
PCI Express
TechFeature

Reprinted from May 2004

by John Gudmundson
PLX Technology

For PCI Express technology to realize
its full potential as the interconnect
solution for chip-to-chip and back-

plane switching fabric applications, it needs
to support multiprocessor-based designs.
Since PCI Express protocols were designed
from the beginning to be fully software-
compatible with their predecessors, PCI
and PCI-X, they were not originally
designed for such multi-hosted systems.
Just as these previous technologies have
utilized industry-standard nontransparent
bridging (NTB) for such designs, so has
PCI Express (PCIe) technology. By uti-
lizing NTB, PCIe applications can now
include switched fabrics in multi-hosted
topologies including intelligent adapter
cards, dual-host systems with redundancy,
and even blade server systems.

In legacy PCI-X systems, it was origi-
nally assumed there would be only one
microprocessor in the topology. Upon
power-up this processor attempts to dis-
cover all devices present, determine their
memory requirements and map these into
system memory. A series of control and
status registers (CSRs) are used by this dis-

covery and configuration software. For
transparent bridges, the CSR with a “Type
1” header informs the processor to keep
enumerating beyond this bridge as addi-
tional devices lie downstream. These
bridges with Type 1 headers include CSR
registers for primary, secondary and subor-
dinate bus numbers, which, when pro-
grammed by the host, define the CSR
addresses of all downstream devices.

Endpoint devices have a “Type 0”
header in their CSRs to inform the
processor that no additional devices lie
downstream. These CSRs include base
address registers (BARs) used to request
memory and I/O apertures from the host.
Both header types include a class code that
indicates the type (1 or 0), as well as sub-
class, device ID and vendor ID fields.
Through this header format and addressing
rules, the host searches through the entire
topology until it reaches all endpoints.
Until then, it reads all the class codes of all
the discovered devices and assigns bus
numbers to all bridges. At the end of this
discovery, the system knows which
devices are present along with their

memory and I/O space requirements. If a
subsequent processor is added to the
system, both processors will attempt to
enumerate and memory map the entire
system. This will result in memory map-
ping conflicts, multiple processor attempts
to service the same system requests and
system failure.

Nontransparent Bridging
Isolates Processor Domains

PCI-X and now PCIe devices have
subsequently solved this multiprocessor
issue by adding NTB. In addition to the
electrical isolation of transparent bridges,
NTB adds logical isolation by providing
processor domain partitioning and address
translation between the memory-mapped
spaces of these domains. With NTB,
devices on either side of the bridge are not
visible from the other side. However, a
path is provided between the two buses for
data to be transferred between the
processor domains. With NTB applied to
ports in bridges or switches, these ports
will expose a Type 0 header on both sides
of the port and appear as an endpoint to

Although not part of the PCI Express spec, nontransparent bridging is
completely consistent with it and can support multiprocessor systems
with only minimal software initialization efforts.

Enabling Multi-Host
System Designs with
PCI Express Technology

TechFeature

Nontransparent Bridging Requires Minimal Software

Configuring nontransparent bridg-
ing (NTB) PCI Express devices
requires only a few additional steps
beyond those for transparent bridges.
NTB devices have two separate con-
figuration register sets—one each for
upstream and downstream sides—
therefore, they need to be individually
programmed. To enable this, control
bits are used to block access to
these inter faces. A primary bus
access bit must be set from the local
side processor or EEPROM to allow
access to this port. Similarly, a sec-
ondary bus access bit must also be
set prior to access from the sec-
ondary side and can either have a
default value or be programmed by
EEPROM. Only after the registers are
programmed will these control bits be
enabled to allow access. These regis-
ters should not be subsequently
changed prior to any reset.

There are four groups of regis-
ters for NTB that require program-
ming. One set includes the primary
interface’s standard control and sta-
tus registers (CSRs), which are com-
posed of the first 64 bytes of the con-
figuration header and exclude the

address base address registers
(BARs). This set is common to both
interfaces. The values are normally
assigned from EEPROM and include
vendor and device ID and device
class. A second set includes the PCIe
interface configuration that describes
the PCIe attributes including maxi-
mum payload size and link widths;
these values are also common to
both inter faces. The third set
includes the address BAR configura-
tion registers including those for
setup and translation. Communi-
cation CSRs, including doorbell and
scratchpad, are the fourth set. They
are used to set up and define the
behavior of the signaling and mes-
saging interfaces used by the host
and local processors to communicate
with each other. Doorbell registers
are used to pass interrupts between
the processors and scratchpad regis-
ters can be used to pass control and
status information.

On power-on-reset, all internal
registers except “sticky bits” are set
to their default values; this includes
setting the primary bus access and
secondary bus access bits to zero to

disallow PCIe port access from both
sides of the NTB device. The CSR con-
tents, including most of the standard
CSR space of the primary interface
and all base aspects of the device,
are then loaded from serial EEPROM
and the secondary bus access is set
to 1, allowing access to the CSRs
from the downstream side. Next, the
remaining primary side registers,
including setup and translation regis-
ters, are configured by the local
processor and the primary bus access
bit is enabled to allow upstream
access to these registers. Here, the
secondary side processor creates and
configures the resource sizes for the
primary side BARs and the forwarding
translations. If all resources on the
local side are “static,” it is possible
the values could be loaded from EEP-
ROM and prevent added software
intervention on the local side. But
processor-based programming gives
more flexibility and limits the size
requirements of the EEPROM. With
these steps completed the PCIe host
can run its standard discovery and
enumeration software just as with
pure transparent systems.

discovery software, even though additional
elements are present on the other side.
Processors on their respective side of the
bridge or switch only enumerate until a
Type 0 header is found.

Figure 1 illustrates this isolation. Here,
a system host will enumerate through
Bridge A and Bridge B (both transparent)
on the left branch of the diagram until it
reaches the endpoint X. On the right side
branch, the host will stop enumeration at
Bridge D. Similarly, the local CPU will
enumerate through Bridge E and F (both
virtual bridges within the switch) and dis-
cover and determine the requirements of
endpoint Y, but will not attempt to discover
elements beyond Bridge D. After this ini-
tialization and configuration is completed,
all devices have been discovered and the
memory, I/O and other requirements are
known and addresses assigned for each
processor domain. Yet, with two memory

Reprinted from May 2004

Host/Root Complex

Bridge-A (TB)

Bridge-B (TB)

Bridge-E (TB) Bridge-F (TB)

Bridge-C (TB)

NT Bridge-D
(Upstream)

NT Bridge-D
(Downstream)

Endpoint X

Endpoint Y Local CPU

3-Port
PCIe Switch

Processor domain partitioning with nontransparent bridging.Figure 1

TechFeature

Reprinted from May 2004

spaces, translations of addresses and
device ID fields (for ID-routed packets)
are needed to enable transactions to cross
from one memory space to the other.

Address Translation
Communication between processor

domains requires memory mapping
between each domain. This mapping is
accomplished through translation registers
within the BARs. Each NTB port has two
sets of BARs, one each for the primary
side (upstream port) and secondary side
(downstream port). BARs are used to
define address translating windows into
the memory space on the other side of the
bridge and allow the forwarding of trans-
actions. These NTB-based BARs expand
upon the basic capabilities of transparent
bridge BARs because each BAR has a
setup register, which defines the size and
type of the window, and an address trans-
lation register. While transparent bridges
forward all CSRs based on bus numbers,
NTB devices only accept CSR transactions
addressed to them. Two methods used in
NTB include direct address translation and
look-up table-based translation.

In direct address translation the
addresses of all upstream and down-
stream transactions are translated by
adding an offset to the BAR in which the
transaction landed. Base translation regis-
ters within the BARs are used to set up
these translations. Figure 2 illustrates this
shift from the primary side address map to
the secondary address map. The BAR is a
32-bit register and segregated into two
sections, a lower 14 bits for window size
determination and 18 upper bits for the
starting location of the information in
each of the memory spaces. BARs may
also be combined in pairs to allow 64-bit
addressing.

In look-up table-based address transla-
tion, the BAR uses a special look-up table
for address translation of transactions that
fall within its window. This approach pro-
vides more flexibility in mapping local
addresses to host bus addresses since the
location of the index field within the
address is programmable to adjust window
size. Figure 3 illustrates the use of an index
field within the BAR. The index is used to
provide the upper bits for the new memory
location.

Primary Address Map Secondary Address Map

Base

Base + Offset Contents of
Base Translation
Register

Translated
Base + Offset

31 13 0 31 13 0

Address Location-Host Window Size Window SizeAddress Location-Local

Direct address translation with base translation registers.Figure 2

Translated Base Look-up Table

3F

01
00

Translated base addr 3F
Translated base addr 3E
Translated base addr 3D
Translated base addr 3C

Translated base addr 04
Translated base addr 03
Translated base addr 02
Translated base addr 01
Translated base addr 00

Translated base addr [index]

31 2019 14 13 0

31 14 13 0

Base Index Offset

Translated Base Offset

Look-up table-based address translation.Figure 3

Local
Switch

CPU
acting as host

CPU
Root Complex

CPU
Root Complex

Upstream

Local
Switch

Upstream

NTB Port 1–Upstream
NTB Port 1–
Downstream

Device/
Bridge/
Switch

Blade-3 Intelligent
Blade-4

Intelligent
Blade-1

Intelligent
Blade-2

Backplane
Switch

(all ports transparent)
Downstream

Local
Switch

Upstream

NTB Port 1–Upstream
NTB Port 1–
Downstream

Four-blade system enabled with nontransparent-enabled bridge and switches.Figure 4

TechFeature

Requester ID in Outgoing Request

Bus# [7:0] Dev# [4:0]
Fun#
[2:0]

CAM - NTB Port 1
If {Bus#, Dev#, Fun#} hit in

CAM, use Transmit Index; else
return Unsupported Request

CAM - NTB Port 2
If {Bus#, Dev#} hit in

CAM, use Receive Index; else
return Unsupported Request

Look-up Table - NTB Port 2
Use Receive Index to look up Bus#

and Dev#

Register Stack - NTB Port 1
Look-up Requester ID based on

Transmit Index in packet

Translated Requester ID in System
Domain

Bus# [7:0]
Dev#
[4:0]

Bus#
Bus#

Bus#

Bus#

Transmit
Index

Transmit
Index

Receive
Index

Receive
Index

8 entries
8 entries

32 entries
32 entries

Dev#

Bus#
Bus#

Dev#
Dev#

Bus# Dev#

Bus#
Bus#

Dev#
Dev#

Bus#
Bus#

Dev#
Dev#

Fun#
Fun#

Bus# Dev# Fun#

Dev# Fun#

Dev#
Dev#

Fun#
Fun#

Translated Requester ID in Local
Domain

Bus# [7:0]

Translation of an Outgoing Request
at originating NT switch port

Translation of an Incoming
Request at target NT switch port

Translation of an Outgoing
Completion at target NT port

Translation of an Incoming
Completion at originating NT port

Receive
Index

Transmit
Index
[2:0]

Transmit
Index
[2:0]

Dev#
[4:0]Bus# [7:0]

Transmit
Index
[2:0]

Restored Requester ID in Completion in
Local Domain

Restored Requester ID in System
Domain

Bus# [7:0] Dev# [4:0]
Fun#
[2:0]

The four steps of routing devices through requester ID: A) Translation of an
outgoing request across the NTB Port 1; B) Translation of an incoming
request through NTB Port 2; C) Inverse translations of the outgoing comple-
tions through NTB Port 2; and D) Translation of the incoming completion
through NTB Port 1.

Figure 5

their completions can be routed back to
their requesters.

Routing devices through requester ID
translation is the preferred method because
it avoids complexity and having to save
state information for every outstanding
transaction. In order to route request/com-
pletions where two NTB devices are
encountered between source and destina-
tion, four translation steps are needed.
Figure 4 shows an example of a blade
server system where three of the blades
comprise processor-based systems with
NTB deployed as shown. Request transac-
tions are sent from one blade behind an
NTB device through the fabric to a second
intelligent blade behind a second NTB
device and the corresponding completion
is routed back to the requestor blade. The
four steps include: translation of an out-
going request across the NTB Port 1; trans-
lation of an incoming request through NTB
Port 2; inverse translations of the outgoing
completions through NTB Port 2; and
translation of the incoming completion
through NTB Port 1.

Figure 5 illustrates the four translation
steps starting with an outgoing request
through an NTB device, which requires
an 8-entry content addressable memory
(CAM). Only the 3-bit function value will
vary because the bus and device of the
node directly behind the NTB device are
known. The CAM entries support all out-
going requests and any number of out-
standing requests made by a single node.
The CAM is configured by EEPROM or
local firmware before it is possible to
send requests to the system domain.
When the outgoing request arrives at the
first NTB port, the packet requester ID is
associated into this CAM. If the ID
falls within the CAM, a corresponding
transmit index replaces the function
number field of the requester ID; other-
wise, an unsupported request completion
is returned. The contents of the bus and
device number fields are replaced with
bus and device fields last written to the
NTB port’s registers.

At the second NTB device the
incoming request is translated using a 32-
entry CAM. If the incoming bus/device
number falls within the CAM entries, a 5-
bit receive index is substituted in the
device field; otherwise an unsupported
request completion is returned. The bus

Reprinted from May 2004

Requester ID Translation
Although memory and I/O read and

write transactions are routed by addresses,
configuration reads and writes (both types
0 and 1), completions and some messages

require device ID routing and NTB devices
also allow for this. The NTB device must
either take ownership of non-posted
requests passing through it or translate
their requester IDs in a way that ensures

TechFeature

But as mentioned, NTB devices do not
take ownership of non-posted requests and
hence no limit is placed on the number of
outstanding transactions.

The PCIe specification requires all
devices to capture both bus and device
numbers on every configuration write
request and use these values in request and
completion IDs. But as noted earlier, with
NTB, where a requester ID of requests for-
warded from the system host into the
switching fabric occurs, a CAM index
value (transmit index), not the mandated
device number, is used. Nevertheless,
functionality is still provided for and the
PCIe specification can still be met if a
switch is limited to one NTB port. As the
only NTB port, it is the only port capable
of sending such a requester ID and only the
bus number is needed to route the comple-
tion back to the NTB port.

PLX Technology
Sunnyvale, CA.
(408) 774-9060.
[www.plxtech.com].

Reprinted from May 2004

number is replaced with that second NTB
device’s upstream bus number and the
packet forwarded to the destination node.
The function number field retains the
transmit index value. Only 32 entries are
required as the NTB device bus number is
known and only the 5-bit device field may
vary, though this limits the number of
requesting devices elsewhere in the system
doing peer-to-peer transfers with devices
behind the NTB device to 32.

The corresponding outgoing comple-
tion for the original request is translated at
the second NTB device through a look-up
table (LUT) such that the NTB port
appears to be the source of the completion.
At this LUT, the receive index is used to
look up the new bus and device field num-
bers that replaced the previous bus number
and receive index fields. The transmit
index remains the same. The completion
packet is sent out of the NTB device. As
this completion packet is received at the
incoming port of the first NTB device, it is
again translated; here, the transmit index
originally assigned by this NTB device is
used to look up the original bus and device
number fields as well as the function

number. The completion packet is then for-
warded to the requester node.

Specification Compatibility
Since NTB technology is not part of

the PCIe specification, steps have been
taken to ensure compatibility. Each NTB
port acts as both an endpoint during con-
figuration and discovery, as well as a
switch/bridge for other types of transac-
tions. Yet, the PCIe specification provides
different and potentially conflicting capa-
bilities for the two types of devices. For
instance, endpoints may not be located on
the virtual PCI bus of a switch; but this
restriction does not apply to NTB devices
because PCIe switch/bridges only use the
same type of CSR header format as an
endpoint and do not actually function as
endpoints.

Endpoints must provide infinite com-
pletion credits while switches must flow
control completions. Yet, since NTB
devices are not true endpoints, they pro-
vide flow control for their link mates.
Endpoints are allowed 32 outstanding
transactions by default while a switch has
no such limit to the number it forwards.

