
Asynchronous RS-232 Communication
for AEAS-7000

Application Note 5103

Introduction
The AEAS-7000 is a 16-bit gray code Absolute Encoder
backbone with SSI (Synchronous-Serial-Interface) com-
munication interface. The SSI interface is a synchro-
nous serial communication where the master (host)
and slave (AEAS-7000) devices are synchronous to
each other, and the data is output 1-bit per clock cycle.

This application note discusses how additional hardware
can be added to make the AEAS-7000 communicate
in Asynchronous RS-232, available in most personal
computers. The data is available to the host on demand
only. RS-232 is simple, universal, well understood, and
supported in most personal computers. The commu-
nication length line is restricted to less than 15 me-
ters (50 feet), but additional hardware can be added
to increase the distance. This is discussed in further
detail in the “System Design Considerations” section.

Figure 1. AEAS-7000 SSI Communication State Diagram.

Communication Protocol Synchronous Serial Interface (SSI)
SSI is a serial communication format where the master and
slave devices are synchronous to each other. The master
device provides a clock signal to the slave device, and
1-bit of data will either output from the slave or input to
the slave per clock cycle. For example, to transfer 16 bits
of data, 16 clock cycles are required to move the data. The
data is latched on either the falling edge or rising edge
of the clock signal based on the device setup. The com-
munication speed is based on the maximum bandwidth
of the slave device. The SSI communication speed of the
AEAS-7000 is up to 16 MHz, meaning that it only takes
62.5 ns to transfer 1 bit of data. But the communication
speed varies depending on the master device with which
it communicates. Figure 1 illustrates the SSI communica-
tion state diagram for the AEAS-7000 Absolute Encoder.

Based on the SSI communication state diagram shown in
Figure 1, the data is available at the AEAS-7000 output at
the falling edge of the clock (SCL) signal. The clock high
state is an idle state and the clock low state is an active state.
The chip select (NSL) line is required to pull down in order
for the communication to be active. Otherwise, no activi-
ties are observed even though the clock (SCL) signal exits.

2

Asynchronous RS-232 Interface
RS-232 is a simple, universal, very
well understood interface, and is
supported by most personal com-
puters. RS-232 data is bipolar where
the voltage +3 to +12 volts is con-
sidered “ON,” and the voltage –3 to
–12 volts is considered “OFF.” Most
modern computers choose to ignore
the negative voltage level and
consider the zero voltage as “OFF.”
The same goes for the “ON” state
with lesser voltage potential. With
this method, the circuits powered by
a 5 volt power supply are capable of
driving RS-232 circuits directly, but
the overall range that the RS-232
signal transmitted/received may be
severely reduced. As a result, the
original RS-232 voltage level is used
in this design to maintain the RS-232
communication capability.

The output signal level usually
swings between –12 and +12 volts,
depending on the RS-232 trans-
ceiver used in the design. The Sipex
SP233 RS-232 transceiver used in

Figure 2. RS-232 Voltage Level.

this design swings between –10
and +10 volts. The range between
–3 and +3 volts is considered “Dead
Area” and is designed to absorb line
noise. Figure 2 illustrates the RS-232
voltage level.

The data is received and transmitted
on pins 2 and 3, respectively. One
frame of data consists of one Start-
Bit and one Stop-Bit. The 8-bit data
is wrapped around the Start and
Stop bits. If either the Start-Bit or
Stop-Bit is not detected during the
RS-232 transmission, a framing error
occurs. In this design, hardware flow
control is used via an RTS/CTS port.
The RTS (Request-to-Send) and CTS
(Clear-to-Send) are on pins 7 and 8,
respectively. In the asynchronous
communication the RTS and CTS
signals are constantly on through-
out the communication. The RTS is
commonly used for turning on/off
the slave device. It is important in
a multi-slave system that only one
slave communicates with the host
at a time. When the host wants to

communicate with the slave device,
it raises the RTS line from –10 volts
to +10 volts. Once the slave device
detects the RTS signal, it raises the
CTS line as acknowledgement and
communication starts. When the
communication is completed, it
drops both the RTS line and the CTS
line. Figure 3 illustrates the RS-232
common pin out.

There are several shortcomings of
the RS-232 communications. First,
the device situated on a different
electrical bus tends to have an “Un-
common Ground” event. Second, in
a single-ended communication, it is
impossible to screen effectively for
noise. By screening the entire cable,
one can reduce the influence of out-
side noise, but internally generated
noise remains a problem. As the
baud rate and line length increase,
the effect of capacitance between
the cables introduces serious cross-
talk until a point is reached where
the data itself is unreadable.

+15V

+3V

0V

-3V

-15V

0 1 2 3 4 5 6 7

ST
A

R
T

B
IT

ST
O

P
B

IT Dead
Zone

LS
B

M
SB

Figure 3. RS-232 Pin Out.

3

Use of the balance line interface,
RS-422/485, can eliminate these
shortcomings. As a differential
voltage, in principle the interface is
unaffected by differences in ground
voltage between the sender and the
receiver. Furthermore, if both lines
are close together, they will be af-
fected almost identically by external
electromagnetic noise. If the lines
are also twisted together, then
neither line is permanently closer
to a noise source than the other.
Hence the well known “twisted pair”
is extremely effective in eliminating
noise from the signal. By using the
balance line interface, RS-422/485,
and a high-grade cable (individu-
ally shielded low capacitance pairs),
the distance can be extended up to
~1200 meters (~4000 feet).

System Design Considerations
The Microchip PIC18F252 is used
as the communication medium be-
tween the AEAS-7000 Absolute En-
coder and the RS-232 port. The data
demand from the host via the RS-
232 is acquired from the AEAS-7000
and sent to the host via the RS-232
port. The baud rate for the system
is set at 19200 bauds per second,
which is the supported baud speed
throughout all known personal
computer RS-232 ports. Each of the
AEAS-7000 Absolute Encoders with
the added RS-232 hardware is ad-
dress programmable and can have
up to 15 unique addresses assigned
to it. For more details about config-
uring the device addresses, please
refer to the Application Usage sec-
tion. Figure 3a illustrates the overall
system layout of the AEAS-7000
with RS-232 hardware features.

Based on Figure 3a, each of the
AEAS-7000 Absolute Encoders can
be assigned unique addresses (00H-
0EH).

The system contains two boards,
an RS-232 Adapter board and an
RS-232/SSI Converter board. The RS-
232 Adapter board is basically a level
translator to CMOS compatible level.
The RS-232/SSI Converter board re-
sides at each of the AEAS-7000s that
contain an internal EEPROM to store
the device addresses. Once config-
ured the address will remain even
when the device is powered down.
The default device address is FFH.

The RS-232 Adapter board and the
RS-232/SSI Converter board contain
an internal voltage regulator to step
down the 12V power supply voltage
to 5V, 100 mA.

Figure 3a. Overall System Layout.

4

Program Flow Charts

Port
Initialization

RS-232
Communication

Setup

SPI
Communication

Setup

Setup Interrupt

Read EEPROM
Device ID

MAIN

LOOP

ABS_SSI

Set NSL Low

Get 16-bit
Absolute

Position via
SSI

Set NSL High

Return from
Subroutine

RTS ?

NO

YES

Raise CTS

Receive BYTE
via RS-232

Check
Command

Set

34H30H

Device ID

RS-232 ISR

Send Ack

Call ABS_SSI

Send Absolute
Position (MSB)

via RS-232

Send Absolute
Position (LSB)

via RS-232

Return from
Interrupt

Receive Device
ID via RS-232

Stored
Device ID in

EEPROM

Return from
Interrupt

Read
Device ID

from
EEPROM

Return from
Interrupt

Figure 5. Device Address Programming State Diagram.

Figure 6. Device Address Reading State Diagram.

Application Usage

Programming Device Addresses
To program the device addresses, Opcode 34H is sent
followed by the Device Address (00H – 0EH). The Default
Device Address is FFH. Figure 5 illustrates the device ad-
dress programming state diagram.

Reading Device Addresses
To read the device addresses, Opcode 30H is sent and the
Device Address is fetched and transmitted to the host. Fig-
ure 6 illustrates the device address reading state diagram.

Figure 7. Acquiring Absolute Position State Diagram.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.
Data subject to change. Copyright © 2007-2010 Avago Technologies Limited. All rights reserved.
5989-2277EN - May 25, 2010

Acquiring AEAS-7000 Absolute Position
To acquire the absoute position of the AEAS-7000, send
the address of the device for which the absolute position
is desired. If the address exists in the system, the device
having that address returns its device address as an ac-
knowledgement to the host. Once the communication is
established between the host and the slave device, the
absolute position is sent to the host with the MSB first,
followed by the LSB. Figure 7 illustrates the acquiring
absolute position state diagram.

