
Interfacing the Avago HDSP-2xxx LED
Alphanumeric Displays with the Intel
8751H Microcontroller

Application Brief D-005

Introduction

The HDSP-21xx/-25xx series of products is ideal for appli-
cations where displaying eight or more characters of dot
matrix information is required. These devices are 8-digit,
5 x 7 dot matrix, alphanumeric displays. The on-board
CMOS IC has the ability to decode 128 ASCII characters
(HDSP-211x/25xx) or 128 Katakana characters (HDSP-
212x), which are permanently stored in ROM. Up to 16
user defined symbols may be stored in on-board ROM,
allowing flexibility for displaying additional symbols
and icons. Seven brightness levels provide versatility in
adjusting the display intensity and power consumption.
These products are designed for standard microproces-
sor interface techniques. The display and special features
are accessed through a bidirectional 8-bit data bus.

This application brief is a description of interfacing a
“smart” HDSP-2xxx display with an INTEL 8751H micro-
controller. This brief is to be used as a supplement to the
data sheet on 8 Character 5 mm and 7 mm Smart Alphanu-
meric Displays. Figures 1 and 2 show the circuit diagram
and assembly source code that were implemented and
will be the subject of this discussion. An instruction set
description for the 8751H shown in Figure 3 has been
included to assist in the understanding of the software
used in this application. The approach taken here will
be to view the hardware configuration and then step
through the software that operates the circuit. By taking
this approach, many important considerations that need
to be made when doing this type of application will be
identified.

Hardware

8751H
The circuit shown in Figure 1 shows the microcontroller
and the display interfaced through Ports 1, 2, and 3 (P1.X,
P2.X, and P3.X) of the controller. Each port is bit address-
able, thus allowing for the manipulation of an individual
pin voltage level while allowing the other pins to remain

at their same values. This is a convenient characteristic
when it is desired to switch only one of the display pin’s
logic level and not have to worry about latching other
lines incorrectly. This characteristic makes writing code
much simpler compared to a controller that can only
address an external device in a byte format. During the
power up, the port pins will be in a random state until
the oscillator has started and the internal reset algorithm
has written ones to them. The oscillator start up time will
depend on the oscillator frequency. A 10 MHz crystal has
about a 1 ms start up time, whereas a 1 MHz crystal’s is
about 10 ms. A 6.0 MHz crystal oscillator along with two
capacitors, C1 = C2 = 18 pF, were used here. An external
oscillator input to XTAL2 with XTAL 1 and V

SS
 grounded

can be used instead of the crystal configuration shown
here. The power up reset values of R = 8.2 kW and C3 =
10 mF were chosen to ensure a valid reset which is ac-
complished by holding the RST pin high for at least two
machine cycles (24 oscillator periods) while the oscillator
is running. A decoupling capacitor of 0.5 mF, not shown
here, was used between the power supply and ground
to eliminate any high frequency noise from interfering
with the controller’s internal circuitry.

Display

As shown in Figure 1, the display data lines D0-D7 are
connected to port 3 of the microcontroller, the display
flash and address lines A0-A4 to port 2, and the display
reset, chip enable, read, and write lines as well as the
pass-fail self test indicator circuit to port 1.

Clock select is tied to V
DD

 to select the display’s on-board
internal oscillator. Having chosen the internal oscillator
option, the display clock pin outputs the internal oscil-
lator signal. Thus, this display’s clock can be used as a
master for other displays in the same system with each
slave display having its clock externally sourced by tying
its clock select to logic ground.

2

D0
D1
D2
D3

RST

5 V 5 V

CE
WR
RD

CLS

CLK

VDD

GND (LOGIC)

GND (LED)

11

5 V

12

14

16

15

D4
D5
D6
D7
A0
A1
A2
A3
A4

FL

19
20

P 1.0

U2
8751

P 1.1
P 1.2
P 1.3
P 1.4
P 1.5

RESET
R x D/P 3.0
T x D/P 3.1
INT 0/P 3.2
INT 1/P 3.3
T0/P 3.4
T1/P 3.5
WR/P 3.6
RD/P 3.7

XTAL 2
XTAL 1
VSS

EA/VPP
ALE/PROG

PSEN
VDD

P 2.5/A13
P 2.4/A12
P 2.3/A11
P 2.2/A10

P 2.1/A9
P 2.0/A8

31
30
29
40

26

5 V

25
24
23
22
21

1
2
3
4
5
6

C3

R2

9
10
11
12
13
14
15
16
17

18
19
20

23
24

1

1

2

3

17
13
18

25
26
27
28
3
4
5
6
10

2

C3
47,000 nF

C1 C2

18 pF 18 pF

Y1

CRYSTAL

U1
HDSP-2112

7408

U3A D1 R1

LED
600 W

+5 V

8.2 K W

Figure 1 AB D-005

Figure 1. Circuit Diagram of HDSP-2112 Display interfaced with the Intel 8751H

When concerning the power supplied
to the display and maintaining the
voltage levels as specified by the
data sheet, the LED supply ground
and the logic ground pins should
have separate traces returning to the
power supply. This is done to isolate
the logic from variations in the LED
currents required to light the display.
The V

DD
 power supply should be

able to handle large current surges.
The peak current surge value will be
a function of the characters being
displayed, the power supply value,

and the junction temperature of the
LEDs. Using a decoupling capacitor
between the power supply and LED
ground pin will help prevent any
supply noise from interfering with
the display’s internal circuitry. The
value of the capacitor depends on
the series resistance from the ground
back to the power supply and the
range of frequencies that need to be
suppressed. A 47 mF capacitor is rec-
ommended. It is also advantageous
to use the largest ground plane
possible. A large ground plane will

reduce the ground path resistance
(reluctance) and thus reduce any
undesirable voltage drops (magne-
tomotive forces) which can act as
noise sources along the ground to
supply path. Here, V

DD
 of the display

was connected to the same power
supply and decoupling capacitor of
0.5 mF as the 8751H. Please refer to
the data sheet for a description on
thermal, electrical, and electrostatic
discharge considerations concern-
ing the display.

3

Software

The software shown in Figure 2 is
a list of the source code (assembly)
that was written to the 8751H. This
code was the instruction set upon
which the microcontroller would
electrically operate the display.

The first command was to reset the
display. The initial delay subroutines
were called to allow the display to
power up to the correct wake state.
After resetting the display, another
delay was called to allow for three
display clock cycles to occur as requir-
ed in the data sheet specification.

The Control Word was next addressed
and written to. The self-test was
enabled by writing a “1” to bit D6 of
the Control Word utilizing subrou-
tine WRITE. Then bit D5 was read
in subroutine RESULT to see if the
display passed the self-test. If the
display passed, pin P1.5 of the mi-
crocontroller was switched to a logic
low and caused the LED to light up.

Figure 2. Assembly Source Code Used to Program the 8751H

;**
;FILENAME: LEOPARD.ASM
;THIS PROGRAM INTERFACES THE INTEL 8751 8-BIT EMBEDDED CONTROLLER
;TO THE HDSP-21XX/25XX SMART ALPHANUMERIC DISPLAY
;
;PORT PIN ASSIGNMENTS
;
;P10 EQU RESET
;P11 EQU CHIP ENABLE
;P13 EQU WRITE ENABLE
;P14 EQU READ ENABLE
;P15 EQU LED FOR DISPLAY PASSED TEST
;
;P20-P24 EQU ADDRESS LINES AO-A4
;P25 EQU FLASH ENABLE
;
;P30-P37 EQU DATA LINES DO-D7
;
;NOTE: THE OUTPUT PORTS AFTER CONTROLLER POWER UP ARE #FFH
;**

.opd+f EQU, .c+qu

.opd+f DB, .db

.opd+f CALL, 1call

.opd+f ORG, .org

.opd+f END, .+nd

;**
;MAIN PROGRAM
;SENDING A SET OF CHARACTERS TO THE LEOPARD
;**

ORG 0000H

CALL DELAY
CALL DELAY
CLR P10 ;RESET THE DISPLAY
SETB P10
CALL DELAY ;ALLOW FOR 3 DISPLAY CLK CYCLES
MOV P2, #30H ;ADDRESS CONTROL WORD
MOV P3, #40H ;SELF TEST, 100% BRIGHTNESS
CALL WRITE ;TEST DISPLAY
CALL DELAY
CALL DELAY ;WAIT FOR DISPLAY TO END TEST
CALL DELAY
CALL DELAY
CALL DELAY
CALL DELAY
CALL RESULT ;DISPLAY RESULTS
CALL DELAY

MOV P3, #03H ;SET DISPLAY TO 40% BRIGHTNESS
CALL WRITE ;WRITE TO DISPLAY
CALL UDCHAR ;CREATE A USER CHARACTER

AGAIN: CALL CHAR ;DISPLAY USER AND ASCII CHARACTERS
CALL FLASH ;FLASH AN INDIVIDUAL CHARACTER
CALL BLINK ;BLINK THE WHOLE DISPLAY
CALL CLEAR ;CLEAR THE DISPLAY
AJMP AGAIN

;**
;SUBROUTINE DELAY
;**
DELAY: MOV R3, #OFFH ;255 TIMES
TIME: MOV R1, #OFFH ;255 = 510 CYCLES
STALL1: DJNZ R1, STALL1

MOV R1, #OFFH ;255 NEW
STALL2: DJNZ R1, STALL2

MOV R1, #OFFH ;255
STALL3: DJNZ R1, STALL3

DJNZ R3, TIME
RET ; RETURN TO MAIN PROGRAM

4

The display brightness was set to
40% by writing the correct bright-
ness octal 011 to Control Word bits
D0-D2.

A user defined character utilizing
subroutine UDCHAR was written
to the display in eight write cycles.
The first cycle is used to write to the
UDC Address Register to assign the
address space in the UDC RAM that
will be written to during the next
character write to the UDC RAM. The
next seven cycles are used to define
the character by addressing one row
at a time and encoding which pixels
will be turned on or off.

The Character RAM is then addressed
and used to write the user defined
and desired ASCII characters to the
LED driver circuits. Note that the
logic level of data bit D7 determines
whether the Character RAM is ad-
dressing the UDC or ASCII RAM. This
process is defined in subroutine
CHAR.

The flashing, blinking, and clearing
capabilities are implemented
through subroutines FLASH, BLINK,
and CLEAR. The delays are used to
modify the amount of time each
feature is being used.

Figure 2. Assembly Source Code Used to Program the 8751H (continued)

;**
;SUBROUTINE WRITE
;WRITES IN THE ADDRESS AND DATA LINE INFO TO THE DISPLAY
;**

WRITE: CLR P11 ;SET CE1 LOW
CLR P13 ;SET WRITE LOW
SETB P13 ;SET WRITE HIGH
SETB P11 ;SET CE1 HIGH

RET

;**
;SUBROUTINE RESULT
;CHECKS BIT D5 OF BOTH DISPLAYS CONTROL WORD FOR SELF TEST RESULT
;**

RESULT: MOV P3, #OFFH ;SET UP 8751H TO READ DATA LINE BY
 ;WRITING ALL “1”s TO THE PORT

CLR P11 ;SET CE1 LOW
CLR P14 ;SET READ LOW
JB P35, PASS1 ;CHECK SELF TEST PASS/FAIL
RET

PASS1: CLR P15 ;LED INDICATES # 1 PASS
SETB P14 ;SET READ HIGH
SETB P11 ;SET CE1 HIGH

RET

;**
;SUBROUTINE UDCHAR
;CALLS UPON CHARACTERS WITHIN THE CHARACTER TABLE
;**

UDCHAR: MOV P2, #20H ;ADDRESS UDC REGISTER
MOV P3, #00H ;USER CHARACTER # 0
CALL WRITE ;DEFINE UDC POSITION
MOV P2, #28H ;UDC RAM ROW 1
MOV P3, #00H
CALL WRITE;
MOV P2, #29H ;UDC RAM ROW 2
MOV P3, #0AH ;
CALL WRITE
MOV P2, #2AH ;UDC RAM ROW 3
MOV P3, #00H ;
CALL WRITE ;
MOV P2, #2BH ;UDC RAM ROW 4
MOV P3, #04H
CALL WRITE;
MOV P2, #2CH ;UDC RAM ROW 5
MOV P3, #11H ;
CALL WRITE;
MOV P2, #2DH ;UDC RAM ROW 6
MOV P3, #0EH
CALL WRITE
MOV P2, #2EH ;UDC RAM ROW 7
MOV P3, #00H
CALL WRITE

RET

THIS IS THE
UDC CHARACTER
THAT WILL APPEAR

* *

*
* *

* * *

5

Figure 2. Assembly Source Code Used to Program the 8751H (continued)

;**
;SUBROUTINE CHAR
;DISPLAY THE DEFINED AND ASCII CHARACTERS TO THE DISPLAY
;**

CHAR: MOV P3, #80H ;DATA LINES POINTING TO UDC RAM
MOV P2, #38H ;ADDRESS CHARACTER RAM

SCROLL: CALL WRITE ;LATCH DISPLAY LED DRIVERS
CALL DELAY
CALL DELAY
MOV R2, P2
INC P2
CJNE R2, #40H, SCROLL ;SCROLL SMILE FACE LEFT TO RIGHT
MOV P3, #48H ;H
MOV P2, #38H
CALL WRITE
MOV P3, #45H ;E
INC P2
CALL WRITE
MOV P3, #57H ;W
INC P2
CALL WRITE
MOV P3, #4CH ;L
INC P2
CALL WRITE
MOV P3, #45H ;E
INC P2
CALL WRITE
MOV P3, #54H ;T
INC P2
CALL WRITE
MOV P3, #54H ;T
INC P2
CALL WRITE
CALL DELAY
CALL DELAY
CALL DELAY

MOV P3, #50H ;P
MOV P2, #38H
CALL WRITE
MOV P3, #41H ;A
INC P2
CALL WRITE
MOV P3, #43H ;C
INC P2
CALL WRITE
MOV P3, #4BH ;K
INC P2
CALL WRITE
MOV P3, #41H ;A
INC P2
CALL WRITE
MOV P3, #52H ;R
INC P2
CALL WRITE
MOV P3, #44H ;D
INC P2
CALL WRITE

RET

6

Figure 2. Assembly Source Code Used to Program the 8751H (continued)

;**
;SUBROUTINE FLASH
;IMPLEMENT INDIVIDUAL CHARACTER FLASH
;**

FLASH: MOV P2, #04H ;ADDRESS FLASH RAM, CHARACTER #4
MOV P3, #0lH ;STORE # 4 FLASH IN FLASH RAM
CALL WRITE
MOV P2, #30H ;ADDRESS CONTROL WORD
MOV P3, #0BH ;ENABLE FLASH, 40% BRIGHTNESS
CALL WRITE
CALL DELAY
CALL DELAY
CALL DELAY
CALL DELAY
CALL DELAY
CALL DELAY
MOV P3, #03H ;DISENABLE FLASH, 40% BRIGHTNESS
CALL WRITE
MOV P2, #04H ;ADDRESS FLASH RAM, CHARACTER #4
MOV P3, #00H ;REMOVE # 4 FLASH IN FLASH RAM
CALL WRITE

RET

;**
;SUBROUTINE BLINK
;IMPLEMENT WHOLE DISPLAY BLINKING
;**

BLINK: MOV P2, #30H ;ADDRESS CONTROL WORD
MOV P3, #13H ;ENABLE BLINKING, 40% BRIGHTNESS
CALL WRITE
CALL DELAY
CALL DELAY
CALL DELAY
CALL DELAY
CALL DELAY
CALL DELAY
CALL DELAY
MOV P3, #03H ;DISENABLE BLINKING, 40% BRIGHTNESS
CALL WRITE

RET

;**
;SUBROUTINE CLEAR
;CLEARS THE DISPLAYS
;**

CLEAR: MOV P3, #80H ;CLEAR THE DISPLAY
CALL WRITE

RET

7

Figure 3. MCS-51™ Instruction Set Description for 8751H

Arithmetic Operations

Mnemonic Description Byte Cyc

ADD A,Rn Add register to Accumulator 1 1

ADD A,direct Add direct byte to Accumulator 2 1

ADD A,@Ri Add indirect RAM to Accumulator 1 1

ADD A,#data Add immediate data to Accumulator 2 1

ADDC A,Rn Add register to Accumulator with Carry 1 1

ADDC A,direct Add direct byte to A with Carry flag 2 1

ADDC A,@Ri Add indirect RAM to A with Carry flag 1 1

ADDC A,#data Add immediate data to A with Carry flag 2 1

SUBB A,Rn Subtract register from A with Borrow 1 1

SUBB A,direct Subtract direct byte from A with Borrow 2 1

SUBB A,@Ri Subtract indirect RAM from A w Borrow 1 1

SUBB A,#data Subtract immed. data from A w Borrow 2 1

INC A Increment Accumulator 1 1

INC Rn Increment register 1 1

INC direct Increment direct byte 2 1

INC @Ri Increment indirect RAM 1 1

DEC A Decrement Accumulator 1 1

DEC Rn Decrement register 1 1

DEC direct Decrement direct byte 2 1

DEC @Ri Decrement indirect RAM 1 1

INC DPTR Increment Data Pointer 1 2

MUL AB Multiply A & B 1 4

DIV AB Divide A by B 1 4

DA A Decimal Adjust Accumulator 1 1

8

Figure 3. MCS-51™ Instruction Set Description for 8751H (continued)

Logical Operations

Mnemonic Description Byte Cyc

ANL A,Rn AND register to Accumulator 1 1

ANL A,direct AND direct byte to Accumulator 2 1

ANL A,@Ri AND indirect RAM to Accumulator 1 1

ANL A,#data AND immediate data to Accumulator 2 1

ANL direct,A AND Accumulator to direct byte 2 1

ANL direct,#data AND immediate data to direct byte 3 2

ORL A,Rn OR register to Accumulator 1 1

ORL A,direct OR direct byte to Accumulator 2 1

ORL A,@Ri OR indirect RAM to Accumulator 1 1

ORL A,#data OR immediate data to Accumulator 2 1

ORL direct,A OR Accumulator to direct byte 2 1

ORL direct,#data OR immediate data to direct byte 3 2

XRL A,Rn Exclusive - OR register to Accumulator 1 1

XRL A,direct Exclusive - OR direct byte to Accumulator 2 1

XRL A,@Ri Exclusive - OR indirect RAM to Accumulator 1 1

XRL A,#data Exclusive - OR immediate data to Accumulator 2 1

XRL direct,A Exclusive - OR Accumulator to direct byte 2 1

XRL direct,#data Exclusive - OR immediate data to direct byte 3 2

CLR A Clear Accumulator 1 1

CPL A Complement Accumulator 1 1

RL A Rotate Accumulator Left 1 1

RLC A Rotate A Left through the Carry flag 1 1

RR A Rotate Accumulator Right 1 1

RRC A Rotate A Right through Carry flag 1 1

SWAP A Swap nibbles within the Accumulator 1 1

9

Figure 3. MCS-51™ Instruction Set Description for 8751H (continued)

Data Transfer

Mnemonic Description Byte Cyc

MOV A,Rn Move register to Accumulator 1 1

MOV A,direct Move direct byte to Accumulator 2 1

MOV A,@Ri Move indirect RAM to Accumulator 1 1

MOV A,#data Move immediate data to Accumulator 2 1

MOV Rn,A Move Accumulator to register 1 1

MOV Rn,direct Move direct byte to register 2 2

MOV Rn,#data Move immediate data to register 2 1

MOV direct,A Move Accumulator to direct byte 2 1

MOV direct,Rn Move register to direct byte 2 2

MOV direct,direct Move direct byte to direct 3 2

MOV direct,@Ri Move indirect RAM to direct byte 2 2

MOV direct,#data Move immediate data to direct byte 3 2

MOV @Ri,A Move Accumulator to indirect RAM 1 1

MOV @Ri,direct Move direct byte to indirect RAM 2 2

MOV @Ri,#data Move immediate data to indirect RAM. 2 1

MOV DPTR,#data16 Load Data Pointer with a 16-bit constant 3 2

MOVC A,@A+DPTR Move Code byte relative to DPTR to A 1 2

MOVC A,@A+PC Move Code byte relative to PC to A 1 2

MOVX A,@Ri Move External RAM (8-bit addr) to A 1 2

MOVX A,@DPTR Move External RAM (16-bit addr) to A 1 2

MOVX @Ri,A Move A to External RAM (8-bit addr) 1 2

MOVX @DPTR,A Move A to External RAM (16-bit addr) 1 2

PUSH direct Push direct byte onto stack 2 2

POP direct Pop direct byte from stack 2 2

XCH A,Rn Exchange register with Accumulator 1 1

XCH A,direct Exchange direct byte with Accumulator 2 1

XCH A,@Ri Exchange indirect RAM with A 1 1

XCHD A,@Ri Exchange low-order Digit ind. RAM w A 1 1

10

Figure 3. MCS-51™ Instruction Set Description for 8751H (continued)

Boolean Variable Manipulation

Mnemonic Description Byte Cyc

CLR C Clear Carry flag 1 1

CLR bit Clear direct bit 2 1

SETB C Set Carry flag 1 1

SETB bit Set direct Bit 2 1

CPL C Complement Carry flag 1 1

CPL bit Complement direct bit 2 1

ANL C,bit AND direct bit to Carry flag 2 2

ANL C,/bit AND complement of direct bit to Carry 2 2

ORL C,bit OR direct bit to Carry flag 2 2

ORL C,/bit OR complement of direct bit to Carry 2 2

MOV C,bit Move direct bit to Carry flag 2 1

MOV bit,C Move Carry flag to direct bit 2 2

Figure 3. MCS-51™ Instruction Set Description for 8751H (continued)

Program and Machine Control

Mnemonic Description Byte Cyc

ACALL addr11 Absolute Subroutine Call 2 2

ICALL addr16 Long Subroutine Call 3 2

RET Return from subroutine 1 2

RETL Return from interrupt 1 2

AJMP addr11 Absolute Jump 2 2

LJMP addr16 Long Jump 3 2

SJMP rel Short Jump (relative addr) 2 2

JMP @A+DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if Accumulator is Zero 2 2

JNZ rel Jump if Accumulator is Not Zero 2 2

JC rel Jump if Carry flag is set 2 2

JNC rel Jump if No Carry flag 2 2

JB bit,rel Jump if direct Bit set 3 2

JNB bit,rel Jump if direct Bit Not set 3 2

JBC bit,rel Jump if direct Bit is set & Clear bit 3 2

CJNE A,direct,rel Compare direct to A & Jump if Not Equal 3 2

CJNE A,#data,rel Comp. immed. to A & Jump if Not Equal 3 2

CJNE Rn,#data,rel Comp. immed. to reg. & Jump if Not Equal 3 2

CJNE @Ri,#data,rel Comp. immed. to ind. & Jump if Not Equal 3 2

DJNZ Rn,rel Decrement register & Jump if Not Zero 2 2

DJNZ direct,rel Decrement direct & Jump if Not Zero 3 2

NOP No operation 1 1

Notes on data addressing modes:
Rn Working register R0-R7
direct 128 internal RAM locations, any I/O port, control, or status register
@Ri Indirect internal RAM location addressed by register R0 or R1
#data 8-bit constant included in instruction
#data16 16-bit constant included as bytes 2 & 3 of instruction
bit 128 software flags, any I/O pin, control, or status bit

Notes on program addressing modes:
addr16 Destination address for LCALL & LJMP may be anywhere within the 64-Kilobyte program memory address space.
addr11 Destination address for ACALL & AJMP will be within the same 2-Kilobyte page of program memory as the first byte of the following

instruction.
rel SJMP and all conditional jumps include an 8-bit offset byte. Range is +127 to -128 bytes relative to first byte of the following

instruction

All mnemonics copyrighted© Intel Corporation 1979.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. Obsoletes 5963-7074EN
5988-5631EN - October 18, 2010

