

ASMT-Mx00 Moonstone™ 1W Power LED Light Source

Description

The Broadcom[®] Moonstone [™] 1W Power LED light source is a high-performance energy-efficient device that can handle high thermal and high driving current. The exposed pad design has excellent heat transfer from the package to the motherboard.

The low-profile package design is suitable for a wide variety of applications, especially where height is a constraint.

The package is compatible with the reflow soldering process, which gives more freedom and flexibility to the light source designer.

Applications

- Portable (flashlight, bicycle head light)
- Reading light
- Architectural lighting
- Garden lighting
- Decorative lighting

Features

- Available in Red, Amber, Green, and Blue colors
- Energy efficient
- Exposed pad for excellent heat transfer
- Suitable for reflow soldering process
- High current operation
- Long operation life
- Wide viewing angle
- Silicone encapsulation
- ESD Class HBM Class 3B (threshold > 8 kV)
- MSL 2A for InGaN products
- MSL 4 for AlInGaP products

Specifications

- AllnGaP technology for Red and Amber 2.1V (typ.) at 350 mA for AllnGaP
- InGaN technology for Green and Blue 3.2V (typ.) at 350 mA for InGaN

Package Dimensions

NOTE:

- 1. All dimensions are in millimeters.
- 2. Tolerance is \pm 0.1 mm, unless otherwise specified.
- 3. Metal slug is connected to anode for electrically nonisolated option.

Device Selection Guide ($T_J = 25^{\circ}C$)

		Luminous Flux, $\Phi_{V}{}^{a, \ b}$ (lm)		Test Current	Dice	
Part Number	Color	Min.	Тур.	Max.	(mA)	Technology
ASMT-MR00-AHJ00	Red	33.0	40.0	56.0	350	AlInGaP
ASMT-MA00-AGH00	Amber	25.5	35.0	43.0	350	AlInGaP
ASMT-MA00-AHJ00		33.0	40.0	56.0	350	AllnGaP
ASMT-MG00-NLM00	Green	73.0	85.0	124.0	350	InGaN
ASMT-MB00-NDF00	Blue	11.5	15.0	25.5	350	InGaN

a. Φ_V is the total luminous flux output as measured with an integrating sphere at 25 ms mono pulse condition.

b. Flux tolerance is $\pm 10\%$.

Part Numbering System

Code	Description	Option		
x ₁	LED Chip Color	A	Amber	
		В	Blue	
		G	Green	
		R	Red	
x ₂ x ₃	Silicone Type	00	Non Diffused	
x ₄ Dice Ty	Dice Туре	A	AllnGaP	
		N	InGaN	
х ₅	Minimum Flux Bin Selection	Refer to Flux Bin Limit [x ₅ x ₆]		
x ₆	Maximum Flux Bin Selection			
х ₇	Color Bin Selection	Refer to C	Refer to Color Bin Selection [x ₇]	
x ₈	Packaging Option	0	Tube	
		1	Tape and Reel	

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	AllnGaP	InGaN	Units	
DC Forward Current ^a	350	350	mA	
Peak Pulsing Current ^b	1000	1000	mA	
Power Dissipation	805	1225	mW	
LED Junction Temperature	125	110	°C	
Operating Ambient Temperature Range at 350 mA	-40 to +115	-40 to +100	°C	
Storage Temperature Range	-40 to +120	-40 to +120	°C	
Reverse Voltage ^c	Not recommended			

a. DC forward current – derate linearly based on Figure 5 for AllnGaP and Figure 14 for InGaN.

b. Pulse condition duty factor = 10%, frequency = 1 kHz.

c. Not recommended for reverse bias operation.

Optical Characteristics at 350 mA (T_J = 25°C)

		Peak Wavelength, λ _{PEAK} (nm)	Dominant Wavelength, λ _D ^a (nm)	Viewing Angle, 2θ _½ ^b (°)	Luminous Efficiency (Im/W)
Part Number	Color	Тур.	Тур.	Тур.	Тур.
ASMT-MR00-AHJ00	Red	635	625	120	54
ASMT-MA00-AGH00	Amber	598	590	120	48
ASMT-MA00-AHJ00		598	590	120	54
ASMT-MG00-NLM00	Green	519	525	120	76
ASMT-MB00-NDF00	Blue	454	460	120	13

a. The dominant wavelength, λ_D , is derived from the CIE Chromaticity Diagram and represents the color of the device.

b. θ_{γ_2} is the off-axis angle where the luminous intensity is half of the peak intensity.

Electrical Characteristics at 350 mA ($T_J = 25^{\circ}C$)

	Forward Voltage V _F (V) at I _F = 350 mA		Thermal Resistance Rθ _{j-ms} (°C/W) ^a	
Dice Туре	Min.	Тур.	Max.	Тур.
AllnGaP	1.7	2.1	2.3	10
InGaN	2.8	3.2	3.5	10

a. $R\theta_{j\text{-ms}}$ is the thermal resistance from the LED junction to the metal slug.

AllnGaP

Figure 1: Relative Intensity vs. Wavelength for AllnGaP

Figure 2: Forward Current vs. Forward Voltage for AllnGaP

Figure 3: Relative Luminous Flux vs. Mono Pulse Current for AllnGaP

Figure 4: Radiation Pattern for AllnGaP

AllnGaP

Figure 5: Maximum Forward Current vs. Ambient Temperature for AllnGaP. Derated based on T_{JMAX} = 125°C, $R\theta_{J-A}$ = 30°C/W, 40°C/W and 50°C/W.

Figure 7: Forward Voltage Shift vs. Junction Temperature for AllnGaP

Figure 6: Maximum Forward Current vs. Metal Slug Temperature for AllnGaP. Derated based on T_{JMAX} = 125°C, $R\theta_{J-MS}$ = 10°C/W.

Figure 8: Relative Light Output vs. Junction Temperature for AlInGaP

InGaN

Figure 9: Relative Intensity vs. Wavelength for InGaN

Figure 10: Forward Current vs. Forward Voltage for InGaN Blue

InGaN

Figure 13: Radiation Pattern for InGaN

Figure 15: Maximum Forward Current vs. Metal Slug Temperature for InGaN. Derated based on T_{JMAX} = 110°C, $R\theta_{J-MS}$ = 10°C/W

Figure 14: Maximum Forward Current vs. Ambient Temperature for InGaN. Derated based on T_{JMAX} = 110°C, $R\theta_{J-A}$ = 30°C/W, 40°C/W and 50°C/W

Figure 17: Relative Light Output vs. Junction Temperature for InGaN

NOTE: For detailed information on reflow soldering of Broadcom surface-mount LEDs, refer to Broadcom Application Note AN1060, *Surface Mounting SMT LED Indicator Components*.

Figure 18: Recommended Reflow Soldering Profile

Figure 19: Recommended Soldering Land Pattern

Option Selection Details

$\textbf{ASMT-Mxxx} - x x_5 x_6 x_7 x_8$

x ₅	_	Minimum Flux Bin Selection
x ₆	_	Maximum Flux Bin Selection
x ₇	_	Color Bin Selection
x ₈	-	Packaging Option

Flux Bin Limit [x₅ x₆]

	Luminous Flux (Im) at I _F = 350 mA			
Bin	Min.	Max.		
D	11.5	15.0		
E	15.0	19.5		
F	19.5	25.5		
G	25.5	33.0		
Н	33.0	43.0		
J	43.0	56.0		
К	56.0	73.0		
L	73.0	95.0		
М	95.0	124.0		

Tolerance for each bin limits is \pm 10%.

Color Bin Selection [x₇]

The individual reel contains parts from one full bin only.

Other Colors

0	Full Distribution
Z	A and B
Y	B and C
W	C and D
V	D and E
Q	A, B, and C
Р	B, C, and D
Ν	C, D, and E

Color Bin Limits

Color	Bin	Min.	Max.
Red	Full Distribution	620.0	635.0
Amber	A	582.0	584.5
	В	584.5	587.0
	С	587.0	589.5
	D	589.5	592.0
	E	592.0	594.5
Blue	A	455.0	460.0
	В	460.0	465.0
	С	465.0	470.0
	D	470.0	475.0
Green	A	515.0	520.0
	В	520.0	525.0
	С	525.0	530.0
	D	530.0	535.0

Tolerance: ± 1 nm.

Packaging Option [x₈]

Selection	Option
0	Tube
1	Tape and Reel

Example

 $x_7 = 0$

ASMT-MR00-AHJ00

- $x_5 = H$ Minimum Flux Bin H
- $x_6 = J$ Maximum Flux Bin J
 - Full Distribution
- x₈ = 0 Tube Option

Packing Tube – Option 0

Figure 20: Tube Dimension

Tape and Reel – Option 1

Tape Dimensions

Figure 21: Carrier Tape Dimensions

Dimension	Value (mm)
A0	8.80 ± 0.10
B0	16.45 ± 0.10
К0	3.60 ± 0.10
W	24.0 ± 0.10
Р	16.0 ± 0.10
Quantity/reel	250 each

Figure 22: Carrier Tape Leader and Trailer Dimensions

Reel Dimensions

Figure 23: Reel Dimensions

Handling Precautions

The encapsulation material of the product is made of silicone for better reliability of the product. Because silicone is a soft material, do not press on the silicone or poke a sharp object into the silicone. These actions might damage the product and cause premature failure. During assembly or handling, hold the unit by the body only. Refer to Broadcom Application Note AN5288 for detailed information.

Moisture Sensitivity

This product is qualified as Moisture Sensitive Level 2a for InGaN devices and MSL 4 for AlInGaP devices per JEDEC J-STD-020. Take precautions when handling this moisture-sensitive product to ensure the reliability of the product. Refer to Broadcom Application Note AN5305, *Handling of Moisture Sensitive Surface Mount Devices*, for details.

Storage before use

- Store the unopened moisture barrier bag (MBB) at < 40°C/90% RH for 12 months. If the actual shelf life has exceeded 12 months and the humidity indicator card (HIC) indicates that baking is not required, it is safe to reflow the LEDs per the original MSL rating.
- Do not open the MBB prior to assembly (for example, for IQC).

Control after opening the MBB

- Read the HIC immediately upon opening of the MBB.
- Keep the LEDs at < 30°C/60% RH at all times and all high-temperature-related processes, including soldering, curing, or rework, must be completed within 672 hours for MSL 2a and 72 hours for MSL 4.

Control for unfinished reel

Store any unused LEDs in a sealed MBB with desiccant or desiccator at < 5% RH.

Control of assembly boards

If the PCB soldered with the LEDs is to be subjected to other high-temperature processes, store the PCB in a sealed MBB with desiccant or desiccator at < 5% RH to ensure no LEDs have exceeded their floor life of 672 hours for MSL 2a and 72 hours for MSL 4.

Baking is required if the following conditions exist

- The HIC 10% indicator is not blue and the 5% indicator is pink.
- The LEDs are exposed to conditions of > 30°C/60% RH at any time.
- The LEDs' floor life exceeded 672 hours for MSL 2a and 72 hours for MSL 4.

Recommended baking condition: $60^{\circ}C \pm 5^{\circ}C$ for 20 hours.

Disclaimer

Broadcom's products and software are not specifically designed, manufactured, or authorized for sale as parts, components, or assemblies for the planning, construction, maintenance, or direct operation of a nuclear facility or for use in medical devices or applications. Customers are solely responsible, and waive all rights to make claims against Broadcom or its suppliers, for all loss, damage, expense, or liability in connection with such use.

Copyright © 2014–2021 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

