e
©® BROADCOM

AFBR-S50 SDK
Porting Guide to a Cortex-M4

Programming Guide
Version 1.2

AFBR-S50-PG102
November 23, 2021

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Copyright © 2020-2021 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its
subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos
referenced herein belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Broadcom AFBR-S50-PG102
2

http://www.broadcom.com

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Table of Contents

Chapter 1: INTrOAUCTION ..eeeiiiiiiiieee ettt e e e e e e e e e e e e e e e et rr e et e et e e e e e e e aaeeaeaannas 6
1.1 AFBR-S50MV85G-EK Evaluation Kit SOFtWEAIEcooiiiiiiiiiiiec et 6
Chapter 2: Phase 1: Installing and Preparing the IDEc.iiiiiiiiiiii e 7
Step 1. Downloading and INStalling the IDEoiiiiiiiiiiie e r e e e e e e e e e s e e s areeraeeeeeeeeannnnnes 7

Step 2. DefinNiNg the WOIKSPACEooiiiiiiiiiiie ettt ettt e s bt e s ettt e s s bbb e e e e e annaneeee s 7

Step 3. Creating @ NALIVE PrOJECTccoo ittt e e ettt et e e e e e e e s s e e nbeeeeeeaaaaeeeaaaannrnes 7

P2 R 1[I U o (= PSPPSR 10
Step 4. Creating the File SITUCTUIEoo i e s et e e e et e e e e nneeas 10

Chapter 3: Phase 2: Obtaining the AFBR-S50 APl ..o 12
Step 5. Clone or Download the Repository from GitHUD ... 12

Step 6. Alternatively Download and Install the SDK from the Broadcom Webpageccccoeeeviiiiieiiiiiiiininnnnns 13

Chapter 4: Phase 2: Addition of the MCU Devices with the IDEccccoiiiiiiiiiiiiies 14
Step 7. Opening the Device Configuration TOOI iN the IDE...........uuiviiiiii e r e e e e e e 14

o A oo Tod [Ofe] g} 1T o [BT = 14T e] o B TP P PP PPPPPPPP 14
4.2 S2PI (2 SPI + GPIO) LAYEK ...eeiiiiiieiuiie ettt ettt ettt e ettt e e ettt e s sttt e e aabe e e o be e e e be e e aabee a2 aabe a2 b be e e aabe e e eabe e e et beeaabseeeabbeeennbeeanees 16

S (=] oS TS o I 2 7= TS (o 11] o PR 16

SEEP 9. SPIDMA SEUUP ...ttt ettt e e et ettt e et e e e et e s et e et e et e e et e e n e e e et e e e e e e e e e anren 19

Step 10. NSS/IRQ GPIO SEIUPuveiiitiee ittt atie ettt ettt ettt e be e e s be e e e ats e e e stbe e e sbe e e aabeeesbbeeaabbe e e sabeesaseeesnbeeesanneas 20

G T I T o =T g = =T PSSR 23
e A 1 = 1] L= @010 1 =T o 3 O PO PP PPT TP PPPR P 23

Step 11. Setting UpP the FIrSt LTC TIMEr......ue ittt ettt et e e e e e e e e e abab e et eeeeaaaaaaeeeeannnnnns 24

Step 12. Setting Up the SECONA LTC TIMEK ..eviiiiiiieii ittt e e e e e e s s s st e e e e e e e e e e s s s s snannbaesereeeeaeeesenannnnnnes 26

4.3.2 PeriodiC INterrupt TIMEE (PIT) .otttk e e e st e e e et bt e e e e aab b e e e e e e sabbe e e e e annnes 27

A @ o1 o] = L U LT PP UPEPURTTP 28
Vo oY (=T g AU o1 o] o} o [T = U o o PPN 30
Step 13. Configuring the INterrupts iNthe IDEoouiiiiiiii e e 31

N e To [N CT =T oT=T = 1 {0 o PR PPPPURPTPTN 33
Step 14. Setting the Code Generation OPLIONScovuiuiiiiiiiiiiis i e e e e e e e e e e e e e e s e e e aeaaaaaaaeaaeeaeeee 33

Step 15. Performing the Code GENEIALIONuiiiiiiiiiiie ittt e et e e e br e e e e enneeas 35

Chapter 5: Adapting the Generated Data to the Argus APl ... 38
Step 16. Adding the Required INCIUAE PAtNScooiiiiiiiii e e 38

Step 17. Adding the AFBR-S50 LIDIAIYcccociiiiiiiieeeeee s e e e e e e e et e e s e s e s e e e e aeaaaaaaaaaaeeeannees 39

ST R [L PSPPSR 40
Step 18. Creating the IRQ FlESe it e bt e e s et e e e e e b e e e e nenes 40

Step 19. Implementing the IRQ Header File.............u i e e e e e e ae e e e e e e e aeaans 40

Step 20. Implementing the IRQ LOCKINGuuuiiiiiiiiiiiiie e e e r e e e e e e s e s e aee e e e e e e e e annnnnns 41

A VA o N o PRSPPI 42
Broadcom AFBR-S50-PG102

3

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Chapter 6: Running the Example Application
6.1 Creating the Example Application

Appendix A: Modifying the Example Application
A.1 Setting Up Floating-Point ABI for Soft Floating Point Usage

Step 21. Creating the S2PI FileScccooo e,
Step 22. Implementing the S2P1 Header Filecovvvvveeeiiiiiiiciiieeeeeeeee,
Step 23. Adding the S2P1 INCIUAESccuuiiiiiiiiiiiieee e
Step 24. Implementing the S2PI Data Structurescccceeeveviiieeeeeeeeneeeeeens
Step 25. Implementing the S2PI Initializationcccccoovvveciiiiiieieeeeee e
Step 26. Implementing the SPI Get Status FuNctionccccceeeeiiiniinnns
Step 27. Implementing the SPI/GPIO SWitChccccoevviiiiiiiiiiieeei,
Step 28. Implementing the GPIO ACCESScuvvviiiiiiiieeee i e e
Step 29. Implementing the CS CycCliNgccocuuviiiiiiiiei e
Step 30. Implementing the SPI Transfer Startcccccoeevviiiiieees
Step 31. Implementing the SPI Transfer Completionccccccevvveeeiiiinnns
Step 32. Implementing the SPI Transfer AbOrt ...,
Step 33. Implementing the SPI Transfer Error Handling
Step 34. Implementing the External Interrupt Handlingcccccvvvvvveeeeenn.
5.3 Timer API
Step 35. Creating the TImer FileSccooiiiiii i,
Step 36. Implementing the Timer Header Fileccccoeeeviviiiciiiieeiceeeee,
Step 37. Adding the Timer INCIUAES...........uuviiiiiiiiiiieiiee e
Step 38. Implementing the Timer Initialization.............cccceeeeeeeiiiiiiieieieieiens
Step 39. Implementing the LTC Readoutc.ccceeveveiieeeeeiiiiiciiiieeeeeeee e
Step 40. Implementing the PIT Start/Stopcccuveeeieiiiieiiiiiieeeeeeeeen
Step 41. Implementing the PIT Interrupt Handling.........cccceeveviiiiiiiieninnnnnnn,
5.4 Optional: UART API
Step 42. Creating the UART FileS ..o
Step 43. Implementing the UART Header Filecccccoceeiiiiiiiiiiiiiieiiene,
Step 44. Adding the UART INCIUAESuvviiiiiiiiiieee e
Step 45. Defining the UART Variablescccccooiiiiiiiiiiiiieeieieee e
Step 46. Implementing the UART Initializationcccooeeveeeeiiiiiiiviieeeieiees
Step 47. Implementing the UART Send Operation...........ccccccvvveveereeeeeennnn
Step 48. Implementing the UART Send Completioncccccceevveeeeniiinnnn,

Step 49. Implementing the Formatted Output Using print()

Step 50. Copying the Example Application..........c.cooovveiiiiiiiiiinieiie e
Step 51. Altering the Example Source Fileoeeviiiiiiiiiiiiiiieeee,

Step 52. Compiling and Running the Example Application

Broadcom

AFBR-S50-PG102
4

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

REVISION HISTOTY oeeiiiiiiiiiiee ettt e e e e e e e oot oottt et et ettt e e e e e e e e e e e e e e aa i nannneeeeees 77
VErsion 1.2, NOVEMDBDET 23, 2021uiiiiiiiii ettt e e ettt e et e e e et e e taaa e e s et e e s eaa e s s b e e st e e saaa s eesaaneesbanesssbnsessnnnsseras 77
VErsion 1.1, JANUATY 12, 2021uuuuiiieeeieeeee et esiieetteeaeeeeeeteaesseaaaasstasteaeeaetaeaaaassasaassssaasseeeraeaeaeassaanssnsseenereeeeeeeesanannns 77
VEISION 1.0, JUNE 22, 2020, .. .ceeuiiieieiee et e et e e et e et e e ettt e e et aa e s et s e et s e e as s sesaasssabsaesansessaasasbaasesaaasesbanssebaasssnsssras 77

Broadcom AFBR-S50-PG102

5

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 1: Introduction

The API for the AFBR-S50 sensor family is not bound to specific features of one microcontroller and the software can
therefore be ported to a variety of microcontroller units (MCUs). However, the primary features need to be adapted to the
specific hardware of a different MCU.

This document explains the necessary steps to allow the example application from the AFBR-S50 SDK to run on a different
MCU model and manufacturer, with the Nucleo-F401RE board carrying the STM32F401RETx MCU with one Cortex-M4
core as an example.

The document describes one way to include the software to a different vendor's IDE, including the setup of the project
structure on a step-by-step approach, and the code changes required to access the required hardware on the new MCU.

It does not cover the aspects of building without an IDE, and it relies on platform abstractions provided by the platform
manufacturer.

NOTE: Referto the APl Reference Manual for more information on the APl usage. The manual can be accessed by either
local using the installed SDK or online using GitHub. In case of a local installation of the SDK, open the AFBR-S50
Explorer and go to Help > API| Reference Manual. The online version can be accessed here:
https://broadcom.github.io/AFBR-S50-API/.

ATTENTION: The figures and illustrations are specific to the STM32CubelDE and the Nucleo-F401RE board, while the
steps and basic procedure should be similar on other boards.

1.1 AFBR-S50MV85G-EK Evaluation Kit Software

The software that is part of the official AFBR-S50MV85G-EK evaluation kit consists of two parts:
m A static library containing the logic required to control the AFBR-S50 device and perform measurements.
= Applications that operate the device, like the simple ExampleApp as a starting point for your application development.

The library can be either obtained by installing the SDK that includes the source and header files as well as the library files
or using the GitHub repository here: https://github.com/Broadcom/AFBR-S50-API.

Use the GitHub repository because it contains the latest available version of the API. The guide follows the steps using the
GitHub repository but tries to comment on differences when using the installed SDK version.

The GitHub repository already contains the ported version of the API for the STM32F401RE that can be used directly. Note
that the given code differs slightly from the resulting version of this guide due to different file structure and additional features.

Note that the library with the device logic is designed to be independent from the MCU hardware, so that it can be compiled
and distributed independently from the actual MCU model and therefore will be made available to you in binary form.

To allow this independency, the access to the actual hardware is modeled by a hardware abstraction layer (HAL), which
provides the functionality to access the device. This is an API that must be implemented on the application side and is used
by the AFBR-S50 library.

This document provides a guide on how to implement the required HAL API on your targeted device and to get the example
application running.

Broadcom AFBR-S50-PG102
6

https://broadcom.github.io/AFBR-S50-API/
https://broadcom.github.io/AFBR-S50-API/
https://github.com/Broadcom/AFBR-S50-API
https://github.com/Broadcom/AFBR-S50-API

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 2: Phase 1: Installing and Preparing the IDE

Many compilers and IDEs are available for various microcontrollers, most of which have a commercial license.

However, most manufacturers of Arm-based MCUs offer also a free IDE with an integrated version of the ARM toolchain,
which is most frequently a specifically adapted version of the eclipse IDE that has special support for their MCUs.

While the basic steps for porting the software that is part of the official AFBR-S50MV85G-EK evaluation kit are similar, the
individual steps in this guide are illustrated using an IDE called STM32CubelDE by ST Microcontrollers.

Step 1. Downloading and Installing the IDE

The first step is to download and install the IDE from the web site of ST Microcontrollers, currently available from the following
link.

https://lwww.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-
development-tools/stm32-ides/stm32cubeide.html

Follow the instructions of the installer.

Step 2. Defining the Workspace
The workspace is the area where all projects regarding the device live.

You can either use the default, or create a new workspace for the project (File > Switch Workspace > Other...).

Figure 1: Switching to a Project Workspace

[} STM32CubelDE Launcher X

Select a directory as workspace
5TM32CubelDE uses the workspace directory to store its preferences and development artifacts.

Workspace: .\”| C:\Users\usernamej\STM32CubelDE\workspacejrgus w Browse...

[] Use this as the default and do not ask again

» Recent Workspaces

In this example, a new workspace is created with the name "workspace_argus" for the user _username_, which is the name
of the user logged in.

Step 3. Creating a Native Project
First, start with a project for the targeted board or processor type.

In the example, this is done by selecting Start new STM32 project from the startup menu.

Broadcom AFBR-S50-PG102
7

https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-ides/stm32cubeide.html

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 2: Starting a New Project in the IDE

ce_argus - STM22CubelDE

& @ Information Center 32

&

@ s1m32cubelDE Home

project

Quick links

e Refactor Navigate Search Project Run Window Help

Welcome to STM32CubelDE

Start a project

=

(3 |

Start new STM32 mport >w 1 TS
project

| Read STM32CubelDE Documentation

[Getting Started with STM32CubelDE

|Q Explore What's New in STM32CubelDE

The advantage of using the manufacturer's IDE to create the project is that it can create an initial setup tailored to the used
board or microcontroller. Therefore, the next step is to select the used board or MCU from the selection list.

In this example, this is the NUCLEO-F401RE evaluation board, which features the STM32F401RE microcontroller.

Figure 3: Target Board/MCU Selection in the IDE

[sTM32 Project

Oscillator Freq. From 0 to 25 (MHz

Part Number Search 5
v

Vendor >
Type >
MCU/MPU Series >
Other i
Price From 0.0 to 560.0

& @
0.0 560.0

* }lq—)k ﬁ."'

]
Target Selection
Select STM32 target
Board Filters
Features Large Picture Docs & Resources

v NUCLEO-F401RE

STMicroelectronics NUCLEO-F401RE
Board Support and Examples
Unit Price (US$): 13.0
Active
Productis in mass Mounted device:

production STM32F401RETx
Boards List: 143 items ™ Export
- | Overvew | partiio | Type IWarketing] unit Price _fuounted D]
ety

J NUCLEO-F401RE Mucleo6d Active 13.0
if

A ety

Peripheral it
Bl o -
@ < Back Fish | Cancel
Broadcom

AFBR-S50-PG102
8

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Next, you must choose the project name and set options.

Figure 4: Target Setup in the IDE

L STM32 Project a X

Setup STM32 project

Project
Project Name: ‘ Argus_Example App_STM32F401
[Use default location

Location: |C:x’Usersf_usemame_!fSTMRCubelDEa'workspace_argus Browse...

Options
Targeted Language
®C OC++
Targeted Binary Type
(®) Executable () Static Library

Targeted Project Type
® STM32Cube (O Empty

The name can be chosen freely, for example, according to your company's standards, as can be the targeted language.
Because the example uses the native type as the targeted project type, the IDE generates a project that already contains
specific code for the architecture.

Click Finish to create the project.

ATTENTION: You might see a prompt about whether to initialize all peripherals with their default mode. If this occurs, click
No to follow the instructions.

Because the project is created specifically for the object type, several files containing platform-specific code are generated
by default in the project's structure.

Broadcom AFBR-S50-PG102
9

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 5: Automatically Created Project Structure

7 Project Explorer E3 BES Y & = 0

L9 Argus_ExampleApp_STM32F401RE
[l Includes
w 2 Core
= Inc

= Src
(= Startup

w 2 Drivers
= CMSIS
= STM32Fdxx_HAL Driver
o Argus_Examplefpp_STM32F401RE.ioc
w STM3ZF40MRETX_FLASH.ID
1 STM3IZFA0TRETH_RAM.Id

2.1 File Structure

Four types of files exist in the project:

Files that belong to the AFBR-S50 SDK

There is no need to adapt these files, and they should live outside the workspace.
They are linked from the project using the include path of the compiler.
Automatically generated files that belong to the target projects

These files are those imported or generated by the wizards of the IDE and the files from the device application. They
should be part of the workspace.

The IDE creates them automatically in the Core folders for the files that are specific to the project and the Drivers
folder for the included predefined files from the source distribution.
Manually generated platform hardware layer

These files implement the hardware layer API required by the AFBR-S50 library to access the peripherals, such as SPI
or timers. The files connect the AFBR-S50 to the underlying platform by using the automatically generated drivers from
the SDK. The header files that define the interface are provided in the AFBR-S50 platform folder.

A corresponding Platform folder for these files is created in the next step.

Manually generated files that belong to the target projects

These files are created in the editor and belong to the device application. They should also be part of the workspace.
An App folder is be created for these files.

Step 4. Creating the File Structure

Create the following folders as source folders in the Project on the top level. This is done using the context menu of the
Argus_ExplorerApp project in the Project Explorer (New > Source Folder).

Platform
App

ATTENTION: It is essential to create a Source Folder rather than Folder. Otherwise, the source files are not compiled with

the IDE.

Broadcom AFBR-S50-PG102

10

AFBR-S50 SDK Programming Guide

Figure 6: Creating the Source Folders in the IDE
E MNew Scurce Folder
Source folder

Add a new source folder

Porting Guide to a Cortex-M4

—4
Project name: | Argus_ExampleApp_STM32F401
Folder name: | _NAME

Browse..,
Update exclusion filters in other source folders to solve nesting.

Browse...

@

Cancel
Figure 7: Project Structure with New Folders

{5 Project Explorer &3

BESY § 7
W E Argus_ExampleApp_STM32F401RE

g B
des

b = Src

b = Startup
w 2 Drivers

s G CMSIS

= o HAL Driver
» 2 Platform

& STM3

| 1o

pleApp_STM32F401RE.ioc
2FA01RETX_FLASH.Id

STM32F401RETH_RAM.IM

Broadcom

AFBR-S50-PG102

1

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 3: Phase 2: Obtaining the AFBR-S50 API

The required source and library files for the AFBR-S50 API can be obtained in two ways: installing the AFBR-S50 SDK on
Windows that includes all required files or by cloning the AFBR-S50 API repository from GitHub. Use the latter because it
contains the latest version of the API. The subsequent chapters assume a cloned repository, but comments are added for
differences on the installed SDK approach.

Perform one of the following steps, and then proceed to Chapter 4, Phase 2: Addition of the MCU Devices with the IDE:
m Step 5. Clone or Download the Repository from GitHub
m Step 6. Alternatively Download and Install the SDK from the Broadcom Webpage

Step 5. Clone or Download the Repository from GitHub
1. Visit the GitHub repository; go to https://github.com/Broadcom/AFBR-S50-API.

2. Perform one of these actions:

— If you are familiar with Git, clone the repository as usual.

— Otherwise, download a zipped version of the code base using Code > Download ZIP (see Figure 8).
3. When downloaded, unzip the archive to a known path; for example, C:\.

The code is now in C:\\AFBR-S50-API-main (Figure 9).

Figure 8: Download the AFBR-S50 APl Code Base as a ZIP Archive

O Search or jump to... / Pulls Issues Marketplace Explore
=] Broadcom/AFBR—SSO—API Public & Unwatch - 5 # Unstar 10 % Fork | 1
<> Code (@ lssues 1 'l Pull requests @ Security |2 Insights @3 Settings

¥ main - Go to file Add file ~ m About]

AP for the AFBR-550 Time-
T% cberger Added STM32F401RE Exar B3 Clone ® | Of-Flight Sensor Family.
HTTPS S5H GitHub CL

& www.broadcom.com/prod...

github/workflows Add AFBI git@github.com:Broadcom/AFBR-558-API.git [j
AFBR-550 Added H| Usea password-protected SSH key. O Readme
Projects Added 51 B8 BSD-3-Clause License
[Y) Open with GitHub Desktop
Sources Added S1
[.gitattributes Add AFBI] [Download ZIP Retee @
[.gitignore Add AFBR-S50 APl v1.2.3 Smonthsago | AFBR-SSOAPIVI.... {latest)
on Aug 13
[LICENSE nitial commit 6 months ago =
+ 1 release
¥ READMEmd Clean MCUXpresso Projects 5 months ago
Broadcom AFBR-S50-PG102

12

https://github.com/Broadcom/AFBR-S50-API

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 9: Root Folder of the Unzipped APl Repository

| [|| = | AFBR-S30-APl-main

Share View

« v hH » This PC » Windows (C:) » AFBR-550-APl-main »
Name h Date modified
7+ Quick access
.github 2021-09-09 11:40
& Box AFBR-550
> [This PC RS
Sources
o= FROM-KL4EZ (E) _'| .gitattributes
o Network .gitignore
| | LICENSE
README.md

Type

File folder
File folder
File folder

File folder

GITATTRIBUTES File
GITIGNORE File

File
MD File

Size

TKB
1KB
2KB
SKB

Step 6. Alternatively Download and Install the SDK from the Broadcom Webpage

1. Go to the Broadcom AFBR-S50 Product Page
(https://www.broadcom.com/products/optical-sensors/time-of-flight-3d-sensors); select any part number; and under
Downloads, select Software Development Kit and download AFBR-S50-SDK-basic.

2. After downloading the file, install the SDK by following the instructions of the installer.
After the installation has finished, the API files are under <INSTALL_DIR>\Device\API\AFBR-S50

(default: C:\Program Files (x86)\Broadcom\AFBR-S50 SDK\Device\APl) (Figure 10).

Figure 10: API Folder of the Installed SDK

| 4 [| = | AFBR-530

Share View

<« v hH » ThisPC » Windows (C:) » Program Files (x86) » Broadcom » AFBR-5305DK » Device » APl » AFBR-550
MName Date modified Type
7 Quick access
Include 2021-0 File folder
& Box Lib File folder
[This PC
Broadcom AFBR-S50-PG102

13

https://www.broadcom.com/products/optical-sensors/time-of-flight-3d-sensors
https://www.broadcom.com/products/optical-sensors/time-of-flight-3d-sensors

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 4: Phase 2: Addition of the MCU Devices with the IDE

Now you need to add the hardware devices on the MCU and their configuration and initialization.

Two options are usually available:
= Manually create the device configuration.
m Have the device configuration automatically created by the wizard.

The first option is always possible and does not depend on the IDE. On the other hand, it requires a more detailed knowledge
of the MCU type and the I/O hardware registers, on the manufacturer's software that comes with it, or both.

Therefore, the second option is chosen, but it is difficult to explain all the steps in detail, so that they can be reproduced in
a similar fashion on a different vendor's hardware. In addition, the focus is on what exactly is set up, so that the description
is also helpful if the first approach is chosen.

Step 7. Opening the Device Configuration Tool in the IDE

The STMCube32 IDE has a device configuration tool, in which the setup of the hardware can be defined graphically. This
tool can be opened by clicking Argus_ExampleApp_STM32F401.ioc in the project folder.

Figure 11: Opening the Device Configuration Tool

m workspace_argus - Argus_ExampleApp_STM32F401/App/main.c - 5TM32CubelDE — O >
File Edit Source Refactor Mavigate Search Project Run Window Help

mi@idim- | B~ K-~ - ®

: - ~ta G- v‘ ’_’} (i} Quick Access : = | B 4

If Project Explorer E3 [

v [Argus_ExampleApp_STM32F401
-i;;ﬁ' Binaries

J
|

]
h

[Includes
= API

2 App

2 Core
(2 Drivers

O i I I

=

= Debug

=| Argus_ExampleApp_STM32F401 Debuggaunch
[Z Argus_ExampleApp_STM32F401.ioc <:
= STM32F401RETX_FLASH.Id

[Tn STM32F401RETX_RAM.Id

B widdhn

[0 Argus_ExampleApp_STM32F401/Argus_ExampleApp_STM32F401.ioc

4.1 Clock Configuration

The board must have a valid clock configuration to operate the compute core and the peripheral devices at valid frequencies.
Choose the highest valid frequencies to operate at optimal speed.

In the IDE, this configuration can be selected in the Clock Configuration section of the device configuration tool. This includes
the configuration of the oscillators for the board and their frequencies. In the predefined board example, the only required
setup is the multipliers and dividers to get the correct frequencies for the system clock and the peripheral clocks.

Broadcom AFBR-S50-PG102
14

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

For performance reasons, the device should operate the MCU processing core and the peripheral devices at the maximum
speed according to the data sheet, which is 84 MHz for the core and most internal clocks, and 42 MHz for the PCLK1 (that
is, APB1 peripheral clocks). Figure 12 shows how to enable the external RCC that is used for the timers. Figure 13 shows

the appropriate prescaler values. Make sure that all resulting clock frequencies (the values on the very right of the graph in
Figure 13) are correct.

Figure 12: Pinout & Configuration Tab

[*Argus_ExampleApp_STM32F4010c 52

» Pinout & Canfiguration

v Software Packs v~ Pinout
Q & RCC Mode and Configuration : £ Pinout view
Categories | A- :
System e 44 High Speed Clock (HSH) [BYPASS Clock Source ~]
- Low Speed Clock (LSE |Cryala\fCeramiE Resonator V|
DMA [Master Clock Qutput™®
‘:’V\f[']% [Master Clock Output 2
[Audio Clock Input (125_CKIN)
& RCC
GPR_EXTIS
RCC_0SCT2_ N
WG RCC_0SC3R2 OUT
RCC_osc
RCC_OSC_OUT
Analog >
Configuration
Timers >
Reset Configuration
Connectivity ¥
12¢1
@ 12c2 Search Signals USART2 T
12C3 :
SO0 E
@ SP1 : 3 g E
iz Signal on Pin |GPIO output...| GPIO mode [GPIO Pull-u...[Max] o :
SPI3 PC14-0SC3... RCC_OSC3... nfa n/a nia nia 5 g
USART4 PC15-0SC3... RCC_OSC3... nfa n/a nfa nfa
USART2 PHO - OSC_IN RCC_OSC_IN n/a nfa nfa nfa
USARTE PH1-0SC__.RCC_OSC_.._ n/a n/a nia nia
USB_OTG_FS = 1
@ OO a b & Q

NOTE: For further information on RCC mode, go to
https://wiki.st.com/stm32mpu/wiki/RCC_internal_peripheral.

Broadcom AFBR-S50-PG102

15

https://wiki.st.com/stm32mpu/wiki/RCC_internal_peripheral

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 13: System Clock Configuration in the IDE

[workspace_argus - Device Configuration Tool - STM32CubelDE
File Edit Navigate Search Project Run Window Help

N-HR - AR -0 - Ayl E o

& ["Argus ExampleApp STM32F40lioc 33

-t @

Clack Configuration

Q i@

L

4.2 S2PI (= SPI + GPIO) Layer

The S2PI layer is a combination of SPI and GPIO. It concerns all data lines to the ToF sensor.

Step 8. SPI Basic Setup

») Resolve Clock Issues
Input frequency
LsE | F—‘—[To RTC (KHa)
- LS R —l®
| v T LK to AHB bus, core
EEE System Clock Mux " T Cortex System timer (MHz)
HSI
> 84 LK Cortex clock (MHz)
SYSCLK (MHz) AHB Prescaler HCLK (MHz)
HSE|
84 H ¥, e 84 42 PE1 peripheral clocks (MHz)
PLLCLI
PLL Source Mux —» (@ P81 Timer clocks (MHz}
e i~ bB2 peripheral clocks (MHz)
» Erats s
Inp pecuency s v 6 v i
HSE N e PB2 timer clocks (MHz)
H 7 | MHz clocks (MHz]
| 1 ‘
Main PLL a \ J
! R rl ‘ 25 ¢ z

&

The first task is to determine or identify the GPIO lines that are connected to the device.

For the SPI connection alone, you need four GPIO pins directly to address the device:

1. SPI clock (SCK)

2. SPI master in/slave out (MISO)
3. SPI master out/slave in (MOSI)
4.

SPI slave select (SS or NSS), usually called chip select (CS) by the slave

Because the SPI interface can only be operated by the microcontroller as master, an additional input GPIO line is required
to allow the device to signal when the requested data is available. From the board layout, this pin is D9 on the board, which

maps to PC7 on the MCU. It is called IRQ in the following section, and is active low.

Broadcom

AFBR-S50-PG102
16

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

From the device adapter on the board, these can be mapped to the external names that they correspond to as shown in the
following figure.

Figure 14: Nucleo-F401RE Board View

L L A A A AN A AN BN RN AR BN B B B N

o
°
.
e
.
o
o
.
.
°
e
o
°
e
.
.
.
e
e

The GPIO lines can be determined from the board specification.

Table 1: SPI GPIO Mappings

Function Marking on the Board External Pin GPIO on the MCU
SCK SCK/D13 D13 PA5
MISO MISO/D12 D12 PAG
MOSI PWM/MOSI/D11 D11 PA7
NSS PWM/CS/D10 D10 PB6
IRQ PWM/D9 D9 PC7

Usually, several SPI controllers are on a microcontroller, so the correct one must be chosen. Here, the controller is identified
with the vendor's documentation as SPI1. However, although one of the printed names of the board is CS, NSS of SPI1
corresponds to GPIO PA4, not PB6.

Unfortunately, this means that the NSS must be set up and operated manually. On the other hand, you could attach more
than one slave to the same SPI interface; for example, another AFBR-S50 device. This, however, is out of the scope of this
document.

Broadcom AFBR-S50-PG102
17

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

If the device is attached to the native NSS of your board, you can choose this NSS to be operated by hardware. In this case,

skip all of the following steps for special handling of NSS using software. On this board, hardware operation must be
disabled.

To set up the physical parameters of the SPI interface, you need to know the operation parameters of the device. This means
that the clock polarity should be high (in idle state), and the data is captured on the second (rising) edge of the clock signal.

In addition, the SPI implementation of the STM F401RE only allows the SPI clock speed to be the system clock speed (which
is also the MCU clock speed) divided by a power of 2, the prescaler. Because the system clock speed is 84 MHz, choose a
prescaler of 4 to yield an SPI speed of 21 MHz.

All of these parameters can be chosen in the IDE as shown in the following figure.

Figure 15: SPI Base Settings in the IDE

[XE workspace_argus - Device Configuration Tool - STM32CubelDE = (m| X
File Edit Source Refactor MNavigate Search Project Run Window Help

03 |2~ Q- BN Q@G E- S I-C it Qi®
=ik [Quick Access || g | (BRI 4

€] main.c [€] stm32f4xx_h... [£] stm32fdxx_h... s ey =

Tools

&
R 2
Q SPI1 Mode and Configuration : =]
L Mode \Ful!vDupIex Master v ‘)

Syste... > Hardware NSS Signal |Disable v ‘

& I

5 -
Analog Configuration

Timers > Reset Configuration

ttings @ DMA Settings

Conne.. = .
Parameter Settings
|Configure the below parameters
12C1
12C2 Q /7‘
ggﬁo ~ Basic Parameters
m Frame Format Motorola
SPI2 Data Size 8 Bits
SPI3 First Bit MSB First
USART1 ~ Clock Parameters

USART2 Prescaler (for Baud Rate) 4
USARTE Clock Polarity (CPOL) High
UsB_0T Clock Phase (CPHA)

—

~ Advanced Parameters

CRC Calculation Disabled

i

NOTE: If SPI1is marked with a conflict, the pins may be already used. In the Pinout View, find the corresponding SPI pins
(PA5, PA6, PA7, PB6, and PC7) and disable them (select Reset_State) before setting up the SPI interface. The
maximum possible SPI frequency for the ToF sensor is 30 Mb/s. The prescaler must be chosen accordingly.

Broadcom AFBR-S50-PG102
18

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 16: Disabling Unused Pins Prior to Setup to Prevent Conflicts

Clo
Vv Software Packs v Pinout
q

] [12C2 Mode and Configuration
Erma Node

o BSJDisable ~]

onfiguration

Pinout & Configuration

£ Pinout view

System Core

Analog

Z Configuration

Timers

Connectiity

Step 9. SPI DMA Setup

With an SPI speed of 21 MHz, the data transfer rate is very high, and therefore, the transfer mechanism for the SPI data

should be direct memory access (DMA).

This requires additional configuration. Usually, two independent channels for data transmission (TX) and reception (RX)
must be set up. No special configuration is necessary for these channels, so they can be activated in the IDE by clicking

Add twice and selecting each channel as shown in Figure 17.

Broadcom

AFBR-S50-PG102
19

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 17: SPI DMA Settings in the IDE

m workspace_argus - Device Configuration Tool - STM32CubelDE

File Edit Source Refactor Mavigate Search Project Run Window Help
iM-HR -/ -RiNigdd-E--@-itt-Q-i®dy-iFE
M flrC oo |2 O

el mAlgus_Exampl..“? 2 | [€] main.c

= 5

[€] stm32f4xx_h... (€] stm32fdxx_h... [h] stm32fdxx_h... »y
~ Pinout
SPI1 Mode and Configuration
Categories Mode
System Core > Mode |FuII-DupIex Master ~ ‘
Hardware NSS Signal |D\sable ~ ‘
Analog >
. Configuration
Timers
Reset Configuration
Connectivity
@ DMA Settings

12C1

12c2 DMA Request

12C3

sDI0 SPIH_RX DMAZ Stream 0 Peripheral To Memory Medium

m_ SPIt TX DMAZ2 Stream 3 Memory To Peripheral Medium

SPI2

SPI3 Ak

USART1

USART? DMA Request Settings

USARTE Peripheral Me

UsB_0TG |
O Mode Increment Address O
Multimedia ? Use Fifo [Threshold |:| Data Width Byte
Computing > Burst Size l:l -

.

WhE v A06H= s

[Guerhecms | | I

Step 10. NSS/IRQ GPIO Setup

Now, the two remaining GPIOs must be set up manually.

Navigate to the GPIO setup page by selecting Pinout & Configuration > Categories > System Core > GPIO.

For the NSS GPIO line, the type is set to GPIO output line on the CS pin (PB6) identified by the board review.

Broadcom

AFBR-S50-PG102
20

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 18: NSS GPIO Type Selection in the IDE

i Pinout & Configuration

|

File Edit Scurce Refactor Mavigate
iC-ER ®-R-EiwQIdE-B-F-TFritt-Q-i®S
BURE IR A RER SR Al i |

& | [Argus_Exampl... 53 | [main.c

m workspace_argus - Device Configuration Tool - STM32CubelDE

Search Project Run

|| stm32fdxx_h...

Additional Software
GPIO Mode and Configuration

Window Help

startup_stm...
5] startup,

[Show All

v

[s GPIO|

)

o e N
} Search Signals

WDG [Show only Modified Pins

N | [sio[cPlcPL[GP [Ma. Juse. [Mo.]

o I PA5 SPl__nfa Alte_ No ... Ver.. O

\;/VWD PAB SPl..nfa Alte. No .. Ver.. O

- PAT SPl..nfa Alte..No .. Ver. O

PB6 nfa Low OQut.. No .. Low |

Analog > PC7 nfa nfa Ext. Pul. nfa
Timers >
Conn... »
Multi... »
Com... »
Midd... >

o) Select Pins from table to configure them.
Multiple selection is Allowed.

v a

€] stm32fxx_h...

[avnces || | B 4

|| stm32fdxx_h...

Reset_State
12C1_SCL

EVENTOUT
GPIO_EXTI

STM32F401RETxX
LQFP64

£
6

&l

= A

GPO_BXT

v A
U T e i Y o s =

Broadcom

AFBR-S50-PG102
21

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

For the interrupt GPIO line, the type is set to external interrupt on the IRQ pin (PC7) identified by the board review.

Figure 19: IRQ GPIO Type Selection in the IDE

ﬁ workspace_argus - Device Configuration Tool - 5TM32CubelDE - O *
File Edit Source Refactor MNavigate Search Project Run Window Help
- EHR -SRI IS - S G- hi® D E
G- fl-ee-D- M0 [QuickAccess || % | B 4
5 [irgus Eremold 57 6 maine [stm32fdee b, [§] startup_stm... [§] stm32fdxx b [R) stm32f h... w =85 g
el Pinout & Configuration 4l
s h=
Additional Software =]
Q GPIO Mode and Configuration : =]
‘
.
[Show Al] it
. b]
mﬂ Search Signals
WDG |I| [1 Show enly Modified Pins
S| _[sio for ferfepi fMa use [Mo]
1 PA5 SPI__nfa Ale Mo .. Ver . O
WWD PAG SPl__nfa Alte Mo . Ver . O
- PA7 SPl..nfa Alte.. Mo.. Ver.. O
PB6 nfa Low Out.. No.. Low O
/! /! /
Anlog > PC7 nfa nfa Ext. Pull..n/a
STM32F401RETxX
Timers » LQFP64
Conn... *
Multi... *
Com... »
Midd... *
-~ o
2 SE‘EI.:I Pins frnrr] tablle to configure them. Q [j '\-_)\ |h ﬂ
Multiple selection is Allowed.
3 a8

Now the detailed settings for these two GPIO pins can be modified.

For the NSS GPIO line (PB6), all other parameters are simply selected as for the SPI output lines:
= GPIO output level = High

m GPIO Mode = Output Push Pull

m GPIO Pull-up/Pull-down = No pull-up and no pull-down

m Maximum output speed = Very High

The IRQ line (PC7) is an active low input line, so it should be pulled high by default. In addition, this GPIO must be activated
and configured as an external input triggering an interrupt on the falling edge. Use the following settings:

m GPIO Mode = External Interrupt Mode with Falling edge trigger detection
= GPIO Pull-up/Pull-down = Pull-up

The following figure shows the described configuration in the IDE.

Broadcom AFBR-S50-PG102
22

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 20: IRQ and NSS GPIO Pin Settings in the IDE

m workspace_argus - Device Configuration Tool - STM32CubelDE — [m] X
File Edit Scurce Refactor MNavigate Search Project Run Window Help
NGO HR B-RRBIE S E iR Id I IRE T OO | ®
(oo i m @@ #
5!] stm32fdux_it.c [8) startup_stm... [) s2pic stm32fdxx_h... [<] gpio.c [] main.c [0 “Argus_Exam... 2 | Zgg i 5!
4
= o]
~ Pinout =]
GPIO Mode and Configuration lis]
_ Configuration =
.
[shaw Al N
>
Search Signals
GPEO [sh ly Modified P
\WDG | ow only Modified Pins
[Sgnalon _[GP.| GPIO mode i pul_lhizim.JsaL_Diodtad
PA2 USART2 TX nl’a Alternate Function Push Pull NU pull-up ... Very High
WWDC PAZ USART2 RX nfa Alternate Function Push Pull No pull-up ... Very High |:|
- PAS SPI1_SCK nfa Alternate Function Push Pull No pull-up .. Very High]
PAG SPIH_MISO nfa Alternate Function Push Pull No pull-up ... Very High]
AL PAT SPI1_MOSI_nfa___Alternate Function Push Pull Mo pull-up . Very High O
PBE6 n/a High Output Push Pull No pull-up ... Very High | NSS
Ti > PC7 n/a nfa External Interrupt Mode with Falling edge trigger detection Pull-up nia
- 12| Select Pins from table to configure them. Multiple selection is Allowed.
zl a

4.3 Timer Layer

The timer layer implements two timers: a lifetime counter (LTC) for time measurement duties and a periodic interrupt timer
(PIT) for the triggering of measurements on a time-based schedule.

CAUTION! The lifetime counter is mandatory to heed the eye-safety limits. This timer must be set up carefully to guarantee
the laser safety to be within Class 1.

4.3.1 Lifetime Counter (LTC)

Set up the lifetime counter to deliver the current time in microseconds, with microsecond resolution.
Because it would not be advisable to trigger the SysTick interrupt that frequently, this counter is based on hardware timers.

However, even if a 32-bit timer is used, it wraps after 4294.967296 seconds, which is a little more than one hour of operation.
To avoid this, two 32-bit timers are chained together. In this example, the first timer represents the fractional part of time (that
is, microseconds) and wraps after 1,000,000 ticks. Each tick is exactly one microsecond. The second timer represents the
integer part of time (that is, seconds). It is triggered by the first timer upon restart.

This platform provides two 32-bit timers, TIM2 and TIM5, that are used for the lifetime counter.

NOTE: If your hardware does not have counters of enough width, or not enough counters, you have other options that
require additional code:
e Chain more counters to replace one 32-bit by two 16-bit timers.

e Chain a 32-bit and a 16-bit timer and use the full 32-bit span for the first counter, and determine the seconds in the
code (will wrap after more than 9 years).

Broadcom AFBR-S50-PG102
23

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

e |If the preceding options are not feasible, use a 32-bit or two chained 16-bit timers, and compare the result to the
previously read counter value. Assume that the counter has only wrapped once if the newly read value is smaller
than the previous one, and add 4,294,967,296 microseconds to the counter value.

Step 11. Setting Up the First LTC Timer

Because the STM32F401 provides enough timers, you use the first available 32-bit timer for the first LTC timer, which
is TIM2.

To achieve this configuration, set up the timer as follows:

It should be in normal mode and be triggered by the internal clock.

The counting direction should be UP.

The prescaler value is set in a way that generates the counter value in microseconds:

Because the counter is driven by the system clock, this value is calculated from the system clock frequency:
SystemCoreClock / 1000000 — 1

The counter period should be set to 1000000.

An output trigger is generated when the counter period value is reached.

In the IDE, the following figure shows the setting for this counter.

Broadcom

AFBR-S50-PG102
24

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 21: Configuration of the First LTC Timer in the IDE

E workspace_argus - Device Configuration Tool - 5TM32CubelDE — O *
File Edit Mavigate Search Project Run Window Help

.51. [€] main.c

Conn...

el Pinout & Configuration Clock Configuration

Additional Software

m *Argus_ExampleApp_STM32F401ioc &3

MR - R-BiQR S H-Q-id - - CC-2- O

(o]| 2| BIE#

=g

&
-
Project Manager -
: =]
v Pinout
TIM2 Mode and Configuration N

Categories
L Slave Mode |Disable V|
Syst... Trigger Source Disable V|
Clock Source |Internal Clock V|
Analog
Channel1 |Disable ~]
Timers Channel2 |Disable v]
Channel3 |Disable ~]
RTC -
TV Channeld |D|Sable ~ |
=> Combined Channels [Disable V|
T|M3 [0 Use ETR a ng Source
: [0 XOR ation
TIMY
TIMA0 [J One Pulse Mode
TIM11 — -
Configuration

Configure the below parameters :

~ Trigger Qutput (TRGO) Parameters
Master/Slave Mode (MSM bit)
Trigger Event Selection

Multi....
Com._ Qfsearcn Gt] © ©
“~ Counter Settings
Middl... Prescaler (PSC - 16 bits value) SystemCoreClock / 1000000 -1
Counter Mode Up
Counter Period (AutoReload Reg.| 1000000
Internal Clock Division (CKD) No Division
auto-reload preload Disable

Disable (Trigger ingut cffect not delayed)
Update Event

NOTE: To enter an expression into the Prescaler parameter field, the parameter check has to be disabled before.
Otherwise, the expression is cleared to 0. To disable the parameter check, click on the Gear-Wheel symbol that
appears near the Value field and select No check.

Broadcom

AFBR-S50-PG102
25

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 22: Disabling the Parameter Check for the Prescaler Setting

| Li]

~ Counter Settings I
Prescaler (PSC - 16 bits val... SystemCoreClock / 1000000 - 1
Counter Mode Down |
Counter Period (AutoReload... 0 + No check |

Internal Clock Division (CKD) Mo Division

Step 12. Setting Up the Second LTC Timer
Now, you set up the second 32-bit timer for the LTC, which is TIM5.

The second timer is set up as follows:

= It should be in slave mode, with the external source used as a trigger.

m The counting direction should be UP.

m The event generated by the first timer should be used as a trigger (ITRO according to the manual).
m A prescaler is not required (0).

= The counter should count to the maximum value (OXFFFFFFFF).

Broadcom AFBR-S50-PG102
26

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 23: Configuration of the Second LTC Timer in the IDE

E workspace_argus - Device Configuration Tool - 5TM32CubelDE — O *

File Edit Mavigate Search Project Run Window Help

B-BR ®-%-BiQdi%-Q-9-id-5-CE-0- |20
[uickaccess || ¢ | B 4

51 [€] main.c m *Argus_Examplefpp_STM32F401.ioc &3 = =
- -
e=l Pinout & Canfiguratian Clock Configuration Project Manager Tools ="

2

v Pinout

TIM5 Mode and Configuration :
Slave Mode |External Clock Mode 1 ~ |

Syst... » Trigger Source |ITRU V|
[Internal Glock
Analog >
Channel1 |Disable v]
Timers Channel2 |Disable v]
4 Channel3|Disable v]
RTC -
IV Channeld |D|Sable ~ |
C “hannels |Disable |
TIM3
] XX clivatior
CoDIE OJ One Pulse Mode
TIM3
TIM10
TIMAA :
Configuration
Reset Configuration
Conn... »
@ Parameter Settings
Multi_.. > Configure the below parameters :

com.. > fQfechcrn] @ © @
~ Counter Settings
Middl... » Prescaler (PSC - 16 bits value) (0
Counter Mode Up
Counter Period (AutoReload Re§... OxFFFFFFFF
Internal Clock Division (CKD) Mo Division
auto-reload preload Disable
Slave Mode Controller ETR mode 1
~ Trigger Output (TRGO) Parameters

Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)
Trinnar Fusnt Qalartinn Racat (1113 hit frnm TNy FERL

4.3.2 Periodic Interrupt Timer (PIT)

The periodic interrupt timer triggers the ToF measurement periodically. By using a dynamic configuration of the prescaler
and the counter value, a 16-bit counter should be sufficient. The example uses the 16-bit counter TIM4.

This timer is set up as follows:
= |t should be in normal mode.
= The counting direction does not really matter, DOWN is selected.

Broadcom AFBR-S50-PG102
27

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

m The prescaler and counter values are set dynamically later when activating the counter.
= An interrupt is generated when the counter reaches O.

Figure 24: Configuration of the PIT Timer in the IDE

m workspace_argus - Device Configuration Tool - STM32CubelDE - m] X
File Edit Mavigate Search Project Run Window Help
O-HR B2-KR-BiQGiH-AU-id -5 - 0020

5| m@*
| s [~Argus_ExampleApp_STM32FADioc 52 =

t=l Pinout & Configuration

v Pinout

TIM4 Mode and Configuration :_
Catagoris |
Slave Mode ‘Disab\e V\
5.2 Trigger Source ‘DISEb\E ~ ‘
4 Internal Clock
Y I 4 Internal Cloc l
Channel1 |D|sable V‘
Ti v Channel2 [Disable v
s Channeld |Disable . ‘
RTC
TV Channeld |D|sable V‘
Combined Channels |Disable ~ ‘
TIM3 D aptivatin
[One Pulse Made
TIMS
TIM10
TIM11 — -
-
Reset Configuration
Cie >
M. > (Configure the below parameters : .
c. > Q © @ ﬂ
~ Counter Settings
M. > Prescaler (PSC - 16 bits value) SystemCoreClock / 1000000 - 1
Counter Mode Down
Counter Period (AutoReload Regi]. 0
Internal Clock Division (CKD) Mo Division
auto-reload preload Disable
~ Trigger Output (TRGO) Parameters
Master/Slave Mode (MSM bit) Diszble (Trigger jnput effect not delayed)

il
Enable (CNT_EN)

Trigger Event Selection

4.4 Optional: UART

To be able to log from the example application, the UART interface must be set up. The demostation applications use the
UART to stream data using a serial connection that can be displayed on a connected PC. To completely follow the
instructions in this guide, the UART implementation is mandatory. However, you can use a different approach to extract the
measurement data or directly reuse it in the program. The AFBR-S50 API does not depend on the UART interface, and,
thus, it is marked as optional module.

The implementation of the UART layer as demonstrated here does not result in an actual serial line, but it is a virtual serial
line provided over the USB port.

For the UART, the default settings are a good starting point (8N1). The default baud rate of 115,200 could also be increased
to be able to log even at high frame rates.

Broadcom AFBR-S50-PG102
28

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

The configuration in the IDE looks like the following figure.

Figure 25: UART Configuration in the IDE

10| workspace_argus - Device Configuration Tool - 5TM32CubelDE - O X
File Edit Navigate Search Project Run Window Help

BN DR BRIl H oD@

.‘;,l. (€] main.c L] spi.c

Categories

System Core >

Analog >
Timers >

Connectivity ™

SPI2
SPI3
USART1

USART6

USB_OTG_FS
Multimedia >
Computing >

Middleware 2

Pinout & Configuration

[avaccs | | @IE 4

] s2pi.c |g] *main.c [€] board.c) coph | gpioh Py SO 5
-,
Clock Caonfiguration Project Manager =*
- =
Additional Software
e USART2 Mode and Configuration :
IMode Asynchronous I v
Hardware Flow Control (RS232) lDisabIe v ‘
Reset Configuration
© Parameter Settings
Configure the below parameters
Q =
~ Basic Parameters
Baud Rate 115200 Bits/s
Word Length 8 Bits (including Parity)
Parity None
Stop Bits 1
~ Advanced Parameters
Data Direction Receive and Transmit
QOver Sampling 16 Samples
8

As for SPI, you want to be able to use DMA for sending, so the DMA must also be set up.

Broadcom

AFBR-S50-PG102
29

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 26: DMA Settings for UART in the IDE

m workspace_argus - Device Cenfiguration Toel - STM32CubelDE - O X
File Edit Mavigate Search Project Run Window Help

Qdin-LEI®-R-Bik-Q-if-il-i-ee-2- |20 [uickAccess || g% | B[4
75! [€] main.c] spic [€) s2pi.c [€] *main.c fx | pl..! 22 | [c] board.c Tl coph T gpioh) =

Pinout & Configuration

O

v Pinout
USART2 Mode and Configuration

System Core > Mode |Asynchrnnnus ~ |
Hardware Flow Control (RS232) |D|sab\e w |
Analog >
Timers >
Configuration
Connectivity
Reset Configuration
12C1 Settings
12C2
12C3
SDIo
USART2_RX DMAT Stream 5 Peripheral To Memory Low
sp|2 USART2 TX DMA1 Stream 6 Memory To Peripheral Low
SPI3

4.5 Interrupt Configuration

Now all devices have been set up, but they also depend on interrupts that must be configured:
The DMA transmit and receive complete interrupts for the SPI interface

The external interrupt for the AFBR-S50 device

The timer interrupt for the Periodic Interrupt Timer

The DMA transmit and receive complete interrupt for the UART interface

All of these interrupts can be assigned with a preemptive priority: interrupts with a lower priority number actually have a
higher priority.

Of the previously mentioned interrupts, the UART DMA interrupts have the highest priority (after crucial system interrupts,
which should be left at the maximum priority 0). This is due to the fact that the API might send status and error log messages
from interrupt service routines that should not yield in dead locks.

The SPI DMA interrupts have the second highest priority. Because the complete indication in the STM HAL layer for an SPI
transmit and receive operation is connected to the SPI receive DMA, handle the transmission complete indication first,
because it has the highest priority.

Next, handle the data ready indication of the device (external interrupts) and the start a new measurement (timer interrupt).

After that, the system interrupts that are not critical follow. Here, this is only the SysTick interrupt for the internal clock with
a frequency of 1000 Hz.

Therefore, the following table shows the interrupt configuration.

Broadcom AFBR-S50-PG102
30

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Table 2: Interrupt Priorities

Interrupt

Priority

Critical System Interrupts

UART Rx Interrupts

UART Tx Interrupts

SPI DMA Transmit Complete

SPI DMA Receive Complete

External Interrupt

Periodic Interrupt Timer

SysTick Timer Interrupt

N~ WIN|FL|O

NOTE: If you have fewer interrupt priorities available on your system, it is not required to use such a differentiated interrupt
scheme: External and PIT can share the same priory, UART Rs and Tx also, and on most platforms, SPI Tx and

Rx interrupts can have the same priority, too.

Step 13. Configuring the Interrupts in the IDE

The configuration in the IDE for these values look like those in the following figure.

Broadcom

AFBR-S50-PG102
31

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 27: Interrupt Priority Configuration in the IDE (1)

E workspace_argus - Device Configuration Tool - 5TM32CubelDE — m} *

File Edit Mavigate Search Project Run Window Help

NH-HGE - -2 H-0- Q- g H-F-0E-2- (2O Q i®| @O
‘5 [0 Argus_Examplahpp STM32F40T.icc 52 = &

Pinout & Configuratian

v Software Packs v Pinout

NVIC Mode and Configuration 4

»

Syst.. Priority Grou |4 bits for pre-emption ... V& Sort by Premption Priority and Sub Priority [Sort by interrupts names

DMA Search l:l @ (& [Show only enabled interrupts Force DMA channels Interrupts
m Non maskable interrupt 0 0

v chc Hard fault interrupt 0 0

i 3\:\3[}{ Memory management fault 0 0

— Pre-fetch fault, memory access fault 0 0

Undefined instruction or illegal state 0 0
System senvice call via SWI instruction 0 0

Analog > ;

Debug monitor 0 0
: Pendable request for system senice 0 0

Timers >) .

PVD interrupt through EXTI line 16 O 0 0

e Flash global.interrupt O 0 0

RCC global interrupt O 0 0
¢ TIM2 global interrupt O 0 0
12C1 SPI1 global interrupt O o 0

@ 12c2 EXTI line[15:10] interrupts O o 0
12C3 TIMS global interrupt O o 0
SDID :

v SPi FPU global interrupt S L 0
sp2 DMAT stream5 global interrupt 1 0
SPI3 USART2 global interrupt 1 0
USAR DMAT stream6 global interrupt 2 0

v USAR DMAZ stream3 global interrupt 3 0
USAR DMAZ stream0 global interrupt 4 0
usB_(EXTI line[9:5] interrupts 5 0

— TIM4 global interrupt 6 0

Time base: System tick timer 7 0

Multi... > e, v

[0 Enabled Preemption Priority Sub Priority
&k

NOTE:

e To enable certain interrupts, you might need to disable the Show only enabled interrupts option on top of the
list to see all available interrupts.

e The NVIC configuration warning that states Preemption priorities have been reset to 0 as FREERTOS is
deselected. can be ignored.

Additionally, to simplify the implementation of the following interrupts, the handlers must be automatically generated and
added to the project.

Broadcom AFBR-S50-PG102
32

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 28: Interrupt Priority Configuration in the IDE (2)

E workspace_argus - Device Configuration Tool - STM32CubelDE

& [0 s Exampishpp STMIFA0Tiod 52

= Pinout & Configuration

Categories

System Core

IWDG

Connectivity

C A

RCC Undefined instruction or illegal st...
System service call via SV instr...
WWDG Debug monitor
— Pendable request for system ser.._
Time base: System tick timer
Analog > DMA1 streamb global interrupt
DMA1 stream6 global interrupt
Timers > EXTI line[9:5] interrupts

>

Additional Software v Pinout

NVIC Mode and Configuration

Configuration

¢mmm) | @ Code generation
M Select for init sequence or... |v| Generate IRQ ha... [Call HAL han...
Non maskable interrupt
Hard fault interrupt
Memory management fault
Pre-fetch fault, memory access f...

[<H<H<H<H<H<H<]

TIM4 global interrupt
USARTZ global interrupt
DMAZ stream0 global interrupt

Ooooooooooooooono
L QD < B < < < B I o o o o |

< W< W< W<H<N<H<H<H<

Multimedia > DMAZ stream3 global interrupt
Computing 3 Interrupt unmasking ordering table (interrupt init code is moved after all the peripheral init code)
Interupt name N
Middleware >
gl By
.

- m] pod

File Edit Mavigate Search Project Run Window Help
QO N LB R Bt WP il Gl w20 [oudaces |l | B
= 5 5'
B
=]

4.6 Code Generation

The final step is now to trigger the code generation function from the API.

Step 14. Setting the Code Generation Options

There are three relevant options for the code generation:

= As we want to adapt a different project, the main() function should not be generated automatically, because this would

be conflicting otherwise.

m The heap and stack sizes must be increased to sufficient values of 1 kB and 4 kB, respectively.
m The hardware initializations should be generated in separate files to identify them more easily.

These settings can be made in the Project Manager tab.

Broadcom

AFBR-S50-PG102
33

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 29: Preventing the Generation of main()

[T workspace_argus - Device Canfiguration Tool - STM32CubelDE . [} *
File Edit Mavigate Search Project Run Window Help
oo (M@ Q im| @@
=Rl
Pinaut an Caonfiguration » Project Manager
Project Settings
Project Name
|argus_ExampleApp_STM32F401 |
Project Location
|C:\Users‘«:hberger\STM320uhelDE\workspace_argus |
Application Structure =
|Advanced Do not generate the main() |
-
Toolchain Folder Location
Toolchain / IDE
|ST['V'132CubeIDE | Generate Under Root
Linker Settings
Minimum Heap Size 0:1000
Minimum Stack Size 0x4000
Mcu and Firmware Package
Mcu Reference
[STM32F401RETx
Firmware Package Name and Version
|ST['«132Cube FW_F4 v1.26.2 Use latest available version
Broadcom AFBR-S50-PG102

34

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 30: Forcing Separate Initialization Files

[} workspace_argus - Device Configuration Tool - STM32CubelDE

Clock Configur: S Praoject Manager

¢ Generated fil

' Generate peripheral initialization as a pair of "¢/ ' files per peripheral I
[0 Backup previously generated files when re-generating

Keep User Code when re-generating

Delete previously generated files when not re-generated

HAL Settings

[Set all free pins as analog (to optimize the power cansumption)
[Enable Full Assert

Advanced Seltings
g Template Setting

- [m]
File Edit Source Refactor Mavigate Search Project Run Window Help
(2@ N-HEle-R-mid-&-F-@-i%-Q-i®y-IRF1
BRI RS Rk SR AN I | Eig‘%m#
5 [€] main.c [B) main.h [s2pi.c [stm32f4xx_h... [€] gpioc [Argus Exampl... 33 | g =& 5

4l 0@ G E

‘ Select a template to generate customized code Settings...

Step 15. Performing the Code Generation

The code generation can simply be started by saving the configured setup and then confirming the code generation in the

dialog box, or it can also manually triggered by pressing Alt + K.

Figure 31: Confirming the Automatic Code Generation

m Question

@ Do you want generate Code?

[Remember my decision

Yes | | MNo |

The code generation now creates several files in the Core folder.

Broadcom

AFBR-S50-PG102
35

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 32: Generated Files in the IDE

File Edit MNavigate Search Project Run Window Help
@ & ﬁ'_.:’d“@‘ H-R-H Qi

e =
SRR

Quick Access

[Project Explorer 33
v [Argus_ExampleApp_STM32F401
gg Binaries
[Includes
& API
(2 App

v & Inc
i dma.h
i gpio.h
(b main.h
b spi.h
.h| stm32fdxx_hal_conf.h
\h| stm32fdxx_it.h
4 tim.h
sh] usart.h

e dma.c

.t] gpio.c

.€] main.c

[g spi.c

.| stm32fdxx_hal_msp.c

.c] stm32fdxx_it.c

syscalls.c

.c| sysmem.c

€] system_stm32fdxx.c

.g] tim.c

l] usart.c
v (= Startup

5| startup_stm32f401retx.s
Urivers
(= Debug
|=| Argus_ExampleApp_STM32F401 Debug.launch
[Argus_ExampleApp_STM32F401.ioc
|id STM32F401RETX_FLASH.Id
i STM32F401RETX_RAM.Id

<

@ Argus_ExampleApp_STM32F401/Argus_ExampleApp_STM32F401.ioc

]

E workspace_argus - Device Configuration Tool - 5TM32Cubel... —

These files contain the configurations shown in the following table.

Table 3: Description of Source Files Generated by the IDE

Path

Functions to Be Called

Description

Core/lInc/dma.h
Core/Src/dma.c

MX_DMA_InitQ)

DMA initialization for all peripherals (UART and SPI), with
interrupt settings

Core/Inc/gpio.h
Core/Src/gpio.c

MX_GP10_Init()

Initialization for all GPIO lines not assigned to other
controllers (chip select and external interrupt), with
interrupt settings for the latter

Core/Inc/spi.h
Core/Src/spi.c

MX_SPI1_Init()

Setup of the SPI controller and the used GPIO lines
operated by the SPI controller (CLK, MISO, MOSI)

Core/lInc/tim.h
Core/Src/tim.c

MX_TIM2_InitQ
MX_TIMA_InitQ
MX_TIM5_InitQ)

Setup of the timers used for the lifetime counter (LTC) and
the periodic interrupt timer (PIT), including the interrupt
settings for the latter

Core/lInc/usart.h
Core/Src/usart.c

MX_USART2_UART_Init()

Setup of the UART controller and the used GPIO lines
operated by the UART controller

Broadcom

AFBR-S50-PG102
36

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Table 3: Description of Source Files Generated by the IDE (Continued)

Path

Functions to Be Called

Description

Core/lInc/main.h
Core/Src/main.c

SystemClock_Config()

Setup of the board clock configurations

Core/Src/stm32f4xx_it.c

MX_DMA_InitQ)

Generated interrupt handlers for the configured interrupts,
forwarding the interrupts to the STM32 hardware
abstraction layer (HAL)

Core/Src/syscalls.c
Core/Src/sysmem.c

Minimum required system calls and system memory calls
to support the C standard

Core/Src/stm32f4xx_hal_msp.c

Internally called function for the hardware abstraction layer
setup.

Core/Src/system_stm32f4xx.c

Generated system specific initialization, automatically
called from startup code

Startup/startup_stm32f40lretx.s

Generated board startup code

Broadcom

AFBR-S50-PG102
37

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Chapter 5: Adapting the Generated Data to the Argus API

The next steps are to create the functions required by the API hardware layer interfaces to satisfy the requirements of the

AFBR-S50 library.

To simplify the process, only the most essential header files are created for the STM32 platform. This situation creates the
need to slightly edit the examples in terms of include directives and initialization code.

Step 16. Adding the Required Include Paths

To be able to find the include files, they must be set up in the include path. The following table shows the paths that are to

be added.

Table 4: Additional Include Paths

Path

Description

C:\AFBR-S50-API-main\AFBR-S50\Include

Path to the API include files

App

Path to application include files

Platform

Path to platform

NOTE: The actual path may change depending on the actual repository root or installation directory. Example
installation folder for the case of a cloned or downloaded github repository. Use
<INSTALL_DIR>\Device\API\AFBR-S50\Include if you have used the standard SDK installation.

Figure 33: Added Include Paths in the IDE

[Properties for Argus_ExampleApp_STM32F401 O *
type filter text Paths and Symbols = ~ §
Resource
Builders y =
C/C++ Build Configuratiorl { All configurations | L]\anage Configurations...
w C/C++ General
Code Analysis
Documentation $@ Includes ~ # Symbols =i Libraries (B Library Paths 2 Source Location @ References
File Types
Formatter Languages Include directories Add...
indexer _ GNU C {=! Core/Inc .
Language Mappings Assembly = Drivers/STM32F4sxx_HAL_Driver/Inc
$Eath””d S”Tb‘l"sd . {2 Drivers/STM32F4xx_HAL_Driver/Inc/Legacy Delete
Pl e Tl {2 Drivers/CMSIS/Device/ST/STM32FAxx/Include
CMSIS-5VD Settings ﬁ.\'“ 5 = R Export
; ol ShAGIG
Project References T3
Refactering History "g e Move U
IR Move Up
Run/Debug Settings gPlatform I
(1= C\AFBR-550-API-main\AFBR-S50\Include
—F Move Down
Using relative paths is ambiguous and not recommended. [t can cause unexpected effects.
Show built-in values String List Mode: Conjunction + Modify
¥ Import Settings... | | S Export Settings...
¢ = Restore Defaults Apply
@' Apply and Close Cancel

Access the project configuration menu by right-clicking on the project in the Project Explorer and selecting Properties.

Broadcom

AFBR-S50-PG102
38

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

NOTE: Make sure to select [All configurations] before setting the path.

Step 17. Adding the AFBR-S50 Library
To be able to link against the AFBR-S50 library, it must be added to the build.
First, add the library path similar to the include path.

Table 5: Additional Include Paths

Path Description
C:\AFBR-S50-API-main\AFBR-S50\Lib Path to the API library files

NOTE: Example installation path for the case of a cloned or downloaded github repository. If you have
used a standard SDK installation, use

C:\Program Files (x86)\Broadcom\AFBR-S50 SDK\Device\API\AFBR-S50\Lib.

Figure 34: Added Library Path in the IDE

[Properties for Argus_ExampleApp_STM32F401 O *
| type filter text Paths and Symbols ¥ > &
Resource

Builders
C/C++ Build Configurationl [All configurations | b I‘Aanage Configurations...

w C/C++ General

Code Analysis
Documentation @ Includes # Symbols =i L@B Library Paths 2 Source Location F—ﬂ References
File Types s =,
Formatter (B C:\AFBR-550-API-main\AFBR-S50\Lib Add...
Indexer ;
Language Mappings il
Paths and Symbols Delete
Preprocessor Include Pat
CMSIS-5VD Settings Export
Project References
Refactoring Hist.ory Vioveln
Run/Debug Settings
Move Down
The settings are not used by indexer (MBS pro..sabled on 'Preprocessor Include Paths' page).
[]5how built-in values String List Mode: Conjunction + Modify
¢ = Restore Defaults Apply
® Apply and Close Cancel

Now, add the library itself.

Broadcom AFBR-S50-PG102

39

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 35: Added AFBR-S50 Library in the IDE

[IH Properties for AFBR_S50_ExampleApp_STM32F401RE [m} X

type filter text Paths and Symbols

Resource

Builders - - . -
v C/C++ Build Configuration| [All configurations] Manage Configurations...

Build Variables
Environment
Logging
Settings [™ afbrs50_m4 _fpu] Add...
v C/C++ General
Code Analysis

2 Includes # SE(} =i Libraries ® Library Paths & Source Location El References

Edit...

Documentation Delete

File Types Ennr
Formatter
Indexer Move Up
Language Mappings
Paths and Symbols
Preprocessor Include Paths, Macro
CMSIS-SVD Settings
Project References
Run/Debug Settings

® Using relative paths is ambiguous and not recommended. It can cause unexpected effects.

[Show built-in values String List Mode: Conjunction + Modify

< > Restore Defaults Apply

©) Apply and Close Cancel

The library name depends on the actual architecture. In case of STM32F401RE, the Cortex-M4 incl. Hardware
Floating-Point unit is used. Find more details on the different library variants in the MCU Porting Guide > Architecture
Compatibility section in the API Reference Manual.

NOTE: In SDK v1.0.x, only a Cortex-MO library was available. Still all Cortex-Mx variants are supported using the soft
floating-point ABI. See Section A.1, Setting Up Floating-Point ABI for Soft Floating Point Usage.

5.1 IRQ API

The IRQ API is simple and only provides the AFBR-S50 library and the following hardware implementations with a way to
lock all interrupts temporarily.

Step 18. Creating the IRQ Files

The IRQ APl is implemented in a new header/source file pair within the Platform folder. Thus, create a new header file
called irg.h and a new source file called irq.c in the Platform folders.

Step 19. Implementing the IRQ Header File

The 1rq.h header file is very simple, it inherits from the argus__irq.h header file provided by the AFBR-S50 API in the
Platform folder.

Broadcom AFBR-S50-PG102
40

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 1: File "Platform/irq.h" — Implementing the IRQ header file

#ifndef 1RQ_H_
#define 1RQ_H_

#endif /* IRQ H_ */

#include "platform/argus_irq.h"

Step 20. Implementing the IRQ Locking

The implementation is simple and does not have many dependencies. The implementation follows the instructions given in
the documentation of the argus_irg.h header file.

Listing 2: File "Platform/irqg.c”

#include *irq.h"
#include "main.h"

/*1 Global lock level counter value. */
static volatile int g_irqg_lock_ct;

/>
* @brief Enable IRQ Interrupts
* @details Enables IRQ interrupts by clearing the I-bit in the CPSR.
* Can only be executed in Privileged modes.
*
* @return -

void IRQ_UNLOCK(void)
{
it (--g_irg_lock_ct <=
{
g_irg_lock ct = 0;
__enable_irqQ;

0

/>
* @brief
* @details
* Can only be
*
*

@return -

Disable IRQ Interrupts

Disables IRQ interrupts by setting the I-bit in

executed in Privileged modes.

the CPSR.

void IRQ_LOCK(void)

{
__disable_irqQ:
g_irg_lock _ct++;
}
Broadcom AFBR-S50-PG102

a1

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

5.2 S2PI API

Step 21. Creating the S2PI Files

The S2PI APl is implemented in a new header/source file pair within the Platform folder. Thus, create a new header file
called s2pi .h and a new source file called s2pi .c in the Platform folders.

Step 22. Implementing the S2PI Header File

The s2pi - h header file basically inherits from the argus_s2pi - h header file provided by the AFBR-S50 API in the
Platform folder and adds an initialization function for the module.

Listing 3: File "Platform/s2pi.h" — Implementing the S2PI header file

#ifndef S2PI1_H_
#define S2PI_H

#include "platform/argus_s2pi.h"

/*!
* @brief Initializes the S2P1 module.

*

* @details Setup the board as a S2P1 master, this also sets up up the S2PI pins.

* The SPI1 interface is initialized with the corresponding default
* SPI slave (i.e. CS and IRQ lines) and the default baud rate.
/

void S2PI_Init(void);

#endif /* S2P1_H_ */

Step 23. Adding the S2PI Includes

First, the headers declaring the API functions to be implemented are included. This means the API header and the header
for the generated implementation.

Listing 4: File "Platform/s2pi.c" — Include statements

#include "'s2pi.h"
#include "dma.h"
#include "gpio.h™
#include *spi.h"
#include "irg.h"

Step 24. Implementing the S2PI Data Structures
Next, a data structure is defined that holds all the data for one SPI module.

The following information is contained:

= The current status of the device

m The callback function after an SPI transfer

m A parameter for this callback function

m The callback function after an external interrupt from the device
m A parameter for that callback function

Broadcom AFBR-S50-PG102
42

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

= The alternate mode of the GPIOs for SPI mode
= A mapping of all used logical pins to GPIO pins and ports

The first part is a mapping type for the pins and ports.

Listing 5: File "Platform/s2pi.c" — SPI GPIO pin mapping

/*! A structure that holds the mapping to port and pin for all SPI modulles. */
typedef struct

{
/*! The GPIO port */
GPI10_TypeDef * Port;
/*! The GPIO pin */
uint32_t Pin;

}

s2pi_gpio_mapping_t;

Then there is the data structure with the parameters mentioned previously.

Listing 6: File "Platform/s2pi.c" — SPI data structure
/*! A structure to hold all internal data required by the S2PI module. */
typedef struct
{
/*1 Determines the current driver status. */
volatile status t Status;
/*! A callback function to be called after transfer/run mode is completed. */
s2pi_callback_t Callback;
/*1 A parameter to be passed to the callback function. */
void * CallbackData;
/*! A callback function to be called after external interrupt is triggered. */
s2pi_irqg_callback _t IrqgCallback;
/*1 A parameter to be passed to the interrupt callback function. */
void * IrgCallbackData;
/*! The alternate function for this SPI port. */
const uint32_t SpiAlternate;
/*1 The mapping of the GPIO blocks and pins for this device. */
const s2pi_gpio_mapping_t GPIOS[S2P1_IRQ+1];
¥
s2pi_handle_t;

Finally, the SPI settings in this data structure are initialized in an instance containing this data.
NOTE: If multiple devices should be supported, this should be implemented as an array.

The pin names are taken from the included platform/argus_s2pi . h. The actual values can be determined from the
generated Core/Src/spi .c file.

Broadcom AFBR-S50-PG102
43

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 7: File "Platform/s2pi.c" — SPI data object
s2pi_handle_t s2pi_ = { .SpiAlternate = GPIO_AF5_SPI1,
.GP10s = { [S2P1_CLK] = { GPIOA, GPIO_PIN_ 5 },
[S2P1_CS] = { GPIOB, GPIO_PIN_6 },
[S2P1_MOSI] = { GPIOA, GPIO_PIN_7 },
[S2P1_MISO] = { GPIOA, GPIO_PIN_6 },
[S2P1_IRQ] = { GPIOC, GPIO_PIN_7 } } };

Step 25. Implementing the S2PI Initialization
Next, the timer initialization routine is implemented.

The initialization function calls the generated hardware initializations for the GPIO, DMA, and SPI layers. This guide
assumes that only a single SPI device is attached, so it does not have an SPI slave identifier as argument. The helper
function to set the baud rate (defined as follows) is set to determine the settings for the baud rate. The baud rate also does
not change and is kept to the values set in the creation of the HAL in the previous section. To get the GPIO module into a
defines state, the S2P1_GetGP 10Mode helper function is used to switch the GPIO mode on and off. A prototype for the
function is provided and the actual implementation follows later.

NOTE: The comments are copied from the prototype in platform/argus_s2pi .h.

Listing 8: File "Platform/s2pi.c" — S2PlI Initialization Code
static void S2PI_SetGPIOMode(bool gpio_mode);

/* | I o o o o ok o e o e o R e o S R R S S R o o e o e R R R o o o R Sk o e o S S S S R ARk o e

* @brief Initialize the S2P1 module.
*
* @details Setup the board as an S2PI master, this also sets up the S2PI pins.
* The SPI1 interface is initialized with the corresponding default
* SP1 slave (i.e. CS and IRQ lines) and the specified baud rate.
* ***/
void S2PI_Init(void)
{
MX_DMA_Init(Q);
MX_SPI11_Init();
MX_GPI0_Init();

/*This resets the GPI0O pins by toggling the GP10 mode on and off.*/
S2P1_SetGPI10Mode(true);
S2P1_SetGP10Mode(false);

Broadcom AFBR-S50-PG102
44

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 26. Implementing the SPI Get Status Function

The current status of the SPI connection and operation mode (see the following) can also be queried.

Listing 9: File "Platform/s2pi.c" — SPI Status and Mode Query
/*1
* @brief Returns the status of the SPI module.

* @return Returns the \link #status_t status\endlink:

* - #STATUS_IDLE: No SPI transfer or GPIO access is ongoing.

* - #STATUS BUSY: An SPI transfer is In progress.

* - #STATUS_S2P1_GPIO_MODE: The module is in GPIO mode.

/
status_t S2PI_GetStatus(void)
{
return s2pi_.Status;

by

Step 27. Implementing the SPI/GPIO Switch
Next, the switching between SPI and GPIO mode for the PINs is implemented.

As the CS (chip select) is already an ordinary GPIO, only the other pins are affected: CLK, MISO, and MOSI. Switching does
not require too much setup. The mode must be changed from alternate (SP1) mode to push-pull output mode (GPI1O) for CLK
and MOSI and input mode (GPIO) for MISO. The SPI settings can be taken from the automatically generated
HAL_SPI_MsplInit() inthe Core/Src/spi - cfile, the GPIO setting is similar to the CS line setting in MX_GPI10_Init()
in the Core/Src/gpio.c file.

Broadcom AFBR-S50-PG102
45

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 10: File "Platform/s2pi.c" — Setting between SPIl and GPIO mode
/*! LR R R R R
* @brief Sets the mode in which the S2PI pins operate.
* @details This is a helper function to switch the modes between SPI and GPIO.
* @param gpio_mode Enables the GPIO mode: true for GP10, faluse for SPI.
/
static void S2PI_SetGPIOMode(bool gpio_mode)
{
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pull = GPI0O_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ VERY_HIGH;
GPIO_InitStruct.Alternate = s2pi_.SpiAlternate;
/* *** QUTPUT pins *** */
GPIO_InitStruct.Mode = gpio_mode ? GPIO_MODE_OUTPUT_PP : GPI10_MODE_AF _PP;
/* SP1 CLK */
GPIO_InitStruct.Pin = s2pi_.GPI0s[S2P1_CLK].Pin;
HAL_GPI10_Init(s2pi_-GPI0Os[S2PI1_CLK] -Port, &GPIO_InitStruct);
/* SP1 MOSI */
GPIO_InitStruct.Pin = s2pi_.GPIOsS[S2P1_MOSI] -Pin;
HAL_GPIO_Init(s2pi_.GPIOS[S2PI_MOSI].Port, &GPIO_InitStruct);
/* *** INPUT pins *** */
GPIO_InitStruct.Mode = gpio_mode ? GPI10_MODE_INPUT : GPIO_MODE_AF_PP;
/* SP1 MISO */
GPIO_InitStruct.Pin = s2pi_.GPI0s[S2P1_MISO] -Pin;
HAL_GPIO_Init(s2pi_.GPI0s[S2P1_MISO].Port, &GPIO_InitStruct);
3

Broadcom AFBR-S50-PG102
46

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Now, this can be used to implement the capturing of the GPI1Os (switching to GPIO mode). Note that the state is checked if
it is currently STATUS_IDLE (SPI mode) and changed to STATUS_S2PI_GPIO_MODE while the interrupts are locked.

Listing 11: File "Platform/s2pi.c" — Switching the GPIO mode

/*1
*

*

*

* % X

*hKhkkk *hhhdkhkk

@brief Captures the S2P1 pins for GPIO usage.

@details The SPI is disabled (module status: #STATUS S2P1_GPIO_MODE) and the

pins are configured for GPI0 operation. The GPIO control must be
release with the #S2P1_ReleaseGpioControl function in order to
switch back to ordinary SPI functionality.

@return Returns the \link #status_t status\endlink (#STATUS_OK on success).

{

status_t S2PI_CaptureGpioControl(void)

/* Check if something is ongoing. */
IRQ_LOCKQ);
status_t status = s2pi_.Status;
iT (status '= STATUS_IDLE)
{
IRQ_UNLOCKQ) ;
return status;
}
s2pi_.Status = STATUS_S2PI_GP10_MODE;
IRQ_UNLOCKQ);

/* Note: Clock must be HI after capturing */

HAL_GPI0_WritePin(s2pi_.GPI0S[S2P1_CLK].Port, s2pi_.GPI10sS[S2P1_CLK].Pin, GPIO_PIN_SET);

S2P1_SetGPI10Mode(true);

return STATUS_OK;

/

Broadcom

AFBR-S50-PG102
a7

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

To switch back to SPI mode, there is the reverse status change.

Listing 12: File "Platform/s2pi.c" — Switching the SPI mode

/*1

* @details The GPIO pins are configured for SPI operation and the GPI0O mode is

* left. Must be called if the pins are captured for GPIO operation via
* the #S2PI1_CaptureGpioControl function.

* @return Returns the \link #status_t status\endlink (#STATUS_OK on success).

/

status_t S2PI_ReleaseGpioControl(void)
{
/* Check if something is ongoing. */
IRQ_LOCKQ);
status_t status = s2pi_.Status;
iT (status != STATUS_S2PI_GPIO_MODE)
{
IRQ_UNLOCKQ);
return status;
b
s2pi_.Status = STATUS_IDLE;
IRQ_UNLOCKQ);

S2P1_SetGPI10Mode(false);

return STATUS_OK;

}

* @brief Releases the S2PI pins from GPIO usage and switches back to SPI mode.

Step 28. Implementing the GPIO Access

GPIO access is required to access the devices’ EEPROM. The EEPROM interface is multiplexed to the SPI pins to reduce

the number of physical lines required. However, the interface that is understood by the EEPROM is not
SPI interface and, thus, the interface is emulated in software using GPIO toggling.

compatible with the

NOTE: The timing requirements for the EEPROM interface might require the GPIO access to be slowed down. This can
be achieved by an artificial delay for each GPIO access through the S2PI layer. The default delay is 10 us to

achieve a baud rate of approximately 100 kHz. Because the EEPROM is only read once upon
the exact timing is not essential for the measurement performance.

device initialization,

Listing 13: File "Platform/s2pi.c" — Helper macro for the delay

/*! An additional delay to be added after each GPIO access in order to decrease
* the baud rate of the software EEPROM protocol. Increase the delay if timing
* issues occur while reading the EERPOM.

* e.g. Delay = 10 psec => Baud Rate < 100 kHz */

#ifndef S2PI_GPIO_DELAY_US

#define S2P1_GPIO_DELAY_US 10

#endif

#if (S2PI_GPIO_DELAY_US == 0)

#define S2P1_GPIO_DELAY() ((void)0)

#else

#include "utility/time.h"

#define S2PI_GPIO_DELAY() Time_DelayUSec(S2P1_GPI0O_DELAY_US)
#endif

Broadcom

AFBR-S50-PG102
48

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

With this delay, reading and writing can be implemented.

Listing 14: File "Platform/s2pi.c" — Writing pins in GPIO mode
/*1
* @brief Writes the output for a specified SPI pin in GPI0O mode.
* @details This function writes the value of an SPI pin if the SPIl pins are

captured for GPIO operation via the #S2PI1_CaptureGpioControl previously.

@param slave The specified S2PI slave.

@param pin The specified S2PI pin.

@param value The GPIO pin state to write (0 = low, 1 = high).

@return Returns the \link #status_t status\endlink (#STATUS OK on success).

/

ook % X F

status_t S2PI_WriteGpioPin(s2pi_slave t slave, s2pi_pin_t pin, uint32_t value)
{
/* Check if pin is valid. */
iT (pin > S2PI_IRQ || value > 1)
return ERROR_INVALID_ ARGUMENT;

/* Check if in GPIO mode. */
if(s2pi_.Status = STATUS_S2P1_GPIO_MODE)

return ERROR_S2PI1_INVALID_STATE;
HAL_GPIO_WritePin(s2pi_-GPIOs[pin].-Port, s2pi_-GPI0s[pin]-Pin, value);
S2P1_GPI0_DELAYQ;

return STATUS_OK;

Broadcom AFBR-S50-PG102
49

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Reading is similar.

Listing 15: File "Platform/s2pi.c" — Reading pins in GPIO mode
/*1
* @brief Reads the input from a specified SPI pin in GPIO mode.
* @details This function reads the value of an SPI pin if the SPI pins are
* captured for GPIO operation via the #S2P1_CaptureGpioControl previously.
* @param slave The specified S2PI slave.
* @param pin The specified S2PI pin.
* @param value The GPIO pin state to read (0 = low, 1 = high).
* @return Returns the \link #status t status\endlink (#STATUS OK on success).
/
status_t S2PI1_ReadGpioPin(s2pi_slave_t slave, s2pi_pin_t pin, uint32_t * value)
{

/* Check if pin is valid. */
it (pin > S2PI_IRQ || !'value)
return ERROR_INVALID_ARGUMENT;
/* Check if in GPIO mode. */
iT(s2pi_.Status = STATUS_S2PI_GP10_MODE)
return ERROR_S2PI_INVALID_STATE;
*value = HAL_GPIO_ReadPin(s2pi_.GPIOs[pin].Port, s2pi_.GPIO0s[pin].-Pin);
S2PI_GPI10_DELAYQ);

return STATUS_OK;

}

Step 29. Implementing the CS Cycling

To cancel integration, the SPI CS line must be cycled. The function performing this is implemented here. Again, it checks if
the device is currently idle.

NOTE: The SPI_WriteGpioPin() function cannot be reused, because it implements an additional artificial delay, and
only works in GPIO mode. You do not need to switch to GPIO mode here, because the CS line is set up as GPIO

anyway.

CAUTION! If, in your implementation, the CS line is controlled by the SPI, you must switch it to GPIO mode first and back
afterwards.

Broadcom AFBR-S50-PG102
50

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 16: File "Platform/s2pi.c" — Performing the SPI CS cycling

/*1
*

*

*

ok X X %

@brief Cycles the chip select line.

@details In order to cancel the integration on the ASIC, a fast toggling
of the chip select pin of the corresponding SPI slave is required.
Therefore, this function toggles the CS from high to low and back.
The SPI1 instance for the specified S2PI slave must be idle,
otherwise the status #STATUS_BUSY is returned.

@param slave The specified S2PI slave.

@return Returns the \link #status_t status\endlink (#STATUS OK on success).

{

}

status_t S2PI_CycleCsPin(s2pi_slave_t slave)

/* Check the driver status. */
IRQ_LOCKQ);
status_t status = s2pi_.Status;
iT (status !'= STATUS_IDLE)
{

IRQ_UNLOCKQ);

return status;
T
s2pi_.Status = STATUS_BUSY;
IRQ_UNLOCKQ);

HAL_GPI0_WritePin(s2pi_.GPI0s[S2P1_CS].Port, s2pi_.GPI0s[S2P1_CS].Pin, GPIO_PIN_RESET);
HAL_GP10_WritePin(s2pi_.GP10s[S2P1_CS].Port, s2pi_.GPI0s[S2P1_CS].Pin, GPIO_PIN_SET);

s2pi_.Status = STATUS_IDLE;

return STATUS_OK;

/

Step 30. Implementing the SPI Transfer Start

As previously designed, the SPI transfer is performed by DMA. Therefore, the SPI transfer is only started with the transfer
function, and the completion is indicated by an interrupt.

Here, the function to start the SPI transfer is implemented. First, the arguments are checked and the slave. The callback and
its data are stored for the interrupts later. Then the SPI CS signal is asserted (set low) and the transfer is started.

NOTE:

If the data should be transmitted only, there is no valid receive buffer, so a different function must be triggered to

transmit only.

CAUTION! Some of the SPI transmissions are very short, so the completion interrupt comes early with fast SPI speeds. If
an interrupt, even a low-priority interrupt like SysTick, delays the setup marginally, the functions
HAL_SPI_Transmit DMA(Q) or HAL_SPI1_ TransmitReceive DMA() may not have unlocked the internal
structure in the STM32 HAL before the completion interrupt occurs. Therefore, all interrupts are locked until
these functions return by using the 1RQ_Lock() and I1RQ_Unlock() methods. This may also be necessary

with other vendors' implementations.

Broadcom

AFBR-S50-PG102
51

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 17: File "Platform/s2pi.c" — Starting the SPI transfer

/* | IR R o R o o AR Rk Sk Tk S S R R R XAk

* @brief Transfers a single SP1 frame asynchronously.

@details Transfers a single SP1 frame in asynchronous manner. The Tx data
buffer is written to the device via the MOSI line.
Optionally the data on the MISO line is written to the provided
Rx data buffer. If null, the read data is dismissed.
The transfer of a single frame requires to not toggle the chip
select line to high in between the data frame.
An optional callback is invoked when the asynchronous transfer
is finished. Note that the provided buffer must not change while
the transfer is ongoing. Use the slave parameter to determine
the corresponding slave via the given chip select line.

@param slave The specified S2PI slave.
@param txData The 8-bit values to write to the SPl bus MOSI line.
@param rxData The 8-bit values received from the SPI bus MISO line

(pass a null pointer if the data don"t need to be read).
@param frameSize The number of 8-bit values to be sent/received.
@param callback A callback function to be invoked when the transfer is

finished. Pass a null pointer if no callback is required.
@param calllbackData A pointer to a state that will be passed to the
callback. Pass a null pointer if not used.

@return Returns the \link #status_t status\endlink:

- #STATUS_OK: Successfully invoked the transfer.
#ERROR_INVALID_ARGUMENT: An invalid parameter has been passed.
#ERROR_S2P1_INVALID SLAVE: A wrong slave identifier is provided.
#STATUS_BUSY: An SPI transfer is already in progress. The

transfer was not started.

#STATUS_S2P1_GPIO_MODE: The module is in GPI0 mode. The transfer
was not started.
***/

status_t S2Pl_TransferFrame(s2pi_slave t spi_slave,
uint8 t const * txData,
uint8_t * rxData,

size_t frameSize,
s2pi_callback_t callback,
void * callbackData)

Ok X b ok ok b kX b o X b % X b 3k X o ok X X b X % %

/* Verify arguments. */
if (1txData || frameSize == 0 || frameSize >= 0x10000)
return ERROR_INVALID_ARGUMENT;

/* Check the driver status, lock if idle. */
IRQ_LOCKQ);
status_t status = s2pi_.Status;
if (status = STATUS_IDLE)
{
IRQ_UNLOCKQ);
return status;
¥
s2pi_.Status = STATUS BUSY;
IRQ_UNLOCKQ);

Broadcom

AFBR-S50-PG102
52

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

/* Set the callback information */
s2pi_.Callback = callback;
s2pi_.CallbackData = callbackData;

/* Manually set the chip select (active low) */
HAL_GPIO_WritePin(s2pi_.GPI0s[S2P1_CS].Port, s2pi_.GPI0s[S2P1_CS].Pin, GPIO_PIN_RESET);

HAL_StatusTypeDef hal_error;

/* Lock interrupts to prevent completion interrupt before setup is complete */
IRQ_LOCKQ);
iT (rxData)
hal_error = HAL_SPI_TransmitReceive DMA(&hspil, (uint8 t *) txData, rxData, (uintl6 t)
frameSize);
else
hal_error = HAL_SPI_Transmit _DMA(&hspil, (uint8_t *) txData, (uintl6_t) frameSize);
IRQ_UNLOCKQ);

it (hal_error = HAL_OK)
return ERROR_FAIL;

return STATUS_OK;

}

Step 31. Implementing the SPI Transfer Completion

The completion of the SPI transfer is signaled by DMA interrupts. These run into callback functions that must be defined
here. The names and details are specific to the target platform.

Here, there are two different callbacks according to the initiated transfer (transmit only and transmit/receive). However, in
the latter case, two DMA interrupts are actually received, but only the receive interrupt triggers the callback. Because the
callback into the AFBR-S50 library can trigger the next transfer within the interrupt, you must ensure that both interrupts are
actually handled, or setting up the next transfer could fail. To achieve this, the real callback is only triggered if the transmit
interrupt was already handled. Otherwise, the transmit callback is set up to trigger the final callback.

The real callback is triggered using a common helper function that also features a status. In addition, it resets the SPI CS
signal (high) to indicate the end of the transfer.

Broadcom AFBR-S50-PG102
53

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 18: File "Platform/s2pi.c" — Triggering the provided callback function

*

/* | IR R o R o o AR Rk Sk Tk S S R R R XAk

* @brief Triggers the callback function with the provided status.
@details It first checks if a callback function is present,

* otherwise it returns immediately.
* The callback function is reset to 0, and must be set up again
* for the next transfer, if required.
* @param status The status to be provided to the callback funcition.
* @return Returns the status received from the callback function
/
static inline status_t S2PI_CompleteTransfer(status_t status)
{
s2pi_.Status = STATUS_IDLE;
/* Deactivate CS (set high), as we use GPIO pin */
HAL_GPIO_WritePin(s2pi_.GPIOs[S2P1_CS]-Port, s2pi_.GPIOS[S2PI_CS]-Pin, GPIO_PIN_SET);
/* Invoke callback if there is one */
iT (s2pi_.Callback = 0)
{
s2pi_callback_t callback = s2pi_.Callback;
s2pi_.Callback = 0;
status = callback(status, s2pi_.CallbackData);
}
return status;
by

Broadcom

AFBR-S50-PG102
54

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Based on this, the callbacks from the interrupts can be implemented.

Listing 19: File "Platform/s2pi.c" — Implementation of the SPI completion callbacks

/**
* @brief Tx Transfer completed callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains

* the configuration information for SP1 module.
* @retval None
*/

void HAL_SPI1_TxCpltCallback(SPI_HandleTypeDef *hspi)

{
S2P1_CompleteTransfer (STATUS_OK);
3
/**
* @brief DMA SPI transmit receive process complete callback for delayed transfer.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
void SPI_DMATransmitReceiveCpltDelayed(DMA_HandleTypeDef *hdma)
{
SP1_HandleTypeDef *hspi = (SP1_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
HAL_SPI_TxCpltCallback(hspi);
3
/**

* @brief Tx Transfer completed callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
void HAL_SPI1_TxRxCpltCal lback(SPI_HandleTypeDef *hspi)

-~

/* Note: This interrupt callback is always invoked by the RX interrupt from the HAL. However, the
order of RX and TX is not specified on the device. Occasionally, the RX interrupt occurs before
the TX interrupt which means the SPI transfer is not yet completely finished upon the occurrence
of the RX interrupt. Thus, the start of a new SPl transfer may fail, since the AFBR-S50 API
starts it right from the interrupt callback function.

In order to overcome the feature, the invocation of the API callback is scheduled to whatever IRQ
comes last: */
iT (hspi->hdmatx->Lock == HAL_UNLOCKED) /* TX Interrupt already received */
HAL_SP1_TxCpltCallback(hspi);
else /* There is still the TX DMA Interrupt we have to wait for */
hspi->hdmatx->XferCpltCallback = SPI_DMATransmitReceiveCpltDelayed;

ok % % ok

Broadcom AFBR-S50-PG102
55

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 32. Implementing the SPI Transfer Abort

The SPI transfer must also be able to be aborted before itis done. If no transfer is in progress, this is not an error, but nothing
needs to be aborted.

Listing 20: File "Platform/s2pi.c" — Aborting the SPI transfer
/>
* @brief Terminates a currently ongoing asynchronous SPI1 transfer.
* @details When a callback is set for the current ongoing activity, it is
* invoked with the #ERROR_ABORTED error byte.
* @return Returns the \link #status_t status\endlink (#STATUS_OK on success).

AAEXAEAAAAAAAAAAAAAAAAXAAAAAAAAAAAA A A A A A A AAAAAAAA4*k A /
status_t S2PI_Abort(void)
{

status_t status = s2pi_.Status;

/* Check if something is ongoing. */
if(status == STATUS_IDLE)

{

}

return STATUS_OK;

/* Abort SPl transfer. */
if(status == STATUS_BUSY)
{

}

HAL_SPI1_Abort(&hspil);

return STATUS_OK;

}

The callback function is triggered from the SPI abort callback.

Listing 21: File "Platform/s2pi.c" — Triggering the callback function on abort
/**
* @brief SPI Abort Complete callback.
* @param hspi SPI handle.
* @retval None
*/
void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi)
{

}

S2PI_CompleteTransfer (ERROR_ABORTED) ;

Broadcom AFBR-S50-PG102

56

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 33. Implementing the SPI Transfer Error Handling

In case of an error, the callback function must be notified also. This is done from the SPI error callback.

Listing 22: File "Platform/s2pi.c" — Triggering the callback function on error

/**
* @brief SPI error callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/

void HAL_SPI1_ErrorCallback(SPI_HandleTypeDef *hspi)

{

}

S2PI1_CompleteTransfer (ERROR_FAIL);

Step 34. Implementing the External Interrupt Handling
Finally, the external interrupt used by the AFBR-S50 device to indicate data must be implemented.

First, the callback function in case of this interrupt needs to be able to be set up.

Listing 23: File "Platform/s2pi.c" — Preparing the external interrupt callback

/* | I o o o o o o S S e o R o S AR R o S R AR R o S S S e o S R R AR R o o S R e R S S e S S S e

* @brief Set a callback for the GPI0O IRQ for a specified S2PI1 slave.

*

@param slave The specified S2PI slave.

@param callback A callback function to be invoked when the specified
S2P1 slave IRQ occurs. Pass a null pointer to disable
the callback.

@param callbackData A pointer to a state that will be passed to the
callback. Pass a null pointer if not used.

@return Returns the \link #status_t status\endlink:
- #STATUS_OK: Successfully installation of the callback.
- #ERROR_S2PI_INVALID_SLAVE: A wrong slave identifier is provided.
*hKhhkk R R T R e e e *hkhhkk /
status_t S2Pl1_SetlrqgCallback(s2pi_slave t slave,
s2pi_irg_callback t callback,
void * callbackData)

*
*
*
*
*
*
*
*
*
*

{
s2pi_.lIrqCallback = callback;
s2pi_.lrgCallbackData = callbackData;
return STATUS_OK;

3

Broadcom AFBR-S50-PG102
57

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Then, the possibility of reading the next interrupt line must be implemented.

Listing 24: File "Platform/s2pi.c" — Readout of the external interrupt status
/>
* @brief Reads the current status of the IRQ pin.
* @details In order to keep a low priority for GPIO IRQs, the state of the
* IRQ pin must be read in order to reliable check for chip timeouts.

The execution of the interrupt service routine for the data-ready
interrupt from the corresponding GPIO pin might be delayed due to
priority issues. The delayed execution might disable the timeout
for the eye-safety checker too late causing false error messages.
In order to overcome the issue, the state of the IRQ GPIO input
pin is read before raising a timeout error in order to check if
the device has already finished but the IRQ is still pending to be
executed!

ook X % ok % X ok

*

@param slave The specified S2PI slave.

@return Returns 1U if the IRQ pin is high (IRQ not pending) and OU if the

* devices pulls the pin to low state (IRQ pending).

A * AAIAAAAAAAAAAAAAAAAAAAk*k L /

uint32_t S2PI_ReadlrgPin(s2pi_slave t slave)
{

}

*

return HAL_GP10_ReadPin(s2pi_.GPI0s[S2P1_IRQ].Port, s2pi_.GPIOs[S2PI_IRQ].Pin);

Finally, the callback function must be set up.

Listing 25: File "Platform/s2pi.c" — Implementation of the external interrupt callback
/**
* @brief EXTI line detection callbacks.
* @param GPIO_Pin Specifies the pins connected EXTI line
* @retval None

*/

void HAL_GPI0_EXTI_Callback(uintl6_t GPIO_Pin)

{
iT (GPIO_Pin == s2pi_.GPI0s[S2PI_IRQ]-Pin && s2pi_.lrqCallback)
{

s2pi_.IrqCallback(s2pi_.IrqgCallbackData);

ks

s

With this setup, the S2PI module is complete.

5.3 Timer API

Now, the API interface must be implemented.

Step 35. Creating the Timer Files

The Timer API is implemented in a new header/source file pair within the Platform folder. Thus create a new header file
called timer.h and a new source file called timer.c in the Platform folders.

Broadcom AFBR-S50-PG102
58

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 36. Implementing the Timer Header File

The timer.h header file basically inherits from the argus_timer.h header file provided by the AFBR-S50 API in the platform
folder and adds an initialization function for the module:

Listing 26: File "Platform/timer.h" — Implementing the Timer header file

#ifndef TIMER_H_
#define TIMER_H_

#include "platform/argus_timer_h"

/*! *
* @brief Initializes the timer hardware.

void Timer_Init(void);

#endif /* TIMER H_ */

Step 37. Adding the Timer Includes

First, the headers declaring the API functions to be implemented are included. This means the API header and the header
for the generated implementation.

Listing 27: File "Platform/timer.c” — Include statements

#include "tim.h"
#include "timer.h"

Step 38. Implementing the Timer Initialization
Next, the timer initialization routine is implemented.

It calls the automatic hardware initialization for each timer.

Listing 28: File "Platform/timer.c” — Timer initialization
/*1
* @brief Initializes the timer hardware.

* @return -

void Timer_Init(void)
{
/* Initialize the timers, see generated main.c */
MX_TIM2_Init(Q);
MX_TIM4_Init(Q);
MX_TIM5_Init(Q);

/* Start the timers relevant for the LTC */
HAL_TIM_Base_Start(&htim2);
HAL_TIM_Base_Start(&htim5);

__HAL_DBGMCU_FREEZE_TIM2Q);
__HAL_DBGMCU_FREEZE_TIM4Q);
__HAL_DBGMCU_FREEZE_TIM5Q);

Broadcom AFBR-S50-PG102
59

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 39. Implementing the LTC Readout
The readout of the LTC timer is implemented. The prototype is found in platform/argus_timer.h.

It reads both chained timers and returns the value, possibly looping if a counter wraparound might have occurred.

Listing 29: File "Platform/timer.c" — Lifetime counter readout

/* | I o e o o ok o e S S o R o S AR R R o S R AR R o o S S e o R o o S S e o S e S S S e

* @brief Obtains the lifetime counter value from the timers.

*

* @details The function is required to get the current time relative to any
* point in time, e.g. the startup time. The returned values \p hct and
* \p Ict are given in seconds and microseconds respectively. The current
* elapsed time since the reference time is then calculated from:
* t_now [usec] = hct * 1000000 psec + Ict * 1 pusec
*
* @param hct A pointer to the high counter value bits representing current
* time in seconds.
* @param Ict A pointer to the low counter value bits representing current
* time in microseconds. Range: 0, .., 999999 usec
* @return -
/
void Timer_GetCounterValue(uint32_t * hct, uint32_t * Ict)
{
/* The loop makes sure that there are no glitches
when the counter wraps between htim2 and htm2 reads. */
do {
*Ict = _ HAL_TIM_GET_COUNTER(&htim2);
*hct = _ HAL_TIM_GET_COUNTER(&htim5);
3
while (*Ict > __ HAL_TIM_GET_COUNTER(&htim2));
3

Step 40. Implementing the PIT Start/Stop

The PIT timer can be started and stopped by the appropriate API functions. The callback parameter and the period are
stored. If a running timer is enabled with the same period, nothing should happen.

If the timer interval does not fit into the 16-bit timer with microsecond granularity, the prescaler is used to reduce the
granularity and the period is reduced.

Broadcom AFBR-S50-PG102
60

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 30: File "Platform/timer.c" — Setting up periodic interrupt timer

/*! Storage for the callback parameter */
static void * callback_param_;

@brief Starts the timer interval for a specified callback parameter.

@details Sets the callback interval for the specified parameter and starts
the timer with a new interval. If there is already an interval with
the given parameter, the timer is restarted with the given interval.
IT the same time interface as aleady set is passed, nothing happens.
Passing an interval of 0 disables the timer.

@param dt_microseconds The callback interval in microseconds.

@param param An abstract parameter to be passed to the callback. This is

also the identifier of the given interval.
@return Returns the \link #status_t status\endlink (#STATUS_OK on success).
/

/

Ok X % F

* Ok X % %

status_t Timer_Setinterval (uint32_t dt_microseconds, void * param)

{

assert(dt_microseconds == 0 || dt_microseconds > 100);
/* Disable interrupt and timer */

callback_param_ = 0;
HAL_TIM_Base_Stop(&htim4);
__HAL_TIM_DISABLE_IT(&htim4, TIM_IT_UPDATE);
__HAL_TIM_CLEAR_IT(&htim4, TIM_IT_UPDATE);

iT (dt_microseconds)

{
uint32_t prescaler = SystemCoreClock / 1000000U;

while (dt_microseconds > OxFFFF)
{
dt_microseconds >>= 1U;
prescaler <<= 1U;

}

assert(prescaler <= 0x10000UV);

/* Set prescaler and period values */

__ HAL_TIM_SET_PRESCALER(&htim4, prescaler - 1);
__HAL_TIM_SET_AUTORELOAD(&htim4, dt_microseconds - 1);
_ HAL_TIM_SET_COUNTER(&htim4, dt_microseconds - 1);

/* Enable interrupt and timer */
callback_param_ = param;
_ HAL_TIM_ENABLE_IT(&htim4, TIM_IT_UPDATE);
HAL_TIM_Base_Start(&htim4);

s

return STATUS_OK;

Broadcom

AFBR-S50-PG102
61

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 41. Implementing the PIT Interrupt Handling

Finally, the interrupt caused by the expired PIT timer is handled, and the callback function is triggered, if defined.

Listing 31: File "Platform/timer.c" — PIT interrupt handling

/*1 Callback function for PIT timer */
static timer_cb_t timer_callback_;

/* | I o o o o o o e o e o o e o o R A o S S o S o e S S S R AR o R ok o o o S S RO o o e o e

* @brief Installs an periodic timer callback function.
* @details Installs an periodic timer callback function that is invoked whenever
* an interval elapses. The callback is the same for any interval,
* however, the single intervals can be i1dentified by the passed
* parameter.
* Passing a zero-pointer removes and disables the callback.
* @param f The timer callback function.
* @return Returns the \link #status t status\endlink (#STATUS OK on success).
/
status_t Timer_SetCallback(timer_ch_t)
{
timer_callback = f;
return STATUS_OK;
¥
/**
* @brief Period elapsed callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCal lback(TIM_HandleTypeDef *htim)
{
/* Trigger callback if the interrupt belongs to TIM4 and there is a callback */
iT (htim==&htim4 && timer_callback)
{
timer_callback_(callback_param);
¥
3

5.4 Optional: UART API

Optionally, the UART interface can be implemented now. Implement the UART layers because they are used to stream the
measurement data using a serial terminal in the example project.

Step 42. Creating the UART Files

The UART APl is implemented in a new header/source file pair within the Platform folder. Thus, create a new header file
called uart._h and a new source file called uart.c in the Platform folders.

Step 43. Implementing the UART Header File

The uart.h header file creates a simple interface to access the UART send functionality via a printf-like print function that
accepts formatted string input. Beyond that, an initialization function and a GetStatus method is defined.

Broadcom AFBR-S50-PG102
62

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 32: File "Platform/uart.h" — Implementing the UART header file

#ifndef UART_H_
#define UART_H_

#include <stddef.h>
#include <stdbool.h>

#include "api/argus_status.h" // definition of status_t

/*!

* @brief Initialize the Universal Asynchronous Receiver/Transmitter

* (UART or LPSCl) bus and DMA module

/

void UART_Init(void);
/*!

* @brief Reads the transmittion status of the uart interface

* @return Booleon value:

* - true: device is busy

* - Talse: device is idle

*hkhkhkxk B o S o S S B s *hKkhhkkkhk /

bool UART_IsTxBusy(void);

*
/*-@brief printf-like function to send print messages via UART.

* @details Defined In "driver/uart.c'" source file.

*

* Open an UART connection with 115200 bps, 8N1, no handshake to
* receive the data on a computer.

* @param fmt_s The usual printf parameters.

*

* @return Returns the \link #status t status\endlink (#STATUS OK on success).
status_t print(const char *fmt_s, ...); !

#endif /* UART _H_ */

Step 44. Adding the UART Includes

First, the headers declaring the API functions to be implemented are included. This means the API header and the header
for the generated implementation.

Listing 33: File "Platform/uart.c" — Include statements

#include "uart.h"
#include "irq.h"
#include "dma.h"
#include "usart.h"

#include <stdio.h>
#include <stdarg.h>

Broadcom AFBR-S50-PG102
63

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Step 45. Defining the UART Variables

Now there are several variables to be defined:
= An indication if a transfer is ongoing
= A buffer for formatting the output message

All of these can be static variables.

Listing 34: File "Platform/uart.c" — UART variable definitions

/*! The busy indication for the uart */
static volatile bool isTxBusy = false;

/*! The buffer for the uart print */
static uint8_t buffer_[1024];

Step 46. Implementing the UART Initialization

The UART initialization is completely generated in the Core/Src/usart.c file and only needs to be called; however, as
the UART uses DMA, it also must be initialized first.

Listing 35: File "Platform/uart.c" — UART initialization
/*1
* @brief

*

Initialize the Universal Asynchronous Receiver/Transmitter
(UART or LPSCI) bus and DMA module

***/
void UART_Init(void)
{
MX_DMA_Init(Q);
MX_USART2_UART_Init(Q);
}

Step 47. Implementing the UART Send Operation

Now you can implement the transmission of the data using DMA. If the line is still busy, you can skip the transfer. An
additional function is implemented to request the current TX line busy state.

Broadcom

AFBR-S50-PG102
64

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 36: File "Platform/uart.c” — UART send operation

*
*
*
*

*

{

}

*

*
*
*
*

{
}

/* | IR R o R o o AR Rk Sk Tk S S R R R XAk

static status_t UART_SendBuffer(uint8_t const * txBuff, size_t txSize)

/* | I o o e o o o o AR R SR R R o R X

bool UART_IsTxBusy(void)

@brief Writes several bytes to the UART connection.

@param txBuff Data array to write to the uart connection

@param txSize The size of the data array

@return Returns the \link #status_t status\endlink (#STATUS_OK on success).
““““““ ek /

/* Verify arguments. */
iT(1txBuff || txSize == 0)
return ERROR_INVALID_ARGUMENT;

/* Lock interrupts to prevent completion interrupt before setup is complete */
IRQ_LOCKQ):
iT (isTxBusy)

{
IRQ_UNLOCKQ);
return STATUS_BUSY;
3
/* Set Tx Busy Status. */
isTxBusy_ = true;

HAL_StatusTypeDef hal_error = HAL_UART_Transmit_DMA(&huart2, (uint8_t*) txBuff, txSize);
IRQ_UNLOCK(Q); // this must come after HAL_UART_Transmit _DMA to avoid race conditions w/ IRQs

switch (hal_error)

{

case HAL_OK: return STATUS_OK;

case HAL_BUSY: return STATUS_BUSY;

case HAL_ERROR: return ERROR_FAIL;

case HAL_TIMEOUT: return ERROR_TIMEOUT;
}

return STATUS_OK;

@brief Reads the transmission status of the uart interface.
@return Boolean value:

-true: device is busy

-false: device is idle

return isTxBusy_;

Step 48. Implementing the UART Send Completion

In the callback after the transmission, the status is set to idle again, and the requested callback is called, if there is one.

Broadcom

AFBR-S50-PG102
65

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 37: File "Platform/uart.c" — UART send completion
/**
* @brief Tx Transfer completed callbacks.
* @param huart Pointer to a UART HandleTypeDef structure that contains

* the configuration information for the specified UART module.
* @retval None
*/
void HAL_UART_TxCpltCal Iback(UART_HandleTypeDef *huart)
{
isTxBusy_ = false;
}

Step 49. Implementing the Formatted Output Using print()

To be able to send data from the example application, the print() function is implemented to send the data over the UART
interface.

Listing 38: File "Platform/uart.c" — UART formatted output

/* | I o o o e ok o e S e o R o o AR SR o S AR R o o S S S e o R R AR R o o o S S e R o S e S S S A

* @brief printf-like function to send print messages via UART.
*

* @details Defined in “driver/uart.c" source fTile.

*

* Open an UART connection with 8N1, no handshake to

* receive the data on a computer.

*

* The baud rate is specified in the project configuration via

* UART_BAUDRATE define. Usually its either 115200 or 2000000 bps.

*

* @param fmt_s The usual printf parameters.

* @return Returns the \link #status_t status\endlink (#STATUS_OK on success).

/

status_t print(const char *fmt_s, ...)
{

while (UART_IsTxBusy()) __asm(''nop'™);

va_list ap;

va_start(ap, fmt_s);

int len = vsnprintf((char *) buffer_, sizeof(buffer_), fmt_s, ap);
va_end(ap);

iT (Ien < 0) return ERROR_FAIL;

status_t status = STATUS BUSY;
do
{
status = UART_SendBuffer(buffer_, len);
} while (status == STATUS_BUSY);

return status;

Broadcom AFBR-S50-PG102
66

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Chapter 6: Running the Example Application

6.1 Creating the Example Application

The example application contains a periodic readout of the AFBR-S50 with evaluation of the data in a single file and is a
starting point for individual development.

If the optional UART interface is implemented, it can output the calculation result over the serial line emulation, and a terminal
with appropriate settings can be used to receive the data.

Running the example application is not difficult after the previous preparation:

Step 50. Copying the Example Application

First, the example application code is copied from the source folder of the SDK into the App folder of the project. The file is
found at the following location:
= In case of GitHub repository:
C:\AFBR-S50-API-main\Sources\ExampleApp\main.c
= In case of the Installed SDK:
C:\Program Files (x86)\Broadcom\AFBR-S50 SDK\Device\Examples\01l_simple_example.c
or
C:\Program Files (x86)\Broadcom\AFBR-S50 SDK\Device\Examples\02_advanced_example.c

NOTE: The actual path may change depending on the actual repository or installation directory.

NOTE: The repository combines both examples, the simple and the advanced in a single file that can be switched using
preprocessor declaratives. For the installed version, you must choose one example to import.

The difference between simple example and the advanced example is the way it starts new measurements. The
simple example calls the Argus_MeasurementTrigger function from the main loop to start a new measurement
cycle. The advanced example uses the periodic interrupt timer (PIT) to automatically start a new measurement.

Since API v1.3.5, a HAL Self-Test Suite is provided that tests the basic functionality of the provided API layers. This test is
not mandatory for running the basic demonstration, but you should also include it in the ported project to get faster insight
of erroneous HAL implementations. To include the tests into the projects, copy the test folder near the main source files
into the App folder of the project.

The IDE then automatically detects the new file; otherwise, restart the IDE to force detection.

Broadcom AFBR-S50-PG102
67

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 36: Copied Application File in the IDE
E arkspace_argus - 5TM32CubelDE

File Edit Source Refactor Mavigate Search Project Run Window Help

g | -5 B HE- S - EF O R I® PR E SRR IEACREE ST Yl AN i]
i¥5 Project Explorer &3 BE®Y 8 = O -
v [T Argus Exsmplepp STM32FA01] |~ | Bramples
4% Binaries Coms . SRuE Installer Path
> [Includes
&« 4 » ThisPC » Windows (C:) » Program Files (x86) » Broadcom » AFBR-5505DK » Device » Examples v | &
S
(4 (x Name Date modified Type Size
2 fiatform # Quick access
test File folder
(= [pebug
[frgus_ExampleApp_STM32F401ioc & Box 01_simple_example.c . CFile
|2 Rrgus_Examplefpp_STM32F401 Debug.launch v [This PC 02_advanced_example.c 2021-08-12 17:15 CFile
|7y JTM32F401RETX_FLASH.Id L3 bal colf fort 202 21715 C File
= 3D Object:
3 JTM3ZFADIRETX_RAM.Id a It README.md MD File
B Desktop sci_python_example.py PY File
|| Documents
‘ Downloads
b Music it
Gitems 2itemns selected 21.3 KB

iﬂ = | ExampleApp

m} X
Home Share View RE‘DOSitOW Path o
<« v Tl » ThisPC » Windows (C:) » AFBR-550-APl-main » Sources » ExampleApp I v | O O Search Examplefpp
s
fed MName Date modified Type Size
Quick ad
€ File folder
B Box main.c CFile 13KB
~ O This PC

> _J 3D Objects

Step 51. Altering the Example Source File

Because the API layer of the newly created STM32F401 platform is slightly different than the original NXP KL46z platform
API layers, the main file must be adopted to the new structure. Essentially, this is the #include directives as well as the
initialization code in the hardware__init function.

NOTE: Depending on which example you have imported, the original code might be slightly different from the examples
in this guide.

First, the #include directives must be changed to the newly created header files.

Broadcom AFBR-S50-PG102

68

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Listing 39: In File "App/main.c" — Changing #include directives

Original File

Adopted Version

/

* Include Files

/

* Include Files

*hKhkkk

/
#include "argus.h"
#include "board/clock_config.h"
#include “driver/cop.h"
#include “driver/s2pi.h"
#include “driver/uart._h"
#include “driver/timer.h"
#include "test/argus_hal_test.h"

#iT defined(CPU_MKL46Z256VLL4) ||
defined(CPU_MKL17Z256VFM4)

#eliT defined(STM32F401xE)
#include "main.h"

#else

#error No target specified!
#endi T

*hKhkkk

/
#include "argus.h"
#include "s2pi.h"
#include "timer.h"
#include "uart.h"

/* optional
#include "test/argus_hal_test.h"

include for HAL Self Tests: */

Now, the hardware_init function is adopted to the new initialization methods.

Listing 40: In File "App/main.c" — Changing hardware_init function

Original File

Adopted Version

{

}

static void hardware_init(void)

/* Initialize the board with clocks. */
BOARD_ClockInit();

/* Disable the watchdog timer. */
COP_Disable();

/* Initialize timer required by the API. */
Timer_Init();

/* Initialize UART for print
* functionality. */
UART_Init();

/* Initialize the S2PI hardware required by
* the API. */
S2PI1_Init(SPI_SLAVE, SPI1_BAUD_RATE);

static void hardware_init(void)

{

/* Initialize timer required by the API.*/
Timer_Init();

/* Initialize UART for print
functionality./
UART_Init();

/* Initialize the S2PI hardware required by
* the API. */
S2PI_InitQ);

In case of the repository version that contains a reference to the HAL Self-Tests, the tests must be disabled or enabled
depending if the test folder was also imported into the project. This task can be done by changing the following preprocessor
definition to 0 or 1 respectively.

Broadcom

AFBR-S50-PG102
69

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Listing 41: In File "App/main.c" — Switching the HAL Self-Tests on or off

/*! Selector for HAL test demo:
* - 0: no HAL tests are executed.
* - 1: HAL tests are executed before any APl code is executed. */
#ifndef RUN_HAL_TESTS
#define RUN_HAL_TESTS 1
#endif

In case of the installed SDK version, the HAL Self Test can be switched on by adding a call to the corresponding function or
directly import the 03_hal_self_test_example.c file instead of the 01_simple_example.c or
02_advanced_example.c file.

The function call to the Hall Self Tests can be added after the hardware_init call but before the Argus_Init call.

Listing 42: In File "App/main.c" — Optional call to the HAL Self-Tests

/* Running a sequence of test in order to verify the HAL implementation. */
status = Argus_VerifyHALImplementation(SP1_SLAVE);
handle_error(status, "HAL Implementation verification failed!");

Step 52. Compiling and Running the Example Application
With all the preparations performed in the previous steps, the example application is ready to compile and run.
To compile it, click the build icon.

Figure 37: Building the Example Application in the IDE

[workspace argus - Argus ExampleApp_STM32F401/App/main.c - STM32CubelDE -] X
File Edit Source Refactor Navigate Search Project Run Window Help
CH HaREEIR R S T A M- T oo @ [eukaces [e @4

| Build 'Debug’ for project 'Argus_ExampleApp STM32F401" l
: "3 a

The compilation should be successful with no errors.
To run the application, select debugging, which automatically transfers the build.

Figure 38: Debugging the Example Application in the IDE

[T workspace_argus - Argus_ExampleApp_STM32F401/App/main.c - STM32CubelDE -] s

File Edit Source Refactor Mavigate Search Project Run Window Help

Dy Y T O T S Ay W v Y - T
Debug Argus_Examplefipp_STM32F401 Debug (already . &
[Debug Argus_ExampleApp._ ebug (already running) | w a

e The device must be attached to a USB port.
e The project must be properly selected in the Project Explorer to start the debugging.

The debugger interface must be selected the first time.

Broadcom AFBR-S50-PG102
70

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4
Figure 39: Select the Debugger Interface

[Debug 4s O b4

Select a way to debug 'Argus_ExampleApp_STM32FADIRE

[TLecal C/C++ Application
[EESTM32 Cortex-M C/C++ Application

Description

STM32 Cortex-M C/C++ Application

®

Use the default debug configuration by clicking OK.
Figure 40: Debug Configuration

[T Edit Configuration

o X
Edit launch configuration properties

Name: [JArgus_ExampleApp_STM32FA01RE Debug

[E] Main| %5 Debugger| g Startup]| & Source| [Common|

C/C++ Application:

[DebughArgus_ExampleApp_STM32F401RE eff
Project:

Search Project.. Browse...

[Argus_ExampleApp_STM32F401RE

Browse...
Build (if required) before launching

Build Configuration; | Select Automatically
O Enable auto build) Disable aute build
(®) Use workspace settings

Configure Workspace Settings...

Revert Apply
o)
@

After the debugger is started, the application is suspended at the beginning of the main function. Unless you want to step
through the code, run it by clicking the resume symbol.

Broadcom

AFBR-S50-PG102
71

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 41: Running the Example Application in the IDE

E workspace_argus - Argus_ExampleApp_STM32F401/App/main.c - STM32CubelDE

File Edit Source Refactor Mavigate Search Project Run Window Help
S BpIEN RS @I

A Y il

& EArgus_ExampIEApp_STMBZFAO'I.iﬂc [main.c 22

" @return

This function should never

3 888 /*!
89 * fibrief Application entry point.
Bl op =
91 * @details The main function of the program, called after startup code

be exited.

= int main(void)

if (hnd == @)

Writable

* Error Handling ...*/

S /* The API module handle that contains all data definitions that is
* required within the API module for the corresponding hardware device.
* Every call to an API function requires the passing of a pointer to this
* data structure. */
argus_hnd_t * hnd = Argus_CreateHandle();

| Smart Insert 97:1:3573

| it Qi 7~ 4

[t 13 5| B2 R

L

Al

=

LS

Wo Q)|

NOTE: When attaching the device tothe USB port, a virtual serial interface is automatically created for the UART interface.
You can start a terminal emulation on the machine (with the connection parameters set previously) to see the
device measurement results.

Figure 42: Porting Guide Serial Port Settings

Serial port settings

Port configuration

Port ~
Baud rate 115200 ~

Data bits 3 b
Stop bits 1 -
Parity none e
Flow control |none o

Forward none w

User interface language

Transmitted text

() Append nathing
() Append CR

(® Append LF

(O Append CRAF

Local echo

Received text

Polling | 100 ms
Max. lines |

Font | default ~
[word wrap

| English (en) ~

Options

|:| Stay on top

Quit on Escape
Autocomplete edit line
Keep history

[Close port when inactive

Plug-ins

cance

Broadcom

AFBR-S50-PG102
72

AFBR-S50 SDK Programming Guide

Porting Guide to a Cortex-M4

Figure 43: Porting Guide Terminal Stream

@ Termite 3.4 (by CompuPhase) —

COMG 115200 bps, 8M1, no handshake | Settings Clear About Close

Fange: 1961 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1959 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1959 mm; Amplitude: 715 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1959 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1959 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:
Fange: 1960 mm; Amplitude: 716 L3E; Cuality: 100; Status:

{1 o e T T T T T e o i T T e

W

i C5 ¥

To understandably display the streamed range values from the serial port in the terminal, the sensor's frame rate was set to
10 Hz. Appendix A, Modifying the Example Application, describes how to set a target frame rate with the API.

A full log, including the passing HAL Self-Tests, follows.

Listing 43: Example output including passing the HAL Self-Tests

R
Running HAL Verification Test - v1.2
HiHHHHHHHHHHHHH

1 > Timer Plausibility Test
1 > PASS

2 > Timer Wraparound Test
2 > PASS

3 > SPI Connection Test
3 > PASS

4 > SP1 Interrupt Test
4 > PASS

5 > GPIO Mode Test
EEPROM Readout succeeded!
- Module: 3

- Device ID: 6527

5 > PASS

6 > Lifetime Counter Timer (LTC) Test
RCOTrim = 4

Broadcom

AFBR-S50-PG102
73

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

o Fo o = N +
| count | samples | elapsed us |

Fomm——— S - e +

| 1] 100 | 10311 |

| 21 200 | 20618 |

| 31 300 | 30872 |

| 4] 400 | 41113 |

| 51 500 | 51367 |

| 6 | 600 | 61622 |

| 7 1 700 | 71848 |

| 8 | 800 | 82124 |

| 9 | 900 | 92375 |

| 10 | 1000 | 102586 |

o Fo o = N +

Linear Regression: y(x) = 1025E-7 sec * x + 1004E-7 sec
6 > PASS

7 > Periodic Interrupt Timer (PIT) Test
PIT Test Results:

- event count: 10

- actual interval: 9999 us

- expected interval: 10000 us, min: 9990 us, max: 10010s
PIT Test Results:

- event count: 1000

- actual interval: 333 us

- expected interval: 333 us, min: 332 us, max: 334s

PIT Test Results:

- event count: 5

- actual interval: 100000 us

- expected interval: 100000 us, min: 99900 us, max: 100100s
7 > PASS

HHH R R R R A R R R A R A R R R
PASS: HAL Verification Test finished successfully!
T T

H#it#H AFBR-S50 API - Advanced Example ###H##HHHHH
APl Version: v1.3.5

Chip 1ID: 6527

Module: AFBR-S50LV85D (v1)
HEHHHH R R
Range: 0O mm; Amplitude: 857 LSB; Quality: 1; Status: -110
Range: 0 mm; Amplitude: 709 LSB; Quality: 1; Status: -110

Range: 1955 mm; Amplitude: 593 LSB; Quality: 100; Status: O
Range: 1963 mm; Amplitude: 474 LSB; Quality: 100; Status: O
Range: 1961 mm; Amplitude: 346 LSB; Quality: 100; Status: O
Range: 1963 mm; Amplitude: 512 LSB; Quality: 100; Status: O
Range: 1961 mm; Amplitude: 704 LSB; Quality: 100; Status: O
Range: 1960 mm; Amplitude: 704 LSB; Quality: 100; Status: O

Broadcom AFBR-S50-PG102
74

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Appendix A: Modifying the Example Application

Now you are ready to create a full application in the App folder according to your needs.

Use the API to change the device configuration and adjust the performance to the applications needs. For example, the
measurement frame rate can be set using the following API function.

Listing 44: Adapting the frame time

/* AFBR-S50_SetConfigurationFrameTime(hnd, 100000); // 0.1 second = 10 Hz */
AFBR-S50_SetConfigurationFrameTime(hnd, 1000); // 0.001 second = 1000 Hz

If you use the terminal emulation, you may need to increase the UART baud rate as well, to deliver all measurement results
in time.

A.l Setting Up Floating-Point ABI for Soft Floating Point Usage

Currently, the current API version comes without floating-point support. To be able to link successfully, the same floating point
implementation style should be set, so that the floating-point ABI has to be set to -mfloat-abi=softfp in the project settings.

Broadcom AFBR-S50-PG102
75

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Figure 44: Setting Floating-Point ABI

m Properties for Argus_ExampleApp_STM32F401RE

[m| X
[type filter text Settings GvDww
» Resource
Builders
w CfC++ Build Configuration:

~ | | Manage Configurations...
Build Variables

Environment

Logging * Toolchair@ i Tool Settings & Build Steps Build Artifact Binary Parsers €3 Error Parsers
C Settings

» C/C++ General) @ MCU Settings fcu STM32F401RET
CMBSIS-SVD Settings (2 MCU Post build outputs e R
Project References w 3 MCU GCC Assembler
Refactoring History & General Floating-point unit | FPv4-5P-D16
Run/Debligsettings %: Uehuoging Floating-point ABl | Hardware implementation (-mfloat-zbi=hard) v

(22 Preprocessor

(2 Include paths Instruction set

(# Miscellaneous o
+) MCU GCC Compiler Runtime ibiry

@ General

(2 Debugging

(# Preprocessor

(# Include paths

@ Optimization

@ Warnings

@ Miscellaneous
w B3 MCU GCC Linker

General

(2 Libraries

(2 Miscellaneous

[Use float with printf frem newlib-nano (-u _printf_float)

[[] Use float with scanf fram newlib-nano (-u _scanf_float)

Restore Defaults Apply

Apply and Close Cancel

Broadcom AFBR-S50-PG102
76

AFBR-S50 SDK Programming Guide Porting Guide to a Cortex-M4

Revision History

Version 1.2, November 23, 2021

m Updated paths and structures for the latest SDK release.
m Added HAL test to this document.

Version 1.1, January 12, 2021
= Fixed an error of wrong port configuration for the SPI MISO signal in Step 24, Implementing the SPI/GPIO Switch.
m Fixed several typographical errors.

Version 1.0, June 22, 2020

= |nitial document release.

Broadcom AFBR-S50-PG102

77

©® BROADCOM'

	Porting Guide to a Cortex-M4
	Table of Contents
	Chapter 1: Introduction
	1.1 AFBR-S50MV85G-EK Evaluation Kit Software

	Chapter 2: Phase 1: Installing and Preparing the IDE
	Step 1. Downloading and Installing the IDE
	Step 2. Defining the Workspace
	Step 3. Creating a Native Project
	2.1 File Structure
	Step 4. Creating the File Structure

	Chapter 3: Phase 2: Obtaining the AFBR-S50 API
	Step 5. Clone or Download the Repository from GitHub
	Step 6. Alternatively Download and Install the SDK from the Broadcom Webpage

	Chapter 4: Phase 2: Addition of the MCU Devices with the IDE
	Step 7. Opening the Device Configuration Tool in the IDE
	4.1 Clock Configuration
	4.2 S2PI (= SPI + GPIO) Layer
	Step 8. SPI Basic Setup
	Step 9. SPI DMA Setup
	Step 10. NSS/IRQ GPIO Setup

	4.3 Timer Layer
	4.3.1 Lifetime Counter (LTC)
	Step 11. Setting Up the First LTC Timer
	Step 12. Setting Up the Second LTC Timer

	4.3.2 Periodic Interrupt Timer (PIT)

	4.4 Optional: UART
	4.5 Interrupt Configuration
	Step 13. Configuring the Interrupts in the IDE

	4.6 Code Generation
	Step 14. Setting the Code Generation Options
	Step 15. Performing the Code Generation

	Chapter 5: Adapting the Generated Data to the Argus API
	Step 16. Adding the Required Include Paths
	Step 17. Adding the AFBR-S50 Library
	5.1 IRQ API
	Step 18. Creating the IRQ Files
	Step 19. Implementing the IRQ Header File
	Step 20. Implementing the IRQ Locking

	5.2 S2PI API
	Step 21. Creating the S2PI Files
	Step 22. Implementing the S2PI Header File
	Step 23. Adding the S2PI Includes
	Step 24. Implementing the S2PI Data Structures
	Step 25. Implementing the S2PI Initialization
	Step 26. Implementing the SPI Get Status Function
	Step 27. Implementing the SPI/GPIO Switch
	Step 28. Implementing the GPIO Access
	Step 29. Implementing the CS Cycling
	Step 30. Implementing the SPI Transfer Start
	Step 31. Implementing the SPI Transfer Completion
	Step 32. Implementing the SPI Transfer Abort
	Step 33. Implementing the SPI Transfer Error Handling
	Step 34. Implementing the External Interrupt Handling

	5.3 Timer API
	Step 35. Creating the Timer Files
	Step 36. Implementing the Timer Header File
	Step 37. Adding the Timer Includes
	Step 38. Implementing the Timer Initialization
	Step 39. Implementing the LTC Readout
	Step 40. Implementing the PIT Start/Stop
	Step 41. Implementing the PIT Interrupt Handling

	5.4 Optional: UART API
	Step 42. Creating the UART Files
	Step 43. Implementing the UART Header File
	Step 44. Adding the UART Includes
	Step 45. Defining the UART Variables
	Step 46. Implementing the UART Initialization
	Step 47. Implementing the UART Send Operation
	Step 48. Implementing the UART Send Completion
	Step 49. Implementing the Formatted Output Using print()

	Chapter 6: Running the Example Application
	6.1 Creating the Example Application
	Step 50. Copying the Example Application
	Step 51. Altering the Example Source File
	Step 52. Compiling and Running the Example Application

	Appendix A: Modifying the Example Application
	A.1 Setting Up Floating-Point ABI for Soft Floating Point Usage

	Revision History
	Version 1.2, November 23, 2021
	Version 1.1, January 12, 2021
	Version 1.0, June 22, 2020

