Description

The Broadcom® AFBR-S4N44P014M is single-channel silicon photomultiplier (SiPM) that is used for ultra-sensitive precision measurements of single photons. This SiPM is based on the NUV-MT technology, which combines improved photo-detection efficiency (PDE) with a decreased dark count rate and reduced crosstalk compared to the NUV-HD technology. The SPAD pitch is 40 µm.

Larger areas can be covered by tiling multiple AFBR-S4N44P014M SiPMs. The encapsulation for good mechanical stability and robustness is realized by an epoxy clear mold compound, which is highly transparent down to UV wavelengths, resulting in a broad response in the visible light spectrum with high sensitivity towards the blue and near-UV region of the light spectrum. The SiPM is best suited for the detection of low-level pulsed light sources, especially for detection of Cherenkov or scintillation light from the most common organic (plastic) and inorganic scintillator materials (for example, LSO, LYSO, BGO, NaI, CsI, BaF, LaBr3). This product is lead-free and compliant with RoHS.

Features

- High PDE (63% at 420 nm)
- 4-side tileable, with high fill factors
- Cell pitch: 40 µm
- Highly transparent epoxy protection layer
- Operating temperature range from –20°C to +60°C
- Excellent SPTR and CRT
- Excellent uniformity of breakdown voltage and gain between devices
- RoHS, CFM, and REACH compliant

Applications

- X-ray and gamma-ray detection
- Nuclear medicine
- Positron emission tomography
- Safety and security
- Physics experiments
- Cherenkov detection

Block Diagram

Figure 1: AFBR-S4N44P014M Block Diagram
Pad Layout

The AFBR-S4N44P014M has four cathode pads and one anode pad. The pad layout is displayed in the following figure.

Figure 2: Pad Layout

```
<table>
<thead>
<tr>
<th>Pad</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1,A3,C1,C3</td>
<td>Cathode</td>
</tr>
<tr>
<td>B2</td>
<td>Anode</td>
</tr>
</tbody>
</table>
```

NOTE:

- Dimensions are in mm.
- A stands for anode; C stands for cathode.

Figure 3: Recommended Landing Pattern
Regulatory Compliance Table

<table>
<thead>
<tr>
<th>Feature</th>
<th>Test Method</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD) to the electrical pins,</td>
<td>JESD22-A114</td>
<td>See Absolute Maximum Ratings.</td>
</tr>
<tr>
<td>human-body model (contact ESD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrostatic discharge (ESD) to the electrical pins,</td>
<td>JESD22-C101F</td>
<td>See Absolute Maximum Ratings.</td>
</tr>
<tr>
<td>charged-device model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reflow Soldering Diagram

Figure 4: Recommended Reflow Soldering Profile
Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause damage to the devices. Limits apply to each parameter in isolation. Absolute maximum ratings are those values beyond which damage to the device may occur if these limits are exceeded for other than a short period of time.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>T_{SG}</td>
<td>−20</td>
<td>+60</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature<sup>a</sup></td>
<td>T_A</td>
<td>−20</td>
<td>+60</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature<sup>b,c</sup></td>
<td>T_{SOLD}</td>
<td>—</td>
<td>245</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Soldering Time<sup>b,c</sup></td>
<td>t_{SOLD}</td>
<td>—</td>
<td>60</td>
<td>s</td>
</tr>
<tr>
<td>Electrostatic Discharge Voltage Capability (HBM)</td>
<td>$E_{SD_{HBM}}$</td>
<td>—</td>
<td>2</td>
<td>kV</td>
</tr>
<tr>
<td>Electrostatic Discharge Voltage Capability (CDM)</td>
<td>$E_{SD_{CDM}}$</td>
<td>—</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>Operating Overvoltage</td>
<td>V_{OV}</td>
<td>—</td>
<td>16</td>
<td>V</td>
</tr>
</tbody>
</table>

^a Biased at constant voltage = 12V above breakdown.
^b The tile is reflow solderable according to the solder diagram shown in Figure 4.
^c In accordance with Broadcom’s PCN-272931, there will be a transition in the moisture level definition (MLD) for the NUV-MT SiPM series from MSL 6 to MSL 5. Refer to the label of your devices for details on the MLD. For parts in accordance with MSL 6, baking at 125°C for 16 hours is mandatory before soldering. The floor life is 4 hours at 30°C and 60% relative humidity. For parts with an MLD according to MSL 5, the floor life is 48 hours at 30°C and 60% relative humidity. No baking is required before soldering unless the floor life is exceeded. For more details on soldering and handling, refer to Broadcom’s application note AFBR-S4NxxPyy4M-AN802.

Single Device Specification

Features are measured at 25°C unless otherwise specified.

Geometric Features

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package outer dimensions</td>
<td>PD</td>
<td>4.31 x 4.18</td>
<td>mm²</td>
</tr>
<tr>
<td>Single device area</td>
<td>DA</td>
<td>3.84 x 3.74</td>
<td>mm²</td>
</tr>
<tr>
<td>Active area</td>
<td>AA</td>
<td>3.72 x 3.62</td>
<td>mm²</td>
</tr>
<tr>
<td>Micro cell pitch</td>
<td>L_{CELL}</td>
<td>40</td>
<td>μm</td>
</tr>
<tr>
<td>Number of micro cells per element</td>
<td>N_{CELLS}</td>
<td>8334</td>
<td>—</td>
</tr>
</tbody>
</table>
Optical and Electrical Features

Features are measured at 12V OV and 25°C unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typical(^a)</th>
<th>Max.</th>
<th>Unit</th>
<th>Reference Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral range</td>
<td>(\lambda)</td>
<td>250</td>
<td>—</td>
<td>900</td>
<td>nm</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Peak sensitivity wavelength</td>
<td>(\lambda_{PK})</td>
<td>—</td>
<td>420</td>
<td>—</td>
<td>nm</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>(V_{BD})</td>
<td>32</td>
<td>32.5</td>
<td>33</td>
<td>V</td>
<td>Figure 7</td>
</tr>
<tr>
<td>Temperature coefficient of breakdown voltage</td>
<td>(\Delta V_{BD}/\Delta T)</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>mV/°C</td>
<td>—</td>
</tr>
<tr>
<td>Photo-detection efficiency(^b)</td>
<td>PDE</td>
<td>—</td>
<td>63</td>
<td>—</td>
<td>%</td>
<td>Figure 5, Figure 6</td>
</tr>
<tr>
<td>Dark current per element</td>
<td>(I_D)</td>
<td>—</td>
<td>3.3</td>
<td>—</td>
<td>µA</td>
<td>Figure 7</td>
</tr>
<tr>
<td>Dark count rate per element(^c)</td>
<td>DCR</td>
<td>—</td>
<td>1.7</td>
<td>—</td>
<td>Mcps</td>
<td>Figure 8</td>
</tr>
<tr>
<td>Dark count rate per unit area</td>
<td>DCR(_{mm2})</td>
<td>—</td>
<td>125</td>
<td>—</td>
<td>kcps/mm(^2)</td>
<td>—</td>
</tr>
<tr>
<td>Gain</td>
<td>(G)</td>
<td>—</td>
<td>7.3</td>
<td>—</td>
<td>x10(^6)</td>
<td>Figure 9</td>
</tr>
<tr>
<td>Optical crosstalk</td>
<td>(P_{XTALK})</td>
<td>—</td>
<td>23</td>
<td>—</td>
<td>%</td>
<td>Figure 10</td>
</tr>
<tr>
<td>Afterpulsing probability</td>
<td>(P_{AD})</td>
<td>—</td>
<td><1</td>
<td>—</td>
<td>%</td>
<td>Figure 10</td>
</tr>
<tr>
<td>Recharge time constant</td>
<td>(T_{FALL})</td>
<td>—</td>
<td>55</td>
<td>—</td>
<td>ns</td>
<td>Figure 11</td>
</tr>
<tr>
<td>Nominal terminal capacitance(^d)</td>
<td>(C_T)</td>
<td>—</td>
<td>580</td>
<td>—</td>
<td>pF</td>
<td>—</td>
</tr>
<tr>
<td>Temperature coefficient of gain(^e)</td>
<td>(\Delta G/\Delta T)</td>
<td>—</td>
<td>1.46</td>
<td>—</td>
<td>x10(^4)/°C</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^a\) Measured at 12V OV.

\(^b\) Measured at the peak sensitivity wavelength. Measurement does not include correlated noise, such as afterpulsing or optical crosstalk.

\(^c\) Measured at 0.5 p.e. amplitude. Measurement does not include delayed correlated events.

\(^d\) Measured using the input sine wave with \(f = 200\) kHz and \(V_{in} = 500\) mV.

\(^e\) Calculated from the gain dependence on \(V\) and the breakdown voltage temperature coefficient: \(dG/dT = dG/dV \times dV_{BD}/dT\).
Reference Plots

Features are measured at 25°C unless otherwise specified. Plotted data represents typical values.

Figure 5: PDE vs. Wavelength

Figure 6: PDE at Peak λ vs. OV

Figure 7: Reverse IV Curve

Figure 8: Dark Count Rate vs. OV
Figure 9: Gain vs. OV

![Gain vs. OV Graph]

Figure 10: Correlated Noise vs. OV

![Correlated Noise vs. OV Graph]

Figure 11: Example Signal Measured at 12V OV

![Example Signal Graph]
Mechanical Data – Package Outline

Figure 12: Package Outline Drawing (Dimensions in mm, Numbers Rounded to Two Decimal Places)

NOTES:
1) Dimensions are in millimeters.
2) Nominal values rounded to two decimal places.
 Suppression of following zeroes