AFBR-8CERxxZ 25G Ethernet SFP28 Active Optical Cable

A Broadcom Inc. Company

Description

The Avago AFBR-8CERxxZ Active Optical Cable (AOC) is part of a family of SFP28 products to serve 25Gb Ethernet (25GbE) applications. The letters "xx" of the part number AFBR-8CERxxZ denoted the cable length in meters. The AFBR-8CERxxZ AOC enables 25GbE equipment designs with very high port density. The product is compliant with Small Form Pluggable industry agreements SFP and SFP28 for mechanical and low speed electrical specifications. High speed electrical specifications are compliant with IEEE 802.3by for 25GBASE-SR. The 25GbE SFP28 AOC have a cable length up to 25m. These AOCs can be used as an alternative solution to SFP28 passive and active copper cables, while providing improved signal integrity, longer distances, superior electromagnetic immunity and better bit error rate performance.

Internal clock and data recovery circuits (CDRs) are present on both electrical input and electrical output of each AOC-end. These CDRs will lock at 25.78125Gb/s.

Features

- Compliant to RoHS directives
- 850nm Vertical Cavity Surface Emitting Laser (VCSEL)
- Class 1M eye safe per IEC60825-1 and CDRH
- Wide temperature range (0°C to 70°C)
- Low Power Consumption <1.0W per end
- Rx_LOS and Tx_DISABLE supported
- Variable electrical Tx equalization and Rx emphasis settings
- SFP28 mechanical specifications per SFF-8432
- Pull Tab delatch mechanism
- SFF-8419 compliant low speed interface

Applications

- 25G Ethernet switches (director, stand alone, blade)
- 25G Ethernet NIC Cards/Adapters
- Port side connections
- Inter-switch or inter-chassis aggregated links
- High Performance Computing

Part Number	Description
AFBR-8CER01Z	1 meter 25GbE SFP28 Active Optical Cable
AFBR-8CER02Z	2 meter 25GbE SFP28 Active Optical Cable
AFBR-8CER03Z	3 meter 25GbE SFP28 Active Optical Cable
AFBR-8CER05Z	5 meter 25GbE SFP28 Active Optical Cable
AFBR-8CER07Z	7 meter 25GbE SFP28 Active Optical Cable
AFBR-8CER10Z	10 meter 25GbE SFP28 Active Optical Cable
AFBR-8CER15Z	15 meter 25GbE SFP28 Active Optical Cable
AFBR-8CER20Z	20 meter 25GbE SFP28 Active Optical Cable
AFBR-8CER25Z	25 meter 25GbE SFP28 Active Optical Cable

Installation

The AFBR-8CERxxZ Active Optical Cable package is compliant with the SFF-8432 Improved Pluggable Form factor housing specification for the SFP28. The AFBR-8CERxxZ is hot-pluggable, allowing both active cable ends to be installed while the host system is operating and on-line. Upon insertion, the housing makes initial contact with the host board SFP cage, mitigating potential damage due to Electro-Static Discharge (ESD).

Digital Interface and Serial Identification

The two-wire interface protocol and signalling detail are based on SFF-8419. Conventional EEPROM memory, bytes 0-255 at 2 wire serial interface (I2C) 8 bit address 1010000X (A0h), is organized in compliance with SFF-8472.

Transmitter Section:

The transmitter section includes a Clock and Data Recovery circuit (CDR) and an electrical input stage with variable equalization controls. The transmitter section contains an 850nm Vertical Cavity Surface Emitting Laser (VCSEL) light source and imaging optics to assure efficient optical coupling to the optical interface. As mandated by 802.3, the Tx CDR cleans up any incoming jitter accumulated from the host ASIC, PCB traces and SFP28 electrical connector. Between the SFP electrical connector and Tx CDR is a variable, i2c controlled, equalization circuit to optimize SFP performance with non-ideal incoming electrical waveforms.

Receiver Section:

The receiver section includes pre-amplification and postamplification circuit, Clock and Data Recovery Circuit and an electrical output stage with variable emphasis controls. The receiver section contains a high speed PIN detector, preamplifier and imaging optics to assure light couples efficiently from the optical interface. The resulting differential electrical signal passes through a post-amplification circuit and into a Clock and Data Recovery circuit (CDR) for cleaning up accumulated jitter.

Digital Diagnostics:

Digital Diagnostics are not available in the AFBR-8CERxxZ active optical cable.

Low Speed Interfaces:

Low speed interface I/Os are available as defined in SFF-8419 to manage coarse and fine functions of the AOC.

Transmit Disable (TX_DISABLE)

Each end of the AFBR-8CERxxZ AOC has a TX_DISABLE hardware pin, which accepts an input LVTTL compatible control signal that shuts down the transmitter optical output. A logic high signal implements the transmitter disable function, while a low signal allows normal transmitter operation. An internal pull up resistor disables the transmitter until the host pulls the input low.

Receiver Loss of Signal (Rx_LOS)

The Rx portion of the IC includes detection circuitry which monitors the average input Rx optical power and provides a LVTTL/CMOS compatible status signal to the host via the Rx_LOS pin. A logic high status on this Rx_LOS output pin indicates a loss of signal, indicating a link failure such as a broken fiber or the far-end Tx has failed or has been disabled.

Figure 1: Block Diagram

Application Support

An Evaluation Kit and Reference Designs are available to assist in evaluation of the AFBR-8CERxxZ. Please contact your local Field Sales representative for availability and ordering details.

Ordering Information

Please contact your local field sales engineer or Foxconn Interconnect Technology's distributors for ordering information.

Caution

There are no user serviceable parts or maintenance requirements for the AFBR-8CERxxZ. All mechanical adjustments are made at the factory prior to shipment. Tampering with, modifying, misusing or improperly handling the AFBR-8CERxxZ will void the product warranty. It may also result in improper operation and possibly overstress the device. Performance degradation or device failure may result. Operating above maximum operating conditions or in a manner inconsistent with its design and function may result in exposure to hazardous light radiation and may constitute an act of modifying or manufacturing a laser product. Persons performing such an act are required by law to recertify and reidentify the laser product under the provisions of U.S. 21 CFR (Subchapter J) and TUV.

Customer Manufacturing Processes

This AOC is pluggable and is not designed for aqueous wash, IR reflow, or wave soldering processes.

Regulatory Compliance

The AFBR-8CERxxZ complies with all applicable laws and regulations as detailed in Table 1. Certification level is dependent on the overall configuration of the host equipment.

Electrostatic Discharge (ESD)

The AFBR-8CERxxZ is compatible with ESD levels found in typical manufacturing and operating environments as described in Table 1. In the normal handling and operation of optical cables, ESD is of concern in two circumstances.

The first case is during handling of the AOC prior to insertion

into an SFP28 compliant cage. To protect the device, it is important to use normal ESD handling pre-cautions. These include use of grounded wrist straps, work-benches and floor wherever an optical cable is handled.

The second case to consider is static discharges to the exterior of the host equipment chassis after installation. If the optical interface is exposed to the exterior of host equipment cabinet, the optical cable may be subject to system level ESD requirements.

Electromagnetic Interference (EMI)

Equipment incorporating 25 gigabit transceivers or active optical cables is typically subject to regulation by the FCC in the United States, CENELEC EN55022 (CISPR 22) in Europe and VCCI in Japan. The AFBR-8CERxxZ enables equipment compliance to these standards detailed in Table 1. The metal housing and shielded design of the AFBR-8CERxxZ minimizes the EMI challenge facing the equipment designer. For superior EMI performance it is recommended that equipment designs utilize SFP+ cages per SFF 8432.

RF Immunity (Susceptibility)

The EMI immunity of the AFBR-8CERxxZ exceeds typical industry standards.

Eye Safety

The AFBR-8CERxxZ provides Class 1M (single fault tolerant) eye safety by design and has been tested for compliance with the requirements listed in Table 1. The eye safety circuit continuously monitors the optical output power level and will disable the transmitter upon detecting a condition beyond the scope of Class 1M certification. Such conditions can be due to inputs from the host board (Vcc fluctuation, unbalanced code) or a fault within the AOC. US CDRH and EU TUV certificates are listed in table 1.

Flammability

The AFBR-8CERxxZ optical cable is made of metal and high strength, heat resistant, chemical resistant and UL 94V-0 flame retardant plastic.

Feature	Test Method	Performance
Electrostatic Discharge (ESD) to	JEDEC Human Body Model (HBM)	High speed contacts shall withstand 1000V. All other
the Electrical Contacts	(JESD22-A114-B)	contacts shall withstand 2000 V.
Electrostatic Discharge (ESD) to		When installed in a properly grounded housing and
the Optical Connector	EN61000-4-2, Criterion B	chassis the units are subjected to 15kV air discharges
Receptacle		during operation and 8kV direct discharges to the case.
Electromagnetic Interference	FCC Part 15 CENELEC EN55022	System margins are dependent on customer board and
(EMI)	(CISPR 22A) VCCI Class 1	chassis design.
		Typically shows no measurable effect from a 10V/m
Immunity	Variation of IEC 61000-4-3	field swept from 80 MHz to 1 GHz applied to the
-		transceiver-end without a chassis enclosure
Laser Eye Safety and	US FDA CDRH AEL Class 1M	
Equipment Type Testing	US21 CFP, Subchapter J per Paragraphs	
	1002.10 and 1002.12	
BAUART		CDRH Certification 1020008-015
GEPROFI	(IEC) EN60825-1:1994 +A11 +A2	TUV File: R 72162373
	(IEC) EN60825-2:1994 +A1	
Rheinland ITPE Product Safety APPROVED	(IEC) EN60950.1992 + A1 + A2 + A3 + A4	
	+A11	
	Underwriters Laboratories (UL) and	
	Canadian Standards Association (CSA)	
Component Recognition	Joint Component Recognition for	III File [,] F484615
eemperient recegnition	Information Technology Equipment	
	including Electrical Business Equipment	
		Less than 1000 ppm of cadmium lead mercury
RoHS Compliance		hexavalent chromium, polybrominated hinhenvis (PPR)
		and polybrominated binhenyl ethers (PBDF)

Table 1: Regulatory Compliance

NOTE: INDUCTORS MUST HAVE LESS THAN 1 Ω series resistance to limit voltage drop to the SFP module.

Figure 2: Power Supply Filter

Figure 3: Transceiver-end edge connector contacts

Table 2: Pin Description

Pin	Name	Function/Description	Notes
1	VeeT	Transmitter Ground	Note 1
2	TX_FAULT	Transmitter Fault Indication – High indicates a fault condition	Note 2
3	TX_DISABLE	Transmitter Disable – transceiver-end optical output disables on high or open	Note 3
4	MOD_SDA	Module Definition 2 – Two wire serial ID interface data line (SDA)	Note 4
5	MOD_SCL	Module Definition 1 – Two wire serial ID interface clock line (SCL)	Note 4
6	MOD_ABS	Module Definition 0 – Grounded in transceiver-end (module present indicator)	Note 4
7	Rx Rate Select, RS(0)	Note used, Presents high input impedance.	
8	RX_LOS	Loss of Signal – High indicates loss of received optical signal	Note 5
9	Tx Rate Select, RS(1)	Note used, Presents high input impedance.	
10	VeeR	Receiver Ground	
11	VeeR	Receiver Ground	
12	RD-	Inverse Received Data Out	Note 6
13	RD+	Received Data Out	Note 6
14	VeeR	Receiver Ground	
15	VccR	Receiver Power + 3.3 V	Note 7
16	VccT	Transmitter Power + 3.3 V	Note 7
17	VeeT	Transmitter Ground	
18	TD+	Transmitter Data In	Note 8
19	TD-	Inverse Transmitter Data In	Note 8
20	VeeT	Transmitter Ground	

Notes

1. The module signal grounds are isolated from the transceiver-end case.

- 2. TX_FAULT is an open collector/drain output, which must be pulled up with a 4.7k 10kΩ resistor on the host board. When high, this output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 3. TX_DISABLE is an input that is used to shut down the transmitter optical output. It is internally pulled up (within the transceiver-end) with a 5.6KΩ resistor.

Low (0 – 0.8V):	Transmitter on
Between (0.8V and 2.0V):	Undefined
High (2.0 – Vcc max) or OPEN:	Transmitter Disabled

4. The signals Mod-Def 0, 1, 2 designate the two wire serial interface pins. They must be pulled up with a 4.7k – 10kΩ resistor on the host board.

Mod_ABS is grounded by the module to indicate the module is present Mod_SCL is serial clock line (SCL) of two wire serial interface Mod_SDA is serial data line (SDA) of two wire serial interface

- RX_LOS (Rx Loss of Signal) is an open collector/drain output that must be pulled up with a 4.7k 10kΩ resistor on the host board. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- RD-/+ designate the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω differential at the host SERDES input. AC coupling is done inside the transceiver-end and is not required on the host board. The voltage swing on these lines will be between 50 and 900 mV differential (25 450 mV single ended) when properly terminated.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined at the SFP28 connector pin.
- TD-/+ designate the differential transmitter inputs. They are AC coupled differential lines with 100Ω differential termination inside the transceiver-end. The AC coupling is done inside the transceiver-end and is not required on the host board. The inputs will accept differential swings up to 900 mV differential with at least 95mV inner eye height after reference CTLE.

Table 3: Absolute Maximum Ratings

Stress in excess of any of the individual Absolute Maximum Ratings can cause immediate catastrophic damage to the AOC even if all other parameters are within Recommended Operating Conditions. It should not be assumed that limiting values of more than one parameter can be applied to the AOC concurrently. Exposure to any of the Absolute Maximum Ratings for extended periods can adversely affect reliability.

Parameter	Symbol	Min	Max	Units	Reference
Storage Temperature	Ts	-40	85	°C	1
Case Operating Temperature	Tc	-40	85	°C	
Relative Humidity	RH	5	95	%	
Supply Voltage	Vcc	-0.5	3.6	V	
Low Speed Input Voltage	Vi	-0.5	Vcc+0.5, 3.6	V	

Table 4: Recommended Operating Conditions

Recommended Operating Conditions specify parameters for which the optical and electrical characteristics hold unless otherwise noted. Optical and electrical characteristics are not defined for operation outside the Recommended Operating Conditions, reliability is not implied and damage to the AOC may occur for such operation over an extended period of time.

Parameter	Symbol	Min	Тур	Мах	Units	Reference
Case Operating Temperature	Tc	0		70	°C	2
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate			25.78125		Gb/s	3
Pre-FEC Bit Error Rate		1e-8 BER				Assumes BASE- R FEC CI.74
Two Wire Serial (TWS) Interface Clock Rate				400	kHz	4

Table 5: Transceiver-end Electrical Characteristics

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Parameter	Symbols	Min	Тур	Мах	Units	Reference
Transceiver-end Power Consumption				1.0	W	
Transceiver-end Power Supply Current				300	mA	
Power Supply Noise Rejection (peak-peak)	PSNR		100		mV	5
Low Speed Outputs:	Іон	-50		37.5	uA	6
TX_FAULT, RX_LOS, MOD_SDA	Vol			0.4	V	
Low Speed Inputs	VIH	2.0		Vcc	V	7
TX_DIS, MOD_SCL, MOD_SDA, RS(0), RS(1)	VIL	0		0.8	V	

¹ Absolute maximum ratings are those values beyond which damage to the device may occur if these limits are exceeded for other than a short period of time. See Reliability Data Sheet for specific reliability performance. Between Absolute Maximum Ratings and the Recommended Operating Conditions functional performance is not intended, device reliability is not implied, and damage to the device may occur over an extended period of time.

² Continuous operation at the maximum Recommended Operating Case Temperature should be avoided in order not to degrade reliability.

³ 25GE requires FEC RS(528,514) encoding per IEEE 802.3. 10GE is not compatible with FEC, per 802.3.

⁴ With 500us clock stretch per SFF-8419

⁵ Filter per SFP specification is required on the host board to remove 10Hz to 2MHz content.

 $^{^{6}}$ Pulled up externally with a 4.7k-10k $\Omega\,$ resistor on the host board to 3.3V

⁷ Mod_SCL and Mod_SDA must be pulled up externally with a $4.7k-10k\Omega$ resistor on the host board to 3.3V

Table 6: High Speed Electrical Transceiver-end Input Characteristics

Parameter	Test Point	Min	Тур	Мах	Units	Notes/Conditions
Signalling Rate, Per Lane	TP1		25.78125		GBd	+/- 100 ppm
Differential pk-pk Input Voltage Tolerance	TP1a	900			mV	
Differential Input Return Loss. min	TP1		Eq 83E-5		dB	802.3bm
Common Mode to Differential Input Return Loss, min	TP1		Eq 83E-6		dB	802.3bm
Differential Termination Mismatch	TP1			10	%	
Transceiver-end stressed input test	TP1a		83E.3.4.2			802.3bm, below
Single-ended voltage tolerance range	TP1a	-0.4		3.3	V	
DC common-mode output voltage	TP1a	-0.350		2.85	V	8
Electrical Input LOS Assert Threshold, Differential Peak-to-Peak Voltage Swing	∆Vdi pp los	10			mVpp	
LOS Hysteresis		0.5		4	dB	9

Parameter	Value	Units	Notes/Conditions
Transceiver-end stressed input test			10
Eye width	0.46	UI	
Applied pk-pk sinusoidal jitter	Table 88-13		
Eye height	95	mV	

Table 7: Reference Points

Test Point	Description
TP0	Host ASIC transmitter output at ASIC package pin on a DUT board
TP1	Input to transceiver-end compliance board through mated module compliance board and connector. Used to test module input
TP1A	Host ASIC transmitter output across the Host Board and Host Edge Card connector at the output of the host compliance board
TP4	Transceiver-end output through mated module and host edge card connector through module compliance board
TP4A	Input to host compliance board through mated host compliance board and host edge card connector. Used to test host input
TP5	Input to host ASIC

 ⁸ DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.
 ⁹ LOS Hysteresis is defined as 20*Log(LOS De-assert Level / LOS Assert Level).
 ¹⁰ Module stressed input tolerance is measured using the procedure defined in 83E.3.4.1.1

Figure 83E-4—Host CAUI-4 compliance points

Figure 4: IEEE 802.3bm CAUI-4 compliance points TP1a, TP4a

Note a reference receiver is used to measure host eye width and eye height at TP1a. The reference receiver includes a selectable continuous time linear equalizer (CTLE) which is described by Equation (83E–4, below) with coefficients given in Table 83E–2.

$$H(f) = \frac{GP_1P_2}{Z_1}$$

Where

H(f) is the CTLE transfer function, f is the frequency in GHz G is the CTLE gain P1, P2 are the CTLE poles in Grad/s Z1 is the CTLE zero in Grad/s

Table 8: Reference CTLE coefficients from Table 83E-2

Peaking (dB)	G	$\frac{P_1}{2\pi}$	$\frac{P_2}{2\pi}$	$\frac{Z_1}{2\pi}$
1	0.89125	18.6	14.1	8.364
2	0.79433	18.6	14.1	7.099
3	0.70795	15.6	14.1	5.676
4	0.63096	15.6	14.1	4.9601
5	0.56234	15.6	14.1	4.358
6	0.50119	15.6	14.1	3.844
7	0.44668	15.6	14.1	3.399
8	0.39811	15.6	14.1	3.012
9	0.34581	15.6	14.1	2.672

Table 9: High Speed Electrical Transceiver-end Output Characteristics

Parameter	Test	Min	Тур	Мах	Units	Notes/Conditions
	Point					
Signalling Rate, Per Lane	TP4		25.78125		GBd	+/- 100 ppm
Common Mode AC Output Voltage, RMS	TP4			17.5	mV,	
					rms	
Differential Output Voltage	TP4			900	mV	
Eye Width	TP4	0.57			UI	
Eye Height, Differential	TP4	228			mV	
Vertical Eye Closure	TP4			5.5	dB	
Differential Output Return Loss, min	TP4		Eq 83E-2		dB	802.3bm
Common to Differential Mode Conversion, min	TP4		Eq 83E-3		dB	802.3bm
Differential termination mismatch	TP4			10	%	
Transition Time (20% to 80%)	TP4	12			ps	
DC common mode voltage	TP4	-0.35		2.85	V	11

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Figure 5: IEEE 802.3bm CAUI-4 compliance points TP1, TP4

¹¹ DC common mode voltage is generated by the host. Specification includes effects of ground offset voltage.

Table 10: Transceiver-end Soft Diagnostic Timing Characteristics

 $(T_c = -10^{\circ}C \text{ to } 70^{\circ}C, \text{ VccT}, \text{ VccR} = 3.3 \text{ V} \pm 5\%)$

Parameter	Symbol	Minimum	Maximum	Unit	Notes
Hardware TX_DISABLE Assert Time	t_off		100	μs	Note 1
Hardware TX_DISABLE Negate Time	t_on		2	ms	Note 2
Time to initialize, including reset of TX_FAULT	t_init		300	ms	Note 3
Hardware TX_FAULT Assert Time	t_fault		1	ms	Note 4
Hardware TX_DISABLE to Reset	t_reset	10		μs	Note 5
Hardware RX_LOS DeAssert Time	t_loss_on		100	μs	Note 6
Hardware RX_LOS Assert Time	t_loss_off		100	μs	Note 7
Software TX_DISABLE Assert Time	t_off_soft		100	ms	Note 8
Software TX_DISABLE Negate Time	t_on_soft		100	ms	Note 9
Software Tx_FAULT Assert Time	t_fault_soft		100	ms	Note 10
Software Rx_LOS Assert Time	t_loss_on_soft		100	ms	Note 11
Software Rx_LOS De-Assert Time	t_loss_off_soft		100	ms	Note 12
Analog parameter data ready	t_data		1000	ms	Note 13
Serial bus hardware ready	t_serial		300	ms	Note 14
Serial bus buffer time	t_buf	20		μs	Note 15
Write Cycle Time	t urito		40	ms	Note 16
	t_write		80	ms	
Serial Interface Clock Holdoff "Clock Stretching"	T_clock_hold		500	μs	Note 17
Serial ID Clock Rate	f_serial_clock		400	kHz	Note 18

Notes

1. Time from rising edge of TX_DISABLE to when the optical output falls below 10% of nominal.

2. Time from falling edge of TX_DISABLE to when the modulated optical output rises above 90% of nominal.

3. Time from power on or falling edge of Tx_Disable to when the modulated optical output rises above 90% of nominal.

4. From power on or negation of TX_FAULT using TX_DISABLE.

5. Time TX_DISABLE must be held high to reset the laser fault shutdown circuitry.

6. Time from loss of optical signal to Rx_LOS Assertion.

7. Time from valid optical signal to Rx_LOS De-Assertion.

8. Time from two-wire interface assertion of TX_DISABLE (A2h, byte 110, bit 6) to when the optical output falls below 10% of nominal. Measured from falling clock edge after stop bit of write transaction.

9. Time from two-wire interface de-assertion of TX_DISABLE (A2h, byte 110, bit 6) to when the optical output rises above 90% of nominal.

10. Time from fault to two-wire interface TX_FAULT (A2h, byte 110, bit 2) asserted.

11. Time for two-wire interface assertion of Rx_LOS (A2h, byte 110, bit 1) from loss of optical signal.

12. Time for two-wire interface de-assertion of Rx_LOS (A2h, byte 110, bit 1) from presence of valid optical signal.

13. From power on to data ready bit asserted (A2h, byte 110, bit 0). Indicates transceiver has achieved power up and data is ready. Bit remains high until data is ready to be read at which time the device sets the bit low...

14. Time from power on until transceiver-end is ready for data transmission over the serial bus (reads or writes over A0h and A2h).

15. Time between START and STOP and between ACK and ReSTART.

16. 40ms from stop bit to completion of a 1-4 byte write command, 80ms for a 5-8 byte write command.

17. Maximum time the SFP transceiver-end may hold the SCL line low before continuing with a read or write operation.

18. With a maximum Clock Stretch of 500us. A maximum of 100kHz operation can be supported without a Clock Stretch.

V_{CC}T,R > 2.97 V

t-init: TX DISABLE NEGATED

t-init: TX DISABLE NEGATED, MODULE HOT PLUGGED

t-fault: TX FAULT ASSERTED, TX SIGNAL NOT RECOVERED

t-fault: TX DISABLE ASSERTED THEN NEGATED, TX SIGNAL NOT RECOVERED

Figure 5. Transceiver timing diagrams (module installed except where noted).

t-off & t-on: TX DISABLE ASSERTED THEN NEGATED

t-reset: TX DISABLE ASSERTED THEN NEGATED, TX SIGNAL RECOVERED

t-loss-on & t-loss-off

Code ——	Transmitter Input Equalization		
	Nominal	Units	
11xx	Reserved		
1011	Reserved		
1010	10	dB	
1001	9	dB	
1000	8	dB	
0111	7	dB	
0110	6	dB	
0101	5	dB	
0100	4	dB	
0011	3	dB	
0010	2	dB	
0001	1	dB	
0000	0	No Equalization	

Table 13: Transmitter Input Equalization Control Values (A2, Byte 114) From Table 9-13 of SEF-8472

Table 14: Receiver Output Emphasis Control Values (A2, Byte 115)

Code	Receiver Output Emphasis At nominal Output Amplitude		
	Nominal	Units	
1xxx	Vendor Specific		
0111	7	dB	
0110	6	dB	
0101	5	dB	
0100	4	dB	
0011	3	dB	
0010	2	dB	
0001	1	dB	
0000	0	No Emphasis	

From Table 9-14 of SFF-8472

Table 15: Insertion, Extraction, Retention forces

- Minimum bending radius of the cable of 30 mm
- Maximum cable diameter of 3.5 mm
- Maximum weight of 15 grams/meter (housing is not included)
- For secondary coating of optical fibers only tight buffer is allowed (no loose tubes permitted)

• The Direct Attach AOC assembly shall be rated by Underwriters Laboratories as VW-1

Figure 7: Bend Radius Definition

Optical Fiber Specifications

Length	Cable Length Tolerance
1 meter 25GbE SFP28 Active Optical Cable	+20/-0 cm
2 meter 25GbE SFP28 Active Optical Cable	+20/-0 cm
3 meter 25GbE SFP28 Active Optical Cable	+20/-0 cm
5 meter 25GbE SFP28 Active Optical Cable	+20/-0 cm
7 meter 25GbE SFP28 Active Optical Cable	+20/-0 cm
10 meter 25GbE SFP28 Active Optical Cable	+20/-0 cm
15 meter 25GbE SFP28 Active Optical Cable	+2%/-0 cm
20 meter 25GbE SFP28 Active Optical Cable	+2%/-0 cm
25 meter 25GbE SFP28 Active Optical Cable	+2%/-0 cm

Note: Cable Length is defined as the length of the fiber only (not including the SFP28 module ends)

Figure 8: Optical Fiber Specifications

Parameter	Specification
Cable Diameter	3.0 +/- 0.2mm
Fiber Type	OM3 Optical fiber, nonconductive, riser (OFNR)
Tensile strength (N) Long Term	80
Tensile strength (N) Short Term	150
Bend Radius	30 mm
Crush Resistance (N/10cm) Long Term	100
Crush Resistance (N/10cm) Short Term	500
Attenuation (850nm) (dB/km)	<3.5
Minimum Bandwidth (850nm) (MHz-km)	1500

For more product information: broadcom.com

Copyright © 2005-2017 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, Avago, Avago Technologies, and the A logo are among the trademarks of Broadcom. The term "Broadcom" refers to Broadcom Inc. and/ or its subsidiaries.

