

Data Sheet

AFBR-57H5AMZ

64GFC SFP56 for Multimode Optical Fiber Digital Diagnostic SFP, 850-nm, 64G/32G/16G

Description

The Broadcom[®] AFBR-57H5AMZ optical transceiver supports high-speed serial links over multimode optical fiber at signaling rates up to 57.8 Gb/s PAM4 (the serial line rate of 64GFC). The product is compliant with Small Form Pluggable SFP+ industry agreements for mechanical and low-speed electrical specifications. High-speed electrical and optical specifications are compliant with ANSI Fibre Channel FC-PI-7.

The AFBR-57H5AMZ is a multirate 850-nm transceiver that ensures compliance with FC-PI-7 64GFC, 32GFC, and 16GFC specifications. Per the requirements of 64GFC, internal clock and data recovery circuits (CDRs) are present on both electrical input and electrical output of this transceiver. These CDRs lock at 57.8-Gb/s PAM4, 28.05-Gb/s NRZ, and 14.025-Gb/s NRZ (64GFC, 32GFC, and 16GFC) accomplished by using two Rate Select inputs and I²C to configure transmit and receive sides.

Digital diagnostic monitoring information (DMI) is present in the AFBR-57H5AMZ per the requirements of SFF-8472, providing real-time monitoring information of transceiver laser, receiver, and environment conditions over an SFF-8431 I^2C interface.

Features

- Compliant to RoHS directives with 7c-I exemption.
- Broadcom's high-performance 850-nm Vertical Cavity Surface Emitting Laser (VCSEL) and PiN diode
- Class 1 eye safe per IEC60825-1 and CDRH
- Wide temperature range (0°C to 85°C)
- LC duplex connector optical interface conforming to ANSI TIA/EIA604-10 (FOCIS 10A)
- Diagnostic features per SFF-8472, "Diagnostic Monitoring Interface for Optical Transceivers"
- Enhanced operational features including EWRAP, OWRAP, and adaptive electrical EQ/emphasis settings
- Integrated PRBS generator and bit error rate checker
- Real time monitoring of the following:
 - Transmitter average optical power
 - Received average optical power
 - Laser bias current
 - Temperature
 - Supply voltage
 - Power-on hours
- SFP+ mechanical specifications per SFF-8432
- SFP+ compliant low-speed interface per SFF-8419
- Fibre Channel FC-PI-7 compliant high-speed optical and electrical interface

Applications

- Fibre Channel switches
- Fibre Channel host bus adapters
- Fibre Channel RAID controllers
- Port-side connections
- Interswitch or inter-chassis aggregated links

Transceiver Block Diagram

Figure 1: Block Diagram

Transmitter Section

The transmitter section includes a transmitter optical sub-assembly (TOSA), a laser driver circuit, and a digital signal processor (DSP) with input variable equalization. The TOSA contains a Broadcom 850-nm Vertical Cavity Surface Emitting Laser (VCSEL) light source with an integral light monitoring function and imaging optics to ensure efficient optical coupling to the LC connector interface. The TOSA is driven by a laser driver circuit, which uses the differential output from the DSP to modulate and regulate VCSEL optical power. As mandated by FC-PI-7, the integral Tx DSP cleans up any incoming jitter accumulated from the host ASIC, PCB traces, and SFP electrical connector. Between the SFP electrical connector and Tx DSP is an adaptive equalization circuit to optimize SFP performance with nonideal incoming electrical waveforms at all rates.

Receiver Section

The receiver section includes a receiver optical sub-assembly (ROSA), a pre-amplification and post-amplification circuit, a DSP circuit with variable emphasis controls, and an integral PRBS generator. The ROSA, containing a high-speed PIN detector, pre-amplifier, and imaging optics efficiently couple light from the LC connector interface and perform an optical-to-electrical conversion. The resulting differential electrical signal passes through a post-amplification circuit and into the DSP for cleaning up accumulated jitter. The resulting signal is passed to a high-speed output line driver stage with variable, I²C controlled, emphasis settings that allow the host to optimize signal characteristics between the SFP and the host ASIC.

Digital Diagnostics

The AFBR-57H5AMZ is compliant to the Diagnostic Monitoring Interface (DMI) defined in document SFF-8472. These features allow the host to access, using I²C, real-time diagnostic monitors of transmit optical power, received optical power, temperature, supply voltage, and laser operating current.

Low-Speed Interfaces

Conventional low-speed interface I/Os are available as defined in SFF-8431 to manage coarse and fine functions of the optical transceiver. On the transmit side, a Tx_DISABLE input is provided for the host to turn on and off the outgoing optical signal. A transmitter rate select control input pin, Tx_RATE, and I²C controls are provided to configure the transmitter stages for 64GFC, 32GFC, or 16GFC operation (logic HIGH reserved for 64GFC and 32GFC, logic LOW reserved for 16GFC). A transmitter fault indicator output, Tx_FAULT, is available for the SFP to signal the host of a transmitter operational problem. A receiver rate select control input, Rx_RATE, configures receiver stages for 64GFC, 32GFC, or 16GFC operation (logic HIGH reserved for 16GFC). In 64G mode, the Rate_Sel pins are ignored. A received optical power loss of signal indicator, RX_LOS, is available to advise the host of a receiver operational problem.

Special Operation Functions

See Table 29 for the I²C control registers.

Figure 3: EWRAP Functionality (I²C Controlled)

Electrical and optical high-speed data "wrap" functions are enabled to assist with local host or remote diagnostic and optimization sequences. Optical data wrap (OWRAP) takes a received optical signal through a CDR and retransmits it optically out. Electrical data wrap (EWRAP) takes an incoming electrical signal through a CDR and retransmits it electrically out. In OWRAP/EWRAP mode the traffic pass-through can be turned on or off, controlled through I²C commands.

Figure 4: SFP Tx Input Electrical EQ Is Always Adaptive (No I²C Control Needed)

Figure 5: SFP Rx Variable Output Electrical Emphasis (I²C Controlled)

The electrical SFP input stage (TD +/–) has been enhanced with adaptive EQ, which optimizes the transceiver's input equalization settings without host control. The SFP electrical output stage (RD+/–) has been enhanced with variable output emphasis features to allow host control and optimization of the receiver's output settings. The host can then select, in situ, the most appropriate SFP setting for a given interconnect scenario.

Figure 6: Programmable PRBS Pattern Generator and Bit Error Rate Checker, Line Side (I²C Controlled)

Figure 7: Programmable PRBS Pattern Generator and Bit Error Rate Checker, System Side (I²C Controlled)

The SFP is equipped with an integrated PRBS generator that self-generates programmable PRBS patterns to either system side (TP4) or line side (TP1) at the speed (16G, 32G, or 64G) and operating mode (NRZ or PAM4) to which the SFP is set. The integrated bit error rate checker can also be enabled to measure bit error ratio for every 5 seconds (fixed). It enables users to know the optical link BER performance between TP2 and TP3 of the two separate SFPs or between the host ASIC transmitter (TP0) and the SFP Tx input (TP1).

Table 1: Regulatory Compliance

Feature	Test Method	Performance
Electrostatic Discharge (ESD) to the Electrical Contacts	JEDEC Human Body Model (HBM) (JESD22-A114-B)	High-speed contacts withstand 1000V. All other contacts withstand 2000V.
ESD to the Optical Connector Receptacle	EN61000-4-2, Criterion B	When installed in a properly grounded housing and chassis, the units are subjected to 15-kV air discharges during operation and 8-kV direct discharges to the case.
Electromagnetic Interference (EMI)	FCC Part 15 CENELEC EN55022 (CISPR 22A) VCCI Class 1	System margins are dependent on customer board and chassis design.
Immunity	EN 55024:2010	Typically shows no measurable effect from a 3 V/m field step from 80 MHz to 1 GHz applied to the module without a chassis enclosure
Laser Eye Safety and Equipment Type Testing BAUART GEPRUFT TUV Rheinland Product Safety	CLASS 1 LASER PRODUCT Complies with 21 CFR 1040.10 except for conformance with IEC 60825-1 Ed.3., as described in Laser Notice No. 56, dated May 8, 2019 (IEC) EN62368-1: 2014 (IEC) EN60825-1: 2014 (IEC) EN60825-2: 2004+A1+A2	CDRH Certification 9720151-204
Component Recognition	Underwriters Laboratories (UL) and Canadian Standards Association (CSA) Joint Component Recognition for Information Technology Equipment including Electrical Business Equipment	UL File: E484615
RoHS		RoHS compliant with 7c-I exemption.

Figure 8: Typical Application Configuration

Figure 9: Recommended Power Supply Filter

Table 2: Pin Description

Pin	Name	Function/Description	Notes
1	VeeT	Transmitter Ground	
2	TX_FAULT	Transmitter Fault Indication - High indicates a fault condition	а
3	TX_DISABLE	Transmitter Disable - Module optical output disables on high or open	b
4	MOD_SDA	Module Definition 2 - Two wire serial ID interface data line (SDA)	С
5	MOD_SCL	Module Definition 1 - Two wire serial ID interface clock line (SCL)	С
6	MOD_ABS	Module Definition 0 - Grounded in module (module present indicator)	С
7	Rx Rate Select, RS(0)	Receiver Rate Select	d
8	RX_LOS	Loss of Signal - High indicates loss of received optical signal	е
9	Tx Rate Select, RS(1)	Transmitter Rate Select	d
10	VeeR	Receiver Ground	
11	VeeR	Receiver Ground	
12	RD-	Inverse Received Data Out	f
13	RD+	Received Data Out	f
14	VeeR	Receiver Ground	
15	VccR	Receiver Power + 3.3V	g
16	VccT	Transmitter Power + 3.3V	g
17	VeeT	Transmitter Ground	
18	TD+	Transmitter Data In	h
19	TD-	Inverse Transmitter Data In	h
20	VeeT	Transmitter Ground	

a. TX_FAULT is an open collector/drain output, which must be pulled up with a 4.7 kΩ to 10 kΩ resistor on the host board. When high, this output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output is pulled to < 0.4V.

 b. TX_DISABLE is an input that shuts down the transmitter optical output. It is internally pulled up (within the transceiver) with a 4.7-kΩ resistor. Low (-0.3V to 0.8V): Transmitter on Between (0.8V and 2.0V): Undefined

High (2.0V to Vcc + 0.3) or OPEN: Transmitter Disabled

- c. The signals Mod_ABS, SCL, SDA designate the two-wire serial interface pins. They must be pulled up with a 4.7 kΩ to 10 kΩ resistor on the host board. Mod_ABS is grounded by the module to indicate the module is present. Mod_SCL is serial clock line (SCL) of two-wire serial interface. Mod_SDA is serial data line (SDA) o two wire serial interface.
- d. The rate select input pin selects the signal rates along with the software rate select bits as shown in Table 16 and Table 17. It is internally pulled down with a 40-kΩ resistor.
- e. RX_LOS (Rx Loss of Signal) is an open collector/drain output that must be pulled up with a 4.7-kΩ to 10- kΩ resistor on the host board. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.4V.
- f. RD-/+ designate the differential receiver outputs. They are AC coupled 100 Ω differential lines that should be terminated with 100 Ω differential at the host SerDes input. AC coupling is done inside the transceiver and is not required on the host board.
- g. VccR and VccT are the receiver and transmitter power supplies. Refer to SFF-8419 for details.
- h. TD-/+ designate the differential transmitter inputs. They are AC coupled differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is not required on the host board.

Stress in excess of any of the individual absolute maximum ratings can cause immediate catastrophic damage to the module even if all other parameters are within Recommended Operating Conditions. It should not be assumed that limiting values of more than one parameter can be applied to the module concurrently. Exposure to any of the absolute maximum ratings for extended periods can adversely affect reliability.

Table 3: Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference
Storage Temperature	Ts	-40	85	°C	а
Relative Humidity	RH	5	95	%	
Supply Voltage	Vcc	-0.3	3.63	V	
Low Speed Input Voltage	Vi	-0.3	Vcc + 0.5, 3.63	V	
Low Speed Output Current		-20	20	mA	

a. Absolute maximum ratings are those values beyond which damage to the device may occur if these limits are exceeded for other than a short period of time. Refer to the reliability data sheet for specific reliability performance. Between the absolute maximum ratings and the Recommended Operating Conditions, functional performance is not intended, device reliability is not implied, and damage to the device may occur over an extended period of time.

Recommended Operating Conditions specify parameters for which the optical and electrical characteristics hold unless otherwise noted. Optical and electrical characteristics are not defined for operation outside the recommended operating conditions, reliability is not implied, and damage to the module may occur for such operation over an extended period of time.

Table 4: Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Reference
Case Operating Temperature	Tc	0	_	85	°C	а
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate		14.025	—	28.9	Gbaud	b
		14.025	—	57.8	Gb/s	
Two-Wire Serial (TWS) Interface Clock Rate		_	_	400	kHz	С

a. The position of case temperature measurement is shown in Figure 13. Continuous operation at the maximum recommended operating case temperature should be avoided to not degrade reliability.

b. 64GFC PAM4 requires FEC RS(544,514) encoding per FC-PI-7. 32GFC NRZ requires FEC RS(528,514) per FC-PI-6 and 16GFC NRZ does not require FEC per FC-PI-5.

c. With 500-µs maximum clock stretch per SFF-8419.

The following transceiver electrical characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table 5: Transceiver Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Reference
Transceiver Power Consumption		_	1.4	2.0	W	
Power Supply Noise Rejection (peak-peak)	PSNR			66	mV	а
Low Speed Outputs: TX_FAULT, RX_LOS, MOD_SDA	VOL	-0.3		0.4	V	b
	IOH	-50		37.5	μA	
Low Speed Inputs: TX_DIS, MOD_SCL, MOD_SDA, RS(0), RS(1)	VIL	-0.3		0.8	V	с
	VIH	2.0		VccT + 0.3	V	С

a. Filter per the SFP specification is required on the host board to remove 10-Hz to 2-MHz content.

b. Pulled up externally with a 4.7-k Ω to 10-k Ω resistor on the host board to 3.3V.

c. Mod_SCL and Mod_SDA must be pulled up externally with a4.7-k Ω to 10-k Ω resistor on the host board to 3.3V.

The following high speed electrical module input characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table 6: High Speed Electrical Module Input Characteristics^a

	1	1		1		
Parameter	Test Point	Min.	Тур.	Max.	Units	Notes/Conditions
64GFC Signaling Rate, Per Lane	B'	_	28.9	—	Gbaud	±100 ppm, PAM4 and RS(544,514) FEC encoded
32GFC Signaling Rate, Per Lane	B'		28.05		Gbaud	±100 ppm, NRZ and RS(528, 514) FEC encoded
16GFC Signaling Rate, Per Lane	B'		14.025	—	Gbaud	±100 ppm, NRZ
Differential pk-pk Input Voltage Tolerance	B'	900	—		mV	
Differential Termination Resistance Mismatch	B'	_	—	10	%	
Differential Return Loss, SDD11 min.	B'	—	Eq. 1, Fig. 9	—	dB	IEEE 802.3 Annex 83E
Differential Mode to Common Mode Conversion, min.	B'	—	Eq. 2, Fig. 10	_	dB	IEEE 802.3 Annex 83E
Common-Mode Output Voltage	B'		_		V	b

a. From FC-PI-7, Table 11.

b. DC common-mode voltage is generated by the host. The specification includes the effects of ground offset voltage.

Table 7: Stressed Input Test Conditions

Parameter	Value	Units	Notes/Conditions
Module Stressed Input Test			а
Eye Width at 10 ^{–5} Probability, EW5	0.23	UI	
Eye Height at 10 ^{–5} Probability, EH5	34	mV	
Vertical Eye Closure, VEC (max.)	12	dB	

a. Module stressed input tolerance is measured using the procedure defined in 83E.3.4.1.1.

Table 8: Reference Points

Test Point	Description
B'	Module electrical input at the input of the module compliance board. Module return loss specifications are met at this point.
C'	Module electrical output at the output of the module compliance board. Module output and module return loss specifications are met at this point.

Figure 10: FC-PI-7 Module Compliance Points

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Parameter	Test Point	Min.	Тур.	Max.	Units	Notes/Conditions
Differential Output Voltage (Enabled)	C,	—	—	900	mV	Measured with PRBS13Q
Differential Output Voltage (Disabled)	C'	—	—	35	mV	Measured with PRBS13Q
Common Mode Noise, RMS	C'	—	—	17.5	mV	
Differential Termination Mismatch	C'	—	—	10	%	
Differential Output Return Loss SDD22 (min.)	C'	—	Eq. 1, Fig. 9		dB	FC-PI-7
Common to Differential Mode Conversion SDC22, min.	C,	—	Eq 2, Fig. 10		dB	FC-PI-7
Source Transition Time (20% to 80%)	C'	9.5	—		ps	
Common-Mode Voltage	C'	_			V	b
Eye Width at 10 ^{–5} Probability, EW5	C'	0.265		_	UI	
Eye Height at 10 ^{–5} Probability, EH5	C'	70	_	_	mV	
Vertical Eye Closure, VEC	C'	—	—	12	dB	
Near-End Eye Symmetry Mask Width (ESMW)	C'	_	0.265		UI	
Near-End Eye Height, Differential	C'	70	—		mV	
Far-End ESMW	C'	_	0.2		UI	
Far-End Eye Height, Differential	C'	30	—	_	mV	
Far-End Pre-Cursor ISI Ratio	C'	-4.5	—	2.5	%	

a. From FC-PI-7, Table 10.

b. DC common-mode voltage is generated by the host. The specification includes the effects of ground offset voltage.

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Parameter	Test Point	Min.	Тур.	Max.	Units	Notes/Conditions
64GFC Signaling Rate	gamma-T		28.9		Gbaud	±100 ppm, PAM4 and
						RS(544,514) FEC encoded
Center Wavelength Range	gamma-T	840	—	860	nm	
RMS Spectral Width	gamma-T	—	—	0.60	nm	
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ),	gamma-T	—		5.5	dB	
TDECQ- 10log ₁₀ (C _{eq})	gamma-T			5.5	dB	
Optical Modulation Amplitude (OMA _{outer})	gamma-T	-4.5 ^a		+3.0	dBm	
OMA _{outer} Extinction Ratio	gamma-T	3		—	dB	
Launch Power in OMA _{outer} minus TDECQ	gamma-T	-5.9	_	—	dBm	
Average Launch Power	gamma-T	-7.5	—	+4.0	dBm	
RIN ₁₂ OMA	gamma-T		_	-128	dB/Hz	
Transmitter Transition Time, 20%-80%	gamma-T	—	—	34	ps	
Average Launch Power of OFF transmitter,	gamma-T	—	—	-30	dBm	
Encircled Flux	gamma-T	_	≥86% at 19 µm	—		Type A1a.2 50-µm Fiber per
			≤30% at 4.5 µm			IEC 61280-1-4

Table 10: 64GFC Mode Optical Transmitter Characteristics

a. Even if the TDEC < 1.4 dB, the OMA (min.) must exceed this value.

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table 11: 64GFC Mode Optical Receiver Characteristics (per PC-PI-7)

Parameter	Test Point	Min.	Тур.	Max.	Units	Notes/ Conditions
Center Wavelength Range	gamma-R	840		860	nm	
Damage Threshold	gamma-R	+5.0			dBm	BER 1.09E-4
Average Receive Power	gamma-R	-9.4		+4.0	dBm	BER 1.09E-4
Receive Power (OMA _{outer})	gamma-R	—		+3.0	dBm	BER 1.09E–4
Receiver Return Loss	gamma-R	12	_	_	dB	
Receiver Sensitivity (OMA _{outer})	gamma-R			-7.0	dBm	BER 1.09E-4
Stressed Receiver Sensitivity OMA _{outer}	gamma-R	—		-2.4	dBm	BER 1.09E–4
Conditions of Stressed Receiver Sensitivity Test	gamma-R	_	_	_		
Stressed Eye Closure for PAM4 (SECQ)	gamma-R	—		5.5	dB	BER 1.09E-4
SECQ-10log ₁₀ (C _{eq})	gamma-R			5.5	dB	BER 1.09E–4
LOS Assert	gamma-R	-30	_	_	dBm avg	
LOS Deassert	gamma-R	—	—	-7	dBm avg	
LOS Hysteresis	gamma-R	0.5	_	_	dB	

Table 12: 32GFC Mode Optical Transmitter Characteristics^a

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
32GFC Signaling Rate, Per Lane			28.05		Gbaud	±100 ppm NRZ, RS(528,514) FEC encoded
Modulated Optical Output Power (OMA)	Tx,OMA	479	—	—	μW	
(Peak-to-Peak) 28.05 Gb/s		-3.2	_		dBm	
Average Optical Output Power 28.05 Gb/s	Pout	-6.2	_	2	dBm	b
Vertical Eye Closure Penalty, 28.05 Gb/s	VECP	—		3.13	dB	

a. Tc = 0°C to 85°C, VccT, VccR = $3.3V \pm 5\%$.

b. Max. Pout is the lesser of Class 1 safety limits (CDRH and EN 60825) or received power, max.

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table 13: 32GFC Mode Optical Receiver Characteristic

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Optical Input Power, 28.05 Gb/s	P _{IN}	—	_	+2	dBm,avg	
Input Optical Modulation Amplitude, 28.05 Gb/s	OMA	—	—	95	μW	a, b
(Peak to Peak) (Unstressed Sensitivity)		—	_	-10.2	dBm	
Stressed Receiver Sensitivity (OMA) 28.05 Gb/s		—	_	263	μW	b, c
		_	—	-5.7	dBm	

a. Input Optical Modulation Amplitude (commonly known as sensitivity] requires a valid Fibre Channel encoded input.

b. 32GFC (28.05 Gb/s) assumes an FEC encoded RS(528, 514) signal and allows a BER of 1E-6 for receiver and transmitter measurements.

c. 28.05 Gb/s stressed received vertical eye closure penalty (ISI) min. is 3.1 dB.

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table 14: 16GFC Mode Optical Transmitter Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
16GFC Signaling Rate, Per Lane			14.025		Gbaud	±100 ppm NRZ, No FEC
Modulated Optical Output Power (OMA) (Peak to Peak)	Tx,OMA	331	_	—	μW	
14.025 Gb/s		-4.8	_	—	dBm	
Average Optical Output Power	Pout	-7.8	_	—	dBm	а
Vertical Eye Closure Penalty, 14.025 Gb/s	VECP	—	_	2.56	dB	
Transmitter Uncorrelated Jitter, 14.025 Gb/s	UJ	_	_	0.03	UI	

a. Max Pout is the lesser of Class 1 safety limits (CDRH and EN 60825) or received power, max.

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table 15: 16GFC Mode Optical	Receiver Characteristics
------------------------------	---------------------------------

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Notes
Optical Input Power	P _{IN}	—		0	dBm,avg	per FC-PI-5
Input Optical Modulation Amplitude, 14.025 Gb/s	OMA	—	—	89	μW	а
(Peak to Peak) (Unstressed Sensitivity)		—		-10.5	dBm	
Stressed Receiver Sensitivity (OMA) 14.025 Gb/s		—	—	170	μW	b
		—	—	-7.7	dBm	

a. Input Optical Modulation Amplitude (commonly known as sensitivity) requires a valid Fibre Channel encoded input and allows a BER of 1E–12.

b. 14.025-Gb/s stressed received vertical eye closure penalty (ISI) min is 2.5 dB for all fiber types.

Rate Select Control

TX and RX rates and operating modes can be controlled by the hardware input pins and the register control bits as shown in Table 16 and Table 17. All five rate select control inputs must be set to 0 for 16GFC operation. Either A, B, C, or D must be set to 1 while A2.119.2 = 0 to switch to 32GFC operation. TX and RX operate at the same speed and operating mode and cannot be independently controlled.

Table 16: TX and RX Rate Select Control

	Rate	TX and RX Rate and Operating Mode				
Software A2h Byte 110 Bit 3	Software A2h Byte 118 Bit 3	Software A2h Byte 119 Bit 2	Hardware Pin 7 RS0	Hardware Pin 9 RS1	Rate	Operating Mode
0	0	0	0	0	16GFC	TX RX CDR NRZ
А	В	0	С	D	32GFC	TX RX CDR NRZ
Х	Х	1	Х	Х	64GFC	TX RX CDR PAM4

64GFC Rate Select Control/Status Register

The host can assert the 64GFC mode of operation by using I^2C controls located in Address A2h Byte 119. When asserted, bit 2 of byte 119 enables the module 64GFC Mode of operation, ignoring the RS(0) and RS(1) hard pin and register settings. Byte 119 status bits 0–1 and 3–4 verify internal settings are properly configured for PAM operation at 28.9 Gbaud.

Table 17: EEPROM Serial ID Memory Contents – Soft Commands (Address A2h, Byte 119)

Address A2h Byte	Bit	Definition	Status/Control	Behavior
119	5–7	Unallocated		
	4	64GFC Mode Tx Configured	Status	This status bit is a response to the 64GFC mode control bit. The bit indicates the module Tx logic has finished configuring itself to 64GFC mode at 28.9 Gbaud.
	3	64GFC Mode Rx Configured	Status	This status bit is a response to the 64GFC mode control bit. The bit indicates the module Rx logic has finished configuring itself to 64GFC mode at 28.9 Gbaud.
	2	64GFC Mode	Control	Writing a 1 to this bit selects 64GFC speed of operation at 28.9 Gbaud. When this bit is set to 1, the rate select settings on the pins or in the registers are ignored. Default at power up for this bit is 0.
	1	Tx CDR Not Locked	Status	A value of 0 indicates that the CDR is locked, whereas a value of 1 indicates loss of lock of the CDR. In 64GFC mode, if bit 4 of this byte is set to 1, a value of 0 indicates that the equalizer has finished adaptation and the CDR is locked to the PAM4 signal.
	0	Rx CDR Not Locked	Status	A value of 0 indicates that the CDR is locked, whereas a value of 1 indicates loss of lock of the CDR. In 64GFC mode, if bit 3 of this byte is set to 1, a value of 0 indicates that the equalizer has finished adaptation and the CDR is locked to the PAM4 signal.

The following characteristics are defined over the Recommended Operating Conditions unless otherwise noted.

Table 18: Transceiver Timing Characteristics

Parameter	Symbol	Min.	Max.	Unit	Notes
Hardware TX_DISABLE Assert Time (Gamma-t/TP2)	t_off	—	100	μs	а
Hardware TX_DISABLE Negate Time (Gamma-t/TP2)	t_on	—	2	ms	b
Time to initialize, including reset of TX_FAULT	t_init	—	10	S	С
Hardware TX_FAULT Assert Time (Gamma-t/TP2)	t_fault	—	1	ms	d
Hardware TX_DISABLE to Reset	t_reset	10	—	μs	е
Hardware RX_LOS Deassert Time (Gamma-r/TP3)	t_loss_on	—	100	μs	f
Hardware RX_LOS Assert Time (Gamma-r/TP3)	t_loss_off	—	100	μs	g
Hardware RATE_SELECT Assert Time RS(0), RS(1)	t_rate_high	—	4	ms	h
Hardware RATE_SELECT Deassert Time RS(0), RS(1)	t_rate_low	_	4	ms	h
Software TX_DISABLE Assert Time (Gamma-t/TP2)	t_off_soft	—	100	ms	i
Software TX_DISABLE Negate Time (Gamma-t/TP2)	t_on_soft	—	100	ms	j
Software Tx_FAULT Assert Time (Gamma-t/TP2)	t_fault_soft	_	100	ms	k
Software Rx_LOS Assert Time (Gamma-r/TP3)	t_loss_on_soft	_	100	ms	I
Software Rx_LOS Deassert Time (Gamma-r/TP3)	t_loss_off_soft	_	100	ms	m
Software RATE_SELECT Assert Time RS(0), RS(1)	t_rate_soft_high		500	ms	n
Software RATE_SELECT Deassert Time RS(0), RS(1)	t_rate_soft_low		500	ms	0
Software NRZ Tx_LOL Assert Time (Delta-t/TP1)	tx_lol_on_nrz		100	ms	р
Software NRZ Tx_LOL Deassert Time (Delta-t/TP1)	tx_lol_off_nrz		100	ms	q
Software PAM Tx_LOL Assert Time (Delta-t/TP1)	tx_lol_on_pam		100	ms	r
Software PAM Tx_LOL DeAssert Time (Delta-t/TP1)	tx_lol_off_pam		100	ms	s
Software NRZ Rx_LOL Assert Time (Gamma-r/TP3)	rx_lol_on_nrz		40	ms	t
Software NRZ Rx_LOL Deassert Time (Gamma-r/TP3)	rx_lol_off_nrz		40	ms	u
Software PAM Rx_LOL Assert Time (Gamma-r/TP3)	rx_lol_on_pam		40	ms	v
Software PAM Rx_LOL Deassert Time (Gamma-r/TP3)	rx_lol_off_pam		40	ms	w
Software 64GFC MODE Assert Time	t_rate_64gfc_high		2	S	Х
Software 64GFC MODE Deassert Time	t_rate_64gfc_low		2	S	У
Diagnostic Data Ready	t_data		5	S	Z
Serial Bus Hardware Ready	t_serial		300	ms	aa
Serial Bus Buffer Time	t_buf	20		μs	ab
Write Cycle Time	t_write	—	80	ms	ac
Serial Interface Clock Holdoff "Clock Stretching"	T_clock_hold		500	μs	ad
Serial ID Clock Rate	f_serial_clock		400	kHz	ae

a. Time from rising edge of TX_DISABLE to when the optical output falls below 10% of nominal.

b. Time from falling edge of TX_DISABLE to when the modulated optical output rises above 90% of nominal.

c. Time from power on or falling edge of Tx_Disable to when the modulated optical output rises above 90% of nominal.

d. From occurrence of fault to assertion of Tx_Fault.

- e. Time TX_DISABLE must be held high to reset the laser fault shutdown circuitry.
- f. Time from loss of optical signal to Rx_LOS Assertion.
- g. Time from valid optical signal to Rx_LOS Deassertion.
- h. Time from rising or falling edge of Rate_Select input until transceiver is successfully passing traffic as designated by RS(0) and RS(1). For Rate_Select going high, the internal CDR locks on valid 32GFC encoded data within the specified time. For Rate_Select going low, the internal CDR locks on valid 16GFC encoded data within the specified time.
- i. Time from I²C interface assertion of TX_DISABLE (A2h, byte 110, bit 6) to when the optical output falls below 10% of nominal. Measured from falling clock edge after stop bit of write transaction.
- j. Time from I²C interface deassertion of TX_DISABLE (A2h, byte 110, bit 6) to when the optical output rises above 90% of nominal.
- k. Time from fault to I²C interface TX_FAULT (A2h, byte 110, bit 2) asserted.
- I. Time for I²C interface assertion of Rx_LOS (A2h, byte 110, bit 1) from loss of optical signal.
- m. Time for I²C interface deassertion of Rx_LOS (A2h, byte 110, bit 1) from presence of valid optical signal.
- n. Time from I²C interface Assertion of Rate_Select (either RS(0) in A2h, byte 110, bit 3 or RS(1) in A2h, byte 118, bit 3) to when the respective CDR is engaged at 32GCFC data rate.
- o. Time from I²C interface Deassertion of Rate_Select (either RS(0) in A2h, byte 110, bit 3 or RS(1) in A2h, byte 118, bit 3) to when the respective CDR is either engaged at 16GCFC data rate or bypassed for 8GFC operation.
- p. Time from loss of TX electrical input CDR data lock to Tx_LOL Assertion for data at 16GFC or 32GFC. Address A2h, Byte 119, bit 1.
- q. Time from valid TX electrical input CDR data lock to Tx_LOL Deassertion for data at 16GFC or 32GFC. Address A2h, Byte 119, bit 1.
- r. Time from loss of TX electrical input CDR data lock to Tx_LOL Assertion for data at 64GFC. Address A2h, Byte 119, bit 1.
- s. Time from valid TX electrical input CDR data lock to Tx_LOL Deassertion for data at 64GFC. Address A2h, Byte 119, bit 1.
- t. Time from loss of RX optical input CDR data lock to Rx_LOL Assertion for data at 16GFC or 32GFC. Address A2h, Byte 119, bit 0.
- u. Time from valid RX optical input CDR data lock to Rx_LOL Deassertion for data at 16GFC or 32GFC. Address A2h, Byte 119, bit 0.
- v. Time from loss of RX optical input CDR data lock to Rx_LOL Assertion for data at 64GFC. Address A2h, Byte 119, bit 0.
- w. Time from valid RX optical input CDR data lock to Rx_LOL Deassertion for data at 64GFC. Address A2h, Byte 119, bit 0.
- x. Time from I²C interface Assertion of 64GFC MODE input until transceiver has finished configuring itself to 64GFC mode. See address A2h, Byte 119, bits 3 and 4 for the status indicators.
- y. Time from I²C interface Deassertion of 64G MODE input until transceiver has finished configuring itself out of 64GFC mode. See address A2h, Byte 119, bits 3 and 4 for the status indicators.
- z. From power on to data ready bit asserted (address A2h, byte 110, bit 0). Data ready indicates analog monitoring circuitry is functional.
- aa. Time from power on until module is ready for data transmission over the serial bus (reads or writes over A0h and A2h).
- ab. Time between START and STOP commands.
- ac. Time from stop bit to completion of a write command. Write cycle time is 40 ms for 1-4 bytes and 80 ms for 5-8 bytes.
- ad. Maximum time the SFP+ module may hold the SCL line low before continuing with a read or write operation.
- ae. With a maximum clock stretch of 500 µs. A maximum of 100-kHz operation can be supported without a clock stretch.

Parameter	Symbol	Min.	Units	Notes
Transceiver Internal Temperature Accuracy	T _{INT}	±5.0	°C	Temperature is measured internal to the transceiver. Valid from 0°C to 85°C case temperature.
Transceiver Internal Supply Voltage Accuracy	V _{INT}	±0.1	V	Supply voltage is measured internal to the transceiver and can, with less accuracy, be correlated to voltage at the SFP Vcc pin. Valid over $3.3V \pm 5\%$.
Transmitter Laser DC Bias Current Accuracy	I _{INT}	±10	%	I _{INT} is better than ±10% of the nominal value.
Transmitted Average Optical Output Power Accuracy	P _T	±3.0	dB	Coupled into 50- μ m multimode fiber. Valid from 100 μ W to 500 μ W, average.
Received Optical Input Power Accuracy	P _R	±3.0	dB	Coupled from 50- μ m multimode fiber. Valid from 70 μ W to 500 μ W average.

a. $T_C = 0^{\circ}C$ to 85°C, VccT, VccR = 3.3V ± 5%.

Figure 11: Transceiver Timing Diagrams (Module Installed Except Where Noted)

Table 20: EEPROM Serial ID Memory Contents – Base SFP Memory (Address A0h)

Byte Number Decimal	Data Hex	Notes	Byte Number Decimal	Data Hex	Notes
0	03	SFP physical device	37	00	Hex Byte of Vendor OUI ^a
1	04	SFP function defined by serial ID only	38	17	Hex Byte of Vendor OUI ^a
2	07	LC optical connector	39	6A	Hex Byte of Vendor OUI ^a
3	00		40	41	"A" – Vendor Part Number ASCII character
4	00		41	46	"F" – Vendor Part Number ASCII character
5	00		42	42	"B" – Vendor Part Number ASCII character
6	00		43	52	"R" – Vendor Part Number ASCII character
7	60	Short and Intermediate distance (per FC-PI)	44	2D	"-" – Vendor Part Number ASCII character
8	40	Shortwave laser without OFC (open fiber control)	45	35	"5" – Vendor Part Number ASCII character
9	04	Multimode 50-µm optical media	46	37	"7" – Vendor Part Number ASCII character
10	2A	32/16G. Refer to Byte 36 for Extended Specification	47	48	"H" – Vendor Part Number ASCII character
11	08	PAM4 per SFF-8024, Table 4-2	48	35	"5" – Vendor Part Number ASCII character
12	FF	Bit rate is greater than 25Gb/s. See address 66/67.	49	41	"A" – Vendor Part Number ASCII character
13	10	64/32/16G Independent Tx and Rx Rate Selects	50	4D	"M" – Vendor Part Number ASCII character
14	00		51	5A	"Z" – Vendor Part Number ASCII character
15	00		52	20	" " – Vendor Part Number ASCII character
16	00	Unspecified 50/125 µm OM2 at 64GFC	53	20	" " – Vendor Part Number ASCII character
17	00	Unspecified 62.5/125 µm OM1 at 64GFC	54	20	" " – Vendor Part Number ASCII character
18	0A	100m of 50/125 μm OM4 at 64GFC	55	20	" " – Vendor Part Number ASCII character
19	07	70m of 50/125 µm OM3 at 64GFC	56	20	" " – Vendor Revision ASCII character
20	41	"A" – Vendor Name ASCII character	57	20	" " – Vendor Revision ASCII character
21	56	"V" – Vendor Name ASCII character	58	20	" " – Vendor Revision ASCII character
22	41	"A" – Vendor Name ASCII character	59	20	" " – Vendor Revision ASCII character
23	47	"G" – Vendor Name ASCII character	60	03	Hex Byte of Laser Wavelength ^b
24	4F	"O" – Vendor Name ASCII character	61	52	Hex Byte of Laser Wavelength ^b
25	20	" " – Vendor Name ASCII character	62	00	Unallocated
26	20	" " – Vendor Name ASCII character	63		Checksum for Bytes 0–62 ^c
27	20	" " – Vendor Name ASCII character	64	28	CDRs present. 2.0W power class.
28	20	" " – Vendor Name ASCII character	65	3A	Hardware SFP TX_DISABLE, TX_FAULT, and RX_LOS, RATE_SELECT
29	20	" " – Vendor Name ASCII character	66	E7	Upper bit rate. 57.8 Gb/s in units of 250 Mb/s
30	20	"" – Vendor Name ASCII character	67	00	
31	20	" " – Vendor Name ASCII character	68–83		Vendor Serial Number ASCII characters ^d
32	20	" " – Vendor Name ASCII character	84–91		Vendor Date Code ASCII characters ^e
33	20	" " – Vendor Name ASCII character	92	68	Digital Diagnostics, Internal Cal, Rx Pwr Avg

Table 20: EEPROM Serial ID Memory Contents – Base SFP Memory (Address A0h)

Byte Number Decimal	Data Hex	Notes	Byte Number Decimal	Data Hex	Notes
34	20	" " – Vendor Name ASCII character	93	FA	A/W, Soft SFP TX_DISABLE, TX_FAULT, and RX_LOS, RATE_SELECT
35	20	" " – Vendor Name ASCII character	94	08	SFF-8472 Compliance to revision 12
36	80	64GFC FC-PI-7 per SFF-8024, Table 4-4	95		Checksum for Bytes 64–94 ^f
			96–255	00	Reserved for Broadcom use ^f

a. The IEEE Organizationally Unique Identifier (OUI) assigned to Broadcom is 00-17-6A (3 bytes of hex).

b. Laser wavelength is represented in 16 unsigned bits. The hex representation of 850 (nm) is 0352.

c. Addresses 63 and 95 are checksums calculated (per SFF-8472 and SFF-8074) and stored prior to product shipment.

d. Addresses 68-83 specify the AFBR-57H5AMZ ASCII serial number and will vary on a per-unit basis.

e. Addresses 84-91 specify the AFBR-57H5AMZ ASCII date code and will vary on a per-date-code basis.

f. Bytes 128–255 are undefined and filled with 00h.

Table 21: EEPROM Serial ID Memory Contents – Enhanced SFP Memory (Address A2h)

Byte Number Decimal	Data Hex	Notes	Values	Byte Number Decimal	Data Hex	Notes	Values
0	5A	Temp H Alarm MSB ^a	90°C	36	62	Rx Power H Warning MSB ^g	4 dBm
1	0	Temp H Alarm LSB ^a		37	1E	Rx Power H Warning LSB ^g	
2	FB	Temp L Alarm MSB ^a	–5°C	38	3	Rx Power L Warning MSB ^g	–10.5 dBm
3	0	Temp L Alarm LSB ^a		39	7B	Rx Power L Warning LSB ^g	
4	55	Temp H Warning MSB ^a	85°C	40–55		Reserved	L
5	0	Temp H Warning LSB ^a		56–94		External Calibration Constants	b
6	0	Temp L Warning MSB ^a	0°C	95		Checksum for Bytes 0–94 ^c	
7	0	Temp L Warning LSB ^a		96		Real Time Temperature MSB ^a	
8	8D	Vcc H Alarm MSB ^d	3.63V	97		Real Time Temperature LSB ^a	
9	CC	Vcc H Alarm LSB ^d		98		Real Time Vcc MSB ^d	
10	74	Vcc L Alarm MSB ^d	2.97V	99		Real Time Vcc LSB ^d	
11	04	Vcc L Alarm LSB ^d		100		Real Time Tx Bias MSB ^e	
12	87	Vcc H Warning MSB ^d	3.465V	101		Real Time Tx Bias LSB ^e	
13	5A	Vcc H Warning LSB ^d		102		Real Time Tx Power MSB ^f	
14	7A	Vcc L Warning MSB ^d	3.135V	103		Real Time Tx Power LSB ^f	
15	75	Vcc L Warning LSB ^d		104		Real Time Rx Power MSB ^g	
16	13	Tx Bias H Alarm MSB ^e	10 mA	105		Real Time Rx Power LSB ^g	
17	88	Tx Bias H Alarm LSB ^e		106		Reserved	
18	3	Tx Bias L Alarm MSB ^e	2 mA	107		Reserved	
19	E8	Tx Bias L Alarm LSB ^e		108		Reserved	

Byte Number Decimal	Data Hex	Notes	Values	Byte Number Decimal	Data Hex	Notes	Values
20	10	Tx Bias H Warning MSB ^e	8.5 mA	109		Reserved	I
21	9A	Tx Bias H Warning LSB ^e		110		Status/Control – See Table	22
22	5	Tx Bias L Warning MSB ^e	3 mA	111		Reserved	
23	DC	Tx Bias L Warning LSB ^e		112		Flag Bits – See Table 23	
24	C3	Tx Power H Alarm MSB ^f	7 dBm	113		Flag Bits – See Table 23	
25	C6	Tx Power H Alarm LSB ^f		114		TX Input EQ – See Table 2	5 and Table 26
26	3	Tx Power L Alarm MSB ^f	–10.8 dBm	115		RX Output Emphasis – See Table 28	e Table 27 and
27	3F	Tx Power L Alarm LSB ^f		116		Flag Bits – See Table 23	
28	62	Tx Power H Warning MSB ^f	4 dBm	117		Flag Bits – See Table 23	
29	1E	Tx Power H Warning LSB ^f		118		Status/Control – See Table	24
30	6	Tx Power L Warning MSB ^f	–7.8 dBm	119		Status/Control – See Table	17
31	7B	Tx Power L Warning LSB ^f		120–126		Reserved	
32	C3	Rx Power H Alarm MSB ^g	7 dBm	127		Page Select	
33	C6	Rx Power H Alarm LSB ^g		128–247		Custom Configuration Byte	s – See Table 29
34	1	Rx Power L Alarm MSB ^g	–13.5 dBm	248–255		Vendor Specific	
35	BE	Rx Power L Alarm LSB ^g					

Table 21: EEPROM Serial ID Memory Contents – Enhanced SFP Memory (Address A2h) (Continued)

a. Temperature (Temp) is decoded as a 16-bit signed two's complement integer in increments of 1/256°C.

b. Bytes 56-94 are not intended for use, but they have been set to default values per SFF-8472.

c. Byte 95 is a checksum calculated (per SFF-8472) and is stored prior to product shipment.

d. Supply Voltage (Vcc) is decoded as a 16-bit unsigned integer in increments of 100 μ V.

e. Tx bias current (Tx Bias) is decoded as a 16-bit unsigned integer in increments of 2 μ A.

f. Transmitted average optical power (Tx Pwr) is decoded as a 16-bit unsigned integer in increments of 0.1 µW.

g. Received average optical power (Rx Pwr) is decoded as a 16-bit unsigned integer in increments of 0.1 µW.

Bit Number	Status/Control Name	Description	Notes
7	TX_DISABLE State	Digital state of TX_DISABLE Input Pin (1 = TX_DISABLE asserted)	а
6	Soft TX_DISABLE Control	Read/write bit for changing digital state of TX_DISABLE function	a, b
5	RS(1) State	Digital state of TX Rate_Select Input Pin RS(1) (1 = Rate High asserted)	
4	RS(0) State	Digital state of RX Rate_Select Input Pin RS(0) (1 = Rate High asserted)	
3	Soft RS(0) Control	Read/write bit for changing digital state of Rx Rate_Select RS(0) function	С
2	TX_FAULT State	Digital state of TX_FAULT Output Pin (1 = TX_FAULT asserted)	а
1	RX_LOS State	Digital state of SFP RX_LOS Output Pin (1 = RX_LOS asserted)	а
0	Data Ready (Bar)	Indicates transceiver is powered and real time sense data is ready (0 = Data Ready)	

Table 22: EEPROM Serial ID Memory Contents – Soft Commands (Address A2h, Byte 110)

a. The response time for soft commands of the AFBR-57H5AMZ is 100 ms as specified by MSA SFF-8472.

b. Bit 6 is logic ORed with the SFP TX_DISABLE input pin 3 either asserted will disable the SFP transmitter.

c. Bit 3 is logic ORed with the SFP RS(0) RX Rate_Select input pin 7 either asserted will set receiver to Rate = High.

Table 23: EEPROM Serial ID Memory Contents – Alarms and Warnings (Address A2h, Bytes 112, 113, 116, 117)^a

Byte	Bit	Flag Bit Name	Description
112	7	Temp High Alarm	Set when transceiver internal temperature exceeds high alarm threshold.
	6	Temp Low Alarm	Set when transceiver internal temperature exceeds low alarm threshold.
	5	Vcc High Alarm	Set when transceiver internal supply voltage exceeds high alarm threshold.
	4	Vcc Low Alarm	Set when transceiver internal supply voltage exceeds low alarm threshold.
	3	Tx Bias High Alarm	Set when transceiver laser bias current exceeds high alarm threshold.
	2	Tx Bias Low Alarm	Set when transceiver laser bias current exceeds low alarm threshold.
	1	Tx Power High Alarm	Set when transmitted average optical power exceeds high alarm threshold.
	0	Tx Power Low Alarm	Set when transmitted average optical power exceeds low alarm threshold.
113	7	Rx Power High Alarm	Set when received average optical power exceeds high alarm threshold.
	6	Rx Power Low Alarm	Set when received average optical power exceeds low alarm threshold.
	0–5	Reserved	
116	7	Temp High Warning	Set when transceiver internal temperature exceeds high warning threshold.
	6	Temp Low Warning	Set when transceiver internal temperature exceeds low warning threshold.
	5	Vcc High Warning	Set when transceiver internal supply voltage exceeds high warning threshold.
	4	Vcc Low Warning	Set when transceiver internal supply voltage exceeds low warning threshold.
	3	Tx Bias High Warning	Set when transceiver laser bias current exceeds high warning threshold.
	2	Tx Bias Low Warning	Set when transceiver laser bias current exceeds low warning threshold.
	1	Tx Power High Warning	Set when transmitted average optical power exceeds high warning threshold.
	0	Tx Power Low Warning	Set when transmitted average optical power exceeds low warning threshold.
117	7	Rx Power High Warning	Set when received average optical power exceeds high warning threshold.
	6	Rx Power Low Warning	Set when received average optical power exceeds low warning threshold.
	0–5	Reserved	

a. Flags are latched, read on clear.

Bit Number	Status/Control Name	Description	Notes
4–7	Reserved		
3	Soft RS(1) Control	Read/write bit for changing digital state of Tx Rate_Select RS(1) function	а
2	Reserved		
1	Optional Power Level Operation State	Unused.	
0	Optional Power Level Select	Unused.	

Table 24: EEPROM Serial ID Memory Contents – Soft Commands (Address A2h, Byte 118)

a. Bit 3 is logic ORed with the SFP RS(1) TX Rate_Select input pin 9 either asserted will set transmitter to Rate = High.

Table 25: EEPROM Serial ID Memory Contents – Transmitter Input Electrical Equalization Control (Address A2h, Byte 114)

Bit Number	Status/Control Name	Description	Notes
7–4	TX EQ, RS(1)=HIGH	Not supported.	
3–0	TX EQ, RS(1)=LOW	Not supported.	

Transmitter input equalization control is adaptive. The value written to the register has no effect.

Table 26: Transmitter Input Equalization Control Values (Address A2h, Byte 114)^a

	Transmitter Inp	out Equalization
Code	Nominal	Units
ХХХХ	Reserved	

a. From SFF-8472, Table 9-13.

Table 27: EEPROM Serial ID Memory Contents – Receiver Output Electrical Emphasis Control (Address A2h, Byte 115)

Bit Number	Status/Control Name	Description	Notes
7–4	RX EMPH, RS(0)=HIGH	Selects an output emphasis value per SFF-8472, Table 9-14 for high rate operation. 64G/32G	
3–0	RX EMPH, RS(0)=LOW	Selects an output emphasis value per SFF-8472, Table 9-14 for low rate operation. 16G	

Table 28:	Receiver O	Output Emphasis	Control Values	(Address A2h, Byte 115) ^a
-----------	-------------------	-----------------	-----------------------	--------------------------------------

	Receiver Output Emphasis at Nominal Output Amplitude					
Code	Nominal	Units				
1xxx	Vendor Specific					
0111	7	dB				
0110	6	dB				
0101	5	dB				
0100	4	dB				
0011	3	dB				
0010	2	dB				
0001	1	dB				
0000	0	No Emphasis				

a. From SFF-8472, Table 9-14.

Table 29: SFP Signal Integrity Feature Configuration Bytes (2-Wire Address A2h)

Byte	Name	R/W	Default	Description
123–126	Reserved	RO	0	Contents 00h
127	Page Select	RW	0	
128–129	Reserved	RO	0	
130	TP1 to TP4 EWRAP Control	RW	0	Bit 7:2 Unused
				Bit 1:0 = 00; EWRAP Disable, Bleed to TP2 Enabled (normal mode)
				Bit 1:0 = 01; EWRAP Enable, Bleed to TP2 Enabled
				Bit 1:0 = 10; EWRAP Enable, Bleed to TP2 Disable
				Bit 1:0 = 11; EWRAP Enable, Bleed to TP2 Enabled
131	Reserved	RW	0	Contents 00h
132	Reserved	RW	0	Contents 00h
133	TP3 to TP2 OWRAP Control	RW	0	Bit 7:2 Unused
				Bit 1:0 = 00; OWRAP Disable, Bleed to TP4 Enabled (normal mode)
				Bit 1:0 = 01; OWRAP Enable, Bleed to TP4 Enabled
				Bit 1:0 = 10; OWRAP Enable, Bleed to TP4 Disable
				Bit 1:0 = 11; OWRAP Enable, Bleed to TP4 Enabled
134	PRBS Checker BER, MSB	RO	0	Bit 15:10 = Exponent
135	PRBS Checker BER, LSB	RO	0	Bit 9:0 = Mantissa
				Clear on read

Byte	Name	R/W	Default	Description
136	PRBS Generator Control	RW	0	Bit 7:5 = 000 = N/A
				Bit 7:5 = 001 = PRBS9/9Q
				Bit 7:5 = 010 = PRBS11/11Q
				Bit 7:5 = 011 = PRBS13/13Q
				Bit 7:5 = 100 = PRBS23/23Q
				Bit 7:5 = 101 = PRBS31/31Q
				Bit 7:5 = 110 = PRBS49/49Q
				Bit 7:5 = 111 = PRBS58/58Q
				Bit 4:3 = Don't Care
				Bit 2: 0 = System Side at TP1, 1 = Line Side at TP3
				Bit 1: 0 = Disable Checker, 1 = Enable Checker
				Bit 0: 0 = Disable PRBS, 1 = Enable PRBS
137	64G TX_PRE2	RW	0	Output FFE Pre2, Default (64G) = 0
138	64G TX_PRE1	RW	0	Output FFE Pre1, Default (64G) = 0
139	64G TX_MAIN	RW	75	Output FFE Main, Default (64G) = 117
140	64G TX_POST1	RW	FB	Output FFE Post1, Default (64G) = –5
141	64G TX_POST2	RW	0	Output FFE Post2, Default (64G) = 0
142	64G TX_POST3	RW	0	Output FFE Post3, Default (64G) = 0
				The host write to byte 142 sets 64G FFE taps. To read back the tap settings, host must write 80h to byte 142, and taps read out are populated in bytes 137 to 142.
143	System 64G RX CTLE	RW	0	Input CTLE 64G
				Bit 7: Rx Bandwidth 0 = high, 1 = low
				Bit 6: Set this bit to trigger read back setting on bit 5:0 and bandwidth on bit 7
				Bit 5:0 Estimated channel loss (0 to 31)
144–152	Reserved	RW	0	Contents 00h
153	TX CDR Status (TP1 System Side)	RO	0	TX CDR Status (TP1 System Side)
				Bit 7:5 Unused
				Bit 4: 1 = PRBS pattern Lock (only used for byte 136 PRBS)
				Bit 3: 1 = CDR Lock
				Bit 2: 1 = LOS
				Bit 1: PLL Unlock Sticky Bit
				0 = PLL did not transition from locked to unlock
				1 = PLL transitioned from locked to unlock
				Clear on read
				Bit 0: 0 = PLL unlocked, 1 = PLL Lock

Table 29: SFP Signal Integrity Feature Configuration Bytes (2-Wire Address A2h) (Continued)

Byte	Name	R/W	Default	Description
154	RX CDR Status (TP3 Line Side)	RO	0	RX CDR Status (TP3 Line Side)
				Bit 7:5 Unused
				Bit 4: 1 = PRBS pattern Lock (only used for byte 136 PRBS)
				Bit 3: 1 = CDR Lock
				Bit 2: 1 = LOS
				Bit 1: PLL Unlock Sticky Bit
				0 = PLL did not transition from locked to unlock
				1 = PLL transitioned from locked to unlock
				Clear on read
				Bit 0: 0 = PLL unlocked, 1 = PLL Lock
155	Reserved	RO		
156	Power On Hours MSB	RW		Units of hours. Byte 156 resides in nonvolatile memory (that is, contents are retained during power cycle).
157	Power On Hours LSB	RW		Units of hours. Byte 157 resides in nonvolatile memory (that is, contents are retained during power cycle).
158	Reserved	RW	0	Contents 00h
159	32G/16G TX_PRE2	RW	0	Output FFE Pre2, Default (32G/16G) = 0
160	32G/16G TX_PRE1	RW	0	Output FFE Pre1, Default (32G/16G) = 0
161	32G/16G TX_MAIN	RW	58	Output FFE Main, Default (32G/16G) = 88
162	32G/16G TX_POST1	RW	FB	Output FFE Post1, Default (32G/16G) = -5
163	32G/16G TX_POST2	RW	0	Output FFE Post2, Default (32G/16G) = 0
164	32G/16G TX_POST3	RW	0	Output FFE Post3, Default (32G/16G) = 0
				The host write to byte 164 sets 32G/16G FFE taps. To read back the
				tap settings, the host must write 80h to byte 164, and taps read out
165_2/1	Reserved	R\\/		
242	Fast CDR Adaptation Enable/		0	Pit 0 = 0 anablad
242	Disable		U	Bit $0 = 1$ disabled
242	16C/32C Protrain Status		0	Bit 1:0 = 16C protrain status
243	100/320 Fletialit Status	KVV	0	Bit $3.2 = 32G$ pretrain status
				0 = Not trained
				1 = Training is running
				2 = Training finished
				3 = Training failed
244	Reserved	RW	0	Contents 00h
245	LSN Control	RW	0	LSN Control
				Bit 7: = 1b Enter LSN Mode; = 0b Exit LSN Mode
				Bit 6: = 1b Client Rx Adaptation Reset
				Bit 5: Unused
				Bit 4: = 1b: Set up TIA parameters in 16G
				Bit 3: = 1b: DC offset on at 16G, 0b : off
				Bit 2: = 0b: Fixed speed switch to 64G Disable, 1b: Fixed speed
				switch to 64G Enable
				Bit 1: = 1b Train 32G
			_	Bit 0: = 1b Train 16G
246–255	Reserved	RW		

Table 29: SFP Signal Integrity Feature Configuration Bytes (2-Wire Address A2h) (Continued)

AFBR-57H5AMZ Data Sheet

Figure 12: Module Label

Figure 13: Module Mechanical Drawing

Copyright © 2023 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

