VALIDATION TEST REPORT

Brocade Fabric Technology with the Infinidat InfiniBox Array with Flash Cache

Supporting Fabric OS 7.4.0, 8.0.1, 8.1.0, 8.2.0, and 8.2.1

53-1004092-04 12 November 2018 Copyright © 2018 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Brocade, and the stylized B logo are among the trademarks of Broadcom in the United States, the EU, and/or other countries. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

The product described by this document may contain open source software covered by the GNU General Public License or other open source license agreements. To find out which open source software is included in Broadcom products, view the licensing terms applicable to the open source software, and obtain a copy of the programming source code, please visit https://www.broadcom.com/.

Contents

Document History. 5 Overview. 5 Overview. 5 Audience. 5 Objectives. 6 Related Documents. 6 About Broadcom. 7 Task 1: Brocade FC Fabric Configuration. 7 Task 3: Hots Setup. 11 Infinidat InfiniBox Array Configuration. 7 Task 3: Hots Setup. 23 Infinidat InfiniBox Test Report. 23 Scope. 23 Is Tobric Initialization. 24 DUT Descriptions. 25 Test Cases. 27 1. Storage Device About Oneigrity. 29 1.4 Storage Device About Oneigrity. 29 2.4 Storage Device About Oneigrity. 29	Preface	5
Overview 5 Purpose of This Document 5 Audience 5 Objectives 6 Related Documents 6 About Broadcom 6 About Broadcom 6 About Infinidat 6 Configure DUT and Test Equipment 7 Task 1: Brocade FC Fabric Configuration 7 Task 2: Infinidat InfiniBox Array Configuration 11 Task 3: Host Setup 18 Infinidat InfiniBox Test Report 23 What's New in This Report 23 Test History 23 Test History 23 Test Fistory 23 Test Fistory 23 Test Cases 24 DUT Descriptions 25 Test Cases 25 1 : Storage Device Fabric I/O Integrity 28 1 : Storage Device Fabric I/O Integrity 29 1 : A Storage Device Multipath Configuration 26 2 : Fabic-Advanced Functionality 30 2 : Fabic-Advanced Functionality 30 2 : Fabic-Advanced Functionality 30	Document History	5
Purpose of This Document. 5 Audience. 5 Objectives. 6 Related Documents. 6 About Breakcom. 6 About Infinidat. 6 Configure DUT and Test Equipment 7 Task 1: Broade FC Fabric Configuration. 7 Task 2: Infinidat InfiniBox Array Configuration. 7 Task 3: Hoot Stepp 11 Task 3: Hoot Stepp 23 Infinidat InfiniBox Test Report. 23 Test History. 23 Test History. 23 Test Configuration. 24 DUT Descriptions. 25 Test Configuration. 24 DUT Descriptions. 25 1: Storage Device Physical and Logical Login with Speed Negotiation. 28 1.1 Storage Device Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Multipath Configuration Path Integrity. 29 1.4 Storage Device Multipath Configuration Path Integrity. 29 2.4 Dots Integrity with Cos Zone-Based Traffic Prioritization. 30 2.4 Dos Integrity with Cos Zone	Overview	
Audience. 5 Objectives. 66 Related Documents. 66 About Broadcom. 66 About Infinidat. 67 Configure DUT and Test Equipment 77 Task 1: Brocade FC Fabric Configuration. 77 Task 2: Infinidat InfiniBox Array Configuration. 71 Task 2: Infinidat InfiniBox Array Configuration. 71 Task 3: Hors Stetp. 18 Infinidat InfiniBox Test Report. 23 What's New in This Report. 23 Test IPAIn Overview. 23 Scope. 23 Test Configuration 24 DUT Descriptions. 25 Test Configuration 24 DUT Descriptions. 25 1: Storage Device Physical and Logical Login with Speed Negotiation 28 1: Storage Device Fabric (V) Integrity. 29 1: A Storage Device Fabric VO Integrity. 29 1: A Storage Device Multipath Configuration—Path Integrity. 29 1: A Storage Device Multipath Configuration—Path Integrity. 29 2: A Dutc-Advanced Functionality. 29 2: A Storage Device Nultipath Configu	Purpose of This Document	5
Objectives 6 Related Documents 6 About Infinidat 6 Configure DUT and Test Equipment 7 Task I: Broacket PC Fabric Configuration 7 Task 2: Infinidat InfiniBox Array Configuration 7 Task 3: Hoost Setup 11 Infinidat InfiniBox Test Report 23 What's New in This Report 23 Test History 23 Test History 23 Test Plan Overview 23 Scope 23 Test Configuration 24 DUT Descriptions 25 Test Cases 27 1. Storage Device Physical and Logical Login with Speed Negotiation 28 1.2 Zoning and LUN Mapping 28 1.3 Storage Device Physical and Logical Login with Speed Negotiation 28 1.3 Storage Device Fabric (VO Integrity 29 2.4 Storage Device Nuttpath Configuration-Path Integrity 29 2.5 Device-Advanced Functionality 30 2.1 Bottleneck Detection Using MAPS FPIWith Congested Fabric 30 2.2 Fabric-Advanced Functionality 30 2.3 Flow Montoring with 10 Insight and	Audience	
Related Documents. 6 About Broadcom. 66 About Broadcom. 66 Configure DUT and Test Equipment. 77 Task 1: Brocade FC Fabric Configuration. 77 Task 2: Infinidat InfiniBox Test Report. 23 Trask 2: Infinidat InfiniBox Test Report. 23 What's New in This Report. 23 Test Plan Overview. 23 Scope. 23 Test Configuration. 24 DUT Descriptions. 25 Test Configuration. 24 DUT Descriptions. 27 1. Storage Device Physical and Logical Login with Speed Negotiation. 28 1.1 Storage Device Fabric (Vol Integrity. 29 1.4 Storage Device Fabric (Vol Integrity. 29 1.4 Storage Device Robic (Vol Integrity. 29 2.4 Storage Device Fabric (Vol Integrity. 29 2.5 Cope. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.2 Storage Device Fabric (Vol Integrity-congested Fabric. 30 2.3 Storage Device FC Protocol Jammer Test Suite.<	Objectives	6
About Infinidal 6 About Infinidal 6 Configure DUT and Test Equipment 7 Task 1: Brocade FC Fabric Configuration 7 Task 2: Infinidat InfiniBox Array Configuration 11 Task 3: Host Setup 18 Infinidat InfiniBox Test Report. 23 What's New in This Report. 23 Test Flan Overview. 23 Scope 23 Test Configuration 24 DUT Descriptions. 25 Test Cases. 27 1. Fabric Initialization—Base Functionality. 28 1. Storage Device Physical and Logical Login with Speed Negotiation 28 1. Storage Device Wultpath Configuration—Path Integrity. 29 1. Storage Device Wultpath Configuration—Path Integrity. 29 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 How Monitoring with UO S Zone-Based Traffic Prioritzation. 32 2.4 Storage Device Host With Cox Cone-Based Traffic Prioritzation. 32 2.5 OoS Integrity with CS_	Related Documents	6
About Infinidat 6 Configure DUT and Test Equipment 7 Task 1: Brocade FC Fabric Configuration 17 Task 2: Infinidat InfiniBox Array Configuration 11 Task 3: Host Setup 18 Infinidat InfiniBox Test Report 23 What's New in This Report 23 Test History 23 Test Plan Overview 23 Scope 23 Test Configuration 24 DUT Descriptions 25 Test Configuration 24 DUT Descriptions 25 1: Storage Device - Physical and Logical Login with Speed Negotiation 28 1: Storage Device - Fabric (1/0 Integrity) 29 1: Storage Device About Configuration - Path Integrity 29 2: Fabric - Advanced Functionality 29 2: Fabric - Advanced Functionality 30 2: 2: Detiencek Detection Using MAPS PPI–With Congested Host 30 2: 2: Abouter About Mapping 31 2: 4: Advanced Functionality 30 2: 2: Abouter About Math MAPS 31 2: 2: Cols Integrity with CoS Zone-Based Traffic Prioritization 32	About Broadcom	6
Configure DUT and Test Equipment 7 Task 1: Brocade FC Fabric Configuration 7 Task 2: Infinidat Infinitiox Array Configuration 11 Task 3: Host Setup 18 Infinidat Infinitiox Test Report. 23 What's New in This Report. 23 Test History 23 Test History 23 Test Hon Overview 23 Scope 23 Test Configuration 24 DUT Descriptions 25 Test Configuration 24 DUT Descriptions 25 Test Configuration 24 1. Storage Device —Physical and Logical Login with Speed Negotiation 28 1.1 Storage Device —Fabric (10 Integrity. 29 2.4 Storage Device Fabric (10 Integrity. 29 2.5 Conge Device Multipath Configuration—Path Integrity. 29 2.4 Storage Device Multipath Configuration—Path Integrity. 29 2.5 DoS Integrity with OS Zone-Based Traffic Prioritization. 30 2.2 Butleneck Detection Using MAPS FPI—With Congested Host. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 CoS Integrity with OS Zone-Based Traffi	About Infinidat	
Task 1: Brocade FC Fabric Configuration 77 Task 2: Infinidat InfiniBox Array Configuration 11 Task 3: Hots Setup 18 Infinidat InfiniBox Test Report 23 What's New in This Report 23 Test History 23 Test History 23 Test History 23 Test History 23 Test Configuration 23 Test Configuration 23 Test Configuration 24 DUT Descriptions 25 Test Cases 27 1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Fabric I/O Integrity. 29 2.7 Bothic—Advanced Functionality. 29 2.8 Fabric—Advanced Functionality. 29 2.9 Costine=Advanced Functionality. 29 2.1 Storage Device Hotection Using MAPS FPI—With Congested Host. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Row	Configure DUT and Test Equipment	7
Task 2: Infinidat InfiniBox Array Configuration 111 Task 3: Host Setup 18 Infinidat InfiniBox Test Report 23 Test History 23 Test Plan Overview 23 Scope 23 Test Plan Overview 23 Scope 23 Test Configuration 24 DUT Descriptions 25 Test Cases 27 1. Storage Device — Physical and Logical Login with Speed Negotiation 28 1.1 Storage Device Hobit Configuration — Base Functionality. 28 1.2 Zoning and LUN Mapping 28 1.3 Storage Device Multipath Configuration — Path Integrity. 29 2. Fabric – Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI–With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI–With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS 31 2.4 OS Integrity with C_SCT-LaBead Frame Prioritization. 32 2.5 Cos Integrity wi	Task 1: Brocade FC Fabric Configuration	7
Task 3: Host Setup. 18 Infinidat InfiniBox Test Report. 23 What's New in This Report. 23 Test History. 23 Test Plan Overview. 23 Scope 23 Test Configuration 24 DUT Descriptions. 25 Test Cases. 27 1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device—Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 2. Fabric—Advanced Functionality. 29 2. Fabric—Advanced Functionality. 29 2. Fabric—Advanced Functionality. 30 2.1. Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2. Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 GoS Integrity with CoS Zone—Based Traffic Prioritization. 32 2.5 Oos Integrity with CoS Zone—Based Traffic Prioritization. 32 2.6 Storage Device FC Protocol Jammer Test Suite 34 2.7 Clear Link Diagnostics (D_ Port) Test. 35 <	Task 2: Infinidat InfiniBox Array Configuration	
Infinidat InfiniBox Test Report. 23 What's New in This Report. 23 Test History. 23 Test History. 23 Test Plan Overview. 23 Scope 23 Test Configuration 24 DUT Descriptions. 24 DUT Descriptions. 27 1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device—Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Fabric I/O Integrity. 29 2.4 Storage Device Fabric I/O Integrity. 29 2.5 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with I/O Insight and MAPS. 31 2.4 QoS Integrity with CS_CTL-Based Frame Prioritization. 32 2.5 QoS Integrity with CS_CTL-Based Frame Prioritization. 32 2.6 Storage Device Fabric I/O Integrity—Congested Fabric. 35 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Int	Task 3: Host Setup	
What's New in This Report. 23 Test History. 23 Test Plan Overview. 23 Scope. 23 Test Configuration. 24 DUT Descriptions. 25 Test Cases. 27 1. Fabric Initialization—Base Functionality. 28 1. Storage Device—Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Fabric I/O Integrity. 29 2. Fabric—Advanced Functionality. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.3 Flow Monitoring with 10 Insight and MAPS. 31 2.4 GoS Integrity with OoS Zone-Based Traffic Prioritization. 32 2.5 GoS Integrity with OoS Zone-Based Frame Prioritization. 32 2.5 CoS Integrity with Device Multipath 36 3.1 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37	Infinidat InfiniBox Test Report	
Test History. 23 Test Plan Overview. 23 Scope. 23 Test Configuration. 24 DUT Descriptions. 25 Test Cases. 27 1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device—Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 2.4 Storage Device Fabric I/O Integrity. 29 2.5 Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.4 GoS Integrity with OoS Zone-Based Traffic Prioritization. 32 2.5 GoS Integrity with OoS Zone-Based Frame Prioritization. 32 2.5 CoS Integrity with Device Multipath. 36 3.1 Storage Device FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D. Port) Test. 35 3. Storage Device Integrity—Device Recovery from Device Relocation. 37 3.3 Storage Device Integrity—Device Recovery from Device Relo	What's New in This Report	23
Test Plan Overview 23 Scope 23 Test Configuration 24 DUT Descriptions 25 Test Cases 27 1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device—Physical and Logical Login with Speed Negotiation 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Fabric I/O Integrity. 29 2. Fabric—Advanced Functionality 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 OoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 QoS Integrity with QoS Zone-Based Frame Prioritization. 32 2.4 OoS Integrity with Device Multipath 36 3.5 Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.5 Storage Device Recovery—ISL Port Toggle (Sequential). 38 3.5 Stora	Test History	23
Scope 23 Test Configuration 24 DUT Descriptions 25 Test Cases 27 1. Fabric Initialization — Base Functionality. 28 1.1 Storage Device — Physical and Logical Login with Speed Negotiation 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Multipath Configuration—Path Integrity. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Flow Monitoring with IO Insight and MAPS. 31 2.4 OoS Integrity with QoS Zone—Based Traffic Prioritization. 32 2.5 OoS Integrity with QoS Zone—Based Frame Prioritization. 32 2.5 OoS Integrity with Device Multipath 36 3.1 Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.2 Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Recovery—ISL Port Toggle (Equential). 38 3.5 Storage Device Recovery—Sitch Offline. 40 </td <td>Test Plan Overview</td> <td>23</td>	Test Plan Overview	23
Test Configuration 24 DUT Descriptions 25 Test Cases 27 1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device—Physical and Logical Login with Speed Negotiation 28 1.2 Zoning and LUN Mapping 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Multipath Configuration—Path Integrity. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with Oo Szone-Based Traffic Prioritization. 32 2.4 GoS Integrity with OoS Zone-Based Traffic Prioritization. 32 2.5 CoS Integrity with CS_CTL-Based Frame Prioritization. 32 2.6 Storage Device—FC Protocol Jammer Test Suite 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Storage Device Integrity—Device Recovery from Port Toggle. 37 3.3 Storage Device Integrity—Device Recovery from Device Port Toggle—Extended Run. 37 3.4 Storage Device Recovery—Sitch Office Recovery from Device Port Toggle—Extended Run. 38 3.5 Storage Device Recovery—Sitch Office. 40 <td>Scope</td> <td>23</td>	Scope	23
DUT Descriptions. 25 Test Cases. 27 1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device—Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Functionality. 29 2. Fabric—Advanced Functionality. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 QoS Integrity with CS_CTL-Based Frame Prioritization. 32 2.6 Storage Device—FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.4 Storage Device Integrity—Device Recovery from Port Toggle. 37 3.5 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery—St	Test Configuration	24
Test Cases. 27 1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device—Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Fabric I/O Integrity. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 QoS Integrity with CS_CTL-Based Frame Prioritization. 32 2.5 QoS Integrity with Corgested Fabric. 36 3.5 Storage Device FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.4 Storage Device Integrity—Device Recovery from Port Toggle. 37 3.4 Storage Device Integrity—Device Recovery from Device Rolocation. 37 3.5 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery—ISL Port Toggle (Sequentia). 39 </td <td>DUT Descriptions</td> <td></td>	DUT Descriptions	
1. Fabric Initialization—Base Functionality. 28 1.1 Storage Device—Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Multipath Configuration—Path Integrity. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 GoS Integrity with OS Zone-Based Traffic Prioritization. 32 2.5 GoS Integrity with CS_CTL-Based Frame Prioritization. 32 2.6 Storage Device—FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.1 Storage Device Integrity—Device Recovery from Port Toggle. 37 3.3 Storage Device Integrity—Device Recovery from Device Port Toggle. 37 3.4 Storage Device Recovery ISL Port Toggle (Sequential). 39 3.5 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery Switch Offline. 41 3.9 Storage Device	Test Cases	
1.1 Storage Device — Physical and Logical Login with Speed Negotiation. 28 1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Multipath Configuration—Path Integrity. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 OoS Integrity with CS_CTL-Based Frame Prioritization. 32 2.6 Storage Device—FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Stress and Error Recovery with Device Multipath. 36 3.1 Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.2 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery—Director Blade Maintenance. 40 3.7 Storage Device Recovery—Switch Offline. 41 3.9 S	1. Fabric Initialization—Base Functionality	
1.2 Zoning and LUN Mapping. 28 1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Multipath Configuration—Path Integrity. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 QoS Integrity with CS_CTL-Based Frame Prioritization. 32 2.5 QoS Integrity with CS_Device Integrity—Congested Fabric. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.1 Storage Device Fabric I/O Integrity—Device Recovery from Port Toggle. 37 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery—ISL Port Toggle (Entire Switch). 40 3.7 Storage Device Recovery—Director Blade Maintenance. 40 3.8 Storage Device Recovery—Switch Offline. 41 3.9 Storage Device Recovery—Switch Offline. 42 4. Storag	1.1 Storage Device—Physical and Logical Login with Speed Negotiation	
1.3 Storage Device Fabric I/O Integrity. 29 1.4 Storage Device Multipath Configuration—Path Integrity. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 QoS Integrity with CS_CTL-Based Frame Prioritization. 33 2.6 Storage Device—FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Stress and Error Recovery with Device Multipath. 36 3.1 Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.2 Storage Device Integrity—Device Recovery from Port Toggle. 37 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery—Sitch Offline. 40 3.7 Storage Device Recovery—Sitch Offline. 41 3.9 Storage Device Recovery—Switch Offline. 41 3.9 Storage Device Reco	1.2 Zoning and LUN Mapping	
1.4 Storage Device Multipath Configuration—Path Integrity. 29 2. Fabric—Advanced Functionality. 30 2.1 Bottleneck Detection Using MAPS FPI—With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 QoS Integrity with CS_CTL-Based Frame Prioritization. 33 2.6 Storage Device—FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Stress and Error Recovery with Device Multipath. 36 3.1 Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.2 Storage Device Integrity—Device Recovery from Port Toggle. 37 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Recovery ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery—ISL Port Toggle (Entire Switch). 39 3.6 Storage Device Recovery—Switch Offline. 40 3.7 Storage Device Recovery—Switch Offline. 40 3.9 Storage Device Recovery—Switch Offline. 40 3.9 Storage Device Recovery—Switch Offline. 41 3.9 Storage Dev	1.3 Storage Device Fabric I/O Integrity	
2. Fabric-Advanced Functionality	1.4 Storage Device Multipath Configuration—Path Integrity	29
2.1 Bottleneck Detection Using MAPS FPI–With Congested Host. 30 2.2 Bottleneck Detection Using MAPS FPI–With Congested Fabric. 30 2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 QoS Integrity with CS_CTL-Based Frame Prioritization. 33 2.6 Storage Device—FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Stress and Error Recovery with Device Multipath. 36 3.1 Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.2 Storage Device Integrity—Device Recovery from Port Toggle. 37 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.5 Storage Device Recovery—ISL Port Toggle (Entire Switch). 40 3.7 Storage Device Recovery—Director Blade Maintenance. 40 3.8 Storage Device Recovery—Switch Offline. 41 3.9 Storage Device Recovery—Switch Offline. 42	2. Fabric—Advanced Functionality	
2.2 Bottleneck Detection Using MAPS FPI–With Congested Fabric	2.1 Bottleneck Detection Using MAPS FPI–With Congested Host	
2.3 Flow Monitoring with IO Insight and MAPS. 31 2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization. 32 2.5 QoS Integrity with CS_CTL-Based Frame Prioritization. 33 2.6 Storage Device—FC Protocol Jammer Test Suite. 34 2.7 Clear Link Diagnostics (D_Port) Test. 35 3. Stress and Error Recovery with Device Multipath. 36 3.1 Storage Device Fabric I/O Integrity—Congested Fabric. 36 3.2 Storage Device Integrity—Device Recovery from Port Toggle. 37 3.3 Storage Device Integrity—Device Recovery from Device Relocation. 37 3.4 Storage Device Recovery—ISL Port Toggle (Sequential). 39 3.6 Storage Device Recovery—ISL Port Toggle (Entire Switch). 40 3.7 Storage Device Recovery—Switch Offline. 41 3.9 Storage Device Recovery—Switch Offline. 42 4. Storage Device Recovery—Switch Firmware Download. 42	2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric	
2.4 Gos Integrity with Gos Zone-Based Traffic Prioritization	2.3 Flow Monitoring with IO Insight and MAPS	
2.5 Gos Integrity with CS_CTL-Based Frame Prioritization	2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization	
2.6 Storage Device PC Protocol Jammer Test Suite	2.5 QoS Integrity with CS_CTL-Based Frame Prioritization	
 3. Stress and Error Recovery with Device Multipath	2.6 Storage Device—FC Protocol Jammer Test Suite	
3.1 Stress and Enor Recovery with Device Multipart	2.7 Clear Link Diagnostics (D_Port) Test	ວວ
3.1 Storage Device Fabric from Normegnity—Congested Fabric 30 3.2 Storage Device Integrity—Device Recovery from Port Toggle	3.1 Storago Dovico Fabric I/O Integrity-Congested Fabric	
3.2 Storage Device Integrity — Device Recovery from Device Relocation	3.2 Storage Device Integrity—Device Decovery from Port Toggle	
3.4 Storage Device Recovery – Device Recovery from Device Port Toggle – Extended Run	3.3 Storage Device Integrity – Device Recovery from Device Pelocation	
3.5 Storage Device Recovery–ISL Port Toggle (Sequential)	3.4 Storage Device Stress—Device Recovery from Device Port Toggle—Extended Pup	رو علا
3.6 Storage Device Recovery—ISL Port Toggle (Entire Switch)	3.5 Storage Device Recovery—ISI. Port Toggle (Sequential)	
3.7 Storage Device Recovery—Director Blade Maintenance	3.6 Storage Device Recovery—ISL Port Toggle (Entire Switch)	40
3.8 Storage Device Recovery—Switch Offline	3.7 Storage Device Recovery—Director Blade Maintenance	40
 3.9 Storage Device Recovery—Switch Firmware Download	3.8 Storage Device Recovery—Switch Offline	
4. Storage Device Fibre Channel Routing (FCR) Internetworking Tests	3.9 Storage Device Recovery—Switch Firmware Download	
	4. Storage Device Fibre Channel Routing (FCR) Internetworking Tests	

4.1 Storage Device Internetworking Validation with the FC Host	43
4.2 Storage Device Internetworking Validation with FCoE Using VDX FlexPort	43
4.3 Storage Device Edge Recovery After FCR Disruptions	44
4.4 Storage Device Backbone Recovery After FCR Disruptions	45
5. Optional/Additional Tests	
5.1 Nondisruptive Firmware Upgrade on Storage Device	45
5.2 Workload Simulation Test Suite—Medusa	
5.3 Workload Simulation Test Suite–VMware	47
Test Conclusions	49

Preface

•	Document History	5
•	Overview	5
•	Purpose of This Document	5
•	Audience	5
•	Objectives	6
•	Related Documents	6
•	About Broadcom	6
•	About Infinidat	6

Document History

Date	Part Number	Description
December 2015	53-1004092-01	Supporting Brocade Fabric OS 7.4.0.
May 2017	53-1004092-02	Supporting Brocade Fabric OS 8.0.1 and 8.1.0.
March 2018	53-1004092-03	Supporting Brocade Fabric OS 8.2.0.
November 2018	53-1004092-04	Supporting Brocade Fabric OS 8.2.1.

Overview

The Storage Fabric Ready (SFR) program is a comprehensive testing and configuration initiative to validate the interoperability of Fibre Channel flash storage with a Brocade FC network infrastructure. This program provides testing of multiple fabrics, heterogeneous servers, and HBAs in a large-port-count Brocade environment. The SFR qualification program helps verify seamless interoperability and optimum performance with solid-state storage systems in Brocade FC storage fabrics.

Purpose of This Document

The goal of this document is to demonstrate the compatibility of the Infinidat InfiniBox FC storage array in a Brocade FC fabric containing Gen 5 and Gen 6 FC switches. This document provides a test report on the SFR qualification test plan executed on the Infinidat InfiniBox storage array.

Audience

The target audience for this document includes storage administrators, solution architects, system engineers, and technical development representatives.

Objectives

- Test the Infinidat InfiniBox array with the Brocade FC fabric in single and routed configurations for different stress and error recovery scenarios, and thereby validate the interoperability and integration of the Infinidat InfiniBox array with Brocade FC fabrics.
- Validate the performance of the Brocade FC fabric in a solid-state storage environment for high throughput and low latency applications.

Related Documents

- Brocade Fabric OS Administration Guide
- Brocade Monitoring and Alerting Policy Suite Configuration Guide
- Brocade SAN Design and Best Practices
- Brocade Flow Vision Configuration Guide
- Brocade Fabric OS Command Reference
- Brocade SAN Fabric Resiliency and Administration Best Practices
- Emulex ExpressLane Configuration

About Broadcom

Broadcom Inc. provides innovative storage networking solutions for data center, campus, and service provider networks, helping to reduce complexity and cost while enabling virtualization and cloud computing to increase business agility. To help ensure a complete solution, Broadcom partners with world-class IT companies and provides comprehensive education, support, and professional services offerings (www.broadcom.com).

About Infinidat

INFINIDAT was founded in 2011 by industry veterans focused on solving the problems that storage buyers face when they are forced to choose between cost, capacity, functionality, reliability, and performance. INFINIDAT enables you to have it all—today—and at a price that you can afford.

Businesses depend on data and rapid access to it, and the availability of that data is critical. With the growth of digitized data outpacing the growth of storage capacity, the market for storage has grown rapidly. Yet cost and complexity are forcing buyers to constantly make trade-offs. To solve this problem and capitalize on the exploding storage market, INFINIDAT has brought to market InfiniBox[™], a new generation of highly reliable, scalable, and efficient storage systems.

InfiniBox[™] is installed in companies around the world and supports a wide variety of applications and use cases. INFINIDAT is headquartered Herzliya, Israel, with US operations in Needham, Massachusetts.

To learn more, visit www.infinidat.com.

Configure DUT and Test Equipment

•	Task 1: Brocade FC Fabric Configuration	7
•	Task 2: Infinidat InfiniBox Array Configuration	. 11
•	Task 3: Host Setup	18

Task 1: Brocade FC Fabric Configuration

1. Enable MAPS and Fabric Performance Impact (FPI) monitoring on all switches in the fabric.

MAPS enables health monitoring on the switches to detect potential faults and create alerts. MAPS FPI allows fabric monitoring for performance impacts, including timeouts, latency, and throughput. Detailed information on MAPS configuration and setup can be found in the *Brocade Monitoring and Alerting Policy Suite Configuration Guide*.

- MAPS requires a "Fabric Vision License" to be installed.
- Enable the desired MAPS policy using any of the available default policies, or create a custom policy.
- · FPI monitoring is enabled by default.

To view the summary of events and rules triggered:

mapsdb -show

```
1 Dashboard Information:
```

DB start time: Active policy: Configured Notifications: Fenced Ports : Decommissioned Ports : Thu Feb 23 07:02:51 2017 ssr_aggressive_policy RASLOG,EMAIL,SW_CRITICAL,SW_MARGINAL None None 2. Configure Flow Monitoring with the I/O Insight feature on the Brocade G620 Switch in the fabric.

The I/O Insight feature supported on the Brocade G620 Switch allows us to monitor the flow latency statistics at the SCSI I/O exchange level. The monitoring can be configured at an IT (Initiator-Target) flow level on fixed-port switches and at an ITL (Initiator-Target-LUN) flow level on chassis-based switches.

Requires "Fabric Vision" and "IO Insight" licenses.

a) Create a "Flow Monitor" flow at the source or destination device port on the Brocade G620 Switch.

> flow --create ios_infini_1 -fea mon -dstdev df1900 -egrport 25

> flow --show ios infini 1

Name : ios_infini_1 Features: mon(Activated) noConfig: Off Definition: EgrPort(25),DstDev(0xdf1900)

b) Import the created flows into MAPS.

root> mapsconfig --import ios infini 1

root> logicalgroup --show

Group Name	Predefined	Туре	Member Count	Members
ios_infini_1	No	Flow	1	Monitored Flow

c) Create MAPS rules to monitor the desired SCSI I/O latency statistics, and add them to a custom MAPS policy.

> mapspolicy --clone dflt aggressive policy -name ios aggressive policy

> mapsrule --create ios_infini_1_4k_wr_status -group ios_infini_1 -monitor WR_STATUS_TIME_LT_8K -timebase min -op ge -value 1000 -action email,raslog -policy ios_aggressive_policy

> mapspolicy --show ios_aggressive_policy
Policy Name: ios aggressive policy

Rule Name	Condition	Actions	
ios infini 1 4k wr status	ios infini 1(WR STATUS TIME LT 8K/min>=1000)	email,raslog	
ios_infini_1_4k_rd_status	ios_infini_1(RD_STATUS_TIME_LT_8K/min>=1000)	email,raslog	

.....

d) Enable the MAPS policy.

> mapspolicy --enable ios aggressive policy

> mapsdb --show

1 Dashboard Information:

2 Switch Health Report:

Current Switch Policy Status: HEALTHY

3. Configure zoning using the Peer Zoning feature in Brocade Fabric OS.

Peer zoning allows a "principal" device to communicate with the other devices in the zone. The principal device manages a peer zone. Other "nonprincipal" devices in the zone can communicate with the principal device only; they cannot communicate with each other.

```
root> zonecreate -peerzone ssr infinidat 1 -principal "57:42:b0:f0:00:04:2b:15; ...." -members
"10:00:8c:7c:ff:24:b6:00; ..."
root> zoneshow --peerzone all
zone: ssr infinidat 1
  Property Member: 00:02:00:00:00:03:00:03
   Created by: User
   Principal Member(s):
                57:42:b0:f0:00:04:2b:15; 57:42:b0:f0:00:04:2b:25;
                57:42:b0:f0:00:04:2b:35
   Peer Member(s):
               10:00:8c:7c:ff:24:b6:00; 10:00:8c:7c:ff:24:b6:01;
                10:00:8c:7c:ff:07:49:00; 10:00:8c:7c:ff:07:49:01;
                10:00:8c:7c:ff:4f:ca:00; 10:00:8c:7c:ff:4f:ca:01;
                21:00:00:0e:1e:1b:f1:21; 21:00:00:0e:1e:1b:f1:20;
                21:00:00:0e:1e:18:99:80; 21:00:00:0e:1e:18:99:81;
                10:00:00:90:fa:61:92:3b; 10:00:00:90:fa:61:92:3c;
                10:00:8c:7c:ff:05:60:01; 10:00:8c:7c:ff:05:60:00;
                10:00:8c:7c:ff:14:e0:01; 10:00:8c:7c:ff:14:e0:00;
                10:00:8c:7c:ff:03:bc:01; 10:00:8c:7c:ff:03:bc:00;
                10:00:8c:7c:ff:03:9b:00; 10:00:8c:7c:ff:03:9b:01;
                10:00:8c:7c:ff:05:72:02; 10:00:8c:7c:ff:05:72:03
root> cfgactvshow
zone: ssr infinidat 1
                00:02:00:00:00:03:00:03
                57:42:b0:f0:00:04:2b:15
                57:42:b0:f0:00:04:2b:25
                57:42:b0:f0:00:04:2b:35
                10:00:8c:7c:ff:24:b6:00
                10:00:8c:7c:ff:24:b6:01
                10:00:8c:7c:ff:07:49:00
                10:00:8c:7c:ff:07:49:01
                10:00:8c:7c:ff:4f:ca:00
                10:00:8c:7c:ff:4f:ca:01
                21:00:00:0e:1e:1b:f1:21
```

. . .

4. Configure Fibre Channel Routing (an Integrated Routing license is required).

The FC-FC routing service provides Fibre Channel routing between two or more fabrics without merging those fabrics. For example, using FC-FC routing, you can share tape drives across multiple fabrics without the administrative problems, such as change management, network management, scalability, reliability, availability, and serviceability, that might result from merging the fabrics. Detailed information on FCR setup can be found in the *Brocade Fabric OS Administration Guide*.

An example FCR configuration is shown below.

Enabling FCR on the backbone fabric switches.

```
> fcrconfigure -bbfid 100
```

> fosconfig --enable fcr

Configuring EX ports connecting to edge fabrics.

> portcfgexport [port#] -a1 -m0 -f 10 > portcfgexport [port#] -a1 -m0 -f 20 > portcfgexport [port#] -a1 -m5 -f 50

An LSAN zone is created on both fabrics.

Example output of exported devices.

<pre>> fcrprox Proxy Created in Fabric</pre>	ydevshow WWN	Proxy PID	Device Exists in Fabric	Physical PID	State
10 10 10 10 10	21:00:00:24:ff:48:b9:6a 21:00:00:24:ff:48:b9:6b 52:4a:93:7d:f3:5f:61:00 52:4a:93:7d:f3:5f:61:01	02f001 02f101 02f201 02f401	20 20 20 20 20	551a00 541e00 550e00 540400	Imported Imported Imported Imported

Task 2: Infinidat InfiniBox Array Configuration

1. The tested InfiniBox array consists of three active controller nodes and two disk drive enclosures supplying 250 TB of usable capacity. There are 24x1TB SSD drives (8 per controller) used as cache drives. Each controller node has eight 8-Gb Fibre Channel ports for connectivity. The test bed is set up with one port from each controller node connected to each FC fabric.

FIGURE 1 Infinidat Controller Nodes

admin@localhost> node.query								
NAME	STATE	CORE STATE	CORE ROLE	MGMT STATE	MGMT ROLE			
node-1	ACTIVE	ACTIVE	MASTER	ACTIVE	MEMBER			
node-2	ACTIVE	ACTIVE	SECONDARY	ACTIVE	MASTER			
node-3	ACTIVE	ACTIVE	MEMBER	ACTIVE	SECONDARY			

FIGURE 2 Infinidat System Setup

<pre>admin@localhost> system.info</pre>	
Name	ssr-infinibox
Serial	1067
Product ID	INFINIBOX
Model Name	F2130
Version	3.0.0.150
Uptime	3 months 28 days 3 hours 47 minutes
Operational State	ACTIVE
Disk Encryption	no
WWNN	57:42:b0:f0:00:04:2b:00
SSD Cache Drives	24
Total Physical Capacity	249.73 TB
Free Physical Capacity	239.62 TB
Pools Physical Capacity	10.00 TB
Pools Allocated Physical Capacity	2.28 TB
Total Virtual Capacity	624.33 TB
Free Virtual Capacity	614.33 TB
Pools Virtual Capacity	10.00 TB
Pools Allocated Virtual Capacity	2.28 TB
Compression Savings	1.00 : 1
Pools	1
Volumes	21 (0 snapshots)
Filesystems	1 (0 snapshots)
Consistency Groups	0 (0 snap-groups)
Replicas	0
Exports	3
Hosts	8
Inactive Drives	1
Rebuild 1 In Progress	no
Rebuild 2 In Progress	no

2. Connect Fibre Channel target ports on the array to the Brocade FC fabric, with two ports from each controller connected to FC Fabric 1 and FC Fabric 2. Additional FC ports are available for connection to the fabric to increase the bandwidth on the controllers and achieve higher performance.

FIGURE	٦	Infinidat	Fibro	Channel	Ports
FIGURE	J	IIIIIIIuat	FIDIE	Charmen	POILS

admin@	localhost	> confi	g.fc.port.query							
NAME	ENABLED	STATE	STATE DESCRIPTION	LINK	SWITCH	WWPN	ROLE	SPEED	MAX SPEED	PATCH PANEL
N1FC1	yes	OK		UP	Brocade94	57:42:b0:f0:00:04:2b:11	HARD_PORT	8 Gbps	8 Gbps	1
N1FC2	yes	OK		UP	G620_224	57:42:b0:f0:00:04:2b:12	HARD_PORT	8 Gbps	8 Gbps	2
N1FC3	yes	OK		DOWN		57:42:b0:f0:00:04:2b:13	HARD_PORT		8 Gbps	3
N1FC4	yes	OK		DOWN		57:42:b0:f0:00:04:2b:14	HARD_PORT		8 Gbps	4
N1FC5	yes	OK		UP	B6510_74	57:42:b0:f0:00:04:2b:15	HARD_PORT	8 Gbps	8 Gbps	5
N1FC6	yes	OK		UP	B6510_91_SSR2	57:42:b0:f0:00:04:2b:16	HARD_PORT	8 Gbps	8 Gbps	6
N1FC7	yes	OK		DOWN		57:42:b0:f0:00:04:2b:17	HARD_PORT		8 Gbps	7
N1FC8	yes	OK		DOWN		57:42:b0:f0:00:04:2b:18	HARD_PORT		8 Gbps	8
N2FC1	yes	OK		UP	Brocade94	57:42:b0:f0:00:04:2b:21	HARD_PORT	8 Gbps	8 Gbps	1
N2FC2	yes	OK		UP	G620_224	57:42:b0:f0:00:04:2b:22	HARD_PORT	8 Gbps	8 Gbps	2
N2FC3	yes	OK		DOWN		57:42:b0:f0:00:04:2b:23	HARD_PORT		8 Gbps	3
N2FC4	yes	OK		DOWN		57:42:b0:f0:00:04:2b:24	HARD_PORT		8 Gbps	4
N2FC5	yes	OK		UP	B6510_74	57:42:b0:f0:00:04:2b:25	HARD_PORT	8 Gbps	8 Gbps	
N2FC6	yes	OK		UP	B6510_91_SSR2	57:42:b0:f0:00:04:2b:26	HARD_PORT	8 Gbps	8 Gbps	6
N2FC7	yes	OK		DOWN		57:42:b0:f0:00:04:2b:27	HARD_PORT		8 Gbps	7
N2FC8	yes	OK		DOWN		57:42:b0:f0:00:04:2b:28	HARD_PORT		8 Gbps	8
N3FC1	yes	OK		UP	Brocade94	57:42:b0:f0:00:04:2b:31	HARD_PORT	8 Gbps	8 Gbps	1
N3FC2	yes	OK		UP	G620_224	57:42:b0:f0:00:04:2b:32	HARD_PORT	8 Gbps	8 Gbps	2
N3FC3	yes	OK		DOWN		57:42:b0:f0:00:04:2b:33	HARD_PORT		8 Gbps	3
N3FC4	yes	OK		DOWN		57:42:b0:f0:00:04:2b:34	HARD_PORT		8 Gbps	4
N3FC5	yes	OK		UP	B6510_74	57:42:b0:f0:00:04:2b:35	HARD_PORT	8 Gbps	8 Gbps	5
N3FC6	yes	OK		UP	B6510_91_SSR2	57:42:b0:f0:00:04:2b:36	HARD_PORT	8 Gbps	8 Gbps	6
N3FC7	yes	OK		DOWN		57:42:b0:f0:00:04:2b:37	HARD_PORT		8 Gbps	7
N3FC8	yes	OK		DOWN		57:42:b0:f0:00:04:2b:38	HARD_PORT		8 Gbps	8

3. All drives on the array are configured as part of a single pool.

FIGURE 4 Infinidat Disk Pool

Pools (1)					CREATE	
NAME 🔺	STATE	PHYSICAL CAPACITY		VIRTUAL CAPACITY		≔
InfiniPool	🛇 Normal	249 TB TOTAL		249 TB TOTAL		:
		48	% ▼ ▼		70 %	
		Allocated 119.8 TB	Free 129.2 TB	Allocated 174.8 TB	Free 74.2 TB	

4. Create host groups with the appropriate initiator WWNs associated with that host. To create cluster groups, create individual host groups for the cluster nodes and add them to the cluster group.

FIGURE 5 Infinidat Host Group Creation

	re	ate	H	osi	t										
Nam	e														
ssr(067	7145	5												
ort '	wv Si	VPN elec	1 (C	Opti rom	on	ial) st		۲)	Inse	rt	Mar	านส	ally	
	:		:				•				:		:		ADD
	:		:		•		•		•		:		:		ADD
21	:	00	:	00	•	0e	•	1e	:	18	:	99	:	90	ADD
21	:	00	:	00	•	0e 0e	• • •	1e 1e	:	18 18	:	99 99	:	90 91	ADD

FIGURE 6 Infinidat Host Group Connectivity

Hosts & Clusters > ssr068161						
ssr068161	Mapped Volumes Ports					
IP/Host name					ADD PORT	
N/A	PROTOCOL	ADDRESS	FC Initiator - 10	· 00 · 8c · 7c · ff · 22 · f8 ·	80 ×	
Optimized 🕑 N/A	FC FC	10 : 00 : 8c : 7c : ff : 22 : f8 : 81	CONNECTED			
Host PowerTools Version	FC	10:00:8c:7c:ff:22:f8:80	Node 1			
N/A			TARGET TYPE	ADDRESS	PORT/ INTERFACE	
Operating System N/A			HARD_PORT	57:42:B0:F0:00:04:2B:12	N1FC2	
Resiliency			HARD_PORT	57:42:B0:F0:00:04:2B:15	N1FC5	
CONNECTED						
			Node 2			
			TARGET TYPE	ADDRESS	PORT/ INTERFACE	
			HARD_PORT	57:42:B0:F0:00:04:2B:22	N2FC2	
			HARD_PORT	57:42:B0:F0:00:04:2B:25	N2FC5	
			Node 3			
Current Sample 2016-02-23 11:02:55			TARGET TYPE	ADDRESS	PORT/ INTERFACE	
1			HARD_PORT	57:42:B0:F0:00:04:2B:32	N3FC2	
0.5			HARD_PORT	57:42:B0:F0:00:04:2B:35	N3FC5	
0 08:32 08:33 08:34						

FIGURE 7 Infinidat Cluster Group Creation

Create Cluster		×
Name		
ssresx		
	CANCEL	CREATE

FIGURE 8 Infinidat Cluster Group Hosts

Hosts & Clusters > ssresx	
ssresx Hosts: 4	Mapped Volumes Hosts
Operating System	ADD HOST
N/A	NAME
	ssr067123
	ssr067131
	ssr067133
	ssr067114

5. Create volumes and map them to the host/cluster groups. For the purpose of this testing, volumes are thick provisioned.

Hosts & Clusters > ssr067145							
ssr067145 Not clustered	Ma	pped Volumes Ports					
IP/Host name	Vo	lumes (5)				MAP VOLU	JME
N/A			МАР ТҮРЕ	SIZE	POOL	CONSISTENCY	LUN
Optimized 🛛		Ssr067145001	Host	500 GB	InfiniPool	N/A	1
Host PowerTools Version		Ssr067145002	Host	500 GB	InfiniPool	N/A	2
N/A		Ssr067145003	Host	500 GB	InfiniPool	N/A	3
• 		Ssr067145005	Host	500 GB	InfiniPool	N/A	4
Throughput Current Sample 2016-05-17 16:47:22		S sr067145004	Host	500 GB	InfiniPool	N/A	5
1							
0.5							
0 16:47							

FIGURE 9 Infinidat Host Group Volume Mapping

FIGURE 10 Infinidat Cluster Group Volume Mapping

Hosts & Clusters > ssresx SSResx Hosts: 4	Mapped Volumes Hosts
Operating System	Volumes (1) MAP VOLUME
N/A	NAME A MAP TYPE SIZE POOL CONSISTENCY LUN
	Ssresx001 Cluster 10 TB InfiniPool N/A 11

Task 3: Host Setup

- 1. Provision a minimum of two uplinks from the host to the FC fabric for redundancy, and use native multipath tools to manage the available paths and load-balance across them.
- 2. Install the Infinidat Host Power Tools (HPT) application on all supported hosts. Run the "systems settings check"/"check host readiness" test from HPT. The test reports any parameters that are not per Infinidat recommendations, and it can be configured to automatically fix those settings. HPT can be used to configure the recommended multipath settings and any performance tuning parameters on the hosts and also to provision the storage LUNs.

- 3. Configuring the multipath settings allows for proper failover and load balancing across the available links. Multipath settings for Windows, Linux, and VMware as recommended by Infinidat are provided here. The following settings can be auto-configured using Infinidat Host Power Tools on supported OSs.
 - For Windows, native MPIO is used and the following parameters are tuned in the Windows Registry for optimal path recovery.

Registry	Value Name	Value
HKLM\SYSTEM\CurrentControlSet \Services\mpio\Parameters	PDORemovePeriod	20
HKLM\SYSTEM\CurrentControlSet \Services\mpio\Parameters	UseCustomPathRecoveryInterval	1
HKLM\SYSTEM\CurrentControlSet \Services\mpio\Parameters	PathRecoveryInterval	10

FIGURE 11 Windows MPIO Configuration

61	-		x			
C:\Users\add>mpclaim -e						^
"Target H/W Identifier	" Bus Type	MPIO-ed	ALUA Support			
"NFINIDATInfiniBox	" Fibre	YES	Implicit Only			
C:\Users\add>mpclaim -s -	-d					
For more information abou he MPIO disk number.	ut a particul	ar disk, use 'mpcla	aim —s —d #' wł	iere	# i	s t
MPIO Disk System Disk	LB Policy	DSM Name				
MPIO Disk36 Disk 1 MPIO Disk34 Disk 19 MPIO Disk33 Disk 18 MPIO Disk32 Disk 17 MPIO Disk31 Disk 16	RR RR RR RR RR	Microsoft DSM Microsoft DSM Microsoft DSM Microsoft DSM Microsoft DSM				
C:\Users\add>mpclaim -s -	-d 31					
MPIO Disk31: 06 Paths, Ro Controlling DSM: Mics SN: 6742B0F00042B0009 Supported Load Balanc	ound Robin, S Posoft DSM 200D81 ce Policies:	ymmetric Access FOO RR RRWS LQD WP	LB			
Path ID Stat	te	SCSI Address	Weight			
0000000077030002 Acti TPG_State : Active/	ive/Optimized /Optimized ,	003:000:002:001 TPG_Id: 517, : 51	0 7			
0000000077040000 Acts TPG_State : Active/	ive/Optimized /Optimized ,	004¦000¦000¦001 TPG_Id: 261, : 261	0 1			
0000000077040002 Acts TPG_State : Active/	ive/Optimized /Optimized ,	004¦000¦002¦001 TPG_Id: ??3, : ??3	0 3			
000000007030000 Acts TPG_State : Active/	ive/Optimized /Optimized ,	003¦000¦000¦001 TPG_Id: ??3, : ??3	0 3			
0000000077040001 Acts TPG_State : Active/	ive/Optimized /Optimized ,	004¦000¦001¦001 TPG_Id: 517, : 51	0 7			
000000007030001 Acti TPG_State : Active/	ive/Optimized ⁄Optimized ,	003¦000¦001¦001 TPG_Id: 261, : 261	0 1			
						\sim

• For Linux, add the following to /etc/multipath.conf.

```
defaults {
    user_friendly_names yes
    max_fds 8192
    find_multipaths yes
}
##
devices {
    device {
        vendor "NFINIDAT"
        product "InfiniBox.*"
        prio alua
        path_grouping_policy group_by_prio
        path_checker tur
        path_selector "round-robin 0"
        features "0"
        failback 30
```

```
rr_weight priorities
no_path_retry queue
# rr_min_io 1 # for kernels up to 2.6.31
rr_min_io_rq 1 # for kernels 2.6.31 or newer
flush_on_last_del yes
fast_io_fail_tmo 5
dev_loss_tmo 30
}
```

Sample Output

}

• For VMware, the path selection policy is changed to Round Robin for the discovered Infinidat devices. The path selection policy for Infinidat LUNs can be set to the default, Round Robin, by creating a claiming rule on the VMware host.

FIGURE 12 Infinidat Devices Discovered on the VMware Host

Infinidat_VM Actions -					=.
Getting Started Summary I	Monitor Manage	Manage Related Objects			
Settings Alarm Definitions T	ags Permissions	Schedule	d Tasks	Files	
••	Properties				
General	Name	Infinidat_V	M		
Capability sets	▶ File system	VMFS 5.60			
Device Backing	Drive type	HDD			
Connectivity and Multipathing	Capacity	28 TB free (out of 9.09	Refresh 0	Increase
	Datastore Capa	bilities			Edit
	Thin Provisi	oning	Support	ed	
	▹ Storage I/O	Control	Disable	d	
	 Hardware A 	cceleration	Support	ed on all hosts	

Infinidat_VM Actions -				E.					
Getting Started Summary Moni	tor Manage Relate	d Objects							
Settings Alarm Definitions Tags	Permissions Sched	uled Tasks Files							
General Capability sets	Connectivity and Multipa Select a host to view th Mount Unmou	athing e multipathing deta Int	ils for its devices.						
Connectivity and	Host	Datastore Mounted	Datastore Connectivity	Mount Point					
Multipathing	10.38.67.114	Mounted	Connected	/vmfs/volumes/552d6517-8c7bc62					
	10.38.67.123	Mounted	Connected	/vmfs/volumes/552d6517-8c7bc62					
	10.38.67.133	Mounted	Connected	/vmfs/volumes/552d6517-8c7bc62					
	10.38.67.131	Mounted	Connected	/vmfs/volumes/552d6517-8c7bc62					
	4	::		•					
	Multipathing Details Device: NFINIDAT Fibre Channel Disk (naa.6742b0f00000042b000000000001a0d)								
	Multipathing Policies	•		Edit Multipathing					
	▶ Path Selection P	olicy Round Robin (VMware)							
	Storage Array Typ	pe Policy VMW_SATP_ALUA							
	Paths								
	Owner Plugin	NMP							
	▶ Paths	12							

FIGURE 13 VMware Path Selection Policy for Infinidat Devices

- 4. Apply any host tuning parameters recommended by Infinidat for better operation with the storage array. The following settings can be auto-configured using Infinidat Host Power Tools on supported OSs.
 - For Linux, the following udev rule is created to persistently set the tuning parameters for Infinidat devices.

On legacy udev systems, such as redhat-6, suse-11, and their equivalents, write the following contents to /etc/udev/ rules.d/41-infinidat-io-scheduler.rules:

ACTION=="add|change", KERNEL=="sd[a-z]*", SYSFS{vendor}=="NFINIDAT", RUN+="/bin/sh -c 'echo noop > /sys\$DEVPATH/queue/scheduler'"

On systemd-based systems, such as redhat-7, ubuntu-14.04, and their equivalents, write the following contents to /lib/ udev/rules.d/99-infinidat-io-scheduler.rules:

ACTION=="add|change", KERNEL=="sd[a-z]*", ENV{ID_VENDOR}=="NFINIDAT" RUN+="/bin/sh -c 'echo noop > /sys\$env{DEVPATH}/queue/scheduler'"

For Windows and VMware, all default values are used and no other tuning parameters are applied.

Infinidat InfiniBox Test Report

•	What's New in This Report	23
•	Test History	23
•	Test Plan Överview	23
•	Scope	23
•	Test Configuration	24
•	DUT Descriptions	25

What's New in This Report

- The array under test is the Infinidat InfiniBox running firmware version 4.0.5.30.
- The Brocade Fabric OS (FOS) version under test is 8.2.1.
- All HBAs have updated firmware and drivers.

Test History

Storage Model	Storage Firmware	Brocade FOS Version	Date
InfiniBox	1.7.1.2	FOS 7.4.0	December 2015
InfiniBox	2.2.1.1	FOS 8.0.1	December 2016
InfiniBox	3.0.0.150	FOS 8.1.0	March 2017
InfiniBox	3.0.20.100	FOS 8.2.0	February 2018
InfiniBox	4.0.5.30	FOS 8.2.1	November 2018

Test Plan Overview

The Infinidat InfiniBox array is connected to a Brocade FC fabric with two Fibre Channel target ports from each of the three controller nodes connected to the Brocade switches, as shown in the test configuration diagram.

Scope

Testing focuses on interoperability of the Infinidat storage array and determining an optimal configuration for performance and availability.

Testing covers various I/O stress and error handling scenarios. Performance is observed within the context of best-practice fabric configuration; however, absolute maximum benchmark reporting of storage performance is beyond the scope of this test.

Details of the test steps are covered under "Test Cases" section. Standard test-bed setup includes IBM/HP/Dell servers with Brocade/ QLogic/Emulex HBAs with two uplinks from every host to the Brocade FC fabric. I/O generator tools used include Medusa Labs Test Tools and VMware I/O Analyzer.

Test Configuration

DUT Descriptions

The following tables provide details about the devices under test (DUTs).

TABLE 1 Storage Array

DUT ID	Model	Vendor	Description
Infinidat InfiniBox	InfiniBox	Infinidat	The InfiniBox is an enterprise-class storage array with three active controller nodes having 24x8Gb FC ports for connectivity. The array has two drive enclosures, providing 250 TB of usable capacity. The array contains 24 SSD drives for cache on the 3 controllers.

TABLE 2 Switches

DUT ID	Model	Vendor	Description
Edge-1	Brocade 6510	Brocade	48-port Gen 5 16Gb FC switch
Edge-2	Brocade G620	Brocade	64-port Gen 6 32Gb FC switch
Edge-3	Brocade G610	Brocade	28-port Gen 6 32Gb FC switch
Edge-4	Brocade G620	Brocade	64-port Gen 6 32Gb FC switch
Chassis-1	Brocade X6-8	Brocade	8-slot Gen 6 32Gb director
Chassis-2	Brocade X6-4	Brocade	4-slot Gen 6 32Gb director

Test Cases

	 1. Fabric Initialization—Base Functionality
1.	FABRIC INITIALIZATION-BASE FUNCTIONALITY
1.1	Storage Device—Physical and Logical Login with Speed Negotiation
1.2	Zoning and LUN Mapping
1.3	Storage Device Fabric I/O Integrity
1.4	Storage Device Multipath Configuration—Path Integrity
2.	FABRIC-ADVANCED FUNCTIONALITY
2.1	Bottleneck Detection Using MAPS FPI—With Congested Host
2.2	Bottleneck Detection Using MAPS FPI—With Congested Fabric
2.3	Flow Monitoring with IO Insight and MAPS
2.4	QoS Integrity with QoS Zone-Based Traffic Prioritization
2.5	QoS Integrity with CS_CTL-Tag Based Frame Prioritization
2.6	Storage Device – FC Protocol Jammer Test Suite
2.7	Clear Link Diagnostics (D_Port) Test
3.	STRESS AND ERROR RECOVERY WITH DEVICE MULTIPATH
3.1	Storage Device Fabric I/O Integrity—Congested Fabric
3.2	Storage Device Integrity—Device Recovery from Port Toggle
3.3	Storage Device Integrity—Device Recovery from Device Relocation
3.4	Storage Device Stress—Device Recovery from Device Port Toggle—Extended Run
3.5	Storage Device Recovery—ISL Port Toggle (Sequential)
3.6	Storage Device Recovery—ISL Port Toggle (Entire Switch)
3.7	Storage Device Recovery—Director Blade Maintenance
3.8	Storage Device Recovery—Switch Offline
3.9	Storage Device Recovery—Switch Firmware Download
4.	STORAGE DEVICE-FIBRE CHANNEL ROUTING (FCR) INTERNETWORKING TESTS
4.1	Storage Device Internetworking Validation with the FC Host
4.2	Storage Device Internetworking Validation with FCoE Using VDX FlexPort
4.3	Storage Device Edge Recovery After FCR Disruptions
4.4	Storage Device Backbone Recovery After FCR Disruptions
5.	OPTIONAL/ADDITIONAL TESTS
5.1	Nondisruptive Firmware Upgrade on Storage Array
5.2	Workload Simulation Test Suite—Medusa
5.3	Workload Simulation Test Suite—VMware

1. Fabric Initialization—Base Functionality

1.1 Storage Device—Physical and Logical Login with Speed Negotiation

Test Objective

Verify device login to the switch and name server with all supported speed settings.

Test Configuration

Test Execution

Set switch ports to 4/8/16/Auto_Negotiate speed settings.

portcfgspeed <port> [4/8/16/0]

Result Validation

- 1. Validate link states on the array, and verify speed negotiation and device login at different speeds.
- 2. Check the switch port status and verify the "actual" and "configured" link speed. Check the name server for device login.
 - # nscamshow
 - # portshow X

Test Results

PASS. Speed negotiation, device login, and connectivity are verified.

1.2 Zoning and LUN Mapping

Test Objective

Verify that host-to-LUN access exists with valid zoning.

Test Configuration

Test Execution

- 1. Create peer zones on the fabric with the target WWNs as principal members and the initiator WWNs as peer members.
- 2. Create host groups and LUNs on the array with access to the initiator WWN.

Result Validation

Verify that LUNs are discovered on the hosts with host-specific tools.

- Linux: Check output of **lsscsi**.
- Windows: Check output at Computer Management > Storage > Disk Management.
- VMware: Check output at Configuration > Storage > Devices.

Test Results

PASS. Host has read/write access to the presented LUNs.

1.3 Storage Device Fabric I/O Integrity

Test Objective

Validate single-path host-to-LUN I/O with read/write/verify testing. Include short device cable pulls/port toggles to validate device recovery.

Test Configuration

Test Execution

- 1. Set up read/write I/O to the LUN using Medusa.
- 2. Perform link disruptions by port toggles, cable pulls.

Result Validation

Check Medusa I/O logs, and verify that I/O resumes after a short downtime. Medusa I/O will pause, but should recover without errors.

Test Results

PASS. I/O resumes after the disruption.

1.4 Storage Device Multipath Configuration—Path Integrity

Test Objective

Verify that multipath configures successfully. Each adapter and storage port to reside in different switches. For all device paths, consecutively isolate individual paths and validate I/O integrity and path recovery.

Test Configuration

Test Execution

- 1. Set up the host with at least two initiator ports zoned with two target ports on the array.
- 2. Set up multipath on the host, and start I/O.
- 3. Perform sequential port toggles across the initiator and target switch ports to isolate paths.

Result Validation

1. Check host multipath properties to verify that the toggled path recovers.

```
- Windows: mpclaim -s -d
```

```
- Linux: multipath -11
```

- VMware: Check the paths at Configuration > Storage > Devices > Manage Paths
- 2. Check the host and storage logs for failures.

- 3. Check the switch error logs and switch port status after toggling.
 - # errdumpall
 - # portstatsshow X
 - # portshow X
- 4. Check I/O logs, and verify that I/O continues without errors.

Test Results

PASS. I/O fails over to the remaining active paths and recovers when the disrupted path is restored.

2. Fabric—Advanced Functionality

2.1 Bottleneck Detection Using MAPS FPI—With Congested Host

Test Objective

Verify that congestion on host ports is detected. Verify storage device and fabric behavior during congestion.

Test Configuration

Test Execution

- 1. Enable MAPS monitoring and MAPS FPI on all switches. A Fabric Vision license is required.
- 2. Start I/O from a single host initiator to multiple targets.
- 3. Monitor the switch logs for congestion and latency (IO_PERF_IMPACT/IO_FRAME_LOSS) warnings.

Result Validation

Check the switch error logs and the MAPS dashboard for bottleneck warnings.

```
# errdumpall | grep IO_
```

```
# mapsdb --show all
```

Test Results

PASS. The bottlenecked ports are displayed on the MAPS dashboard, and a RASLog warning is created.

2.2 Bottleneck Detection Using MAPS FPI—With Congested Fabric

Test Objective

Create congestion on a switch ISL port. Verify that congestion in the fabric is detected. Verify storage device and fabric behavior during the congestion.

Test Configuration

Test Execution

- 1. Enable MAPS monitoring and MAPS FPI on all switches. A Fabric Vision license is required.
- 2. Isolate a single ISL in the fabric.
- 3. Start I/O from multiple host initiators to multiple targets.
- 4. Monitor the switch logs for congestion and latency (IO_PERF_IMPACT/IO_FRAME_LOSS) warnings.

Result Validation

Check the switch error logs and MAPS dashboard for bottleneck warnings.

```
# errdumpall | grep IO_
```

```
# mapsdb --show all
```

Test Results

PASS. The bottlenecked ports are displayed on the MAPS dashboard, and a RASLog warning is created.

2.3 Flow Monitoring with IO Insight and MAPS

Test Objective

Monitor IO latency statistics on the target ports. Verify that stats are reported accurately and that alerts are generated when thresholds are hit.

Test Configuration

1. Baseline a target LUN's latency running 4k reads from a workload generator. Here we are seeing about a 500–1000 microsecond range. Hence we set the rules to a 1000-µs or 1-ms threshold.

```
Avg Completion Time0.000853
```

- 2. Set up flows and monitoring as per "Step 2 Configure Flow Monitoring with I/O Insight" under "Task 1. Brocade FC Fabric Configuration."
- 3. Start I/O and adjust the traffic pattern to cause a rise in latency above the configured monitoring threshold; and confirm that RASLog, MAPS dashboard, and email notifications are generated.

Result Validation

1. Check flow statistics and MAPS alerts to verify the metrics are reported correctly and alerts are generated when thresholds are crossed.

flow --show

```
RASLog:
```

```
> errdumpall
2017/02/08-08:46:58:582892, [MAPS-1003], 168254/165960, FID 128, WARNING, G620_066_223, Flow (ios_infini_3),
Condition=ios_infini_3(RD_STATUS_TIME_LT_8K/min>=1000), Current Value:[ RD_STATUS_TIME_LT_8K,1051
Microseconds], RuleName=ios_infini_3_4k_rd_status, Dashboard Category=Traffic Performance., raslogAction.c,
line: 96, comp:md, ltime: 2017/02/08-08:46:58:582642
```

Email: Switch Time:Feb 08 08:46:58 Affected Entity:Flow (ios_infini_3) Monitor:Read completion time (RD_STATUS_TIME_LT_8K) Rule Name:ios_infini_3_4k_rd_status Group:ios_infini_3 Condition:ios_infini_3(RD_STATUS_TIME_LT_8K/min>=1000) Current Value:1051 Microseconds Dashboard Category:Traffic Performance Switch Name:G620_066_223 Switch WWN:10:00:c4:f5:7c:2a:8b:c8 Switch IP:10.38.66.223 Fabric Name:SSR VFID:128

MAPS Dashboard:

```
> mapsdb -show
```

3.2 Rules Affecting Health:

Category(Rule Count) Repea	t Rule Name	Execution Time	Object	Triggered	Value
Count				(Units)	
Traffic Performance(2	ios_infini_3_4k_rd_status	s 05/25/16 15:46:58	3 Flow (ios_infini_3)	1051 Microsecon	nds

Test Results

PASS. Verified that I/O stats are reported and that alerts are generated when thresholds are exceeded.

2.4 QoS Integrity with QoS Zone-Based Traffic Prioritization

Test Objective

Verify storage device behavior, and validate traffic characteristics with different QoS zones.

Test Configuration

Test Execution

1. Set up initiator-target pairs with Low/Medium/High QoS zones in the fabric.

2. Start I/O from all hosts, and verify I/O statistics.

Result Validation

- 1. 1. Check the I/O logs, and verify that I/O continues without error.
- 2. Check the switch error logs and switch port status for errors.

errdumpall

porterrshow

0	0	0	0	0	0	0	946	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	30	1	0	1	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Test Results

PASS. I/O from hosts in all QoS zones completes successfully without errors.

2.5 QoS Integrity with CS_CTL-Based Frame Prioritization

Test Objective

Verify CS_CTL I/O prioritization using the Emulex ExpressLane feature.

Test Configuration

Test Execution

1. Configure all switches in the fabric to be in "Auto" CS_CTL QoS mode.

```
root> configurechassis
Configure...
cfgload attributes (yes, y, no, n): [no]
Custom attributes (yes, y, no, n): [no]
system attributes (yes, y, no, n): [no]
fos attributes (yes, y, no, n): [no] y
Reboot needed to effect new CSCTL Mode
CSCTL QoS Mode (0 = default; 1 = auto mode): (0..1) [0] 1
root> configshow -all | grep csctlMode
fos.csctlMode:1
```

2. Enable CS_CTL mode on the initiator and target switch ports.

```
root> portcfgqos -enable [slot/]port csctl_mode
root> portcfgshow 22
. . .
CSCTL mode: ON
. . .
```

- 3. Set up initiator-target zones in the fabric, and discover the LUNs on the host.
- 4. Enable the ExpressLane feature on the host Emulex ports, and set the ExpressLane priority (CS_CTL value) to high (3).
- 5. Enable ExpressLane on any discovered LUNs, and start write I/O from the host.
- 6. Verify I/O statistics and CS_CTL prioritization in the fabric.

Result Validation

- 1. Check I/O logs, and verify that I/O continues without errors for all LUNs.
- 2. Verify that I/O performance improves on ExpressLane-enabled LUNs.
- 3. Verify CS_CTL prioritization in the fabric by monitoring the high VC buffer credits on the ISLs.

root> portre	egshow 0	grep	-E "	trc	bbc mi	bc"		
0x88982800:	bbc trc4	0	2	2	2	2	1	1
0x88982820:	bbc trc2	2	2	2	2	2	2	C
0x88982840:	bbc trc0	0	0	0	0	0	0	С

0x88982860:	bbc	trc0	0	0	0	0	0	0	0
0x88982880:	bbc	trc0	0	0	0	0	0	0	0

4. Check the switch error logs and the switch port status for errors.

errdumpall

porterrshow

0: 0	1.7g	2.7g	0	0	0	0	0	0	0	946	1	0	1	0	0	0	0
1:	431.1m 431	.4m 0	0	0	0	0	0	0	30 0	1	0	1	0	0	0	0	0
0 3:	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0																	

Test Results

PASS. I/O completes successfully for all LUNs. ExpressLane-enabled LUN performance is improved, and I/O to the LUN is prioritized throughout the FC fabric.

2.6 Storage Device—FC Protocol Jammer Test Suite

Test Objective

Perform FC Jammer tests including areas such as CRC corruption, packet corruption, missing frames, host error recovery, and target error recovery.

Test Configuration

Test Execution

- 1. Insert the Jammer device in the I/O path on the storage end.
- 2. Execute the following Jammer scenarios:
 - Delete one frame.
 - Delete R_RDY.
 - Replace CRC of data frame.
 - Replace EOF of data frame.
 - Replace "good status" with "check condition".
 - Replace IDLE with LR.
 - Truncate frame.
 - Create S_ID/D_ID error of data frame.

Result Validation

- 1. Check the host and storage logs for errors.
- 2. Check the switch logs and interface stats for errors.
 - # errdumpall
 - # porterrshow

0	0	0	0	0	0	0	946	1	0	1	0	0	0	0	C
0	0	0	0	0	0	0	30	1	0	1	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(

3. Verify Jammer operations and recovery with Analyzer.

Test Results

PASS. Host and target recover from errors and continue I/O operations.

2.7 Clear Link Diagnostics (D_Port) Test

Test Objective

Execute the Clear Link Diagnostics feature on all supported HBAs, and check for any port and link problems.

Tested with FOS 7.4.0.

Test Configuration

Test Execution

- 1. The Clear Link Diagnostic test is performed with Emulex LPe16202, QLogic 2672, and QLogic 1860 HBAs.
- The Brocade FC switch can be configured in static, dynamic, and on-demand D_Port modes. The switch supports dynamic D_Port by default at the chassis level.

```
root> configure
Configure...
Fabric parameters (yes, y, no, n): [no]
D-Port Parameters (yes, y, no, n): [no] y
Dynamic D-Port (on, off): [on]
On Demand D-Port (on, off): [off]
```

3. With the Emulex LPe16202 adapter, the switch port is in dynamic mode and the test is manually initiated on the HBA port from the Emulex OneCommand Manager.

root> switchshow 0 0 030000 id N16 In Sync FC D-Port 10:00:00:90:fa:61:92:3b Dynamic

4. With the QLogic 2672 adapter, the HBA port is in dynamic D_Port mode and the test is initiated by configuring the switch port as a static D_Port.

```
root> portdisable 19
root> portcfgdport --enable 19
```

```
Caution: D_Port functionality is only available on 16Gb-capable platforms with 16Gb FC SFPs, 10Gb FC SFPs, 8Gb LWL/ELWL FC SFPs, QSFPs or QSFP+.
```

5. With the QLogic 1860 adapter, the HBA port can be in static or dynamic D_Port mode.

port disabled

```
# bcu diag --dportenable 2/0
D-port mode for port 2/0 enabled.
```

6. Perform the D_Port test, and verify that all tests pass and that no port and link problems are reported.

Result Validation

Check the D_Port test results on the switch ports and host HBA diagnostic utilities.

Mode = Manual -> Static D_Port

Mode = Automatic -> Dynamic D_Port

root> portdporttest --show X

Test Results

PASS. D_Port tests passed with all tested HBAs.

3. Stress and Error Recovery with Device Multipath

3.1 Storage Device Fabric I/O Integrity—Congested Fabric

Test Objective

- 1. From all available initiators, start a mixture of read/write/verify traffic with random data patterns continuously to all their targets overnight.
- 2. Verify that no host application failover or unexpected change in I/O throughput occurs.
- 3. Configure the fabric and devices for maximum link and device saturation.

Test Configuration

Test Execution

- 1. Start FC I/O to the storage array from multiple hosts.
- 2. Set up a mix of read/write traffic.

Result Validation

- 1. Check the host and storage logs for errors.
- 2. Verify the link congestion, and check the switch logs for errors.

```
# errdumpall
```

```
# portperfshow
```

```
# porterrshow
```

0	0	0	0	0	0	0	946	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	30	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3. Check the I/O generator tool logs to verify that I/O runs without errors.

Test Results

PASS. All I/O completes without errors. All validation checks pass.

3.2 Storage Device Integrity—Device Recovery from Port Toggle

Test Objective

- 1. With I/O running, perform a quick port toggle on every storage device and adapter port.
- 2. Verify that host I/O recovers.
- 3. Perform the test sequentially for each storage device and adapter port.

Test Configuration

Test Execution

- 1. Set up multipath on the host, and start I/O.
- 2. Perform multiple iterations of sequential port toggles across the initiator and target switch ports.

Result Validation

- 1. Check the switch port status after toggling, and check for errors in the switch logs.
 - # errdumpall
 - # portstatsshow X
 - # portshow X
- 2. Check the multipath status on hosts to verify that the toggled path recovers.
 - Windows: mpclaim -s -d
 - Linux: multipath -11
 - VMware: Check the paths at Configuration > Storage > Devices > Manage Paths
- 3. Check host and storage error logs, and verify that I/O continues without errors.

Test Results

PASS. I/O fails over and recovers successfully. All validation checks pass.

3.3 Storage Device Integrity—Device Recovery from Device Relocation

Test Objective

- 1. With I/O running, manually disconnect a port and reconnect it to a different switch in the same fabric.
- 2. Verify that host I/O fails over to an alternate path and that the toggled path recovers.
- 3. Perform the test sequentially for each storage device and adapter port.
- 4. Repeat the test for all switch types.

Test Configuration

Test Execution

- 1. Set up multipath on the host, and start I/O.
- 2. Move storage target ports to different switch ports in the fabric.

Result Validation

- 1. Check for errors in the switch logs and the status of the new switch port.
 - # errdumpall
 - # portstatsshow X
 - # portshow X
- 2. Check the multipath status on hosts to verify that the toggled path recovers.
 - Windows: mpclaim -s -d
 - Linux: multipath -11
 - VMware: Check the paths at Configuration > Storage > Devices > Manage Paths
- 3. Check host and storage error logs and verify that I/O continues without errors.

Test Results

PASS. I/O fails over and recovers successfully. All validation checks pass.

3.4 Storage Device Stress—Device Recovery from Device Port Toggle— Extended Run

Test Objective

- 1. Sequentially toggle each initiator and target port in the fabric.
- 2. Verify that host I/O recovers to an alternate path and that the toggled path recovers.
- 3. Run the test for 24 hours.

Test Configuration

Test Execution

- 1. Set up multipath on the host, and start I/O.
- 2. Perform multiple iterations of sequential port toggles across the initiator and target switch ports.

Result Validation

- 1. Check the switch port status after toggling, and check for errors in the switch logs.
 - # errdumpall
 - # portstatsshow X
 - # portshow X

2. Check the multipath properties for iSCSI hosts to verify that the toggled path recovers.

```
On Windows: mpclaim -s -d
On Linux: multipath -ll
On VMware: Check the paths at Configuration > Storage > Devices > Manage Paths
```

3. Check host and storage error logs, and verify that I/O continues without errors.

Test Results

PASS. I/O fails over and recovers successfully. All validation checks pass.

3.5 Storage Device Recovery—ISL Port Toggle (Sequential)

Test Objective

- 1. Sequentially toggle each ISL path on all switches. Host I/O may pause but should recover.
- 2. Verify fabric ISL path redundancy between hosts and storage devices.
- 3. Verify host I/O throughout the test.

Test Configuration

Test Execution

- 1. Set up host multipath with links on different switches in the FC fabric, and start I/O.
- 2. Ensure ISL redundancy by provisioning multiple ISLs connected to different switches to provide multiple paths through the fabric.

islshow

3. Perform multiple iterations of sequential ISL toggles across the fabric.

Result Validation

- 1. Check the FC fabric status after ISL toggles. Verify that all nodes are online.
 - # fabricshow
- 2. Check the switch logs for errors, and verify that I/O fails over to an alternate ISL path in the fabric.
 - # errdumpall
 - # portperfshow
 - # porterrshow
- 3. Check host and storage error logs, and verify that I/O continues without errors.

Test Results

PASS. I/O re-routes to available paths in the fabric and recovers when the link is restored. All validations checks pass.

3.6 Storage Device Recovery—ISL Port Toggle (Entire Switch)

Test Objective

- 1. Sequentially, and for all switches, disable all ISLs on the switch under test.
- 2. Verify fabric switch path redundancy between hosts and storage devices.
- 3. Verify that the switch can merge back in to the fabric.
- 4. Verify the host I/O path throughout the test.

Test Configuration

Test Execution

- 1. Set up host multipath with links on different switches in the FC fabric, and start I/O.
- 2. Ensure ISL redundancy by provisioning multiple ISLs connected to different switches to provide multiple paths through the fabric.

islshow

3. Perform multiple iterations of sequentially disabling all ISLs on a switch in the fabric.

Result Validation

- 1. Check the FC fabric status after ISL toggling. Verify that all nodes are online.
 - # fabricshow
- 2. Check the switch logs for errors, and verify that I/O fails over to an alternate ISL path in the fabric.
 - # errdumpall
 - # portperfshow
 - # porterrshow
- 3. Check host and storage error logs, and verify that I/O continues without errors.

Test Results

PASS. I/O fails over to an alternate path and recovers once the switch merges back in the fabric. All validations checks pass.

3.7 Storage Device Recovery—Director Blade Maintenance

Test Objective

- 1. Toggle each blade on the director in sequential order.
- 2. Include blade enable/disable, power on/off, and reboot testing.

Tested with FOS 7.4.0.

Test Configuration

Test Execution

- 1. Uplink edge switch ISLs to different blades on the directors.
- 2. Set up host multipath with links on different switches in the FC fabric, and start I/O.
- 3. Perform multiple iterations of sequential disable/enable, power on/off, and reboot of all blades on the 8510 directors.

Result Validation

- 1. Check the FC fabric status after toggling the blades. Verify that all nodes are present in the fabric.
 - # fabricshow
- 2. Check the switch logs for errors, and verify that I/O fails over to an alternate ISL path in the fabric.

# e	errdum	pall													
# <u>F</u>	portpe	tperfshow													
# <u>r</u>	# porterrshow														
0	0	0	0	0	0	0	946	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	30	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3. Check host and storage error logs, and verify that I/O continues without errors.

Test Results

PASS. I/O fails over to an alternate path and recovers once the blade recovers from the disruption.

3.8 Storage Device Recovery–Switch Offline

Test Objective

- 1. Toggle each switch in sequential order.
- 2. Include switch enable/disable, power on/off, and reboot testing.

Test Configuration

Test Execution

- 1. Set up host multipath with links on different switches in the FC fabric, and start I/O.
- 2. Perform multiple iterations of sequential disable/enable, power on/off, and reboot of all switches in the fabric.

Result Validation

- 1. Check the FC fabric status after toggling the switches. Verify that all nodes are present in the fabric.
 - # fabricshow

- 2. Check the switch logs for errors, and verify that the toggled switch recovers.
 - # errdumpall
 - # switchshow
- 3. Check host and storage error logs, and verify that I/O continues without errors.

Test Results

PASS. I/O fails over to an alternate path and recovers once the switch merges back in the fabric.

3.9 Storage Device Recovery—Switch Firmware Download

Test Objective

- 1. Sequentially perform the firmware maintenance procedure on all device-connected switches under test.
- 2. Verify that host I/O continues (with minimal disruption) through the "firmware download" and that device pathing remains consistent.

Test Configuration

Test Execution

- 1. Set up host multipath with links on different switches in the FC fabric, and start I/O.
- 2. Sequentially perform firmware upgrades on all switches in the fabric.

Result Validation

- 1. Verify that the firmware upgrade completes successfully on each switch node and that they merge back in the FC fabric.
 - # version
 - # fabricshow
- 2. Check I/O generator tool logs to verify that I/O runs without errors throughout the firmware upgrade.
- 3. Check the switch logs for errors, and verify that I/O resumes on the node after the firmware upgrade is complete.
 - # errdumpall
 - # portperfshow

Test Results

PASS. I/O operations complete without errors. I/O fails over to an alternate path during the switch reload after the firmware upgrade, and it resumes after the switch is online. All validation checks pass.

4. Storage Device Fibre Channel Routing (FCR) Internetworking Tests

(Covered in Fabric OS 8.1.0 and previous releases.)

4.1 Storage Device Internetworking Validation with the FC Host

Test Objective

- 1. Configure two FC fabrics with FCR.
- 2. Verify that edge devices are imported into adjacent name servers and that hosts have access to their routed targets after FC routers are configured.

Test Configuration

Test Execution

- 1. Set up FCR in an Edge-Backbone-Edge configuration.
- 2. Set up LSAN zoning, verify host access to target LUNs, and start I/O.

Result Validation

- 1. Verify the name server and FCR fabric state.
 - # fcrfabricshow
 - # fcrproxydevshow
- 2. Verify that I/O runs successfully without error.

Test Results

PASS. I/O completes successfully. Both edge fabrics have the corresponding proxy name server entries for the host and target ports.

4.2 Storage Device Internetworking Validation with FCoE Using VDX FlexPort

Test Objective

- 1. Configure an FC fabric with FCR connected to an FCoE fabric.
- 2. Verify that edge devices are imported into adjacent name servers and that hosts have access to their routed targets after FC routers are configured.

Tested with FOS 7.4.0.

Test Configuration

Test Execution

- 1. Add an FCoE VCS fabric to the FCR setup.
- 2. Set up LSAN zoning, verify host access to target LUNs, and start I/O.

Result Validation

- 1. Verify the name server and FCR fabric state.
 - # fcrfabricshow
 - # fcrproxydevshow
- 2. Verify that I/O runs successfully without errors.

Test Results

PASS. I/O completes successfully. Both edge fabrics have the corresponding proxy name server entries for the host and target ports.

4.3 Storage Device Edge Recovery After FCR Disruptions

Test Objective

- 1. Configure FCR in an edge-backbone-edge configuration.
- 2. With I/O running, validate device access and pathing.
- 3. Perform reboots, switch disables, and port toggles on edge connections to disrupt device pathing and I/O.
- 4. Verify path and I/O recovery once switches and ports recover.

Test Configuration

Test Execution

- 1. Set up FCR in an edge-backbone-edge configuration.
- 2. Set up LSAN zoning, verify host access to target LUNs, and start I/O.
- 3. Perform sequential reboots, switch disables, and ISL port toggles on the switches in the edge fabric.

Result Validation

- 1. Verify the FCR fabric state throughout the disruptions.
 - # fcrfabricshow
 - # fcrproxydevshow
- 2. Check the switch logs for errors.
 - # errdumpall
 - # portperfshow
- 3. Check host and storage logs, and verify that I/O runs without errors.

Test Results

PASS. I/O fails over to an available switch path and recovers when the disrupted switch is restored.

4.4 Storage Device Backbone Recovery After FCR Disruptions

Test Objective

- 1. Configure FCR in a backbone-edge configuration.
- 2. With I/O running, validate device access and pathing.
- 3. Perform reboots, switch disables, and port toggles on backbone connections to disrupt device pathing and I/O.
- 4. Verify path and I/O recovery once switches and ports recover.

Test Configuration

Test Execution

- 1. Connect array target ports to the backbone fabric in an edge-backbone configuration.
- 2. Set up LSAN zoning, verify host access to target LUNs, and start I/O.
- 3. Perform sequential reboots, switch disables, and ISL port toggles on the switches in the backbone fabric.

Result Validation

- 1. Verify the FCR fabric state throughout the disruptions.
 - # fcrfabricshow
 - # fcrproxydevshow
- 2. Check the switch logs for errors.
 - # errdumpall
 - # portperfshow
- 3. Check host and storage logs, and verify that I/O runs without errors.

Test Results

PASS. I/O fails over to an available switch path and recovers when the disrupted switch is restored.

5. Optional/Additional Tests

5.1 Nondisruptive Firmware Upgrade on Storage Device

Test Objective

1. Perform the firmware maintenance procedure on the storage device.

2. Verify that host I/O continues (with minimal disruption) through the "firmware download" and that device pathing remains consistent.

Test Configuration

Test Execution

- 1. Set up host multipath with links on different switches in the FC fabric, and start I/O.
- 2. Perform the firmware update on all nodes of the storage array.

Result Validation

- 1. Check the I/O generator tools logs to verify that I/O completes without errors.
- 2. Check the host and storage logs for errors throughout the I/O operations.
- 3. Check the switch logs and port stats for errors or I/O drops.

errdumpall

porterrshow

0	0	0	0	0	0	0	946	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	30	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Test Results

PASS. I/O completes successfully throughout the firmware upgrade process.

5.2 Workload Simulation Test Suite-Medusa

Test Objective

- 1. Validate storage/fabric behavior while running a workload simulation test suite.
- 2. Areas of focus may include random and sequential data patterns of various block sizes and database simulation.

Test Configuration

Test Execution

- 1. Set up four standalone hosts with two multipathed initiator ports for I/O generation.
- 2. Use the Medusa I/O tool for generating I/O and simulating workloads.
- 3. Run random and sequential I/O in a loop at block transfer sizes of 512, 4k, 8k, 16k, 32k, 64k, 128k, 256k, 512k, and 1m. Include a nested loop of 100-percent read, 100-percent write, and 50-percent read/write.
- 4. Run the Medusa Application I/O workload suite, which includes OLTP, Decision Support System (DSS), Exchange Email, File Servers, Media Streaming, OS Drive, OS Paging, SQL, Video on Demand, VDI, and Web Server profiles.

Result Validation

- 1. Check the I/O generator tool logs to verify that I/O completes without errors.
- 2. Check the host and storage logs for errors throughout the I/O operations.

3. Check the switch logs and port stats for errors or I/O drops.

# errdumpall															
# p	# porterrshow														
0	0	0	0	0	0	0	946	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	30	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Test Results

PASS. All workload runs are monitored at the host, storage, and fabric and complete without I/O errors or faults.

5.3 Workload Simulation Test Suite–VMware

Test Objective

- 1. Validate storage/fabric behavior while running a virtual workload simulation test suite.
- 2. Areas of focus include VM environments running de-duplication/compression data patterns and database simulation.

Test Configuration

Test Execution

- 1. Set up an ESX cluster of two hosts with four worker VMs per host.
- 2. Use the VMware I/O Analyzer tool to generate I/O and simulate workloads.
 - a. Run random and sequential I/O at large and small block transfer sizes.
 - b. Run the SQL Server simulation workload.
 - c. Run the OLTP simulation workload.
 - d. Run the Web Server simulation workload.
 - e. Run the Video on Demand simulation workload.
 - f. Run the Workstation simulation workload.
 - g. Run the Exchange Server simulation workload.
- Set up VMs with the Medusa I/O tool, and run random and sequential I/O in a loop at block transfer sizes of 512, 4k, 8k, 16k, 32k, 64k, 128k, 256k, 512k, and 1m. Include a nested loop of 100-percent read, 100-percent write, and 50-percent read/ write.
- 4. Run the Medusa Application I/O workload suite, which includes OLTP, Decision Support System (DSS), Exchange Email, File Servers, Media Streaming, OS Drive, OS Paging, SQL, Video on Demand, VDI, and Web Server profiles.

Result Validation

- 1. Check the I/O generator tool logs to verify that I/O completes without errors.
- 2. Check the host and storage logs for errors throughout the I/O operations.
- 3. Check the switch logs and port stats for any errors or I/O drops.

errdumpall

# porterrshow															
0	0	0	0	0	0	0	946	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	30	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Test Results

PASS. All workload runs are monitored at the host, storage, and fabric and complete without I/O errors or faults.

Test Conclusions

- 1. Achieved a 100% pass rate on all test cases in the SSR qualification test plan. The network and the storage were able to handle the various stress and error recovery scenarios without issue.
- Different I/O workload scenarios were simulated using Medusa and VMware IO Analyzer tools, and sustained performance levels were achieved across all workload types. The Infinidat array and the Brocade FC fabric handled both the low-latency and high-throughput I/O workloads with equal efficiency without I/O errors or packet drops.
- 3. The results confirm that the Infinidat InfiniBox array interoperates seamlessly with Brocade FC fabrics, and they demonstrate high availability and sustained performance.
- 4. The Brocade Gen 5 (16-Gb) and Gen 6 (32-Gb) FC switches were able to handle the sustained throughput and latency performance requirements efficiently with fewer ISL trunks. Multiple ISLs to different switches in the fabric should be set up for providing path redundancy through the fabric.
- 5. We recommend that you enable the Monitoring and Alerting Policy Suite (MAPS) heath monitor on all switches in the FC fabric to report fabric-wide events and traffic performance metrics. The MAPS feature of Fabric Performance Impact monitoring is enabled by default and should be used to detect fabric bottlenecks in the form of timeouts and latency.
- 6. We recommend that you implement the IO Insight feature with MAPS alerting to closely monitor the critical flows in the fabric at the SCSI level.
- 7. Utilizing Peer Zoning helps reduce the zone database size and the zoning complexity, while providing the RSCN and hardware resource efficiencies of Single-Initiator Zoning.
- 8. QoS Zoning should be used to classify host-target traffic into high, medium, or low priority zones to provide traffic prioritization through the FC fabric for the desired host-target pair by allocating more resources to the traffic in the higher-priority zone.
- 9. Enabling Emulex ExpressLane on a LUN provides prioritized queuing on the HBA for traffic to that LUN and also sets the CS_CTL tag on the frame, which allows the traffic to be prioritized through the FC fabric based on the value of the CS_CTL tag and the corresponding priority level.
- 10. Host multipath should be configured for optimal availability and performance. Multipath configuration details for the hosts are provided in the host setup section of the "Configure DUT and Test Equipment" section.
- 11. We recommend that you install the Infinidat Host Power Tools application on all supported hosts. This application allows storage volume provisioning from the host and other recommended host-side configurations for multipathing and performance tuning to be done with ease.