical Dimensions               | JB100              | Conformance to data sheet package drawings                        | 20           | 0            |
| Solderability (Pb-free condition) | -                  | 8 hours steam aging (93°C),<br>followed by solder dip (260°C, 5s) | 10           | 0            |
| Solderability (SnPb condition)    | JB102              | 8 hours steam aging (93°C),<br>followed by solder dip (245°C, 5s) | 10           | 0            |
| Preconditioning                   | J-STD-020<br>JA113 | As per reference standard (MSL 1 condition)                       | 40           | 0            |

#### Table 4: Environmental Testing

| Test Name                        | Reference Standard | Test Conditions                                                                      | Units Tested | Units Failed |
|----------------------------------|--------------------|--------------------------------------------------------------------------------------|--------------|--------------|
| High Temperature Reverse<br>Bias | JA108              | $T_a = 150^{\circ}C$<br>V <sub>f</sub> = -5V, V <sub>o</sub> = 48V, Time = 500 hours | 77           | 0            |
| Unbiased Autoclave               | JA102              | T <sub>a</sub> = 121°C, RH = 100%, 15 psig<br>Time = 168 hours                       | 60           | 0            |

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.

Copyright © 2017 by Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.



